151
|
A Head Start: CAR-T Cell Therapy for Primary Malignant Brain Tumors. Curr Treat Options Oncol 2020; 21:73. [PMID: 32725495 DOI: 10.1007/s11864-020-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Oncology is the midst of a therapeutic renaissance. The realization of immunotherapy as an efficacious and expanding treatment option has empowered physicians and patients alike. However, despite these remarkable advances, we have only just broached the potential immunotherapy has to offer and have yet to successfully expand these novel modalities to the field of neuro-oncology. In recent years, exciting results in preclinical studies of immune adjuvants, oncolytic viruses, or cell therapy have been met with only fleeting signs of response when taken to early phase trials. Although many have speculated why these innovative approaches result in impaired outcomes, we are left empty-handed in a field plagued by a drought of new therapies. Herein, we will review the recent advances across cellular therapy for primary malignant brain tumors, an approach that lends itself to overcoming the inherent resistance mechanisms which have impeded the success of prior treatment attempts.
Collapse
|
152
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
153
|
Ghassemi S, Martinez-Becerra FJ, Master AM, Richman SA, Heo D, Leferovich J, Tu Y, García-Cañaveras JC, Ayari A, Lu Y, Wang A, Rabinowitz JD, Milone MC, June CH, O'Connor RS. Enhancing Chimeric Antigen Receptor T Cell Anti-tumor Function through Advanced Media Design. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:595-606. [PMID: 32775494 PMCID: PMC7397397 DOI: 10.1016/j.omtm.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Effective chimeric antigen receptor (CAR)-T cell therapy is dependent on optimal cell culture methods conducive to the activation and expansion of T cells ex vivo, as well as infection with CAR. Media formulations used in CAR-T cell manufacturing have not been optimized for gene delivery, cell expansion, and overall potency. Bioactive components and derivatives that support the generation of functionally-competent T cell progeny with long-lasting persistence are largely undefined. Current media formulations rely on fetal bovine serum (FBS) or human serum (HS), which suffer from a lack of consistency or supply issues. We recognize that components of blood cellular fractions that are absent in serum may have therapeutic value. Here we investigate whether a concentrated growth factor extract, purified from human transfusion grade whole blood fractions, and marketed as PhysiologixTM xeno-free (XF) hGFC (Phx), supports CAR-T cell expansion and function. We show that Phx supports T cell proliferation in clinical and research-grade media. We also show that Phx treatment enhances lentiviral-mediated gene expression across a wide range of multiplicity of infections (MOIs). We compared the ability of anti-GD-2 CAR-T cells expanded ex vivo in medium conditioned with either Phx or HS to clear tumor burden in a human xenograft model of neuroblastoma. We show that T cells expanded in Phx have superior engraftment and potency in vivo, as well as CAR-induced cytolytic activity in vitro. Metabolomic profiling revealed several factors unique to Phx that may have relevance for CAR-T cell preclinical discovery, process development, and manufacturing. In particular, we show that carnosine, a biogenic amine modestly enriched in Phx relative to HS, enhances lentiviral gene delivery in activated T cells. By limiting extracellular acidification, carnosine enhances the metabolic fitness of T cells, shifting their metabolic profile from an acidic, stressed state toward an oxidative, energetic state. These findings are very informative regarding potential derivatives to include in medium customized for gene delivery and overall potency for T cell adoptive immunotherapies.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sarah A Richman
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Heo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yitao Tu
- Department of Biological Physics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Asma Ayari
- Nucleus Biologics, LLC, San Diego, CA, USA
| | - Yinan Lu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ai Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Singer Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
154
|
Huang M, Deng J, Gao L, Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res 2020; 10:1979-1992. [PMID: 32774996 PMCID: PMC7407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023] Open
Abstract
Current cancer treatment strategies have been advanced by chimeric antigen receptor (CAR) cell therapy, a rapidly emerging cellular immunotherapy. The numerous revolutionary achievements of CAR T cells against hematological malignancies initiated an upsurge in research on translating this therapy into a treatment for solid tumors. Unfortunately, no equivalent success has yet been achieved in treating solid tumors. The main challenges posed by solid tumors have gradually been recognized and include a lack of unique antigen targets, antigen heterogeneity, limited infiltration into the tumor, and an immunosuppressive tumor microenvironment. Surmounting the limitations of solid tumors remains critical in popularizing CAR T cell applications. Various approaches to augmenting the efficiency of CAR T cells through directly optimizing CAR constructs or through innovative combination strategies such as vaccines, biomaterials, and oncolytic virus have arisen. In addition to describing the main obstacles that restrict the promotion of CAR T cells, this paper focuses on reviewing new ongoing strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Meijuan Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lili Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
155
|
Cui J, Zhang Q, Song Q, Wang H, Dmitriev P, Sun MY, Cao X, Wang Y, Guo L, Indig IH, Rosenblum JS, Ji C, Cao D, Yang K, Gilbert MR, Yao Y, Zhuang Z. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncol 2020; 21:1436-1446. [PMID: 31276594 DOI: 10.1093/neuonc/noz117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastoma survival remains unchanged despite continuing therapeutic innovation. Herein, we aim to (i) develop chimeric antigen receptor (CAR) T cells with a specificity to a unique antigen, carbonic anhydrase IX (CAIX), which is expressed in the hypoxic microenvironment characteristic of glioblastoma, and (ii) demonstrate its efficacy with limited off-target effects. METHODS First we demonstrated expression of CAIX in patient-derived glioblastoma samples and available databases. CAR T cells were generated against CAIX and efficacy was assessed in 4 glioblastoma cell lines and 2 glioblastoma stem cell lines. Cytotoxicity of anti-CAIX CAR T cells was assessed via interferon gamma, tumor necrosis factor alpha, and interleukin-2 levels when co-cultured with tumor cells. Finally, we assessed efficacy of direct intratumoral injection of the anti-CAIX CAR T cells on an in vivo xenograft mouse model using the U251 luciferase cell line. Tumor infiltrating lymphocyte analyses were performed. RESULTS We confirm that CAIX is highly expressed in glioblastoma from patients. We demonstrate that CAIX is a suitable target for CAR T-cell therapy using anti-CAIX CAR T cells against glioblastoma in vitro and in vivo. In our mouse model, a 20% cure rate was observed without detectable systemic effects. CONCLUSIONS By establishing the specificity of CAIX under hypoxic conditions in glioblastoma and highlighting its efficacy as a target for CAR T-cell therapy, our data suggest that anti-CAIX CAR T may be a promising strategy to treat glioblastoma. Direct intratumoral injection increases anti-CAIX CAR T-cell potency while limiting its off-target effects.
Collapse
Affiliation(s)
- Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Dmitriev
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell Y Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoyu Cao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liemei Guo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Iris H Indig
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared S Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chunxia Ji
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Dongqing Cao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Kaiyong Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Oaiscell Biotechnologies Inc, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu Yao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
156
|
Wu F, Li G, Liu H, Zhao Z, Chai R, Liu Y, Jiang H, Zhai Y, Feng Y, Li R, Zhang W. Molecular subtyping reveals immune alterations in
IDH
wild‐type lower‐grade diffuse glioma. J Pathol 2020; 251:272-283. [PMID: 32418210 DOI: 10.1002/path.5468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA) Beijing PR China
| | - Guan‐Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - Han‐Jie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA) Beijing PR China
| | - Rui‐Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA) Beijing PR China
| | - Yu‐Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA) Beijing PR China
| | - Hao‐Yu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - Yue‐Mei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - Ren‐Peng Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute Capital Medical University Beijing PR China
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University Beijing PR China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA) Beijing PR China
| |
Collapse
|
157
|
Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, Auduong S, Grauwet K, Passaro C, Khalsa JK, Shah K, Reardon DA, Ligon KL, Beroukhim R, Nakashima H, Ivanov P, Anderson PJ, Lawler SE, Chiocca EA. Tumor Interferon Signaling Is Regulated by a lncRNA INCR1 Transcribed from the PD-L1 Locus. Mol Cell 2020; 78:1207-1223.e8. [PMID: 32504554 DOI: 10.1016/j.molcel.2020.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 01/22/2023]
Abstract
Tumor interferon (IFN) signaling promotes PD-L1 expression to suppress T cell-mediated immunosurveillance. We identify the IFN-stimulated non-coding RNA 1 (INCR1) as a long noncoding RNA (lncRNA) transcribed from the PD-L1 locus and show that INCR1 controls IFNγ signaling in multiple tumor types. Silencing INCR1 decreases the expression of PD-L1, JAK2, and several other IFNγ-stimulated genes. INCR1 knockdown sensitizes tumor cells to cytotoxic T cell-mediated killing, improving CAR T cell therapy. We discover that PD-L1 and JAK2 transcripts are negatively regulated by binding to HNRNPH1, a nuclear ribonucleoprotein. The primary transcript of INCR1 binds HNRNPH1 to block its inhibitory effects on the neighboring genes PD-L1 and JAK2, enabling their expression. These findings introduce a mechanism of tumor IFNγ signaling regulation mediated by the lncRNA INCR1 and suggest a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mykola Zdioruk
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Niklas von Spreckelsen
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine, and University Hospital, University of Cologne, 50937 Cologne, Germany
| | - Ruben Ferrer-Luna
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hirotaka Ito
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Quazim A Alayo
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Prakash Kharel
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Giantini Larsen
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William Y Fan
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sophia Auduong
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Korneel Grauwet
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carmela Passaro
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jasneet K Khalsa
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith L Ligon
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston Children's Hospital, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Neuro-Oncology, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Sean E Lawler
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
158
|
Murty S, Haile ST, Beinat C, Aalipour A, Alam IS, Murty T, Shaffer TM, Patel CB, Graves EE, Mackall CL, Gambhir SS. Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology 2020; 9:1757360. [PMID: 32923113 PMCID: PMC7458609 DOI: 10.1080/2162402x.2020.1757360] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in novel immune strategies, particularly chimeric antigen receptor (CAR)-bearing T-cells, have shown limited efficacy against glioblastoma (GBM) in clinical trials. We currently have an incomplete understanding of how these emerging therapies integrate with the current standard of care, specifically radiation therapy (RT). Additionally, there is an insufficient number of preclinical studies monitoring these therapies with high spatiotemporal resolution. To address these limitations, we report the first longitudinal fluorescence-based intravital microscopy imaging of CAR T-cells within an orthotopic GBM preclinical model to illustrate the necessity of RT for complete therapeutic response. Additionally, we detail the first usage of murine-derived CAR T-cells targeting the disialoganglioside GD2 in an immunocompetent tumor model. Cell culture assays demonstrated substantial GD2 CAR T-cell-mediated killing of murine GBM cell lines SB28 and GL26 induced to overexpress GD2. Complete antitumor response in advanced syngeneic orthotopic models of GBM was achieved only when a single intravenous dose of GD2 CAR T-cells was following either sub-lethal whole-body irradiation or focal RT. Intravital microscopy imaging successfully visualized CAR T-cell homing and T-cell mediated apoptosis of tumor cells in real-time within the tumor stroma. Findings indicate that RT allows for rapid CAR T-cell extravasation from the vasculature and expansion within the tumor microenvironment, leading to a more robust and lasting immunologic response. These exciting results highlight potential opportunities to improve intravenous adoptive T-cell administration in the treatment of GBM through concurrent RT. Additionally, they emphasize the need for advancements in immunotherapeutic homing to and extravasation through the tumor microenvironment.
Collapse
Affiliation(s)
- Surya Murty
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel T Haile
- Department of Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Corinne Beinat
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amin Aalipour
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Israt S Alam
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Tara Murty
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Travis M Shaffer
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag B Patel
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
159
|
Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 2020; 147:281-295. [PMID: 32185647 PMCID: PMC7182069 DOI: 10.1007/s11060-020-03450-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma remains as the most common and aggressive primary adult brain tumor to date. Within the last decade, cancer immunotherapy surfaced as a broadly successful therapeutic approach for a variety of cancers. However, due to the neuroanatomical and immunosuppressive nature of malignant gliomas, conventional chemotherapy and radiotherapy treatments garner limited efficacy in patients with these tumors. The intricate structure of the blood brain barrier restricts immune accessibility into the tumor microenvironment, and malignant gliomas can activate various adaptive responses to subvert anticancer immune responses and reinstate an immunosuppressive milieu. Yet, evidence of lymphocyte infiltration within the brain and recent advancements made in cell engineering technologies implicate the vast potential in the future of neuro-oncological immunotherapy. Previous immunotherapy platforms have paved way to improved modalities, which includes but is not limited to personalized vaccines and chimeric antigen receptor T-cell therapy. This review will cover the various neuroanatomical and immunosuppressive features of central nervous system tumors and highlight the innovations made in T-cell based therapies to overcome the challenges presented by the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Immunotherapy Program, University of California, San Francisco, CA, USA.
| |
Collapse
|
160
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, Montesano C, Bernardini R, Marek-Trzonkowska N. Adoptive Cell Therapy-Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers (Basel) 2020; 12:683. [PMID: 32183246 PMCID: PMC7140076 DOI: 10.3390/cancers12030683] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, much research has been focused on the field of adoptive cell therapies (ACT) that use native or genetically modified T cells as therapeutic tools. Immunotherapy with T cells expressing chimeric antigen receptors (CARs) demonstrated great success in the treatment of haematologic malignancies, whereas adoptive transfer of autologous tumour infiltrating lymphocytes (TILs) proved to be highly effective in metastatic melanoma. These encouraging results initiated many studies where ACT was tested as a treatment for various solid tumours. In this review, we provide an overview of the challenges of T cell-based immunotherapies of solid tumours. We describe alternative approaches for choosing the most efficient T cells for cancer treatment in terms of their tumour-specificity and phenotype. Finally, we present strategies for improvement of anti-tumour potential of T cells, including combination therapies.
Collapse
Affiliation(s)
- Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Rafał Dziadziuszko
- Department of Oncology and Radiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Roberta Bernardini
- Department of Biology and Interdepartmental Center CIMETA, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
161
|
Shen SH, Woroniecka K, Barbour AB, Fecci PE, Sanchez-Perez L, Sampson JH. CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther 2020; 20:579-591. [PMID: 32027536 DOI: 10.1080/14712598.2020.1727436] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Glioblastoma (GBM) is a highly aggressive brain tumor and is one of the most lethal human cancers. Chimeric antigen receptor (CAR) T cell therapy has markedly improved survival in previously incurable disease; however, this vanguard treatment still faces challenges in GBM. Likewise, checkpoint blockade therapies have not enjoyed the same victories against GBM. As it becomes increasingly evident that a mono-therapeutic approach is unlikely to provide anti-tumor efficacy, there evolves a critical need for combined treatment strategies.Areas covered: This review highlights the clinical successes observed with CAR T cell therapy as well the current efforts to overcome its perceived limitations. The review also explores employed combinations of CAR T cell approaches with immune checkpoint blockade strategies, which aim to potentiate immunotherapeutic benefits while restricting the impact of tumor heterogeneity and T cell exhaustion.Expert opinion: Barriers such as tumor heterogeneity and T cell exhaustion have exposed the weaknesses of various mono-immunotherapeutic approaches to GBM, including CAR T cell and checkpoint blockade strategies. Combining these potentially complementary strategies, however, may proffer a rational means of mitigating these barriers and advancing therapeutic successes against GBM and other solid tumors.
Collapse
Affiliation(s)
- Steven H Shen
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Karolina Woroniecka
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Andrew B Barbour
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
162
|
Wu Z, Liang J, Wang Z, Li A, Fan X, Jiang T. HLA-E expression in diffuse glioma: relationship with clinicopathological features and patient survival. BMC Neurol 2020; 20:59. [PMID: 32066399 PMCID: PMC7025409 DOI: 10.1186/s12883-020-01640-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human leukocyte antigen-E (HLA-E) has been extensively investigated in various human cancers including glioma. However, the clinical significance of HLA-E expression in glioma patients has not been elucidated. The current study aimed to investigate the association of HLA-E expression with clinicopathological features and survival in patients with diffuse glioma. METHODS A total of 261 glioma patients were enrolled, subsequently, mRNA microarray analysis was conducted to identify the relationship of HLA-E with clinicopathological features and patient survival. RESULTS HLA-E was significantly overexpressed in high-grade gliomas compared to low-grade gliomas (LGGs). Moreover, HLA-E expression was significantly higher in diffuse astrocytomas than oligodendrogliomas (p = 0.032, t-test). Kaplan-Meier analysis showed that progression-free survival (PFS) and overall survival (OS) were significantly better in LGG patients with low HLA-E expression (p = 0.018 for PFS and p = 0.020 for OS, Log-rank test). Furthermore, HLA-E expression was identified to be an independent prognostic factor by Cox analysis (p = 0.020 for PFS and p = 0.024 for OS). CONCLUSIONS This is the first study which identified the clinical significance of HLA-E in diffuse glioma. HLA-E expression was correlated with more aggressive tumor grade and histological type and was identified as an independent prognostic biomarker in LGG patients.
Collapse
Affiliation(s)
- Zhifeng Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jingshan Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Lianyungang First People's Hospital, Xuzhou Medical University, Jiangsu, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, Xuzhou Medical University, Jiangsu, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
163
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
164
|
|
165
|
Wang J, Shen F, Yao Y, Wang LL, Zhu Y, Hu J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front Oncol 2020; 10:59. [PMID: 32083009 PMCID: PMC7005203 DOI: 10.3389/fonc.2020.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with very poor prognosis and few advances in its treatment. Recently, fast-growing cancer immunotherapy provides a glimmer of hope for GBM treatment. Adoptive cell therapy (ACT) aims at infusing immune cells with direct anti-tumor activity, including tumor-infiltrating lymphocyte (TIL) transfer and genetically engineered T cells transfer. For example, complete regressions in patients with melanoma and refractory lymphoma have been shown by using naturally tumor-reactive T cells and genetically engineered T cells expressing the chimeric anti-CD19 receptor, respectively. Recently, the administration of ACT showed therapeutic potentials for GBM treatment as well. In this review, we summarize the success of ACT in the treatment of cancer and provide approaches to overcome some challenges of ACT to allow its adoption for GBM treatment.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Yao
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
166
|
Zhu H, You Y, Shen Z, Shi L. EGFRvIII-CAR-T Cells with PD-1 Knockout Have Improved Anti-Glioma Activity. Pathol Oncol Res 2020; 26:2135-2141. [PMID: 31989402 DOI: 10.1007/s12253-019-00759-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of the brain tumors. EGFR variant III (EGFRvIII) is expressed in about 30% of GBM specimens, but not expressed in normal brain tissues. Therefore, EGFRvIII protein offers an ideal CAR-T therapeutic target for EGFRvIII-positive GBM patients. PD-L1 is expressed in a variety of cancer cells, including GBM. Tumor-associated PD-L1 can bind to PD-1 on T cells and promote apoptosis of T cells, thus suppressing the anti-cancer immune response. In our current studies, PD-1WT EGFRvIII-CAR-T cells and PD-1KD EGFRvIII-CAR-T cells were generated. Cytokine production and lytic activity of these two CAR-T cells against to PD-L1WT EGFRvIII+ U373 cells or PD-L1KO EGFRvIII+ U373 cells were evaluated. The results showed that PD-1KD EGFRvIII-CAR-T cells and PD-1WT EGFRvIII-CAR-T cells showed same levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2) production as well as cytolytic activity against PD-L1KO EGFRvIII+ U373 cells; however, PD-1KD EGFRvIII-CAR-T cells exhibited higher levels of IFN-γ and IL-2 production as well as cytolytic activity against PD-L1+ EGFRvIII+ U373 cells than that of PD-1WT EGFRvIII-CAR-T cells. PD-1KD EGFRvIII-CAR-T cells also exhibited higher anti-glioma activity and longer survival in mice in vivo than that of PD-1WT EGFRvIII-CAR-T cells. Taken together, our findings indicate that PD-1 knockout enhances lytic activity of EGFRvIII-CAR-T cells against PD-L1+ EGFRvIII+ GBM cells. These might provide a new insight into strategy of GBM CAR-T cell therapy.
Collapse
Affiliation(s)
- Haifeng Zhu
- Department of Neurosurgery, Nanjing Medical University, Nanjing, 210029, People's Republic of China.,Department of Neurosurgery, Funing People's Hospital, Funing, 224400, People's Republic of China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Zhouming Shen
- Department of Neurosurgery, Funing People's Hospital, Funing, 224400, People's Republic of China
| | - Lei Shi
- epartment of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, People's Republic of China.
| |
Collapse
|
167
|
Yu Q, Zhang M, Chen Y, Chen X, Shi S, Sun K, Ye R, Zheng Y, Chen Y, Xu Y, Peng J. Self-Assembled Nanoparticles Prepared from Low-Molecular-Weight PEI and Low-Generation PAMAM for EGFRvIII-Chimeric Antigen Receptor Gene Loading and T-Cell Transient Modification. Int J Nanomedicine 2020; 15:483-495. [PMID: 32158206 PMCID: PMC6986680 DOI: 10.2147/ijn.s229858] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/02/2020] [Indexed: 01/21/2023] Open
Abstract
Background The complex preparation procedures and severe toxicities are two major obstacles facing the wide use of chimeric antigen receptor-modified T (CAR-T) cells in clinical cancer immunotherapy. The nanotechnology-based T cell temporary CAR modification may be a potential approach to solve these problems and make the CAR-T cell-based tumor therapy feasible and broadly applicable. Methods A series of plasmid DNA-loaded self-assembled nanoparticles (pDNA@SNPsx/y) prepared from adamantane-grafted polyamidoamine (Ad-PAMAM) dendrimers of different generations (G1 or G5) and cyclodextrin-grafted branched polyethylenimine (CD-PEI) of different molecular weights (800, 2000, or 25,000 Da) were characterized and evaluated. The detailed physicochemical properties, cellular interaction, and cytotoxicity of selected pDNA@SNPG1/800 were systematically investigated. Thereafter, the epidermal growth factor receptor variant III (EGFRvIII) CAR-expression plasmid vector (pEGFRvIII-CAR) was constructed and encapsulated into SNPG1/800. The resulting pEGFRvIII-CAR@SNPG1/800 was used for Jurkat cell transient transfection, and the EGFRvIII-CAR expressed in transfected cells was measured by flow cytometry and Western blot. Finally, the response of EGFRvIII CAR-positive Jurkat T cell to target tumor cell was evaluated. Results The pDNA@SNPG1/800 showed the highest efficacy in Jurkat cell gene transfection and exhibited low cytotoxicity. pEGFRvIII-CAR@SNPG1/800 can efficiently deliver pEGFRvIII-CAR into Jurkat T cells, thereby resulting in transient EGFRvIII-CAR expression in transfected cells. EGFRvIII-CAR that is present on the cell membrane enabled Jurkat T cells to recognize and bind specifically with EGFRvIII-positive tumor cells. Conclusion These results indicated that pEGFRvIII-CAR@SNPG1/800 can effectively achieve T-cell transient CAR modification, thereby demonstrating considerable potential in CAR-T cancer therapy.
Collapse
Affiliation(s)
- Qianru Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Maxin Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaolong Chen
- NanoDrug Platform, Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ran Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yang Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.,School of Pharmacy and Chemistry, Dali University, Dali City 671000, People's Republic of China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
168
|
Hwang JW, Loisel-Duwattez J, Desterke C, Latsis T, Pagliaro S, Griscelli F, Bennaceur-Griscelli A, Turhan AG. A novel neuronal organoid model mimicking glioblastoma (GBM) features from induced pluripotent stem cells (iPSC). Biochim Biophys Acta Gen Subj 2020; 1864:129540. [PMID: 31978452 DOI: 10.1016/j.bbagen.2020.129540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Current experimental models using either human or mouse cell lines, are not representative of the complex features of GBM. In particular, there is no model to study patient-derived iPSCs to generate a GBM model. Overexpression of c-met gene is one of the molecular features of GBM leading to increased signaling via STAT3 phosphorylation. We generated an iPSC line from a patient with c-met mutation and we asked whether we could use it to generate neuronal-like organoids mimicking features of GBM. METHODS We have generated iPSC-aggregates differentiating towards organoids. We analyzed them by gene expression profiling, immunostaining and transmission electronic microscopy analyses (TEM). RESULTS Herein we describe that c-met-mutated iPSC aggregates spontaneously differentiate into dopaminergic neurons more rapidly than control iPSC aggregates in culture. Gene expression profiling of c-met-mutated iPSC aggregates at day +90 showed neuronal- and GBM-related genes, reproducing a genomic network described in primary human GBM. Comparative TEM analyses confirmed the enrichment of these structures in intermediate filaments and abnormal cilia, a feature described in human GBM. The c-met-mutated iPSC-derived organoids, as compared to controls expressed high levels of glial fibrillary acidic protein (GFAP), which is a typical marker of human GBM, as well as high levels of phospho-MET and phospho-STAT3. The use of temozolomide (TMZ) showed a preferential cytotoxicity of this drug in c-met-mutated neuronal-like organoids. GENERAL SIGNIFICANCE This study shows the feasibility of generating "off-the shelf" neuronal-like organoid model mimicking GBM using c-met-mutated iPSC aggregates and its potential future use in research.
Collapse
Affiliation(s)
- Jin Wook Hwang
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Julien Loisel-Duwattez
- INSERM U1195, Université Paris Sud, Faculté de Médecine, APHP, Service de Neurologie, Bicêtre Hospital, 94276 le Kremlin Bicêtre, France
| | - Christophe Desterke
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Theodoros Latsis
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Sarah Pagliaro
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Frank Griscelli
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | | | - Ali G Turhan
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; INGESTEM National IPSC Infrastructure, 94800 Villejuif, France; Division of Hematology, Paris Sud University Hospitals, Le Kremlin Bicêtre 75006, Villejuif 94800, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| |
Collapse
|
169
|
Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. Int J Mol Sci 2020; 21:ijms21020515. [PMID: 31947597 PMCID: PMC7014258 DOI: 10.3390/ijms21020515] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Oncology immunotherapy has been a significant advancement in cancer treatment and involves harnessing and redirecting a patient’s immune response towards their own tumour. Specific recognition and elimination of tumour cells was first proposed over a century ago with Paul Erlich’s ‘magic bullet’ theory of therapy. In the past decades, targeting cancer antigens by redirecting T cells with antibodies using either bispecific T cell engagers (BiTEs) or chimeric antigen receptor (CAR) T cell therapy has achieved impressive clinical responses. Despite recent successes in haematological cancers, linked to a high and uniformly expressed CD19 antigen, the efficacy of T cell therapies in solid cancers has been disappointing, in part due to antigen escape. Targeting heterogeneous solid tumours with T cell therapies will require the identification of novel tumour specific targets. These targets can be found among a range of cell-surface expressed antigens, including proteins, glycolipids or carbohydrates. In this review, we will introduce the current tumour target antigen classification, outline existing approaches to discover novel tumour target antigens and discuss considerations for future design of antibodies with a focus on their use in CAR T cells.
Collapse
|
170
|
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, Liu DA, Qian X, Petrov D, Lucas T, Chen HI, Dorsey JF, Christian KM, Binder ZA, Nasrallah M, Brem S, O'Rourke DM, Ming GL, Song H. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell 2020; 180:188-204.e22. [PMID: 31883794 PMCID: PMC7556703 DOI: 10.1016/j.cell.2019.11.036] [Citation(s) in RCA: 638] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/22/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan D Salinas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Radhika Thokala
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saad Sheikh
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Prokop
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuyu Qian
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lucas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Jay F Dorsey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean Nasrallah
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
171
|
Cui J, Wang H, Medina R, Zhang Q, Xu C, Indig IH, Zhou J, Song Q, Dmitriev P, Sun MY, Guo L, Wang Y, Rosenblum JS, Kovach JS, Gilbert MR, Zhuang Z. Inhibition of PP2A with LB-100 Enhances Efficacy of CAR-T Cell Therapy Against Glioblastoma. Cancers (Basel) 2020; 12:cancers12010139. [PMID: 31935881 PMCID: PMC7017120 DOI: 10.3390/cancers12010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.
Collapse
Affiliation(s)
- Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogelio Medina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Qi Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen Xu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iris H. Indig
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingcheng Zhou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pauline Dmitriev
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Y. Sun
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liemei Guo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared S. Rosenblum
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, NY 11733, USA
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-760-7055
| |
Collapse
|
172
|
Measuring Chimeric Antigen Receptor T Cells (CAR T Cells) Activation by Coupling Intracellular Cytokine Staining with Flow Cytometry. Methods Mol Biol 2020; 2108:159-165. [PMID: 31939179 DOI: 10.1007/978-1-0716-0247-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor T cells (CAR T cells) therapy is one kind of immunotherapy that has revolutionally changed the landscape of immunotherapy and been approved by the FDA from 2017 for several blood malignancies. To bring new CAR T cells to clinic, every new CAR need to test in vitro for antigen recognition, tumor cell killing capacity, and off-target cytotoxicity effect. Detecting the secretion of cytokines upon engagement of CAR T cells with tumor antigens is routinely applied to assess these CAR functions. Here we describe coupling of intracellular cytokine staining and multicolor flow cytometry to measure CAR T cells activation upon antigen stimulation.
Collapse
|
173
|
Tang F, Lu Y, Ge Y, Shang J, Zhu X. Infusion of chimeric antigen receptor T cells against dual targets of CD19 and B-cell maturation antigen for the treatment of refractory multiple myeloma. J Int Med Res 2020; 48:300060519893496. [PMID: 31939323 PMCID: PMC7114292 DOI: 10.1177/0300060519893496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate the safety and efficacy of chimeric antigen receptor T (CAR-T) cell infusion in patients with refractory multiple myeloma (MM). Methods Sixteen patients diagnosed with refractory MM were included in this study. Patients received initial infusions of T-derived CD19/B-cell maturation antigen (BCMA) CAR-T cells with 100% CD19, followed by second infusions with 40% BCMA and third infusions with 60% BCMA. The total doses were 0.5–1 × 107/kg CD19 and 1.2 − 6.2 × 107/kg BCMA. Patients were monitored after infusion. Levels of interleukin (IL)-2, IL-6, IL-10, tumor necrosis factor-α, and C-reactive protein were determined by enzyme-linked immunosorbent assay. Results Cytokine release syndrome (CRS) was observed in all 16 patients. Thirteen patients with CRS stage II−IV had persistent hyperthermia from 5−14 days after infusion, while most patients developed hyperthermia from 1 day after infusion and their temperatures returned to normal within 2−10 days. Levels of all factors were significantly elevated 2 days after infusion, peaked at 5 days, and then gradually decreased to normal levels. All inflammatory factors showed normal levels by 10 days after infusion. Conclusion Body temperature and levels of inflammatory factors all increased dramatically after infusion of CD19/BCMA CAR-T cells, but recovered to normal levels after appropriate treatment and nursing.
Collapse
Affiliation(s)
- Fang Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Lu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongqin Ge
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Shang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaming Zhu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
174
|
Mohtashami E, Shafaei-Bajestani N, Mollazadeh H, Mousavi SH, Jalili-Nik M, Sahebkar A, Afshari AR. The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review. Curr Drug Metab 2020; 21:564-578. [PMID: 32664839 DOI: 10.2174/1389200221666200714101038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM), as the most lethal brain tumor, continues to be incurable. Considering the high mortality rate of GBM, it is crucial to develop new treatment approaches. Conventional therapies, including maximal surgical resection, radiation therapy, and chemotherapy (typically temozolomide), have not led to significant changes in the survival rates of GBM patients. However, emerging modalities, such as the use of tyrosine kinase inhibitors, mTOR inhibitors, NF-κB modulators, nitrosoureas, and immunotherapeutic agents have shown promising in improving GBM outcomes. In this context, we reviewed the current status of GBM treatment, the efficacy of existing standard therapies in improving disease outcomes, and future therapeutic directions.
Collapse
Affiliation(s)
- Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Shafaei-Bajestani
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Hadi Mousavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
175
|
Ravanpay AC, Gust J, Johnson AJ, Rolczynski LS, Cecchini M, Chang CA, Hoglund VJ, Mukherjee R, Vitanza NA, Orentas RJ, Jensen MC. EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget 2019; 10:7080-7095. [PMID: 31903167 PMCID: PMC6925027 DOI: 10.18632/oncotarget.27389] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Targeting solid tumor antigens with chimeric antigen receptor (CAR) T cell therapy requires tumor specificity and tolerance toward variability in antigen expression levels. Given the relative paucity of unique cell surface proteins on tumor cells for CAR targeting, we have focused on identifying tumor-specific epitopes that arise as a consequence of target protein posttranslational modification. We designed a CAR using a mAb806-based binder, which recognizes tumor-specific untethered EGFR. The mAb806 epitope is also exposed in the EGFRvIII variant transcript. By varying spacer domain elements of the CAR, we structurally tuned the CAR to recognize low densities of EGFR representative of non-gene amplified expression levels in solid tumors. The appropriately tuned short-spacer 2nd generation EGFR806-CAR T cells showed efficient in vitro cytokine secretion and glioma cell lysis, which was competitively blocked by a short peptide encompassing the mAb806 binding site. Unlike the nonselective Erbitux-based CAR, EGFR806-CAR T cells did not target primary human fetal brain astrocytes expressing wild-type EGFR, but showed a similar level of activity compared to Erbitux-CAR when the tumor-specific EGFRvIII transcript variant was overexpressed in astrocytes. EGFR806-CAR T cells successfully treated orthotopic U87 glioma implants in NSG mice, with 50% of animals surviving to 90 days. With additional IL-2 support, all tumors were eradicate without recurrence after 90 days. In a novel human induced pluripotent stem cell (iPSC)-derived teratoma xenograft model, EGFR806-CAR T cells infiltrated but were not activated in EGFR+ epidermal cell nests as assessed by Granzyme B expression. These results indicate that EGFR806-CAR T cells effectively and selectively target EGFR-expressing tumor cells.
Collapse
Affiliation(s)
- Ali C Ravanpay
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Juliane Gust
- University of Washington, Department of Neurology, Seattle, WA, U.S.A.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Lisa S Rolczynski
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Michelle Cecchini
- University of Washington, Department of Neurological Surgery, Seattle, WA, U.S.A
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Virginia J Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Rithun Mukherjee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A
| | - Nicholas A Vitanza
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Rimas J Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, U.S.A.,University of Washington, Department of Pediatrics, Seattle, WA, U.S.A.,University of Washington, Department of Bioengineering, Seattle, WA, U.S.A
| |
Collapse
|
176
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
177
|
Zhai Y, Li G, Jiang T, Zhang W. CAR-armed cell therapy for gliomas. Am J Cancer Res 2019; 9:2554-2566. [PMID: 31911846 PMCID: PMC6943349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-armed cell therapy has developed rapidly in recent years, especially in the treatment of leukemia. However, the treatment methods for solid tumors represented by glioma have not achieved the ideal therapeutic effect. This situation necessitates learning from chimeric antigen receptor T cell (CAR-T) treatment in other malignancies and discovering the differences between gliomas and other solid tumors. The current design idea is to enhance the targeting, regulatory effects, and adaptation of CAR-armed cells. This review traced not only clinical trials, but also several animal experiments, which might promote the development of CAR-T treatment in glioma. Furthermore, we have discussed the obstacles to CAR-T in the treatment of glioma and the current possible solutions.
Collapse
Affiliation(s)
- You Zhai
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain DisordersBeijing, China
- China National Clinical Research Center for Neurological DiseasesBeijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)Beijing, China
| |
Collapse
|
178
|
Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP, Wels WS. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front Immunol 2019; 10:2683. [PMID: 31798595 PMCID: PMC6868035 DOI: 10.3389/fimmu.2019.02683] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults and currently incurable. Despite multimodal treatment regimens, median survival in unselected patient cohorts is <1 year, and recurrence remains almost inevitable. Escape from immune surveillance is thought to contribute to the development and progression of GB. While GB tumors are frequently infiltrated by natural killer (NK) cells, these are actively suppressed by the GB cells and the GB tumor microenvironment. Nevertheless, ex vivo activation with cytokines can restore cytolytic activity of NK cells against GB, indicating that NK cells have potential for adoptive immunotherapy of GB if potent cytotoxicity can be maintained in vivo. NK cells contribute to cancer immune surveillance not only by their direct natural cytotoxicity which is triggered rapidly upon stimulation through germline-encoded cell surface receptors, but also by modulating T-cell mediated antitumor immune responses through maintaining the quality of dendritic cells and enhancing the presentation of tumor antigens. Furthermore, similar to T cells, specific recognition and elimination of cancer cells by NK cells can be markedly enhanced through expression of chimeric antigen receptors (CARs), which provides an opportunity to generate NK-cell therapeutics of defined specificity for cancer immunotherapy. Here, we discuss effects of the GB tumor microenvironment on NK-cell functionality, summarize early treatment attempts with ex vivo activated NK cells, and describe relevant CAR target antigens validated with CAR-T cells. We then outline preclinical approaches that employ CAR-NK cells for GB immunotherapy, and give an overview on the ongoing clinical development of ErbB2 (HER2)-specific CAR-NK cells currently applied in a phase I clinical trial in glioblastoma patients.
Collapse
Affiliation(s)
- Michael C Burger
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Congcong Zhang
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Annette Romanski
- German Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Florian Strassheimer
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Christian Senft
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Dresden, Germany.,Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Joachim P Steinbach
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| |
Collapse
|
179
|
Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer Cell 2019; 36:471-482. [PMID: 31715131 PMCID: PMC7171534 DOI: 10.1016/j.ccell.2019.09.006] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Checkpoint blockade (CPB) therapy can elicit durable clinical responses by reactivating an exhausted immune response. However, response rates remain limited, likely secondary to a lack of a tumor-reactive immune infiltrate. Chimeric antigen receptor (CAR) T cells may provide the necessary tumor-targeting immune infiltrate and a highly specific antitumor immune response. This can be further amplified by the addition of CPB agents, which serve to counteract the immune inhibitory environment undermining optimal CAR T cell efficacy. Herein, we review preclinical and clinical combination therapy with CAR T cells and CPB agents, with a focus on solid tumor malignancies.
Collapse
Affiliation(s)
- Rachel Grosser
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leonid Cherkassky
- Surgical Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Navin Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
180
|
Migliorini D, Mason NJ, Posey AD. Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR J 2019; 59:276-285. [PMID: 31095687 DOI: 10.1093/ilar/ilz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2019] [Indexed: 12/24/2022] Open
Abstract
The cellular immunotherapy field has achieved important milestones in the last 30 years towards the treatment of a variety of cancers due to improvements in ex-vivo T cell manufacturing processes, the invention of synthetic T cell receptors, and advances in cellular engineering. Here, we discuss major preclinical models that have been useful for the validation of chimeric antigen receptor (CAR)-T cell therapies and also promising new models that will fuel future investigations towards success. However, multiple unanswered questions in the CAR-T cell field remain to be addressed that will require innovative preclinical models. Key challenges facing the field include premature immune rejection of universal CAR-T cells and the immune suppressive tumor microenvironment. Immune competent models that accurately recapitulate tumor heterogeneity, the hostile tumor microenvironment, and barriers to CAR-T cell homing, toxicity, and persistence are needed for further advancement of the field.
Collapse
Affiliation(s)
- Denis Migliorini
- University Hospital, Geneva, Switzerland; and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy
| | - Nicola J Mason
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy, Philadelphia, PA
| | - Avery D Posey
- Department of Pathology and Laboratory Medicine, and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy; and Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
181
|
Charan M, Dravid P, Cam M, Audino A, Gross AC, Arnold MA, Roberts RD, Cripe TP, Pertsemlidis A, Houghton PJ, Cam H. GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int J Cancer 2019; 146:3184-3195. [PMID: 31621900 PMCID: PMC7440656 DOI: 10.1002/ijc.32743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
Ewing sarcoma (EWS) is the second most common and aggressive type of metastatic bone tumor in adolescents and young adults. There is unmet medical need to develop and test novel pharmacological targets and novel therapies to treat EWS. Here, we found that EWS expresses high levels of a p53 isoform, delta133p53. We further determined that aberrant expression of delta133p53 induced HGF secretion resulting in tumor growth and metastasis. Thereafter, we evaluated targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in preclinical studies. Surprisingly, we found that targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in combination with GD2-specific, CAR-reengineered T-cell therapy synergistically inhibited primary tumor growth and establishment of metastatic disease in preclinical models. Furthermore, our data suggested that AMG102 treatment alone might increase leukocyte infiltration including efficient CAR-T access into tumor mass and thereby improves its antitumor activity. Together, our findings warrant the development of novel CAR-T-cell therapies that incorporate HGF receptor neutralizing antibody to improve therapeutic potency, not only in EWS but also in tumors with aberrant activation of the HGF/c-MET pathway.
Collapse
Affiliation(s)
- Manish Charan
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH
| | - Piyush Dravid
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH
| | - Maren Cam
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH
| | - Anthony Audino
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Amy C Gross
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH
| | - Michael A Arnold
- Department of Pediatrics, The Ohio State University, Columbus, OH.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH.,Division of Hematology, Oncology and Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, University of Texas Health Science Centre at San Antonio, San Antonio, TX
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Centre at San Antonio, San Antonio, TX
| | - Hakan Cam
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
182
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
183
|
Mondal N, Silva M, Castano AP, Maus MV, Sackstein R. Glycoengineering of chimeric antigen receptor (CAR) T-cells to enforce E-selectin binding. J Biol Chem 2019; 294:18465-18474. [PMID: 31628196 DOI: 10.1074/jbc.ra119.011134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
Tissue colonization (homing) by blood-borne cells critically hinges on the ability of the cells to adhere to vascular endothelium with sufficient strength to overcome prevailing hemodynamic shear stress. These adhesive interactions are most effectively engendered via binding of the endothelial lectin E-selectin (CD62E) to its cognate ligand, sialyl Lewis-X (sLe X ), displayed on circulating cells. Although chimeric antigen receptor (CAR) T-cell immunotherapy holds promise for treatment of various hematologic and non-hematologic malignancies, there is essentially no information regarding the efficiency of CAR T-cell homing. Accordingly, we performed integrated biochemical studies and adhesion assays to examine the capacity of human CAR T-cells to engage E-selectin. Our data indicate that CAR T-cells do not express sLe X and do not bind E-selectin. However, enforced sLe X display can be achieved on human CAR T-cells by surface fucosylation, with resultant robust E-selectin binding under hemodynamic shear. Importantly, following intravascular administration into mice, fucosylated human CAR-T cells infiltrate marrow with 10-fold higher efficiency than do unfucosylated cells. Collectively, these findings indicate that custom installation of sLe X programs tissue colonization of vascularly administered human CAR T-cells, offering a readily translatable strategy to augment tissue delivery, thereby lowering the pertinent cell dosing and attendant cell production burden, for CAR T-cell immunotherapy applications.
Collapse
Affiliation(s)
- Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mariana Silva
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Ana P Castano
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02129
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02129
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Massachusetts 02115; Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Translational Medicine, Herbert Wertheim College of Medicine, and Translational Glycobiology Institute, Florida International University, Miami, Florida 33199.
| |
Collapse
|
184
|
CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun 2019; 10:4355. [PMID: 31554797 PMCID: PMC6761190 DOI: 10.1038/s41467-019-12321-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) are rapidly emerging a promising new treatment for haematological and non-haematological malignancies. CAR-T therapy can induce rapid and durable clinical responses but is associated with unique acute toxicities. Moreover, CAR-T cells are vulnerable to immunosuppressive mechanisms. Here, we report that CAR-T cells release extracellular vesicles, mostly in the form of exosomes that carry CAR on their surface. The CAR-containing exosomes express a high level of cytotoxic molecules and inhibit tumour growth. Compared with CAR-T cells, CAR exosomes do not express Programmed cell Death protein 1 (PD1), and their antitumour effect cannot be weakened by recombinant PD-L1 treatment. In a preclinical in vivo model of cytokine release syndrome, the administration of CAR exosomes is relatively safe compared with CAR-T therapy. This study supports the use of exosomes as biomimetic nanovesicles that may be useful in future therapeutic approaches against tumours. Genetically engineered T cells expressing a chimeric antigen receptor (CAR-T cells) are a promising new treatment for cancer, but are associated with unique toxicities. Here, the authors test CAR-T-cell-derived exosomes as a surrogate for CAR-T cells and show that they can elicit a potent antitumour immune response in preclinical models of breast cancer with reduced signs of cytokine release syndrome compared with CAR-T therapy.
Collapse
|
185
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019; 15:2548-2560. [PMID: 31754328 PMCID: PMC6854376 DOI: 10.7150/ijbs.34213] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by chimeric antigen receptor-modified T (CAR-T) cells has shown exhilarative clinical efficacy for hematological malignancies. Recently two CAR-T cell based therapeutics, Kymriah (Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) approved by US FDA (US Food and Drug Administration) are now used for treatment of B cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) respectively in the US. Despite the progresses made in treating hematological malignancies, challenges still remain for use of CAR-T cell therapy to treat solid tumors. In this landscape, most studies have primarily focused on improving CAR-T cells and overcoming the unfavorable effects of tumor microenvironment on solid tumors. To further understand the current status and trend for developing CAR-T cell based therapies for various solid tumors, this review emphasizes on CAR-T techniques, current obstacles, and strategies for application, as well as necessary companion diagnostics for treatment of solid tumors with CAR-T cells.
Collapse
Affiliation(s)
- Shuo Ma
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinchun Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinyue Wang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Liang Cheng
- Shanghai Baize Medical Laboratory, Shanghai, China.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhong Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | | | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| |
Collapse
|
186
|
CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun 2019; 10:4016. [PMID: 31488817 PMCID: PMC6728370 DOI: 10.1038/s41467-019-11869-4] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors. Here, we demonstrate that IL-8 receptor, CXCR1 or CXCR2, modified CARs markedly enhance migration and persistence of T cells in the tumor, which induce complete tumor regression and long-lasting immunologic memory in pre-clinical models of aggressive tumors such as glioblastoma, ovarian and pancreatic cancer. CAR T-cell therapy efficacy in solid tumors is limited by inadequate T-cell migration and/or persistence in tumour microenvironment. Here, the authors show that the activity of tumour-antigen specific CAR T cells, in multiple preclinical mouse models, can be enhanced by co-expression of two IL-8 receptors that mediate their migration into the tumor microenvironment when IL-8 production in tumor is naturally expressed or enhanced by radiation.
Collapse
|
187
|
Fecci PE, Sampson JH. The current state of immunotherapy for gliomas: an eye toward the future. J Neurosurg 2019; 131:657-666. [PMID: 31473668 DOI: 10.3171/2019.5.jns181762] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
The last decade has seen a crescendo of FDA approvals for immunotherapies against solid tumors, yet glioblastoma remains a prominent holdout. Despite more than 4 decades of work with a wide range of immunotherapeutic modalities targeting glioblastoma, efficacy has been challenging to obtain. Earlier forms of immune-based platforms have now given way to more current approaches, including chimeric antigen receptor T-cells, personalized neoantigen vaccines, oncolytic viruses, and checkpoint blockade. The recent experiences with each, as well as the latest developments and anticipated challenges, are reviewed.
Collapse
Affiliation(s)
- Peter E Fecci
- 1Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, and
- 2The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- 1Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, and
- 2The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
188
|
Abdelaziz MO, Ossmann S, Kaufmann AM, Leitner J, Steinberger P, Willimsky G, Raftery MJ, Schönrich G. Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Front Immunol 2019; 10:1776. [PMID: 31417555 PMCID: PMC6682651 DOI: 10.3389/fimmu.2019.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus, HCMV-based vaccines are particularly interesting in order to stimulate a sustained and strong cellular immune response against cancer. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with high lethality and inevitable relapse. The current standard treatment does not significantly improve the desperate situation underlining the urgent need to develop novel approaches. Although HCMV is highly fastidious with regard to species and cell type, GBM cell lines are susceptible to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I presentation. The aim being to use the viral vector as an adjuvant for presentation of endogenous tumor antigens, the presentation of high levels of vector-encoded neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7) that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high level expression of E6/E7 protein. Further experiments revealed that MHC class I presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known immunoevasins. We also generated HCMV-based vectors that express E6-derived peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins is required for efficient presentation via MHC class I molecules during infection. Taken together, these results provide the preclinical basis for development of HCMV-based vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.
Collapse
Affiliation(s)
- Mohammed O Abdelaziz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophia Ossmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
189
|
CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 2019; 37:1049-1058. [PMID: 31332324 DOI: 10.1038/s41587-019-0192-1] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy for solid tumors is limited due to heterogeneous target antigen expression and outgrowth of tumors lacking the antigen targeted by CAR-T cells directed against single antigens. Here, we developed a bicistronic construct to drive expression of a CAR specific for EGFRvIII, a glioblastoma-specific tumor antigen, and a bispecific T-cell engager (BiTE) against EGFR, an antigen frequently overexpressed in glioblastoma but also expressed in normal tissues. CART.BiTE cells secreted EGFR-specific BiTEs that redirect CAR-T cells and recruit untransduced bystander T cells against wild-type EGFR. EGFRvIII-specific CAR-T cells were unable to completely treat tumors with heterogenous EGFRvIII expression, leading to outgrowth of EGFRvIII-negative, EGFR-positive glioblastoma. However, CART.BiTE cells eliminated heterogenous tumors in mouse models of glioblastoma. BiTE-EGFR was locally effective but was not detected systemically after intracranial delivery of CART.BiTE cells. Unlike EGFR-specific CAR-T cells, CART.BiTE cells did not result in toxicity against human skin grafts in vivo.
Collapse
|
190
|
Karches CH, Benmebarek MR, Schmidbauer ML, Kurzay M, Klaus R, Geiger M, Rataj F, Cadilha BL, Lesch S, Heise C, Murr R, Vom Berg J, Jastroch M, Lamp D, Ding J, Duewell P, Niederfellner G, Sustmann C, Endres S, Klein C, Kobold S. Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clin Cancer Res 2019; 25:5890-5900. [PMID: 31285373 DOI: 10.1158/1078-0432.ccr-18-3927] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.
Collapse
Affiliation(s)
- Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Moritz L Schmidbauer
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Richard Klaus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Ramona Murr
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Jian Ding
- TCR Therapeutics, Cambridge, Massachusetts
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | | | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL).
| |
Collapse
|
191
|
Cold Atmospheric Plasma as an Adjunct to Immunotherapy for Glioblastoma Multiforme. World Neurosurg 2019; 130:369-376. [PMID: 31284051 DOI: 10.1016/j.wneu.2019.06.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer in adults. GBM carries a dismal prognosis because of its proliferative, invasive, and angiogenic capabilities and because of its ability to downregulate the immune system. Immune-based therapies under investigation for GBM have been unsuccessful in vivo because of this downregulation. Cold atmospheric plasma (CAP) is a high-energy state of matter that can be applied directly or indirectly to tumor tissue to serve as an adjunct to immunotherapy in the treatment of GBM because it upregulates the immune system by the induction of reactive oxygen species. CAP has the potential to improve the efficacy of existing and investigative immunotherapies for GBM.
Collapse
|
192
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
193
|
Weenink B, van Brakel M, Wijers R, Sillevis Smitt PAE, French PJ, Debets R. Lack of B and T cell reactivity towards IDH1 R132H in blood and tumor tissue from LGG patients. J Neurooncol 2019; 144:79-87. [PMID: 31240524 PMCID: PMC6660510 DOI: 10.1007/s11060-019-03228-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Purpose Mutations in the isocitrate dehydrogenase-1 gene (IDH1) occur at high frequency in grade II–III gliomas (LGGs). IDH1 mutations are somatic, missense and heterozygous affecting codon 132 in the catalytic pocket of the enzyme. In LGG, most mutations (90%) result in an arginine to histidine substitution (IDH1R132H) providing a neo-epitope that is expressed in all tumor cells. To assess the immunogenic nature of this epitope, and its potential use to develop T cell treatments, we measured IDH1R132H-specific B and T cell reactivity in blood and tumor tissue of LGG patients. Methods Sera from IDH1R132H-mutated LGG patients (n = 27) were assayed for the presence of a neo-specific antibody response using ELISA. In addition, PBMCs (n = 36) and tumor-infiltrating lymphocytes (TILs, n = 10) were measured for T cell activation markers and IFN-γ production by flow cytometry and ELISA. In some assays, frequencies of CD4 T cells specific for mutated peptide presented by HLA-DR were enriched prior to T cell monitoring assays. Results Despite high sensitivity of our assay, we failed to detect IDH1R132H-specific IgG in sera of LGG patients. Similarly, we did not observe CD4 T cell reactivity towards IDH1R132H in blood, neither did we observe such reactivity following pre-enrichment of frequencies of IDH1R132H-specific CD4 T cells. Finally, we did not detect IDH1R132H-specific CD4 T cells among TILs. Conclusions The absence of both humoral and cellular responses in blood and tumors of LGG patients indicates that IDH1R132H is not sufficiently immunogenic and devaluates its further therapeutic exploitation, at least in the majority of LGG patients. Electronic supplementary material The online version of this article (10.1007/s11060-019-03228-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Weenink
- Department of Neurology, Erasmus MC Cancer Institute, Be 430A, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Rebecca Wijers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology, Erasmus MC Cancer Institute, Be 430A, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute, Be 430A, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
194
|
Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurg 2019; 129:90-100. [PMID: 31152883 DOI: 10.1016/j.wneu.2019.05.205] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/30/2022]
Abstract
Surgical resection continues to predominate as the primary treatment modality in glioblastoma (GBM). Effective chemotherapeutic/biologic agents capable of targeting GBM have yet to be developed in part because of the exceptionally heterogeneous nature and unique microenvironmental conditions associated with this malignant neoplasm. Temozolomide and bevacizumab represent the only U.S. Food and Drug Administration-approved agents for primary and recurrent GBM, respectively. Given the high therapeutic resistance of GBM to current therapies, as well as the failure of bevacizumab to prolong overall survival, new therapeutic agents are urgently warranted and are now in the preclinical and clinical phases of development. Accordingly, clinical trials evaluating the efficacy of immune checkpoint inhibition, chimeric antigen receptor T cell therapy, virotherapies, and tumor vaccination therapy are all under way in GBM. Herein, we review the application of current/novel therapeutics in GBM and in so doing attempt to highlight the most promising solutions to overcome current failures.
Collapse
|
195
|
Whilding LM, Halim L, Draper B, Parente-Pereira AC, Zabinski T, Davies DM, Maher J. CAR T-Cells Targeting the Integrin αvβ6 and Co-Expressing the Chemokine Receptor CXCR2 Demonstrate Enhanced Homing and Efficacy against Several Solid Malignancies. Cancers (Basel) 2019; 11:E674. [PMID: 31091832 PMCID: PMC6563120 DOI: 10.3390/cancers11050674] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the unprecedented clinical success of chimeric antigen receptors (CAR) T-cells against haematological malignancy, solid tumors impose a far greater challenge to success. Largely, this stems from an inadequate capacity of CAR T-cells that can traffic and maintain function within a hostile microenvironment. To enhance tumor-directed T-cell trafficking, we have engineered CAR T-cells to acquire heightened responsiveness to interleukin (IL)-8. Circulating IL-8 levels correlate with disease burden and prognosis in multiple solid tumors in which it exerts diverse pathological functions including angiogenesis, support of cancer stem cell survival, and recruitment of immunosuppressive myeloid cells. To harness tumor-derived IL-8 for therapeutic benefit, we have co-expressed either of its cognate receptors (CXCR1 or CXCR2) in CAR T-cells that target the tumor-associated αvβ6 integrin. We demonstrate here that CXCR2-expressing CAR T-cells migrate more efficiently towards IL-8 and towards tumor conditioned media that contains this cytokine. As a result, these CAR T-cells elicit superior anti-tumor activity against established αvβ6-expressing ovarian or pancreatic tumor xenografts, with a more favorable toxicity profile. These data support the further engineering of CAR T-cells to acquire responsiveness to cancer-derived chemokines in order to improve their therapeutic activity against solid tumors.
Collapse
Affiliation(s)
- Lynsey M Whilding
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Leena Halim
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Benjamin Draper
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Ana C Parente-Pereira
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Tomasz Zabinski
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - David Marc Davies
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK.
- Department of Immunology, Eastbourne Hospital, East Sussex BN21 2UD, UK.
| |
Collapse
|
196
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
197
|
Zhang C, Leighl NB, Wu YL, Zhong WZ. Emerging therapies for non-small cell lung cancer. J Hematol Oncol 2019; 12:45. [PMID: 31023335 PMCID: PMC6482588 DOI: 10.1186/s13045-019-0731-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recent advances in the field of novel anticancer agents prolong patients' survival and show a promising future. Tyrosine kinase inhibitors and immunotherapy for lung cancer are the two major areas undergoing rapid development. Although increasing novel anticancer agents were innovated, how to translate and optimize these novel agents into clinical practice remains to be explored. Besides, toxicities and availability of these drugs in specific regions should also be considered during clinical determination. Herein, we summarize emerging agents including tyrosine kinase inhibitors, checkpoint inhibitors, and other potential immunotherapy such as chimeric antigen receptor T cell for non-small cell lung cancer attempting to provide insights and perspectives of the future in anticancer treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
198
|
Drent E, Poels R, Ruiter R, van de Donk NWCJ, Zweegman S, Yuan H, de Bruijn J, Sadelain M, Lokhorst HM, Groen RWJ, Mutis T, Themeli M. Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells. Clin Cancer Res 2019; 25:4014-4025. [PMID: 30979735 DOI: 10.1158/1078-0432.ccr-18-2559] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Targeting nonspecific, tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However, decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here, we demonstrate the prime importance of the type of intracellular signaling on the function of low-affinity CAR-T cells. EXPERIMENTAL DESIGN We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. RESULTS We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (K d < 1.9 × 10-6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity, preservation of a central memory phenotype, and significantly improved in vivo antitumor function, while preserving their ability to discriminate target antigen density. CONCLUSIONS A combinatorial costimulatory design allows the use of very low-affinity binding domains (K d < 1 μmol/L) for the construction of safe but also optimally effective CAR-T cells. Thus, very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.
Collapse
Affiliation(s)
- Esther Drent
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Renée Poels
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Ruud Ruiter
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Sonja Zweegman
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Huipin Yuan
- Kuros Biosciences BV, Bilthoven, The Netherlands
| | - Joost de Bruijn
- Kuros Biosciences BV, Bilthoven, The Netherlands.,The School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Michel Sadelain
- Center for Cell Engineering, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, U.S.A
| | - Henk M Lokhorst
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Richard W J Groen
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands
| | - Maria Themeli
- Department of Haematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
199
|
Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci U S A 2019; 116:7624-7631. [PMID: 30936321 DOI: 10.1073/pnas.1817147116] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in clinical trials against hematological cancers, but has experienced challenges in the treatment of solid tumors. One of the main difficulties lies in a paucity of tumor-specific targets that can serve as CAR recognition domains. We therefore focused on developing VHH-based, single-domain antibody (nanobody) CAR T cells that target aspects of the tumor microenvironment conserved across multiple cancer types. Many solid tumors evade immune recognition through expression of checkpoint molecules, such as PD-L1, that down-regulate the immune response. We therefore targeted CAR T cells to the tumor microenvironment via the checkpoint inhibitor PD-L1 and observed a reduction in tumor growth, resulting in improved survival. CAR T cells that target the tumor stroma and vasculature through the EIIIB+ fibronectin splice variant, which is expressed by multiple tumor types and on neovasculature, are likewise effective in delaying tumor growth. VHH-based CAR T cells can thus function as antitumor agents for multiple targets in syngeneic, immunocompetent animal models. Our results demonstrate the flexibility of VHH-based CAR T cells and the potential of CAR T cells to target the tumor microenvironment and treat solid tumors.
Collapse
|
200
|
Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 2019; 447:48-55. [DOI: 10.1016/j.canlet.2019.01.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022]
|