151
|
Pierson TC, Sánchez MD, Puffer BA, Ahmed AA, Geiss BJ, Valentine LE, Altamura LA, Diamond MS, Doms RW. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 2005; 346:53-65. [PMID: 16325883 DOI: 10.1016/j.virol.2005.10.030] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/10/2005] [Accepted: 10/05/2005] [Indexed: 12/21/2022]
Abstract
West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) are produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.
Collapse
Affiliation(s)
- Theodore C Pierson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Seeger C. Salient molecular features of hepatitis C virus revealed. Trends Microbiol 2005; 13:528-34. [PMID: 16154356 DOI: 10.1016/j.tim.2005.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/09/2005] [Accepted: 08/31/2005] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a positive strand RNA virus with a narrow host and tissue tropism. It ranks among the most significant of human pathogens, causing inflammation, scarring and cancer of the liver. Recent investigations have shed light on some of the salient molecular features of this virus. These include a requirement for CD81 (a tetraspanin transmembrane protein for viral entry), a novel mechanism for the initiation of RNA synthesis, phosphorylation of a viral protein in the regulation of RNA amplification and virus assembly and, finally, a viral protease suppressing activation of the innate immune response in infected cells.
Collapse
Affiliation(s)
- Christoph Seeger
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
153
|
Chiu WW, Kinney RM, Dreher TW. Control of translation by the 5'- and 3'-terminal regions of the dengue virus genome. J Virol 2005; 79:8303-15. [PMID: 15956576 PMCID: PMC1143759 DOI: 10.1128/jvi.79.13.8303-8315.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene. Capped DCLD RNA was as efficiently translated in Vero cells as capped GLGpA RNA, a reporter with UTRs from the highly expressed alpha-globin mRNA and a 72-residue poly(A) tail. Analogous reporter RNAs with regulatory sequences from West Nile and Sindbis viruses were also strongly expressed. Although capped DCLD RNA was expressed much more efficiently than its uncapped form, uncapped DCLD RNA was translated 6 to 12 times more efficiently than uncapped RNAs with UTRs from globin mRNA. The 5' cap and DEN 3' UTR were the main sources of the translational efficiency of DCLD RNA, and they acted synergistically in enhancing translation. The DEN 3' UTR increased mRNA stability, although this effect was considerably weaker than the enhancement of translational efficiency. The DEN 3' UTR thus has translational regulatory properties similar to those of a poly(A) tail. Its translation-enhancing effect was observed for RNAs with globin or DEN 5' sequences, indicating no codependency between viral 5' and 3' sequences. Deletion studies showed that translational enhancement provided by the DEN 3' UTR is attributable to the cumulative contributions of several conserved elements, as well as a nonconserved domain adjacent to the stop codon. One of the conserved elements was the conserved sequence (CS) CS1 that is complementary to cCS1 present in the 5' end of the DEN polyprotein open reading frame. Complementarity between CS1 and cCS1 was not required for efficient translation.
Collapse
Affiliation(s)
- Wei-Wei Chiu
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | | | |
Collapse
|
154
|
Lee JS, Hadjipanayis AG, Parker MD. Viral vectors for use in the development of biodefense vaccines. Adv Drug Deliv Rev 2005; 57:1293-314. [PMID: 15935875 DOI: 10.1016/j.addr.2005.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
The heightened concerns about bioterrorism and the use of biowarfare agents have prompted substantial increased efforts towards the development of vaccines against a wide range of organisms, toxins, and viruses. An increasing variety of platforms and strategies have been analyzed for their potential as vaccines against these agents. DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.
Collapse
Affiliation(s)
- John S Lee
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
155
|
Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV. Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 2005; 79:6631-43. [PMID: 15890901 PMCID: PMC1112138 DOI: 10.1128/jvi.79.11.6631-6643.2005] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secondary and tertiary RNA structures present in viral RNA genomes play essential regulatory roles during translation, RNA replication, and assembly of new viral particles. In the case of flaviviruses, RNA-RNA interactions between the 5' and 3' ends of the genome have been proposed to be required for RNA replication. We found that two RNA elements present at the ends of the dengue virus genome interact in vitro with high affinity. Visualization of individual molecules by atomic force microscopy revealed that physical interaction between these RNA elements results in cyclization of the viral RNA. Using RNA binding assays, we found that the putative cyclization sequences, known as 5' and 3' CS, present in all mosquito-borne flaviviruses, were necessary but not sufficient for RNA-RNA interaction. Additional sequences present at the 5' and 3' untranslated regions of the viral RNA were also required for RNA-RNA complex formation. We named these sequences 5' and 3' UAR (upstream AUG region). In order to investigate the functional role of 5'-3' UAR complementarity, these sequences were mutated either separately, to destroy base pairing, or simultaneously, to restore complementarity in the context of full-length dengue virus RNA. Nonviable viruses were recovered after transfection of dengue virus RNA carrying mutations either at the 5' or 3' UAR, while the RNA containing the compensatory mutations was able to replicate. Since sequence complementarity between the ends of the genome is required for dengue virus viability, we propose that cyclization of the RNA is a required conformation for viral replication.
Collapse
Affiliation(s)
- Diego E Alvarez
- Fundación Instituto Leloir, Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | | | | | | | | |
Collapse
|
156
|
Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 2005; 79:5414-20. [PMID: 15827155 PMCID: PMC1082737 DOI: 10.1128/jvi.79.9.5414-5420.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha/beta interferon (IFN-alpha/beta) is a key mediator of innate antiviral responses but has little effect on the established replication of dengue viruses, which are mosquito-borne flaviviruses of immense global health importance. Understanding how the IFN system is inhibited in dengue virus-infected cells would provide critical insights into disease pathogenesis. In a recent study analyzing the ability of individual dengue virus-encoded proteins to antagonize the IFN response, nonstructural (NS) protein 4B and possibly NS2A and NS4A were identified as candidate IFN antagonists. In monkey cells, NS4B appeared to inhibit both the IFN-alpha/beta and IFN-gamma signal transduction pathways, which are distinct but overlapping (J. L. Munoz-Jordan, G. G. Sanchez-Burgos, M. Laurent-Rolle, and A. Garcia-Sastre, Proc. Natl. Acad. Sci. USA 100:14333-14338, 2003). For this study, we examined the effects of dengue virus on the human IFN system, using cell lines that were stably transfected with self-replicating subgenomic dengue virus RNA (replicons) and that expressed all of the dengue virus nonstructural proteins together. We show here that in replicon-containing cells dengue virus RNA replication and the replication of encephalomyocarditis virus, an IFN-sensitive virus, are resistant to the antiviral effects of IFN-alpha. The presence of dengue virus replicons reduces global IFN-alpha-stimulated gene expression and specifically inhibits IFN-alpha but not IFN-gamma signal transduction. In cells containing replicons or infected with dengue virus, we found reduced levels of signal transducer and activator of transcription 2 (STAT2), which is a key component of IFN-alpha but not IFN-gamma signaling. Collectively, these data show that dengue virus is capable of subverting the human IFN response by down-regulating STAT2 expression.
Collapse
Affiliation(s)
- Meleri Jones
- DDRC, Queen Mary's School of Medicine and Dentistry, Royal Free & University College Medical School, Rowland Hill St., London NW3 2PF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Yoshii K, Hayasaka D, Goto A, Kawakami K, Kariwa H, Takashima I. Packaging the replicon RNA of the Far-Eastern subtype of tick-borne encephalitis virus into single-round infectious particles: development of a heterologous gene delivery system. Vaccine 2005; 23:3946-56. [PMID: 15917116 DOI: 10.1016/j.vaccine.2005.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/31/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
The sub-genomic replicon of tick-borne encephalitis (TBE) virus (Far-Eastern subtype) was packaged into infectious particles by providing the viral structural proteins in trans. Sequential transfection of TBE replicon RNA and a plasmid that expressed the structural proteins led to the secretion of infectious particles that contained TBE replicon RNA. The secreted particles had single-round infectivity, which was inhibited by TBE virus-neutralizing antibody. The physical structure of the particles was almost identical to that of infectious virions, and the packaged replicon RNA showed no recombination with the mRNAs of the viral structural proteins. Furthermore, heterologous genes were successfully delivered and expressed by packaging TBE replicon RNA with inserted GFP and Neo genes. This replicon packaging system may be a useful tool for the molecular study of the TBE virus genome packaging mechanism, and for the development of vaccine delivery systems.
Collapse
Affiliation(s)
- Kentarou Yoshii
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
158
|
O'Boyle DR, Nower PT, Lemm JA, Valera L, Sun JH, Rigat K, Colonno R, Gao M. Development of a cell-based high-throughput specificity screen using a hepatitis C virus-bovine viral diarrhea virus dual replicon assay. Antimicrob Agents Chemother 2005; 49:1346-53. [PMID: 15793110 PMCID: PMC1068622 DOI: 10.1128/aac.49.4.1346-1353.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The hepatitis C virus (HCV) replicon is a unique system for the development of a high-throughput screen (HTS), since the analysis of inhibitors requires the quantification of a decrease in a steady-state level of HCV RNA. HCV replicon replication is dependent on host cell factors, and any toxic effects may have a significant impact on HCV replicon replication. Therefore, determining the antiviral specificity of compounds presents a challenge for the identification of specific HCV inhibitors. Here we report the development of an HCV/bovine viral diarrhea virus (BVDV) dual replicon assay suitable for HTS to address these issues. The HCV reporter enzyme is the endogenous NS3 protease contained within the HCV genome, while the BVDV reporter enzyme is a luciferase enzyme engineered into the BVDV genome. The HTS uses a mixture of HCV and BVDV replicon cell lines placed in the same well of a 96-well plate and isolated in the same cell backgrounds (Huh-7). The format consists of three separate but compatible assays: the first quantitates the amount of cytotoxicity based upon the conversion of Alamar blue dye via cellular enzymes, while the second indirectly quantitates HCV replicon replication through measurement of the amount of NS3 protease activity present. The final assay measures the amount of luciferase activity present from the BVDV replicon cells, as an indicator of the specificity of the test compounds. This HCV/BVDV dual replicon assay provides a reliable format to determine the potency and specificity of HCV replicon inhibitors.
Collapse
Affiliation(s)
- Donald R O'Boyle
- Department of Virology, Bristol Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA. Min
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Thakral D, Nayak B, Rehman S, Durgapal H, Panda SK. Replication of a recombinant hepatitis E virus genome tagged with reporter genes and generation of a short-term cell line producing viral RNA and proteins. J Gen Virol 2005; 86:1189-1200. [PMID: 15784913 DOI: 10.1099/vir.0.80705-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis E virus (HEV) replication has been demonstrated in HepG2 cells transfected with full-length in vitro transcripts of an infectious cDNA clone. This cDNA clone was modified to generate several subgenomic HEV replicons with fused reporter genes. In vitro-transcribed capped RNAs generated from these were transfected into HepG2 cells. Negative-strand RNA was detected, indicating the occurrence of replication. The replicon containing an in-frame fusion of HEV ORF2 with enhanced green fluorescent protein (EGFP) was positive for fluorescence, whereas no signal was observed when the replicase domain was deleted. An HEV ORF3-EGFP in-frame fusion did not yield fluorescence. Deletions introduced into ORF2 did not affect the replication competency of the viral RNA. To explore the possibility of using a reporter-gene assay to monitor the synthesis of plus- and minus-strand RNA, the EGFP gene fused to the encephalomyocarditis virus internal ribosome entry site (IRES) was inserted into partially deleted ORF2 of HEV, in both the sense [HEV-IRES-EGFP(+)] and antisense [HEV-IRES-EGFP(-)] orientations. HepG2 cells transfected with HEV-IRES-EGFP(+) and HEV-IRES-EGFP(-) vectors were positive for EGFP fluorescence. To quantify HEV replication, EGFP was replaced with Renilla luciferase (RLuc). HEV-IRES-RLuc(+) showed approximately 10-fold higher luminescence than HEV-IRES-RLuc(-). There was complete loss of activity when the helicase-replicase domain in HEV-IRES-RLuc(-) was deleted. A short-term HepG2 cell line containing the full-length viral genome in the pcDNA3 vector was established. Viral RNA and proteins (RdRp, pORF2 and pORF3) could be detected in the geneticin-resistant cells, even after the seventh passage. In the absence of a reliable cell-culture system to study HEV biology, these reporter replicons, as well as the cell line, bestow immense utility.
Collapse
Affiliation(s)
- Deepshi Thakral
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - Baibaswata Nayak
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - Shagufta Rehman
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, 110029 New Delhi, India
| |
Collapse
|
160
|
Mori Y, Okabayashi T, Yamashita T, Zhao Z, Wakita T, Yasui K, Hasebe F, Tadano M, Konishi E, Moriishi K, Matsuura Y. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J Virol 2005; 79:3448-58. [PMID: 15731239 PMCID: PMC1075736 DOI: 10.1128/jvi.79.6.3448-3458.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis virus (JEV) core protein was detected in both the nucleoli and cytoplasm of mammalian and insect cell lines infected with JEV or transfected with the expression plasmid of the core protein. Mutation analysis revealed that Gly(42) and Pro(43) in the core protein are essential for the nuclear and nucleolar localization. A mutant M4243 virus in which both Gly(42) and Pro(43) were replaced by Ala was recovered by plasmid-based reverse genetics. In C6/36 mosquito cells, the M4243 virus exhibited RNA replication and protein synthesis comparable to wild-type JEV, whereas propagation in Vero cells was impaired. The mutant core protein was detected in the cytoplasm but not in the nucleus of either C6/36 or Vero cell lines infected with the M4243 virus. The impaired propagation of M4243 in mammalian cells was recovered by the expression of wild-type core protein in trans but not by that of the mutant core protein. Although M4243 mutant virus exhibited a high level of neurovirulence comparable to wild-type JEV in spite of the approximately 100-fold-lower viral propagation after intracerebral inoculation to 3-week-old mice of strain Jcl:ICR, no virus was recovered from the brain after intraperitoneal inoculation of the mutant. These results indicate that nuclear localization of JEV core protein plays crucial roles not only in the replication in mammalian cells in vitro but also in the pathogenesis of encephalitis induced by JEV in vivo.
Collapse
Affiliation(s)
- Yoshio Mori
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Tilgner M, Deas TS, Shi PY. The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology 2005; 331:375-86. [PMID: 15629780 DOI: 10.1016/j.virol.2004.07.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/21/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
A reporting replicon of West Nile virus (WN) was used to distinguish between the function of the 3' untranslated region (UTR) in viral translation and RNA replication. Deletions of various regions of the 3' UTR of the replicon did not significantly affect viral translation, but abolished RNA replication. A systematic mutagenesis showed that the flavivirus-conserved penta-nucleotide (5'-CACAG-3' located at the top of the 3' stem-loop of the genome) requires a specific sequence and structure for WN RNA synthesis, but not for viral translation. (i) Basepair structure and sequence at the 1st position of the penta-nucleotide are critical for RNA replication. (ii) The conserved nucleotides at the 2nd, 3rd, and 5th positions, but not at the 4th position of the penta-nucleotide, are essential for RNA synthesis. (iii) The nucleotide U (which is partially conserved in the genus Flavivirus) immediately downstream of the penta-nucleotide is not essential for viral replication.
Collapse
Affiliation(s)
- Mark Tilgner
- New York State Department of Health, Wadsworth Center, Albany, NY 12208, USA
| | | | | |
Collapse
|
162
|
Gehrke R, Heinz FX, Davis NL, Mandl CW. Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J Gen Virol 2005; 86:1045-1053. [PMID: 15784898 DOI: 10.1099/vir.0.80677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Nancy L Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
163
|
Jones CT, Patkar CG, Kuhn RJ. Construction and applications of yellow fever virus replicons. Virology 2005; 331:247-59. [PMID: 15629769 DOI: 10.1016/j.virol.2004.10.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Revised: 06/28/2004] [Accepted: 10/01/2004] [Indexed: 11/18/2022]
Abstract
Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.
Collapse
Affiliation(s)
- Christopher T Jones
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | |
Collapse
|
164
|
Rossi SL, Zhao Q, O'Donnell VK, Mason PW. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action. Virology 2005; 331:457-70. [PMID: 15629788 DOI: 10.1016/j.virol.2004.10.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 10/17/2004] [Accepted: 10/28/2004] [Indexed: 12/20/2022]
Abstract
Flaviviruses are emerging threats to public health worldwide. Recently, one flavivirus, West Nile virus (WNV), has caused the largest epidemic of viral encephalitis in US history. Like other flaviviruses, WNV is thought to cause a persistent infection in insect cells, but an acute cytopathic infection of mammalian cells. To study adaptation of WNV to persistently replicate in cell culture and generate a system capable of detecting antiviral compounds in the absence of live virus, we generated subgenomic replicons of WNV and adapted these to persistently replicate in mammalian cells. Here we report that adaptation of these replicons to cell culture results in a reduction of genome copy number, and demonstrate that hamster, monkey, and human cells that stably carry the replicons can be used as surrogates to detect the activity of anti-WNV compounds. Additionally, we have used these cells to investigate the interaction of WNV genomes with interferon (IFN). These studies demonstrated that IFN can cure cells of replicons and that replicon-bearing cells display lower responses to IFN than their IFN-cured derivatives.
Collapse
Affiliation(s)
- Shannan L Rossi
- Department of Pathology, 3.206B Mary Moody Northen Pavilion, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0436, USA
| | | | | | | |
Collapse
|
165
|
Read ML, Stevenson M, Farrow PJ, Barrett LB, Seymour LW. RNA-based therapeutic strategies for cancer. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.5.627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
166
|
Woodmansee AN, Shi PY. Recent developments in West Nile virus vaccine and antiviral therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.8.1113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
167
|
Pierson TC, Diamond MS, Ahmed AA, Valentine LE, Davis CW, Samuel MA, Hanna SL, Puffer BA, Doms RW. An infectious West Nile Virus that expresses a GFP reporter gene. Virology 2005; 334:28-40. [PMID: 15749120 DOI: 10.1016/j.virol.2005.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/02/2004] [Accepted: 01/03/2005] [Indexed: 11/23/2022]
Abstract
West Nile virus is a mosquito-borne, neurotropic flavivirus that causes encephalitis in humans and animals. Since being introduced into the Western hemisphere in 1999, WNV has spread rapidly across North America, identifying this virus as an important emerging pathogen. In this study, we developed a DNA-launched infectious molecular clone of WNV that encodes a GFP reporter gene. Transfection of cells with the plasmid encoding this recombinant virus (pWNII-GFP) resulted in the production of infectious WNV capable of expressing GFP at high levels shortly after infection of a variety of cell types, including primary neurons and dendritic cells. Infection of cells with WNII-GFP virus was productive, and could be inhibited with both monoclonal antibodies and interferon-beta, highlighting the potential of this system in the development and characterization of novel inhibitors and therapeutics for WNV infection. As expected, insertion of the reporter gene into the viral genome was associated with a reduced rate of viral replication, providing the selective pressure for the development of variants that no longer encoded the full-length reporter gene cassette. We anticipate this DNA-based, infectious WNV reporter virus will allow novel approaches for the study of WNV infection and its inhibition both in vitro and in vivo.
Collapse
Affiliation(s)
- Theodore C Pierson
- Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Guo JT, Hayashi J, Seeger C. West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol 2005; 79:1343-50. [PMID: 15650160 PMCID: PMC544142 DOI: 10.1128/jvi.79.3.1343-1350.2005] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is a human pathogen that can cause neurological disorders, including meningoencephalitis. Experiments with mice and mammalian cell cultures revealed that WNV exhibited resistance to the innate immune program induced by alpha interferon (IFN-alpha). We have investigated the nature of this inhibition and have found that WNV replication inhibited the activation of many known IFN-inducible genes, because it prevented the phosphorylation and activation of the Janus kinases JAK1 and Tyk2. As a consequence, activation of the transcription factors STAT1 and STAT2 did not occur in WNV-infected cells. Moreover, we demonstrated that the viral nonstructural proteins are responsible for this effect. Thus, our results provided an explanation for the observed resistance of WNV to IFN-alpha in cells of vertebrate origin.
Collapse
Affiliation(s)
- Ju-Tao Guo
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
169
|
Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 2004; 78:12225-35. [PMID: 15507609 PMCID: PMC525072 DOI: 10.1128/jvi.78.22.12225-12235.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent noncytopathic replication by replicon RNAs of a number of positive-strand RNA viruses usually leads to generation of adaptive mutations in nonstructural genes. Some of these adaptive mutations (e.g., in hepatitis C virus) increase the ability of RNA replication to resist the antiviral action of alpha/beta interferon (IFN-alpha/beta); others (e.g., in Sindbis virus) may also lead to more efficient IFN production. Using puromycin-selectable Kunjin virus (KUN) replicon RNA, we identified two adaptive mutations in the NS2A gene (producing Ala30-to-Pro and Asn101-to-Asp mutations in the gene product; for simplicity, these will be referred to hereafter as Ala30-to-Pro and Asn101-to-Asp mutations) that, when introduced individually or together into the original wild-type (wt) replicon RNA, resulted in approximately 15- to 50-fold more efficient establishment of persistent replication in hamster (BHK21) and human (HEK293 and HEp-2) cell lines. Transfection with a reporter plasmid carrying the luciferase gene under the control of the IFN-beta promoter resulted in approximately 6- to 7-fold-higher luciferase expression in HEp-2 cells stably expressing KUN replicon RNA with an Ala30-to-Pro mutation in the NS2A gene compared to that observed in HEp-2 cells stably expressing KUN replicon RNA with the wt NS2A gene. Moreover, cotransfection of plasmids expressing individual wt or Ala30-to-Pro-mutated NS2A genes with the IFN-beta promoter reporter plasmid, followed by infection with Semliki Forest virus to activate IFN-beta promoter-driven transcription, showed approximately 7-fold inhibition of luciferase expression by the wt but not by the Ala30-to-Pro-mutated NS2A protein. The results show for the first time a role for the flavivirus nonstructural protein NS2A in inhibition of IFN-beta promoter-driven transcription and identify a single-amino-acid mutation in NS2A that dramatically reduces this inhibitory activity. The findings determine a new function for NS2A in virus-host interactions, extend the range of KUN replicon vectors for noncytopathic gene expression, and identify NS2A as a new target for attenuation in the development of live flavivirus vaccines.
Collapse
Affiliation(s)
- Wen Jun Liu
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | |
Collapse
|
170
|
Almazán F, Galán C, Enjuanes L. The nucleoprotein is required for efficient coronavirus genome replication. J Virol 2004; 78:12683-8. [PMID: 15507657 PMCID: PMC525053 DOI: 10.1128/jvi.78.22.12683-12688.2004] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The construction of a set of transmissible gastroenteritis coronavirus (TGEV)-derived replicons as bacterial artificial chromosomes is reported. These replicons were generated by sequential deletion of nonessential genes for virus replication, using a modified TGEV full-length cDNA clone containing unique restriction sites between each pair of consecutive genes. Efficient activity of TGEV replicons was associated with the presence of the nucleoprotein provided either in cis or in trans. TGEV replicons were functional in several cell lines, including the human cell line 293T, in which no or very low cytopathic effect was observed, and expressed high amounts of heterologous protein.
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
171
|
Tilgner M, Shi PY. Structure and function of the 3' terminal six nucleotides of the west nile virus genome in viral replication. J Virol 2004; 78:8159-71. [PMID: 15254187 PMCID: PMC446100 DOI: 10.1128/jvi.78.15.8159-8171.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using a self-replicating reporting replicon of West Nile (WN) virus, we performed a mutagenesis analysis to define the structure and function of the 3'-terminal 6 nucleotides (nt) (5'-GGAUCU(OH)-3') of the WN virus genome in viral replication. We show that mutations of nucleotide sequence or base pair structure of any of the 3'-terminal 6 nt do not significantly affect viral translation, but exert discrete effects on RNA replication. (i). The flavivirus-conserved terminal 3' U is optimal for WN virus replication. Replacement of the wild-type 3' U with a purine A or G resulted in a substantial reduction in RNA replication, with a complete reversion to the wild-type sequence. In contrast, replacement with a pyrimidine C resulted in a replication level similar to that of the 3' A or G mutants, with only partial reversion. (ii). The flavivirus-conserved 3' penultimate C and two upstream nucleotides (positions 78 and 79), which potentially base pair with the 3'-terminal CU(OH), are absolutely essential for viral replication. (iii). The base pair structures, but not the nucleotide sequences at the 3rd (U) and the 4th (A) positions, are critical for RNA replication. (iv). The nucleotide sequences of the 5th (G) position and its base pair nucleotide (C) are essential for viral replication. (v). Neither the sequence nor the base pair structure of the 6th nucleotide (G) is critical for WN virus replication. These results provide strong functional evidence for the existence of the 3' flavivirus-conserved RNA structure, which may function as contact sites for specific assembly of the replication complex or for efficient initiation of minus-sense RNA synthesis.
Collapse
Affiliation(s)
- Mark Tilgner
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | |
Collapse
|
172
|
Zhang G, Zhang J, Simon AE. Repression and derepression of minus-strand synthesis in a plus-strand RNA virus replicon. J Virol 2004; 78:7619-33. [PMID: 15220437 PMCID: PMC434078 DOI: 10.1128/jvi.78.14.7619-7633.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plus-strand viral RNAs contain sequences and structural elements that allow cognate RNA-dependent RNA polymerases (RdRp) to correctly initiate and transcribe asymmetric levels of plus and minus strands during RNA replication. cis-acting sequences involved in minus-strand synthesis, including promoters, enhancers, and, recently, transcriptional repressors (J. Pogany, M. R. Fabian, K. A. White, and P. D. Nagy, EMBO J. 22:5602-5611, 2003), have been identified for many viruses. A second example of a transcriptional repressor has been discovered in satC, a replicon associated with turnip crinkle virus. satC hairpin 5 (H5), located proximal to the core hairpin promoter, contains a large symmetrical internal loop (LSL) with sequence complementary to 3'-terminal bases. Deletion of satC 3'-terminal bases or alteration of the putative interacting bases enhanced transcription in vitro, while compensatory exchanges between the LSL and 3' end restored near-normal transcription. Solution structure analysis indicated that substantial alteration of the satC H5 region occurs when the three 3'-terminal cytidylates are deleted. These results indicate that H5 functions to suppress synthesis of minus strands by sequestering the 3' terminus from the RdRp. Alteration of a second sequence strongly repressed transcription in vitro and accumulation in vivo, suggesting that this sequence may function as a derepressor to free the 3' end from interaction with H5. Hairpins with similar sequence and/or structural features that contain sequence complementary to 3'-terminal bases, as well as sequences that could function as derepressors, are located in similar regions in other carmoviruses, suggesting a general mechanism for controlling minus-strand synthesis in the genus.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD 20742, USA
| | | | | |
Collapse
|
173
|
Herd KA, Harvey T, Khromykh AA, Tindle RW. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology 2004; 319:237-48. [PMID: 14980484 DOI: 10.1016/j.virol.2003.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 08/28/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses.
Collapse
Affiliation(s)
- Karen A Herd
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, and Clinical Medical Virology Centre, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
174
|
Chen MH, Frolov I, Icenogle J, Frey TK. Analysis of the 3' cis-acting elements of rubella virus by using replicons expressing a puromycin resistance gene. J Virol 2004; 78:2553-61. [PMID: 14963158 PMCID: PMC369209 DOI: 10.1128/jvi.78.5.2553-2561.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A rubella virus (RUB) replicon, RUBrep/PAC, was constructed and used to map the 3' cis-acting elements (3' CSE) of the RUB genome required for RUB replication. The RUBrep/PAC replicon had the structural protein open reading frame partially replaced by a puromycin acetyltransferase (PAC) gene. Cells transfected with RUBrep/PAC transcripts expressed the PAC gene from the subgenomic RNA, were rendered resistant to puromycin, and thus survived selection with this drug. The relative survival following puromycin selection of cells transfected with transcripts from RUBrep/PAC constructs with mutations in the 3' CSE varied. The 3' region necessary for optimal relative survival consisted of the 3' 305 nucleotides (nt), a region conserved in RUB defective-interfering RNAs, and thus this region constitutes the 3' CSE. Within the 3' CSE, deletions in the approximately 245 nt that overlap the 3' end of the E1 gene resulted in reduced relative survivals, ranging from 20 to <1% of the parental replicon survival level while most mutations within the approximately 60-nt 3' untranslated region (UTR) were lethal. None of the 3' CSE mutations affected in vitro translation of the nonstructural protein open reading frame (which is 5' proximal in the genome and encodes the enzymes involved in virus RNA replication). In cells transfected with replicons with 3' CSE mutations that survived antibiotic selection (i.e., those with mutations in the region of the 3' CSE that overlaps the E1 coding region), the amount of replicon-specific minus-strand RNA was uniform; however, the accumulation of both plus-strand RNA species, genomic and subgenomic, varied widely, indicating that this region of the RUB 3' CSE affects plus-strand RNA accumulation rather than minus-strand RNA synthesis.
Collapse
Affiliation(s)
- Min-Hsin Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|
175
|
Abstract
The Kunjin virus (KUNV) has provided a useful laboratory model for Flavivirus RNA replication. The synthesis of progeny RNA(+) strands occurs via asymmetric and semiconservative replication on a template of recycling double-stranded RNA (dsRna) or replicative form (RF). Kinetics of viral RNA synthesis indicated a cycle period of about 15 min during which, on average, a single nascent RNA (+) strand displaces the pre-existing RNA(+) strand in the replicative intermediate. Data on the composition of the replication complex (RC) in KUNV-infected cells were obtained from several sources, including analyses of the partially-purified still active RC, immunogold labeling of cryosections using monospecific antibodies to the nonstructural proteins and to the dsRNA, radioimmunoprecipitations of cell lysates using antibodies to dsRNA and to an RC-associated cell marker, and pull-down assays of cell lysates using fusion proteins GST-NS2A and GST-NS4A. These results yeilded a consensus composition of NS1, NS2A, NS3, NS4A, and NS5 strongly associated with the dsRNA template. The RC was located in induced membranes described as vesicle packets. The RNA-dependent RNA polymerase activity late in infection did not require continuing protein synthesis. Replication of genomic RNA was completely dependent on the presence of conserved complementary or cyclization sequences near the 5' and 3' ends. Assembly of the RC during translation in cis and the relationships, particularly those of NS1 and NS5 among the components, were deduced from an extensive set of complementation experiments in trans involving mutations/deletions in all the nonstructural proteins and use of KUN or alphahavirus replicons as helpers. The KUN replicon has found useful applications also as a noncytopathic vector for the continuing expression of foreign genes, delivered either as packaged RNA or as plasmid DNA.
Collapse
Affiliation(s)
- Edwin G Westaway
- Clinical Medical Virology Center-University of Queensland, Sir Albert Sakzewski Virus Research Center, Royal Children's Hospital, Herston, Brisbane, Australia
| | | | | |
Collapse
|
176
|
Dove B, Cavanagh D, Britton P. Presence of an encephalomyocarditis virus internal ribosome entry site sequence in avian infectious bronchitis virus defective RNAs abolishes rescue by helper virus. J Virol 2004; 78:2711-21. [PMID: 14990691 PMCID: PMC353753 DOI: 10.1128/jvi.78.6.2711-2721.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/18/2003] [Indexed: 11/20/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) defective RNAs (D-RNAs) have been used for the expression of heterologous genes in a helper-virus-dependent expression system. The heterologous genes were expressed under the control of an IBV transcription-associated sequence (TAS) derived from gene 5 of IBV Beaudette. However, coronavirus D-RNA expression vectors display an inherent instability following serial passage with helper virus, resulting in the eventual loss of the heterologous genes. The use of the picornavirus encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) sequence to initiate gene translation was investigated as an alternative method to the coronavirus-mediated TAS-controlled heterologous gene expression system. IBV D-RNAs containing the chloramphenicol acetyltransferase (CAT) reporter gene, under EMCV IRES control, were assessed for IRES-mediated CAT protein translation. CAT protein was detected from T7-derived IBV D-RNA transcripts in a cell-free protein synthesis system and in situ in avian chick kidney (CK) cells following T7-derived D-RNA synthesis from a recombinant fowlpox virus expressing the bacteriophage T7 DNA-dependent RNA polymerase. However, CAT protein was not detected in CK cells from IRES-containing IBV D-RNAs, in which the IRES-CAT construct was inserted at two different positions within the D-RNA, in the presence of helper IBV. Northern blot analysis demonstrated that the IRES-containing D-RNAs were not rescued on serial passage with helper virus, indicating that the EMCV IRES sequence had a detrimental effect on IBV D-RNA rescue.
Collapse
Affiliation(s)
- Brian Dove
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | |
Collapse
|
177
|
Abstract
The flavivirus genome is a capped, positive-sense RNA approximately 10.5 kb in length. It contains a single long open reading frame (ORF), flanked by a 5´ noncoding regions (NCR), which is about 100 nucleotides in length, and a 3´ NCR ranging in size from about 400 to 800 nucleotides in length. The conserved structural and nucleotide sequence elements of these NCRs and their function in RNA replication and translation are the subjects of this chapter. The 5´ and 3´ NCRs play a role in the initiation of negative-strand synthesis on virus RNA released from entering virions, switching from negative-strand synthesis to synthesis of progeny plus strand RNA at late times after infection, and possibly in the initiation of translation and in the packaging of virus plus strand RNA into particles. The presence of conserved and nonconserved complementary nucleotide sequences near the 5´ and 3´ termini of flavivirus genomes suggests that ‘‘panhandle’’ or circular RNA structures are formed transiently by hydrogen bonding at some stage during RNA replication.
Collapse
Affiliation(s)
- Lewis Markoff
- Laboratory of Vector-Borne Virus Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| |
Collapse
|
178
|
Waris G, Sarker S, Siddiqui A. Two-step affinity purification of the hepatitis C virus ribonucleoprotein complex. RNA (NEW YORK, N.Y.) 2004; 10:321-9. [PMID: 14730030 PMCID: PMC1370543 DOI: 10.1261/rna.5124404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Positive-strand RNA viruses replicate their RNA genome within a ribonucleoprotein (RNP) complex that is associated with cellular membranes. We used a two-step method of purification to isolate hepatitis C virus (HCV) RNP complexes from human hepatoma cell line Huh7, which stably expresses HCV subgenomic replicons. The procedure involved hybridization of replicon-expressing cellular lysates with oligonucleotides tagged with biotin and digoxigenin at their respective termini complementary to subgenomic replicon RNA followed by avidin-agarose enrichment of the mixture and subsequent immunoprecipitation of biotin-eluted material with anti-digoxigenin antibody. The immunoprecipitates were immunoblotted with antisera against HCV nonstructural (NS) proteins. The analysis revealed the association of all the HCV NS proteins (NS3, NS4a, NS4b, NS5a, and NS5b) that are encoded by the subgenomic replicon RNA. The HCV RNP complex migrated in a native polyacrylamide gel with an approximate molecular mass of 450 kD. The association of these viral proteins in the RNP complex reinforces the widely acknowledged notion that RNA viruses accomplish replication within a membranous RNP complex.
Collapse
Affiliation(s)
- Gulam Waris
- Department of Microbiology, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
179
|
Lo MK, Tilgner M, Shi PY. Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol 2004; 77:12901-6. [PMID: 14610212 PMCID: PMC262590 DOI: 10.1128/jvi.77.23.12901-12906.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prevention and treatment of infection by West Nile virus (WNV) and other flaviviruses are public health priorities. We describe a reporting cell line that can be used for high-throughput screening of inhibitors against all targets involved in WNV replication. Dual reporter genes, encoding Renilla luciferase (Rluc) and neomycin phosphotransferase (Neo), were engineered into a WNV subgenomic replicon, resulting in Rluc/NeoRep. Geneticin selection of BHK-21 cells transfected with Rluc/NeoRep yielded a stable cell line that contains persistently replicating replicons. Incubation of the reporting cells with known WNV inhibitors decreased Rluc activity, as well as the replicon RNA level. The efficacies of the inhibitors, as measured by the depression of Rluc activity in the reporting cells, are comparable to those derived from authentic viral infection assays. Therefore, the WNV reporting cell line can be used as a high-throughput assay for anti-WNV drug discovery. A similar approach should be applicable to development of genetics-based antiviral assays for other flaviviruses.
Collapse
Affiliation(s)
- Michael K Lo
- Wadsworth Center, New York State Department of Health, University at Albany, State University of New York, Albany, New York 12201, USA
| | | | | |
Collapse
|
180
|
Harvey TJ, Liu WJ, Wang XJ, Linedale R, Jacobs M, Davidson A, Le TTT, Anraku I, Suhrbier A, Shi PY, Khromykh AA. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J Virol 2004; 78:531-8. [PMID: 14671135 PMCID: PMC303381 DOI: 10.1128/jvi.78.1.531-538.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 09/19/2003] [Indexed: 01/23/2023] Open
Abstract
We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 10(10) VLPs per 10(6) transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.
Collapse
Affiliation(s)
- Tracey J Harvey
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Huang CYH, Butrapet S, Tsuchiya KR, Bhamarapravati N, Gubler DJ, Kinney RM. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 2003; 77:11436-47. [PMID: 14557629 PMCID: PMC229366 DOI: 10.1128/jvi.77.21.11436-11447.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attenuation markers of the candidate dengue 2 (D2) PDK-53 vaccine virus are encoded by mutations that reside outside of the structural gene region of the genome. We engineered nine dengue virus chimeras containing the premembrane (prM) and envelope (E) genes of wild-type D1 16007, D3 16562, or D4 1036 virus within the genetic backgrounds of wild-type D2 16681 virus and the two genetic variants (PDK53-E and PDK53-V) of the D2 PDK-53 vaccine virus. Expression of the heterologous prM-E genes in the genetic backgrounds of the two D2 PDK-53 variants, but not that of wild-type D2 16681 virus, resulted in chimeric viruses that retained PDK-53 characteristic phenotypic markers of attenuation, including small plaque size and temperature sensitivity in LLC-MK(2) cells, limited replication in C6/36 cells, and lack of neurovirulence in newborn ICR mice. Chimeric D2/1, D2/3, and D2/4 viruses replicated efficiently in Vero cells and were immunogenic in AG129 mice. Chimeric D2/1 viruses protected adult AG129 mice against lethal D1 virus challenge. Two tetravalent virus formulations, comprised of either PDK53-E- or PDK53-V-vectored viruses, elicited neutralizing antibody titers in mice against all four dengue serotypes. These antibody titers were similar to the titers elicited by monovalent immunizations, suggesting that viral interference did not occur in recipients of the tetravalent formulations. The results of this study demonstrate that the unique attenuation loci of D2 PDK-53 virus make it an attractive vector for the development of live attenuated flavivirus vaccines.
Collapse
Affiliation(s)
- Claire Y-H Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Fort Collins, Colorado 80522, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Guo JT, Zhu Q, Seeger C. Cytopathic and noncytopathic interferon responses in cells expressing hepatitis C virus subgenomic replicons. J Virol 2003; 77:10769-79. [PMID: 14512527 PMCID: PMC224980 DOI: 10.1128/jvi.77.20.10769-10779.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatitis C virus (HCV) is the only known positive-stranded RNA virus that causes persistent lifelong infections in humans. Accumulation of HCV RNA can be inhibited with alpha interferon (IFN-alpha) in vivo and in culture cells. We used cell-based assay systems to investigate the mechanisms responsible for the cytokine-induced inhibition of HCV replication. The results showed that IFN-alpha could suppress the accumulation of viral RNA by a noncytopathic pathway and could also induce apoptosis of virally infected cells in a concentration- and cell line-dependent fashion. Whereas the noncytopathic IFN-alpha response depended on a functional Jak-STAT signal transduction pathway, it did not appear to require double-stranded RNA-dependent pathways. Moreover, we found that functional proteasomes were required for establishment of the IFN-alpha response against HCV. Based on the results described in this study we propose a model for the mechanism by which IFN-alpha therapy suppresses HCV replication in chronic infections by both cytopathic and noncytopathic means.
Collapse
Affiliation(s)
- Ju-Tao Guo
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
183
|
Khromykh AA, Kondratieva N, Sgro JY, Palmenberg A, Westaway EG. Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 2003; 77:10623-9. [PMID: 12970446 PMCID: PMC228497 DOI: 10.1128/jvi.77.19.10623-10629.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA.
Collapse
Affiliation(s)
- Alexander A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Clinical Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
184
|
Thiel V, Karl N, Schelle B, Disterer P, Klagge I, Siddell SG. Multigene RNA vector based on coronavirus transcription. J Virol 2003; 77:9790-8. [PMID: 12941887 PMCID: PMC224574 DOI: 10.1128/jvi.77.18.9790-9798.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Accepted: 06/19/2003] [Indexed: 11/20/2022] Open
Abstract
Coronavirus genomes are the largest known autonomously replicating RNAs with a size of ca. 30 kb. They are of positive polarity and are translated to produce the viral proteins needed for the assembly of an active replicase-transcriptase complex. In addition to replicating the genomic RNA, a key feature of this complex is a unique transcription process that results in the synthesis of a nested set of six to eight subgenomic mRNAs. These subgenomic mRNAs are produced in constant but nonequimolar amounts and, in general, each is translated to produce a single protein. To take advantage of these features, we have developed a multigene expression vector based on human coronavirus 229E. We have constructed a prototype RNA vector containing the 5' and 3' ends of the human coronavirus genome, the entire human coronavirus replicase gene, and three reporter genes (i.e., the chloramphenicol acetyltransferase [CAT] gene, the firefly luciferase [LUC] gene, and the green fluorescent protein [GFP] gene). Each reporter gene is located downstream of a human coronavirus transcription-associated sequence, which is required for the synthesis of individual subgenomic mRNAs. The transfection of vector RNA and human coronavirus nucleocapsid protein mRNA into BHK-21 cells resulted in the expression of the CAT, LUC, and GFP reporter proteins. Sequence analysis confirmed the synthesis of coronavirus-specific mRNAs encoding CAT, LUC, and GFP. In addition, we have shown that human coronavirus-based vector RNA can be packaged into virus-like particles that, in turn, can be used to transduce immature and mature human dendritic cells. In summary, we describe a new class of eukaryotic, multigene expression vectors that are based on the human coronavirus 229E and have the ability to transduce human dendritic cells.
Collapse
Affiliation(s)
- Volker Thiel
- Institute of Virology and Immunology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
185
|
Lo MK, Tilgner M, Bernard KA, Shi PY. Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3' untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 2003; 77:10004-14. [PMID: 12941911 PMCID: PMC224605 DOI: 10.1128/jvi.77.18.10004-10014.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have developed a reporting replicon of West Nile virus (WNV) that could be used to quantitatively distinguish viral translation and RNA replication. A Renilla luciferase (Rluc) gene was fused in-frame with the open reading frame of a subgenomic replicon in the position where the viral structural region was deleted, resulting in RlucRep. Transfection of BHK cells with RlucRep RNA yielded two distinctive Rluc signal peaks, one between 2 and 10 h and the other after 26 h posttransfection. By contrast, only the 2- to 10-h Rluc signal peak was observed in cells transfected with a mutant replicon containing an inactivated viral polymerase NS5 (RlucRep-NS5mt). Immunofluorescence and real-time reverse transcriptase PCR assays showed that the levels of viral protein expression and RNA replication increased in cells transfected with the RlucRep but not in those transfected with the RlucRep-NS5mt. These results suggest that the Rluc signal that occurred at 2 to 10 h posttransfection reflects viral translation of the input replicon, while the Rluc activity after 26 h posttransfection represents RNA replication. Using this system, we showed that mutations of conserved sequence (CS) elements within the 3' untranslated region of the mosquito-borne flaviviruses did not significantly affect WNV translation but severely diminished or completely abolished RNA replication. Mutations of CS1 that blocked the potential base pairing with a conserved sequence in the 5' region of the capsid gene (5'CS) abolished RNA replication. Restoration of the 5'CS-CS1 interaction rescued viral replication. Replicons containing individual deletions of CS2, repeated CS2 (RCS2), CS3, or RCS3 were viable, but their RNA replication was dramatically compromised. These results demonstrate that genome cyclization through the 5'CS-CS1 interaction is essential for WNV RNA replication, whereas CS2, RCS2, CS3, and RCS3 facilitate, but are dispensable for, WNV replication.
Collapse
Affiliation(s)
- Michael K Lo
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
186
|
Gehrke R, Ecker M, Aberle SW, Allison SL, Heinz FX, Mandl CW. Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 2003; 77:8924-33. [PMID: 12885909 PMCID: PMC167216 DOI: 10.1128/jvi.77.16.8924-8933.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
187
|
Liu WJ, Chen HB, Khromykh AA. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol 2003; 77:7804-13. [PMID: 12829820 PMCID: PMC161959 DOI: 10.1128/jvi.77.14.7804-7813.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A number of full-length cDNA clones of Kunjin virus (KUN) were previously prepared; it was shown that two of them, pAKUN and FLSDX, differed in specific infectivities of corresponding in vitro transcribed RNAs by approximately 100,000-fold (A. A. Khromykh et al., J. Virol. 72:7270-7279, 1998). In this study, we analyzed a possible genetic determinant(s) of the observed differences in infectivity initially by sequencing the entire cDNAs of both clones and comparing them with the published sequence of the parental KUN strain MRM61C. We found six common amino acid residues in both cDNA clones that were different from those in the published MRM61C sequence but were similar to those in the published sequences of other flaviviruses from the same subgroup. pAKUN clone had four additional codon changes, i.e., Ile59 to Asn and Arg175 to Lys in NS2A and Tyr518 to His and Ser557 to Pro in NS3. Three of these substitutions except the previously shown marker mutation, Arg175 to Lys in NS2A, reverted to the wild-type sequence in the virus eventually recovered from pAKUN RNA-transfected BHK cells, demonstrating the functional importance of these residues in viral replication and/or viral assembly. Exchange of corresponding DNA fragments between pAKUN and FLSDX clones and site-directed mutagenesis revealed that the Tyr518-to-His mutation in NS3 was responsible for an approximately 5-fold decrease in specific infectivity of transcribed RNA, while the Ile59-to-Asn mutation in NS2A completely blocked virus production. Correction of the Asn59 in pAKUN NS2A to the wild-type Ile residue resulted in complete restoration of RNA infectivity. Replication of KUN replicon RNA with an Ile59-to-Asn substitution in NS2A and with a Ser557-to-Pro substitution in NS3 was not affected, while the Tyr518-to-His substitution in NS3 led to severe inhibition of RNA replication. The impaired function of the mutated NS2A in production of infectious virus was complemented in trans by the helper wild-type NS2A produced from the KUN replicon RNA. However, replicon RNA with mutated NS2A could not be packaged in trans by the KUN structural proteins. The data demonstrated essential roles for the KUN nonstructural protein NS2A in virus assembly and for NS3 in RNA replication and identified specific single-amino-acid residues involved in these functions.
Collapse
Affiliation(s)
- Wen Jun Liu
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | |
Collapse
|
188
|
Pizzuti M, De Tomassi A, Traboni C. Replication and IRES-dependent translation are both affected by core coding sequences in subgenomic GB virus B replicons. J Virol 2003; 77:7502-9. [PMID: 12805450 PMCID: PMC164834 DOI: 10.1128/jvi.77.13.7502-7509.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yield of G418-resistant Huh7 cell clones bearing subgenomic dicistronic GB virus B (GBV-B) is significantly affected by the insertion of a portion of the viral core gene between the GBV-B 5' untranslated region and the exogenous neomycin phosphotransferase selector gene (A. De Tomassi, M. Pizzuti, R. Graziani, A. Sbardellati, S. Altamura, G. Paonessa, and C. Traboni, J. Virol. 76:7736-7746, 2002). In this report, we have dissected this phenomenon, examining the effects of the insertion of core sequences of different lengths on GBV-B IRES-dependent translation and RNA replication by using experimental approaches aimed at analyzing these two aspects independently. The results achieved indicate that an enhancement of translation efficiency does occur and that it correlates with the length of the inserted core sequences. Interestingly, the insertion of these sequences also has a direct similar effect on the efficiency of replication of the GBV-B replicon. These results suggest that in GBV-B replicon RNA and potentially in the complete viral genome, the core coding sequences not only are part of the IRES but also take part in the replication process, independently of the presence of the corresponding whole protein.
Collapse
Affiliation(s)
- Maura Pizzuti
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | |
Collapse
|
189
|
Harvey TJ, Anraku I, Linedale R, Harrich D, Mackenzie J, Suhrbier A, Khromykh AA. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. J Virol 2003; 77:7796-803. [PMID: 12829819 PMCID: PMC161953 DOI: 10.1128/jvi.77.14.7796-7803.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of > or =1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Collapse
Affiliation(s)
- Tracey J Harvey
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, University of Queensland, Brisbane, Queensland, 4029 Australia
| | | | | | | | | | | | | |
Collapse
|
190
|
Yun SI, Kim SY, Rice CM, Lee YM. Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 2003; 77:6450-65. [PMID: 12743302 PMCID: PMC154991 DOI: 10.1128/jvi.77.11.6450-6465.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a common agent of viral encephalitis that causes high mortality and morbidity among children. Molecular genetic studies of JEV are hampered by the lack of a genetically stable full-length infectious JEV cDNA clone. We describe here the development of such a clone. A JEV isolate was fully sequenced, and then its full-length cDNA was cloned into a bacterial artificial chromosome. This was then further engineered so that transcription of the cDNA in vitro would generate synthetic RNAs with authentic 5' and 3' ends. The synthetic RNAs thus produced were highly infectious in susceptible cells (>10(6) PFU/ micro g), and these cells rapidly generated a high titer of synthetic viruses (>5 x 10(6) PFU/ml). The recovered viruses were indistinguishable from the parental virus in terms of plaque morphology, growth kinetics, RNA accumulation, protein expression, and cytopathogenicity. Significantly, the structural and functional integrity of the cDNA was maintained even after 180 generations of growth in Escherichia coli. A single point mutation acting as a genetic marker was introduced into the cDNA and was found in the genome of the recovered virus, indicating that the cDNA can be manipulated. Furthermore, we showed that JEV is an attractive vector for the expression of heterologous genes in a wide variety of cell types. This novel reverse genetics system for JEV will greatly facilitate research into JEV biology. It will also be useful as a heterologous gene expression vector and will aid the development of a vaccine against JEV.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromosomes, Artificial, Bacterial/genetics
- Cloning, Molecular/methods
- Cricetinae
- DNA, Complementary
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/pathogenicity
- Genetic Engineering/methods
- Genetic Vectors
- Green Fluorescent Proteins
- Humans
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
- Viral Plaque Assay
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Internal Medicine, Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | | | | | | |
Collapse
|
191
|
Bredenbeek PJ, Kooi EA, Lindenbach B, Huijkman N, Rice CM, Spaan WJM. A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 2003; 84:1261-1268. [PMID: 12692292 DOI: 10.1099/vir.0.18860-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yellow fever virus (YF) is the prototype member of the Flavivirus genus. Here, we report the successful construction of a full-length infectious cDNA clone of the vaccine strain YF-17D. YF cDNA was cloned into a low-copy-number plasmid backbone and stably maintained in several E. coli strains. Transcribed RNAs had a specific infectivity of 10(5)-10(6) p.f.u. ( micro g RNA)(-1), and the resulting virus exhibited growth kinetics, plaque morphology and proteolytic processing similar to the parental virus in cell culture. This clone was used to analyse the importance of conserved flavivirus RNA sequences and the 3' stem-loop structure in virus replication. The conserved sequences 5'CS and CS1, as well as the 3' stem-loop structure, were found to be essential for virus replication in cell culture, whereas the conserved sequence CS2 and the region containing YF-specific repeated sequences were dispensable. This infectious clone will aid future studies on YF replication and pathogenesis, as well as facilitate the development of YF-17D-based recombinant vaccines.
Collapse
Affiliation(s)
- Peter J Bredenbeek
- Department of Medical Microbiology, Center of Infectious Disease, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Engbert A Kooi
- Department of Medical Microbiology, Center of Infectious Disease, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Brett Lindenbach
- Department of Molecular Microbiology, Washington University Medical School, St Louis, MO, USA
| | - Nicolette Huijkman
- Department of Medical Microbiology, Center of Infectious Disease, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Charles M Rice
- Department of Molecular Microbiology, Washington University Medical School, St Louis, MO, USA
| | - Willy J M Spaan
- Department of Medical Microbiology, Center of Infectious Disease, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
192
|
Abstract
We describe a mutational analysis of the 3' nontranslated RNA (3'NTR) signals required for replication of subgenomic hepatitis C virus (HCV) RNAs. A series of deletion mutants was constructed within the background of an HCV-N replicon that induces the expression of secreted alkaline phosphatase in order to examine the requirements for each of the three domains comprising the 3'NTR, namely, the highly conserved 3' terminal 98-nucleotide (nt) segment (3'X), an upstream poly(U)-poly(UC) [poly(U/UC)] tract, and the variable region (VR) located at the 5' end of the 3'NTR. Each of these domains was found to contribute to efficient replication of the viral RNA in transiently transfected hepatoma cells. Replication was not detected when any of the three putative stem-loop structures within the 3'X region were deleted. Similarly, complete deletion of the poly(U/UC) tract abolished replication. Replacement of a minimum of 50 to 62 nt of poly(U/UC) sequence was required for detectable RNA replication when the native sequence was restored in a stepwise fashion from its 3' end. Lengthier poly(U/UC) sequences, and possibly pure homopolymeric poly(U) tracts, were associated with more efficient RNA amplification. Finally, while multiple deletion mutations were tolerated within VR, each led to a partial loss of replication capacity. The impaired replication capacity of the deletion mutants could not be explained by reduced translational activity or by decreased stability of the RNA, suggesting that each of these mutations may impair recognition of the RNA by the viral replicase during an early step in negative-strand RNA synthesis. The results indicate that the 3'-most 150 nt of the HCV-N genome [the 3'X region and the 3' 52 nt of the poly(U/UC) tract] contain RNA signals that are essential for replication, while the remainder of the 3'NTR plays a facilitating role in replication but is not absolutely required.
Collapse
Affiliation(s)
- MinKyung Yi
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | |
Collapse
|
193
|
Corver J, Lenches E, Smith K, Robison RA, Sando T, Strauss EG, Strauss JH. Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 2003; 77:2265-70. [PMID: 12525663 PMCID: PMC140906 DOI: 10.1128/jvi.77.3.2265-2270.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present fine mapping of a cis-acting nucleotide sequence found in the 5' region of yellow fever virus genomic RNA that is required for RNA replication. There is evidence that this sequence interacts with a complementary sequence in the 3' region of the genome to cyclize the RNA. Replicons were constructed that had various deletions in the 5' region encoding the capsid protein and were tested for their ability to replicate. We found that a sequence of 18 nucleotides (residues 146 to 163 of the yellow fever virus genome, which encode amino acids 9 to 14 of the capsid protein) is essential for replication of the yellow fever virus replicon and that a slightly longer sequence of 21 nucleotides (residues 146 to 166, encoding amino acids 9 to 15) is required for full replication. This region is larger than the core sequence of 8 nucleotides conserved among all mosquito-borne flaviviruses and contains instead the entire sequence previously proposed to be involved in cyclization of yellow fever virus RNA.
Collapse
Affiliation(s)
- Jeroen Corver
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
The Kunjin replicon was used to express a polytope that consisted of seven hepatitis C virus cytotoxic T lymphocyte epitopes and one influenza cytotoxic T lymphocyte epitope for vaccination studies. The self-replicating nature of, and expression from, the ribonucleic acid was confirmed in vitro. Initial vaccinations with one dose of Kun-Poly ribonucleic acid showed that an influenza-specific cytotoxic T lymphocyte response was elicited more efficiently by intradermal inoculation compared with intramuscular delivery. Two micrograms of ribonucleic acid delivered in the ear pinnae of mice was sufficient to elicit a detectable cytotoxic T lymphocyte response 10 days post-vaccination. Further vaccination studies showed that four of the seven hepatitis C virus cytotoxic T lymphocyte epitopes were able to elicit weak cytotoxic T lymphocyte responses whereas the influenza epitope was able to elicit strong, specific cytotoxic T lymphocyte responses following three doses of Kun-Poly ribonucleic acid. These studies vindicate the use of the Kunjin replicon as a vector to deliver encoded proteins for the development of cell-mediated immune responses.
Collapse
Affiliation(s)
- Scott M Ward
- Clinical Medical Virology Centre, The University of Queensland, St Lucia and Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Queensland, Australia
| | | | | | | |
Collapse
|
195
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally also infects humans and horses. In recent years, the frequency of WNV outbreaks in humans has increased, and these outbreaks have been associated with a higher incidence of severe disease. In 1999, the geographical distribution of WNV expanded to the Western hemisphere. WNV has a positive strand RNA genome of about 11 kb that encodes a single polyprotein. WNV replicates in the cytoplasm of infected cells. Although there are still many questions to be answered, a large body of data on the molecular biology of WNV and other flaviviruses has already been obtained. Aspects of virion structure, the viral replication cycle, viral protein function, genome structure, conserved viral elements, host factors, virus-host interactions, and vaccines are discussed in this review.
Collapse
Affiliation(s)
- Margo A Brinton
- Department of Biology, Georgia State University, Atlanta 30303, USA.
| |
Collapse
|
196
|
Liu WJ, Sedlak PL, Kondratieva N, Khromykh AA. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 2002; 76:10766-75. [PMID: 12368319 PMCID: PMC136631 DOI: 10.1128/jvi.76.21.10766-10775.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NS1, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.
Collapse
Affiliation(s)
- Wen Jun Liu
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, and Clinical Medical Virology Centre, University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | | | |
Collapse
|
197
|
Bartenschlager R. Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov 2002; 1:911-6. [PMID: 12415250 DOI: 10.1038/nrd942] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of causal therapies depends on the availability of systems to determine the inhibitory capacity of a compound. As viruses are obligate intracellular parasites, the efficacy of an antiviral drug is usually evaluated in a cell-culture system. Unfortunately, the hepatitis C virus, the principal causative agent of acute and chronic liver disease, cannot be propagated efficiently in the laboratory. However, the recent development of a replicon system opens up an encouraging possibility for drug discovery.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, Institute of Hygiene, University of Heidelberg, Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.
| |
Collapse
|
198
|
Westaway EG, Mackenzie JM, Khromykh AA. Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 2002; 267:323-51. [PMID: 12082996 DOI: 10.1007/978-3-642-59403-8_16] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- E G Westaway
- Clinical Medical Virology Centre (University of Queensland), Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Herston, Queensland 4029, Australia
| | | | | |
Collapse
|
199
|
Friebe P, Bartenschlager R. Genetic analysis of sequences in the 3' nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 2002; 76:5326-38. [PMID: 11991961 PMCID: PMC137049 DOI: 10.1128/jvi.76.11.5326-5338.2002] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The genome of the hepatitis C virus (HCV) is a plus-strand RNA molecule that carries a single long open reading frame. It is flanked at either end by highly conserved nontranslated regions (NTRs) that mediate crucial steps in the viral life cycle. The 3' NTR of HCV has a tripartite structure composed of an about 40-nucleotide variable region, a poly(U/UC) tract that has a heterogeneous length, and a highly conserved 98-nucleotide 3'-terminal sequence designated the X tail or 3'X. Conflicting data as to the role the sequences in the 3' NTR play in RNA replication have been reported. By using the HCV replicon system, which is based on the self-replication of subgenomic HCV RNAs in human hepatoma cell line Huh-7, we mapped in this study the sequences in the 3' NTR required for RNA replication. We found that a mutant with a complete deletion of the variable region is viable but that replication is reduced significantly. Only replicons in which the poly(U/UC) tract was replaced by a homouridine stretch of at least 26 nucleotides were able to replicate, whereas RNAs with homopolymeric guanine, adenine, or cytosine sequences were inactive. Deletions of individual or all stem-loop structures in 3'X were not tolerated, demonstrating that this region is most crucial for efficient RNA replication. Finally, we found that none of these deletions or substitutions within the 3' NTR affected RNA stability or translation, demonstrating that the primary effect of the mutations was on RNA replication. These data represent the first detailed mapping of sequences in the 3' NTR assumed to act as a promoter for initiation of minus-strand RNA synthesis.
Collapse
Affiliation(s)
- Peter Friebe
- Institute for Virology, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | |
Collapse
|
200
|
Shi PY, Tilgner M, Lo MK. Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 2002; 296:219-33. [PMID: 12069521 DOI: 10.1006/viro.2002.1453] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The lineage I strain of West Nile virus (WNV) frequently causes human epidemics, including the recent outbreak in North America (Lanciotti et al., 1999, Science 286:2333-2337). As an initial step in studying the replication and pathogenesis of WNV, we constructed several cDNA clones of a WNV replicon derived from an epidemic strain (lineage I) isolated from the epicenter of New York City in the year 2000. Replicon RNAs were in vitro transcribed from cDNA plasmids and transfected into BHK-21 cells. RNA replication in transfected cells was monitored by immunofluorescence analysis (IFA) and 5' nuclease real-time RT-PCR (TaqMan). The replicon RNAs contained large in-frame deletions (greater than 92%) of the C-prM-E structural region yet still replicated efficiently in BHK-21 cells. 5' nuclease real-time RT-PCR showed that a great excess of plus-sense replicon RNA over the minus-sense RNA was synthesized in transfected cells. Replication efficiency decreased upon insertion of a green fluorescent protein (GFP) reporter gene driven by an internal ribosomal entry site (IRES) in the upstream end of the 3' untranslated region of the replicon. Strong GFP expression was detected in cells transfected with a replicon containing IRES-GFP positioned in the plus-sense orientation. IFA showed that GFP and viral proteins were exclusively coexpressed in transfected cells. In contrast, no GFP fluorescence was observed in cells transfected with a replicon containing IRES-GFP positioned in the minus-sense orientation, despite high levels of synthesis of viral proteins and RNA in the cells. Substitution of the GFP gene in the plus-sense GFP replicon with the neomycin phosphotransferase gene allowed selection of geneticin-resistant cells in which WNV replicons persistently replicated without apparent cytopathic effect. These results suggest that WNV replicons may serve as a noncytopathic RNA virus expression system and should provide a valuable tool to study WNV replication.
Collapse
Affiliation(s)
- Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | |
Collapse
|