151
|
Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A 2005; 102:14338-43. [PMID: 16176987 PMCID: PMC1242296 DOI: 10.1073/pnas.0504070102] [Citation(s) in RCA: 605] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons that have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions and can explain why highly expressed proteins evolve slowly across the tree of life.
Collapse
Affiliation(s)
- D Allan Drummond
- Program in Computation and Neural Systems and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125-4100, USA.
| | | | | | | | | |
Collapse
|
152
|
Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math Biol 2005; 51:431-57. [PMID: 16012800 DOI: 10.1007/s00285-005-0332-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 03/17/2005] [Indexed: 12/14/2022]
Abstract
By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z(64), +) of the integer module 64. On the Z(64)-algebra of the set of 64(N) codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z(64))(N)-->(Z(64))(N). Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z(64)-algebra will help us explain the quantitative relationships between genes.
Collapse
Affiliation(s)
- R Sanchez
- Research Institute of Tropical Roots, Tuber Crops and Banana (INIVIT), Biotechnology group, Santo Domingo, Villa Clara, Cuba.
| | | | | |
Collapse
|
153
|
Kim SY, Craig EA. Broad sensitivity of Saccharomyces cerevisiae lacking ribosome-associated chaperone ssb or zuo1 to cations, including aminoglycosides. EUKARYOTIC CELL 2005; 4:82-9. [PMID: 15643063 PMCID: PMC544168 DOI: 10.1128/ec.4.1.82-89.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hsp70 Ssb and J protein Zuo1 of Saccharomyces cerevisiae are ribosome-associated molecular chaperones, proposed to be involved in the folding of newly synthesized polypeptide chains. Cells lacking Ssb and/or Zuo1 have been reported to be hypersensitive to cationic aminoglycoside protein synthesis inhibitors that affect translational fidelity and to NaCl. Since we found that Deltassb1 Deltassb2 (Deltassb1,2), Deltazuo1, and wild-type cells have very similar levels of translational misreading in the absence of aminoglycosides, we asked whether the sensitivities to aminoglycosides and NaCl represent a general increase in sensitivity to cations. We found that Deltassb1,2 and Deltazuo1 cells are hypersensitive to a wide range of cations. This broad sensitivity is similar to that of cells having lowered activity of major plasma membrane transporters, such as the major K+ transporters Trk1 and Trk2 or their regulators Hal4 and Hal5. Like Deltahal4,5 cells, Deltassb1,2 and Deltazuo1 cells have increased intracellular levels of Na+ and Li+ upon challenge with higher-than-normal levels of these cations, due to an increased rate of influx. In the presence of aminoglycosides, Deltassb1,2, Deltazuo1, and Deltahal 4,5 cells have similarly increased levels of translational misreading. We conclude that, in vivo, the major cause of the aminoglycoside sensitivity of cells lacking ribosome-associated molecular chaperones is a general increase in cation influx, perhaps due to altered maturation of membrane proteins.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
154
|
Schneider EL, King DS, Marletta MA. Amino acid substitution and modification resulting from Escherichia coli expression of recombinant Plasmodium falciparum histidine-rich protein II. Biochemistry 2005; 44:987-95. [PMID: 15654755 DOI: 10.1021/bi048571h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histidine-rich protein II (HRP II) from Plasmodium falciparum is an unusual protein composed of 40% alanine, 36% histidine, and 11% aspartate residues. Expression of HRP II in Escherichia coli results in the isolation of a heterogeneous protein. Mass spectrometry reveals a reduction in mass by multiples of 9 Da from the expected molecular mass that can be attributed to the substitution of glutamine for some histidine residues in the sequence. The extent of the glutamine for histidine substitution can be reduced by slowing the expression rate. Mass spectral analysis of HRP II also revealed alpha-amino methylation of the N-terminal alanine residue of HRP II.
Collapse
Affiliation(s)
- Eric L Schneider
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, USA
| | | | | |
Collapse
|
155
|
Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, Freitas A, Oliveira JL, Santos MAS. Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol 2005; 6:R28. [PMID: 15774029 PMCID: PMC1088947 DOI: 10.1186/gb-2005-6-3-r28] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/25/2004] [Accepted: 01/17/2005] [Indexed: 11/10/2022] Open
Abstract
We have developed a system for comparative codon context analysis of open reading frames in whole genomes, providing insights into the rules that govern the evolution of codon-pair context. Codon context is an important feature of gene primary structure that modulates mRNA decoding accuracy. We have developed an analytical software package and a graphical interface for comparative codon context analysis of all the open reading frames in a genome (the ORFeome). Using the complete ORFeome sequences of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Escherichia coli, we show that this methodology permits large-scale codon context comparisons and provides new insight on the rules that govern the evolution of codon-pair context.
Collapse
Affiliation(s)
- Gabriela Moura
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Pinheiro
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Raquel Silva
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Miranda
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Afreixo
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gaspar Dias
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Freitas
- Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José L Oliveira
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel AS Santos
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
156
|
O'Connor M, Gregory ST, Dahlberg AE. Multiple defects in translation associated with altered ribosomal protein L4. Nucleic Acids Res 2004; 32:5750-6. [PMID: 15509870 PMCID: PMC528798 DOI: 10.1093/nar/gkh913] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.
Collapse
Affiliation(s)
- Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
157
|
Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 2004; 11:1008-14. [PMID: 15448679 DOI: 10.1038/nsmb831] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 08/10/2004] [Indexed: 11/09/2022]
Abstract
Using single-molecule methods we observed the stepwise movement of aminoacyl-tRNA (aa-tRNA) into the ribosome during selection and kinetic proofreading using single-molecule fluorescence resonance energy transfer (smFRET). Intermediate states in the pathway of tRNA delivery were observed using antibiotics and nonhydrolyzable GTP analogs. We identified three unambiguous FRET states corresponding to initial codon recognition, GTPase-activated and fully accommodated states. The antibiotic tetracycline blocks progression of aa-tRNA from the initial codon recognition state, whereas cleavage of the sarcin-ricin loop impedes progression from the GTPase-activated state. Our data support a model in which ribosomal recognition of correct codon-anticodon pairs drives rotational movement of the incoming complex of EF-Tu-GTP-aa-tRNA toward peptidyl-tRNA during selection on the ribosome. We propose a mechanistic model of initial selection and proofreading.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physics and Applied Physics, Stanford University, Stanford, California 94305-4060, USA
| | | | | | | | | |
Collapse
|
158
|
Subbarayan PR, Sarkar M. A stop codon-dependent internal secondary translation initiation region in Escherichia coli rpoS. RNA (NEW YORK, N.Y.) 2004; 10:1359-1365. [PMID: 15317973 PMCID: PMC1370623 DOI: 10.1261/rna.7500604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/22/2004] [Indexed: 05/24/2023]
Abstract
Sigma S (sigmaS) encoded by rpoS is a stationary phase-specific sigma subunit of the Escherichia coli RNA polymerase holoenzyme. In many E. coli strains, rpoS has an amber stop as codon 33 (rpoSAm), resulting in a 32-amino-acid-long peptide. Nevertheless, suppressor-free rpoSAm strains have functional sigmaS. This led us to hypothesize the presence of an intracistronic secondary translational initiation region (STIR) in the E. coli rpoS gene. Here, we demonstrate that the STIR is functional and is controlled by the upstream amber stop codon 33. Removal of the primary translational initiation region did not abolish translation from STIR, ruling out translational coupling. Importantly, the functional STIR conferred survival advantage. Taken together, our results reveal a hitherto unknown physiologically significant post-transcriptional process in E. coli rpoSAm strains.
Collapse
Affiliation(s)
- Pochi Ramalingam Subbarayan
- Department of Medicine (D8-4), University of Miami School of Medicine, 1550 NW 10th Avenue, Fox 431A, FL 33136, USA.
| | | |
Collapse
|
159
|
Duan J, Antezana MA. Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. J Mol Evol 2004; 57:694-701. [PMID: 14745538 DOI: 10.1007/s00239-003-2519-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 06/30/2003] [Indexed: 11/29/2022]
Abstract
The usage of synonymous codons (SCs) in mammalian genes is highly correlated with local base composition and is therefore thought to be determined by mutation pressure. The usage is nonetheless structured. For instance, mammals share with Saccharomyces and Drosophila most preferences for the C-ending over the G-ending codon (or vice versa) within each fourfold-degenerate SC family and the fact that their SCs are placed along coding regions in ways that minimize the number of T|A and C|G dinucleotides ("|" being the codon boundary). TA and CG underrepresentations are observed everywhere in the mammalian genome affecting the SC usage, the amino acid composition of proteins, and the primary structure of introns and noncoding DNA. While the rarity of CG is ascribed to the high mutability of this dinucleotide, the rarity of TA in coding regions is considered adaptive because UA dinucleotides are cleaved by endoribonucleases. Here we present in vivo experimental evidence indicating that the number of T|A and/or C|G dinucleotides of a human gene can affect strongly the expression level and degradation of its mRNA. Our results are consistent with indirect evidence produced by other workers and with the detailed work that has been devoted to characterize UA cleavage in vitro and in vivo. We conclude that SC choice can influence strongly mRNA function and gene expression through effects not directly related to the codon-anticodon interaction. These effects should constrain heavily the nucleotide motif composition of the most abundant mRNAs in the transcriptome, in particular, their SC usage, a usage that must be reflected by cellular tRNA concentrations and thus defines for all other genes which SCs are translated fastest and most accurately. Furthermore, the need to avoid such effects genome-wide appears serious enough to have favored the evolution of biases in context-dependent mutation that reduce the occurrence of intrinsically unfavorable motifs, and/or, when possible, to have induced the molecular machinery mediating such effects to rely opportunistically on already existing motif rarities and abundances. This may explain why nucleotide motif preferences are very similar in transcribed and nontranscribed mammalian DNA even though the preferences appear to be adaptive only in transcribed DNA.
Collapse
Affiliation(s)
- Jubao Duan
- Department of Psychiatry, The University of Chicago, 924 East 57th Street, R-004, Chicago, IL 60637, USA
| | | |
Collapse
|
160
|
Grompone G, Ehrlich D, Michel B. Cells defective for replication restart undergo replication fork reversal. EMBO Rep 2004; 5:607-12. [PMID: 15167889 PMCID: PMC1299077 DOI: 10.1038/sj.embor.7400167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/04/2004] [Accepted: 03/31/2004] [Indexed: 11/08/2022] Open
Abstract
We have studied the fate of blocked replication forks with the use of the Escherichia coli priA mutant, in which spontaneously arrested replication forks persist owing to the lack of the major replication restart pathway. Such blocked forks undergo a specific reaction named replication fork reversal, in which newly synthesized strands anneal to form a DNA double-strand end adjacent to a four-way junction. Indeed, (i) priA recB mutant chromosomes are linearized by a reaction that requires the presence of the Holliday junction resolvase RuvABC, and (ii) RuvABC-dependent linearization is prevented by the presence of RecBC. Replication fork reversal in a priA mutant occurs independently of the recombination proteins RecA and RecR. recBC inactivation does not affect priA mutant viability but prevents priA chronic SOS induction. We propose that, in the absence of PriA, RecBC action at reversed forks does not allow replication restart, which leads to the accumulation of SOS-inducing RecA filaments. Our results suggest that types of replication blockage that cause replication fork reversal occur spontaneously.
Collapse
Affiliation(s)
- Gianfranco Grompone
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
- Present address: Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Dusko Ehrlich
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
- Tel: +33 1 34 65 25 14; Fax: +33 1 34 65 25 21; E-mail:
| |
Collapse
|
161
|
Cochella L, Green R. Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. Proc Natl Acad Sci U S A 2004; 101:3786-91. [PMID: 15001709 PMCID: PMC374322 DOI: 10.1073/pnas.0307596101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic, biochemical, and structural data support an essential role for the ribosomal RNA in all steps of the translation process. Although in vivo genetic selection techniques have been used to identify mutations in the rRNAs that result in various miscoding phenotypes and resistance to known ribosome-targeted antibiotics, these are limited because the resulting mutant ribosomes must be only marginally disabled if they are able to support growth of the cell. Furthermore, in vivo, it is not possible to control the environment in precise ways that might allow for the isolation of certain types of rRNA variants. To overcome these limitations, we have developed an in vitro selection system for the isolation of functionally competent ribosomal particles from populations containing variant rRNAs. Here, we describe this system and present an example of its application to the selection of antibiotic resistance mutations. From a pool of 4,096 23S rRNA variants, a double mutant (A2058U/A2062G) was isolated after iteration of the selection process. This mutant was highly resistant to clindamycin in in vitro translation reactions and yet was not viable in Escherichia coli. These data establish that this system has the potential to identify mutations in the rRNA not readily accessed by comparable in vivo systems, thus allowing for more exhaustive ribosomal genetic screens.
Collapse
Affiliation(s)
- Luisa Cochella
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
162
|
Abstract
Since discovering the pattern by which amino acids are assigned to codons within the standard genetic code, investigators have explored the idea that natural selection placed biochemically similar amino acids near to one another in coding space so as to minimize the impact of mutations and/or mistranslations. The analytical evidence to support this theory has grown in sophistication and strength over the years, and counterclaims questioning its plausibility and quantitative support have yet to transcend some significant weaknesses in their approach. These weaknesses are illustrated here by means of a simple simulation model for adaptive genetic code evolution. There remain ill explored facets of the 'error minimizing' code hypothesis, however, including the mechanism and pathway by which an adaptive pattern of codon assignments emerged, the extent to which natural selection created synonym redundancy, its role in shaping the amino acid and nucleotide languages, and even the correct interpretation of the adaptive codon assignment pattern: these represent fertile areas for future research.
Collapse
Affiliation(s)
- Stephen J Freeland
- Department of Biology, University of Maryland, Baltimore County, Catonsville, MD, USA.
| | | | | |
Collapse
|
163
|
Frankel A, Roberts RW. In vitro selection for sense codon suppression. RNA (NEW YORK, N.Y.) 2003; 9:780-786. [PMID: 12810911 PMCID: PMC1370444 DOI: 10.1261/rna.5350303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 03/28/2003] [Indexed: 05/24/2023]
Abstract
The universal genetic code links the 20 naturally occurring amino acids to the 61 sense codons. Previously, the UAG amber stop codon (a nonsense codon) has been used as a blank in the code to insert natural and unnatural amino acids via nonsense suppression. We have developed a selection methodology to investigate whether the unnatural amino acid biocytin could be incorporated into an mRNA display library at sense codons. In these experiments we probed a single randomized NNN codon with a library of 16 orthogonal, biocytin-acylated tRNAs. In vitro selection for efficient incorporation of the unnatural amino acid resulted in templates containing the GUA codon at the randomized position. This sense suppression occurs via Watson-Crick pairing with similar efficiency to UAG-mediated nonsense suppression. These experiments suggest that sense codon suppression is a viable means to expand the chemical and functional diversity of the genetic code.
Collapse
Affiliation(s)
- Adam Frankel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
164
|
McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 2003; 27:365-74. [PMID: 12597898 DOI: 10.1016/s1046-5928(02)00610-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, CGG is a rare arginine codon occurring at a frequency of 0.54% in all E. coli mRNAs or 9.8% when an arginine residue is encoded for. When present in high numbers or in clusters in highly expressed recombinant mRNA, rare codons can cause expression problems compromising product yield and translational fidelity. The coding region for an N-terminally polyhistidine tagged p27 protease domain from Herpes Simplex Virus 2 (HSV-2) contains 11 of these rare arginine codons, with 3 occurring in tandem near the C-terminus of the protein. When expressed in E. coli, the majority of the recombinant material produced had an apparent molecular mass of 31 kDa by SDS-PAGE gels or 3 kDa higher than predicted. Detailed biochemical analysis was performed on chemical and enzymatic digests of the protein and peptide fragments were characterized by Edman and MS/MS sequencing approaches. Two major species were isolated comprising +1 frameshift events at both the second and third CGG codons in the triplet cluster. Translation proceeded in the missense frame to the next termination codon. In addition, significant levels of glutamine misincorporating for arginine were discovered, suggesting second base misreading of CGG as CAG. Coexpression of the argX gene, which encodes the cognate tRNA for CGG codons, largely eliminated both the frameshift and misincorporation events, and increased expression levels of authentic product by up to 7-fold. We conclude that supplementation of the rare arginyl tRNA(CGG) levels by coexpression of the argX gene can largely alleviate the CGG codon bias present in E. coli, allowing for efficient and accurate translation of heterologous gene products.
Collapse
Affiliation(s)
- Dean E McNulty
- Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | |
Collapse
|
165
|
Ardell DH, Sella G. No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos Trans R Soc Lond B Biol Sci 2002; 357:1625-42. [PMID: 12495519 PMCID: PMC1693064 DOI: 10.1098/rstb.2002.1071] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The standard genetic code poses a challenge in understanding the evolution of information processing at a fundamental level of biological organization. Genetic codes are generally coadapted with, or 'frozen' by, the protein-coding genes that they translate, and so cannot easily change by natural selection. Yet the standard code has a significantly non-random pattern that corrects common errors in the transmission of information in protein-coding genes. Because of the freezing effect and for other reasons, this pattern has been proposed not to be due to selection but rather to be incidental to other evolutionary forces or even entirely accidental. We present results from a deterministic population genetic model of code-message coevolution. We explicitly represent the freezing effect of genes on genetic codes and the perturbative effect of changes in genetic codes on genes. We incorporate characteristic patterns of mutation and translational error, namely, transition bias and positional asymmetry, respectively. Repeated selection over small successive changes produces genetic codes that are substantially, but not optimally, error correcting. In particular, our model reproduces the error-correcting patterns of the standard genetic code. Aspects of our model and results may be applicable to the general problem of adaptation to error in other natural information-processing systems.
Collapse
Affiliation(s)
- David H Ardell
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
166
|
Dorazi R, Lingutla JJ, Humayun MZ. Expression of mutant alanine tRNAs increases spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2002; 44:131-41. [PMID: 11967074 DOI: 10.1046/j.1365-2958.2002.02847.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of mutA, an allele of the glycine tRNA gene glyV, can confer a novel mutator phenotype that correlates with its ability to promote Asp-->Gly mistranslation. Both activities are mediated by a single base change within the anticodon such that the mutant tRNA can decode aspartate codons (GAC/U) instead of the normal glycine codons (GCC/U). Here, we investigate whether specific Asp-->Gly mistranslation is required for the unexpected mutator phenotype. To address this question, we created and expressed 18 individual alleles of alaV, the gene encoding an alanine tRNA, in which the alanine anticodon was replaced with those specifying other amino acids such that the mutant (alaVX) tRNAs are expected to potentiate X-->Ala mistranslation, where X is one of the other amino acids. Almost all alaVX alleles proved to be mutators in an assay that measured the frequency of rifampicin-resistant mutants, with one allele (alaVGlu) being a stronger mutator than mutA. The alaVGlu mutator phenotype resembles that of mutA in mutational specificity (predominantly transversions), as well as SOS independence, but in a puzzling twist differs from mutA in that it does not require a functional recA gene. Our results suggest that general mistranslation (as opposed to Asp-->Gly alone) can induce a mutator phenotype. Furthermore, these findings predict that a large number of conditions that increase translational errors, such as genetic defects in the translational apparatus, as well as environmental and physiological stimuli (such as amino acid starvation or exposure to antibiotics) are likely to activate a mutator response. Thus, both genetic and epigenetic mechanisms can accelerate the acquisition of mutations.
Collapse
Affiliation(s)
- Robert Dorazi
- Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
167
|
Shimada N, Suzuki T, Watanabe K. Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase. J Biol Chem 2001; 276:46770-8. [PMID: 11577083 DOI: 10.1074/jbc.m105150200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- N Shimada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
168
|
Subbarayan PR, Deutscher MP. Escherichia coli RNase M is a multiply altered form of RNase I. RNA (NEW YORK, N.Y.) 2001; 7:1702-1707. [PMID: 11780627 PMCID: PMC1370210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNase M, an enzyme previously purified to homogeneity from Escherichia coli, was suggested to be the RNase responsible for mRNA degradation in this bacterium. Although related to the endoribonuclease, RNase I, its distinct properties led to the conclusion that RNase M was a second, low molecular mass, broad specificity endoribonuclease present in E. coli. However, based on sequence analysis, southern hybridization, and enzyme activity, we show that RNase M is, in fact, a multiply altered form of RNase I. In addition to three amino acid substitutions that confer the properties of RNase M on the mutated RNase I, the protein is synthesized from an rna gene that contains a UGA nonsense codon at position 5, apparently as a result of a low level of readthrough. We also suggest that RNase M is just one of several previously described endoribonuclease activities that are actually manifestations of RNase I.
Collapse
Affiliation(s)
- P R Subbarayan
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101-6129, USA
| | | |
Collapse
|
169
|
Ivanov V, Beniaminov A, Mikheyev A, Minyat E. A mechanism for stop codon recognition by the ribosome: a bioinformatic approach. RNA (NEW YORK, N.Y.) 2001; 7:1683-1692. [PMID: 11780625 PMCID: PMC1370208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein synthesis in ribosomes requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. Synthesis is also assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by their anticodons is known. The termination factors are thought to do this. In the large ribosomal RNA, we found two sites that, like tRNAs, contain the anticodon hairpin but with triplets complementary to stop codons. One site is hairpin 69 from domain IV; the other site is hairpin 89, domain V. By analogy, we call them termination tRNAs: Ter-tRNA1 and Ter-tRNA2, respectively, even though they transport no amino acids, and suggest that they directly pair to stop codons. The termination factors only aid in this recognition, making it specific and reliable. A strong argument in favor of our hypothesis comes from vertebrate mitochondria. They are known to acquire two new stop codons, AGA and AGG. In the standard code, these are two out of six arginine codons. We revealed that the corresponding anticodons, UCU and CCU, have evolved in Ter-tRNA1 of these mitochondria.
Collapse
Affiliation(s)
- V Ivanov
- VA Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow.
| | | | | | | |
Collapse
|
170
|
Gilis D, Massar S, Cerf NJ, Rooman M. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2001; 2:RESEARCH0049. [PMID: 11737948 PMCID: PMC60310 DOI: 10.1186/gb-2001-2-11-research0049] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 07/06/2001] [Accepted: 09/28/2001] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The genetic code is known to be efficient in limiting the effect of mistranslation errors. A misread codon often codes for the same amino acid or one with similar biochemical properties, so the structure and function of the coded protein remain relatively unaltered. Previous studies have attempted to address this question quantitatively, by estimating the fraction of randomly generated codes that do better than the genetic code in respect of overall robustness. We extended these results by investigating the role of amino-acid frequencies in the optimality of the genetic code. RESULTS We found that taking the amino-acid frequency into account decreases the fraction of random codes that beat the natural code. This effect is particularly pronounced when more refined measures of the amino-acid substitution cost are used than hydrophobicity. To show this, we devised a new cost function by evaluating in silico the change in folding free energy caused by all possible point mutations in a set of protein structures. With this function, which measures protein stability while being unrelated to the code's structure, we estimated that around two random codes in a billion (109) are fitter than the natural code. When alternative codes are restricted to those that interchange biosynthetically related amino acids, the genetic code appears even more optimal. CONCLUSIONS These results lead us to discuss the role of amino-acid frequencies and other parameters in the genetic code's evolution, in an attempt to propose a tentative picture of primitive life.
Collapse
Affiliation(s)
- D Gilis
- Biomolecular Engineering, Université Libre de Bruxelles, ave F D Roosevelt, 1050 Bruxelles, Belgium.
| | | | | | | |
Collapse
|
171
|
Brégeon D, Colot V, Radman M, Taddei F. Translational misreading: a tRNA modification counteracts a +2 ribosomal frameshift. Genes Dev 2001; 15:2295-306. [PMID: 11544186 PMCID: PMC312767 DOI: 10.1101/gad.207701] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Errors during gene expression from DNA to proteins via transcription and translation may be deleterious for the functional maintenance of cells. In this paper, extensive genetic studies of the misreading of a GA repeat introduced into the lacZ gene of Escherichia coli indicate that in this bacteria, errors occur predominantly by a +2 translational frameshift, which is controlled by a tRNA modification involving the MnmE and GidA proteins. This ribosomal frameshift results from the coincidence of three events: (1) decreased codon-anticodon affinity at the P-site, which is caused by tRNA hypomodification in mnmE(-) and gidA(-) strains; (2) a repetitive mRNA sequence predisposing to slippage; and (3) increased translational pausing attributable to the presence of a rare codon at the A-site. Based on genetic analysis, we propose that GidA and MnmE act in the same pathway of tRNA modification, the absence of which is responsible for the +2 translational frameshift. The difference in the impact of the mutant gene on cell growth, however, indicates that GidA has at least one other function.
Collapse
Affiliation(s)
- D Brégeon
- INSERM EPI9916, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
172
|
Lim VI, Curran JF. Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA (NEW YORK, N.Y.) 2001; 7:942-957. [PMID: 11453067 PMCID: PMC1370147 DOI: 10.1017/s135583820100214x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although the decoding rules have been largely elucidated, the physical-chemical reasons for the "correctness" of codon:anticodon duplexes have never been clear. In this work, on the basis of the available data, we propose that the correct codon:anticodon duplexes are those whose formation and interaction with the ribosomal decoding center are not accompanied by uncompensated losses of hydrogen and ionic bonds. Other factors such as proofreading, base-base stacking and aminoacyl-tRNA concentration contribute to the efficiency and accuracy of aminoacyl-tRNA selection, and certainly these factors are important; but we suggest that analyses of hydrogen and ionic bonding alone provides a robust first-order approximation of decoding accuracy. Thus our model can simplify predictions about decoding accuracy and error. The model can be refined with data, but is already powerful enough to explain all of the available data on decoding accuracy. Here we predict which duplexes should be considered correct, which duplexes are responsible for virtually all misreading, and we suggest an evolutionary scheme that gave rise to the mixed boxes of the genetic code.
Collapse
Affiliation(s)
- V I Lim
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
173
|
Reilly MS, Grogan DW. Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 2001; 183:2943-6. [PMID: 11292816 PMCID: PMC99513 DOI: 10.1128/jb.183.9.2943-2946.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 02/14/2001] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius is so far the only hyperthermophilic archaeon in which genetic recombination can be assayed by conjugation and simple selections. Crosses among spontaneous pyr mutants were able to resolve closely spaced chromosomal mutations, identify deletions and rearrangements, and map mutations to a given deletion interval. Frameshift mutations in pyrE exerted polar effects that depressed orotidine-5'-monophosphate decarboxylase activity (encoded by pyrF), whereas base pair substitutions and an 18-bp deletion had no effect.
Collapse
Affiliation(s)
- M S Reilly
- Department of Biological Sciences, University of Cincinnati, Ohio 54221-0006, USA
| | | |
Collapse
|
174
|
MESH Headings
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Aminobutyrates/metabolism
- Codon/genetics
- Codon/metabolism
- Cysteine/metabolism
- Escherichia coli/genetics
- Genetic Code
- Methanococcus/genetics
- Methyltyrosines/metabolism
- Mutation
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- RNA, Transfer, Val/metabolism
- Suppression, Genetic
- Transformation, Bacterial
- Tyrosine-tRNA Ligase/genetics
- Tyrosine-tRNA Ligase/metabolism
- Valine-tRNA Ligase/metabolism
Collapse
Affiliation(s)
- A Böck
- Universitat, Institut fur Genetik und Mikrobiologie, Munich 19 80638, Germany.
| |
Collapse
|
175
|
Magliery TJ, Anderson J, Schultz PG. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli. J Mol Biol 2001; 307:755-69. [PMID: 11273699 PMCID: PMC7125544 DOI: 10.1006/jmbi.2001.4518] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.
Collapse
MESH Headings
- Amino Acid Sequence
- Ampicillin/pharmacology
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Cephalosporins/metabolism
- Codon/chemistry
- Codon/genetics
- Codon/metabolism
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Frameshift Mutation/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Gene Library
- Genes, Reporter/genetics
- Genetic Code/genetics
- Molecular Sequence Data
- Mutagenesis
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/genetics
- Serine/metabolism
- Substrate Specificity
- Suppression, Genetic/genetics
- beta-Lactamases/biosynthesis
- beta-Lactamases/chemistry
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - J.Christopher Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
- Corresponding author
| |
Collapse
|
176
|
Sørensen MA. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy. J Mol Biol 2001; 307:785-98. [PMID: 11273701 DOI: 10.1006/jmbi.2001.4525] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli strains mutated in the relA gene lack the ability to produce ppGpp during amino acid starvation. One consequence of this deficiency is a tenfold increase in misincorporation at starved codons compared to the wild-type. Previous work had shown that the charging levels of tRNAs were the same in Rel(+) and Rel(-) strains and reduced, at most, two- to fivefold in both strains during starvation. The present reinvestigation of the charging levels of tRNA(2)(Arg), tRNA(1)(Thr), tRNA(1)(Leu) and tRNA(His) during starvation of isogenic Rel(+) and Rel(-) strains showed that starvation reduced charging levels tenfold to 40-fold. This reduction corresponds much better with the decreased rate of protein synthesis during starvation than that reported earlier. The determination of the charging levels of tRNA(2)(Arg) and tRNA(1)(Thr) during starvation were accurate enough to demonstrate that charging levels were at least fivefold lower in the Rel(-) strain compared to the Rel(+) strain. Together with other data from the literature, these new data suggest a simple model in which mis-incorporation increases as the substrate availability decreases and that ppGpp has no direct effect on enhancing translational accuracy at the ribosome.
Collapse
MESH Headings
- Acylation
- Amino Acids/metabolism
- Arginine/metabolism
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Guanosine Tetraphosphate/biosynthesis
- Guanosine Tetraphosphate/deficiency
- Guanosine Tetraphosphate/genetics
- Histidine/metabolism
- Kinetics
- Leucine/metabolism
- Models, Genetic
- Protein Biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, His/genetics
- RNA, Transfer, His/metabolism
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Threonine/metabolism
Collapse
Affiliation(s)
- M A Sørensen
- Department of Molecular Cell Biology, University of Copenhagen, Denmark.
| |
Collapse
|
177
|
Goodsell DS, Olson AJ. Structural symmetry and protein function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:105-53. [PMID: 10940245 DOI: 10.1146/annurev.biophys.29.1.105] [Citation(s) in RCA: 690] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
Collapse
Affiliation(s)
- D S Goodsell
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA. ,
| | | |
Collapse
|
178
|
Abstract
We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in recombinant Escherichia coli. Bacillus mutants carrying mutations in the structural gene (prfB) for release factor 2 markedly enhanced the level of readthrough of UGA-containing Mycoplasma genes.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7758, USA
| | | |
Collapse
|
179
|
Pál C, Hurst LD. The evolution of gene number: are heritable and non-heritable errors equally important? Heredity (Edinb) 2000; 84 ( Pt 4):393-400. [PMID: 10849062 DOI: 10.1046/j.1365-2540.2000.00725.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Is there a limit to the number of genes carried by an organism? Two reasons have been. First, as most mutations are deleterious, for a given per locus mutation rate there must exist an upper limit to the number of genes that is consistent with individual survival. Second, the imprecision of the mechanisms governing gene expression might also restrict genomic complexity. As gene expression errors are probably much more common than mutations, it is the latter that are more likely to impose a limit. However, these errors are not heritable and therefore cannot accumulate in populations. Which of the two sorts of effect are more likely to impose a limit? We address this issue in two ways. First, we ask about the load imposed by each sort of error. We show that the harmful effect of non-heritable failures is higher than that of heritable mutations, if (p) x (delta) > mu, where p is the rate of non-heritable failures, delta measures the harmful effect of these failures and mu is the rate of heritable mutations. Therefore, although the rate of non-heritable errors might be very high, this does not demonstrate that they are more important than mutations as their impact must be discounted by the strength of their effects. Further, we note that both theory and evidence suggest that the most common errors are of the least importance. Second, we discuss the population genetics of a new gene duplication. Previous attempts to make a connection between error rates and limits on gene number are based on group selection arguments. These fail to show a direct limitation on the spread of gene duplications. We note that empirical evidence indicates that duplication per se tends to result in expression errors that may be heritable. We therefore argue that a hybrid model, one evoking heritable expression errors, is likely to be the most realistic.
Collapse
Affiliation(s)
- C Pál
- Department of Plant Taxonomy and Ecology, Loránd Eötvös University, Budapest, Ludovika 2., H-1083, Hungary
| | | |
Collapse
|
180
|
Abstract
The process of gene unscrambling in hypotrichous ciliates represents one of nature's ingenious solutions to the problem of gene assembly. With some essential genes scrambled in as many as 51 pieces, these ciliates rely on sequence and structural cues to rebuild their fragmented genes and genomes. Here we report the complex pattern of scrambling in the DNA polymerase alpha gene of Stylonychia lemnae. The germline (micronuclear) copy of this gene is broken into 48 pieces with 47 dispersed over two loci, with no asymmetry in the placement of coding segments on either strand. Direct repeats present at the boundaries between coding and noncoding sequences provide pointers to help guide assembly of the functional (macronuclear) gene. We investigate the evolution of this complex gene in three hypotrichous species.
Collapse
|
181
|
Landweber LF, Kuo TC, Curtis EA. Evolution and assembly of an extremely scrambled gene. Proc Natl Acad Sci U S A 2000; 97:3298-303. [PMID: 10725348 PMCID: PMC16233 DOI: 10.1073/pnas.97.7.3298] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of gene unscrambling in hypotrichous ciliates represents one of nature's ingenious solutions to the problem of gene assembly. With some essential genes scrambled in as many as 51 pieces, these ciliates rely on sequence and structural cues to rebuild their fragmented genes and genomes. Here we report the complex pattern of scrambling in the DNA polymerase alpha gene of Stylonychia lemnae. The germline (micronuclear) copy of this gene is broken into 48 pieces with 47 dispersed over two loci, with no asymmetry in the placement of coding segments on either strand. Direct repeats present at the boundaries between coding and noncoding sequences provide pointers to help guide assembly of the functional (macronuclear) gene. We investigate the evolution of this complex gene in three hypotrichous species.
Collapse
Affiliation(s)
- L F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
182
|
Abstract
Rpb5-H147R is an AT-GC transition replacing CAC(His) by CGC(Arg) at a conserved and critical position of ABC27 (Rpb5p), one of the five common and essential subunits shared by all three eukaryotic RNA polymerases. This mutation is viable at 25 degrees C, but has a lethal phenotype at 34 degrees C. A search for dosage-dependent suppressors identified five distinct clones that all bear a copy of the tRNA(His)GUG gene. Suppression was also observed with a small genomic insert bearing this tRNA gene and no other coding sequences, under conditions where there is a sevenfold increase in the cellular concentration of tRNA(His)GUG. Overexpressing tRNA(Arg)ICG, which normally decodes the suppressed CGC codon, counteracted suppression. Suppression is codon specific because it was abolished when replacing CGC by its synonymous codons CGA, CGU, or AGA, but was not detectably affected by several nucleotide substitutions modifying the surrounding sequence and is thus largely insensitive to the nucleotide context. It is proposed that overexpressing tRNA(His)GUG extends its decoding properties from CAC(His) to the noncognate CGC(Arg) codon through an illegitimate U x G pairing at the middle base of the anticodon. Accordingly, tRNA(His)GUG would compete with tRNA(Arg)ICG for chain elongation and generate a significant level of misreading errors under normal growth conditions.
Collapse
Affiliation(s)
- F Navarro
- Service de Biochimie & Génétique Moléculaire, Gif sur Yvette, France
| | | |
Collapse
|
183
|
Abstract
Extensive DNA data emerging from genome-sequencing projects have revitalized interest in the mechanisms of molecular evolution. Although the contribution of natural selection at the molecular level has been debated for over 30 years, the relevant data and appropriate statistical methods to address this issue have only begun to emerge. This paper will first present the predominant models of neutral, nearly neutral, and adaptive molecular evolution. Then, a method to identify the role of natural selection in molecular evolution by comparing within- and between-species DNA sequence variation will be presented. Computer simulations show that such methods are powerful for detecting even very weak selection. Examination of DNA variation data within and between Drosophila species suggests that 'silent' sites evolve under a balance between weak selection and genetic drift. Simulated data also show that sequence comparisons are a powerful method to detect adaptive protein evolution, even when selection is weak or affects a small fraction of nucleotide sites. In the Drosophila data examined, positive selection appears to be a predominant force in protein evolution.
Collapse
Affiliation(s)
- H Akashi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence 66045-2201, USA
| |
Collapse
|
184
|
Teng H, Grubmeyer C. Mutagenesis of histidinol dehydrogenase reveals roles for conserved histidine residues. Biochemistry 1999; 38:7363-71. [PMID: 10353848 DOI: 10.1021/bi982758p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dimeric zinc metalloenzyme L-histidinol dehydrogenase (HDH) catalyzes an unusual four-electron oxidation of the amino alcohol histidinol via the histidinaldehyde intermediate to the acid product histidine with the reduction of two molecules of NAD. An essential base, with pKa about 8, is involved in catalysis. Here we report site-directed mutagenesis studies to replace each of the five histidine residues (His-98, His-261, His-326, His-366, and His-418) in Salmonella typhimurium with either asparagine or glutamine. In all cases, the overexpressed enzymes were readily purified and behaved as dimers. Substitution of His-261 and His-326 by asparagine caused about 7000- and 500-fold decreases in kcat, respectively, with little change in KM values. Similar loss of activity was also reported for a H261N mutant Brassica HDH [Nagai, A., and Ohta, D. (1994) J. Biochem. 115, 22-25]. Kinetic isotope effects, pH profiles, substrate rescue, and stopped-flow experiments suggested that His-261 and His-326 are involved in proton transfers during catalysis. Sensitivity to metal ion chelator and decreased affinities for metal ions with substitutions at His-261 and His-418 suggested that these two residues are candidates for zinc ion ligands.
Collapse
Affiliation(s)
- H Teng
- Department of Biochemistry, Fels Institute for Cancer and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
185
|
Abstract
An interplay among experimental studies of protein synthesis, evolutionary theory, and comparisons of DNA sequence data has shed light on the roles of natural selection and genetic drift in 'silent' DNA evolution.
Collapse
Affiliation(s)
- H Akashi
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045-2106, USA.
| | | |
Collapse
|
186
|
Gallant JA, Lindsley D. Ribosomes can slide over and beyond "hungry" codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci U S A 1998; 95:13771-6. [PMID: 9811876 PMCID: PMC24895 DOI: 10.1073/pnas.95.23.13771] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Accepted: 09/09/1998] [Indexed: 11/18/2022] Open
Abstract
In cells subjected to moderate aminoacyl-tRNA limitation, the peptidyl-tRNA-ribosome complex stalled at the "hungry" codon can slide well beyond it on the messenger RNA and resume translation further downstream. This behavior is proved by unequivocal amino acid sequence data, showing a protein that lacks the bypassed sequence encoded between the hungry codon and specific landing sites. The landing sites are codons cognate to the anticodon of the peptidyl-tRNA. The efficiency of this behavior can be as high as 10-20% but declines with the length of the slide. Interposition of "trap" sites (nonproductive landing sites) in the bypassed region reduces the frequency of successful slides, confirming that the ribosome-peptidyl-tRNA complex passes through the untranslated region of the message. This behavior appears to be quite general: it can occur at the two kinds of hungry codons tested, AUA and AAG; the sliding peptidyl-tRNA can be any of three species tested, phenylalanine, tyrosine, or leucine tRNA; the peptidyl component can be either of two very different peptide sequences; and translation can resume at any of the three codons tested.
Collapse
Affiliation(s)
- J A Gallant
- Department of Genetics, University of Washington, Box 357360, Seattle, WA 98195-7360, USA
| | | |
Collapse
|
187
|
Cárcamo J, Ravera MW, Brissette R, Dedova O, Beasley JR, Alam-Moghé A, Wan C, Blume A, Mandecki W. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library. Proc Natl Acad Sci U S A 1998; 95:11146-51. [PMID: 9736704 PMCID: PMC21610 DOI: 10.1073/pnas.95.19.11146] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 07/27/1998] [Indexed: 11/18/2022] Open
Abstract
A library of long peptides displayed on the pIII protein of filamentous phage was used in biopanning experiments against several protein targets. We find that a large percentage of phage clones that bind specifically to a target contain peptide-encoding genes that do not have an ORF. Instead, the reading frame is either interrupted by one or more nonsuppressed stop codons, or a post-transcriptional frameshift is needed to account for the expression of the minor phage coat protein pIII. The percentage of frameshifted clones varies depending on the target. It can be as high as 90% for clones specific for soluble forms of certain cytokine receptors. Conversely, biopanning against four mAbs did not yield any frameshifted clones. Our studies focused on one clone that binds specifically to rat growth hormone binding protein (GHBP) yet does not have an ORF. A secondary peptide library containing random mutations of this sequence was constructed and panned against GHBP to optimize and correct the reading frame. In the last round (round two) of panning with this library, none of the phage clones that bound to GHBP had an ORF. However, careful analysis of these clones allowed us to design a synthetic peptide capable of binding to GHBP. The results of this study indicate that ORFs are not required to obtain gene expression of the minor coat protein of filamentous phage and suggest that some ORF- clones may have a selective advantage over the clones having ORFs.
Collapse
Affiliation(s)
- J Cárcamo
- DGI BioTechnologies, 40 Talmadge Road, P.O. Box 424, Edison, NJ 08818, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Stansfield I, Jones KM, Herbert P, Lewendon A, Shaw WV, Tuite MF. Missense translation errors in Saccharomyces cerevisiae. J Mol Biol 1998; 282:13-24. [PMID: 9733638 DOI: 10.1006/jmbi.1998.1976] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the development of a novel plasmid-based assay for measuring the in vivo frequency of misincorporation of amino acids into polypeptide chains in the yeast Saccharomyces cerevisiae. The assay is based upon the measurement of the catalytic activity of an active site mutant of type III chloramphenicol acetyl transferase (CATIII) expressed in S. cerevisiae. A His195(CAC)-->Tyr195(UAC) mutant of CATIII is completely inactive, but catalytic activity can be restored by misincorporation of histidine at the mutant UAC codon. The average error frequency of misincorporation of histidine at this tyrosine UAC codon in wild-type yeast strains was measured as 0. 5x10(-5) and this frequency was increased some 50-fold by growth in the presence of paromomycin, a known translational-error-inducing antibiotic. A detectable frequency of misincorporation of histidine at a mutant Ala195 GCU codon was also measured as 2x10(-5), but in contrast to the Tyr195-->His195 misincorporation event, the frequency of histidine misincorporation at Ala195 GCU was not increased by paromomycin, inferring that this error did not result from miscognate codon-anticodon interaction. The His195 to Tyr195 missense error assay was used to demonstrate increased frequencies of missense error at codon 195 in SUP44 and SUP46 mutants. These two mutants have previously been shown to exhibit a translation termination error phenotype and the sup44+ and sup46+ genes encode the yeast ribosomal proteins S4 and S9, respectively. These data represent the first accurate in vivo measurement of a specific mistranslation event in a eukaryotic cell and directly confirm that the eukaryotic ribosome plays an important role in controlling missense errors arising from non-cognate codon-anticodon interactions.
Collapse
Affiliation(s)
- I Stansfield
- Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | |
Collapse
|
189
|
Karow ML, Rogers EJ, Lovett PS, Piggot PJ. Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J Bacteriol 1998; 180:4166-70. [PMID: 9696765 PMCID: PMC107413 DOI: 10.1128/jb.180.16.4166-4170.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 06/13/1998] [Indexed: 11/20/2022] Open
Abstract
An unexpectedly high proportion of TGA nonsense mutations was obtained in a collection of chemically induced mutations in the spoIIR locus of Bacillus subtilis. Of 11 different mutations obtained, TGA mutations were found in four codons, whereas only three codons yielded missense mutations. Six suppressors of the TGA mutations were isolated, and five of the suppressing mutations were mapped to the prfB gene encoding protein release factor 2. These are the first mutations shown to map to the B. subtilis prfB locus. The sequence of the prfB gene was completed, and two revisions of the published sequence were made. The five prfB mutations also resulted in suppression of the catA86-TGA mutation to between 19 and 54% of the expression of catA86(+), compared to the readthrough level of 6% in the prfB+ strain. N-terminal sequencing of suppressed catA86-TGA-specified protein demonstrated that the amino acid inserted at UGA because of the prfB1 mutations was tryptophan.
Collapse
Affiliation(s)
- M L Karow
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
190
|
Burke SA, Lo SL, Krzycki JA. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J Bacteriol 1998; 180:3432-40. [PMID: 9642198 PMCID: PMC107300 DOI: 10.1128/jb.180.13.3432-3440.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.
Collapse
Affiliation(s)
- S A Burke
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
191
|
Weickert MJ, Apostol I. High-fidelity translation of recombinant human hemoglobin in Escherichia coli. Appl Environ Microbiol 1998; 64:1589-93. [PMID: 9572921 PMCID: PMC106200 DOI: 10.1128/aem.64.5.1589-1593.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coexpression of di-alpha-globin and beta-globin in Escherichia coli in the presence of exogenous heme yielded high levels of soluble, functional recombinant human hemoglobin (rHb1.1). High-level expression of rHb1.1 provides a good model for measuring mistranslation in heterologous proteins. rHb1.1 does not contain isoleucine; therefore, any isoleucine present could be attributed to mistranslation, most likely mistranslation of one or more of the 200 codons that differ from an isoleucine codon by 1 bp. Sensitive amino acid analysis of highly purified rHb1.1 typically revealed < or = 0.2 mol of isoleucine per mol of hemoglobin. This corresponds to a translation error rate of < or = 0.001, which is not different from typical translation error rates found for E. coli proteins. Two different expression systems that resulted in accumulation of globin proteins to levels equivalent to approximately 20% of the level of E. coli soluble proteins also resulted in equivalent translational fidelity.
Collapse
|
192
|
Muramoto K, Makishima S, Aizawa SI, Macnab RM. Effect of cellular level of FliK on flagellar hook and filament assembly in Salmonella typhimurium. J Mol Biol 1998; 277:871-82. [PMID: 9545378 DOI: 10.1006/jmbi.1998.1659] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frameshift mutations in the fliK gene of Salmonella result in abnormal elongation of the hook and the failure to assemble filament (polyhook phenotype). Second-site suppressor mutations restore filament assembly, but the cells often remain defective in hook-length control (polyhook-filament phenotype). Where the suppressor mutations are intragenic, the second mutation restores the original frame, generating a region of frameshifted sequence, but restoring the natural C terminus. Some of these frameshifted sequences contain a UGA (opal) termination codon. These cells have few flagella and swarm poorly. We suspected that readthrough of UGA by tRNATrp might be the reason for the partial function. When the UGA codon was changed to the Trp codon UGG, flagellar assembly and function were restored to wild-type levels. Conversely, underexpression of the wild-type fliK gene, achieved by changing the sole Trp codon in the sequence (Trp271) to UGA, decreased both the number of flagella and the ability to swarm. These results validate the readthrough hypothesis and indicate that low levels of FliK sustain some degree of flagellation and motility. At low levels of FliK, most flagella had polyhooks. With increasing amounts, the morphology progressively changed to polyhook-filament, and eventually to wild-type hook-filament. When FliK was overproduced, the hook length was slightly shorter (46(+/-7) nm) than that of the wild-type strain (55(+/-9) nm). FliK levels were measured by immunoblotting. Wild-type levels were about 40 to 80 molecules/cell. FliK synthesized by UGA readthrough could be detected when overproduced from plasmid fliK-W271opal, and the levels indicated a probability of readthrough of 0.002 to 0.01. This value was used to estimate the cellular level of underexpressed FliK, which could partly restore function to a fliK mutant, at about 0.07 to 0.8 molecule/cell. These results suggest that FliK does not form a large structure in the cytoplasm and may function as a regulatory protein for protein export. A model for hook-length control is presented that involves feedback from the assembly point to the export apparatus.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cloning, Molecular
- Codon, Terminator/genetics
- Flagella/metabolism
- Flagella/ultrastructure
- Frameshift Mutation
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Models, Biological
- Mutagenesis, Site-Directed
- Phenotype
- RNA, Bacterial/metabolism
- RNA, Transfer, Trp/metabolism
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/metabolism
- Signal Transduction
- Suppression, Genetic
Collapse
Affiliation(s)
- K Muramoto
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
193
|
Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett 1998; 421:237-42. [PMID: 9468314 DOI: 10.1016/s0014-5793(97)01570-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonsense codon readthrough and changed translational reading frame were measured in different growth phases in E. coli. The strains used carry plasmid constructs with a translation assay reporter gene. This reporter gene contains an internal stop codon or a run of U-residues. Termination or frameshifting give rise to stable proteins that can be physically quantified on gels along with the complete protein products. Readthrough of the stop codon UGA by a nearcognate tRNA is several fold higher in active growth than in late exponential phase. In early exponential phase, about 7% of -1 frameshift at a U9 slippery sequence is detectable; upon entry to stationary phase this frameshifting increases to about 40% followed by a decrease in stationary phase. A similar increase is observed in the case of +1 reading frameshift at the U9 sequence, which increases from 13% in early exponential growth phase up to 38% at the beginning of stationary phase followed by a decrease. Thus, the levels of both stop codon readthrough and frameshifting are growth phase dependent, though not in an identical fashion.
Collapse
Affiliation(s)
- A M Wenthzel
- Department of Microbiology, Stockholm University, Sweden
| | | | | |
Collapse
|
194
|
Visick JE, Clarke S. RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol 1997; 179:4158-63. [PMID: 9209028 PMCID: PMC179234 DOI: 10.1128/jb.179.13.4158-4163.1997] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A rapid spectrophotometric assay to determine the activities of HPI and HPII catalases in Escherichia coli extracts has been developed. This assay is based upon the differential heat stabilities of the two enzymes and offers significant advantages over previous methods for quantitation of their activities. Measurement of catalase activities in extracts of various mutant strains confirmed the ability of this method to accurately distinguish the two activities. Contrary to previously published results, HPI catalase activity was observed to increase at stationary phase in strains lacking the stationary-phase sigma factor sigma(s) (RpoS). This increase was independent of OxyR and also occurred in a strain lacking the HPII structural gene, katE. These results suggest a potential novel pathway for HPI induction in response to increased oxidative stress in the absence of HPII. Measurement of HPII activity in strains carrying mutations in pcm (encoding the L-isoaspartyl protein methyltransferase) and surE led to the finding that these strains also have an amber mutation in rpoS; sequencing demonstrated the presence of this mutation in several commonly used laboratory strains of E. coli, including AB1157, W1485, and JC7623.
Collapse
Affiliation(s)
- J E Visick
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
195
|
|
196
|
Lim VI. Analysis of interactions between the codon-anticodon duplexes within the ribosome: their role in translation. J Mol Biol 1997; 266:877-90. [PMID: 9086267 DOI: 10.1006/jmbi.1996.0802] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Computer graphics simulation of interactions between the codon-anticodon duplexes formed by normal elongator tRNAs at the ribosomal A, P and E-sites (the AP and PE interduplex interactions) was made. This demonstrated that only the correct duplexes at the A-site are compatible with the AP interduplex interaction. The selection of synonymous codons and anticodon wobble bases, together with the AP interduplex interaction, prevents frameshifting. In the absence of this interaction the efficiency of the selection falls off sharply. This suggests that the AP interduplex interaction should be retained during translocation and in the post-translocation state, i.e. the PE interduplex interaction that is identical with that of AP should exist to avoid frameshifting. In such a model the P-site duplex provides an indirect linkage between the A and E-site duplexes. The indirect linkage prohibits the simultaneous existence of the A and E-site duplexes. The wobble pairs of the P and E-site duplexes can affect the rate of the A-site occupation via the AP interduplex interaction and the AE interduplex indirect linkage. It is demonstrated that frameshifting can occur from the AP or PE codon-anticodon complex destabilization caused, for example, by small mobility of the wobble pairs, misreading of the codon, unmodified adenine and guanine at tRNA positions 34 (wobble) and 37, respectively. The results obtained can be subjected to direct experimental tests.
Collapse
Affiliation(s)
- V I Lim
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| |
Collapse
|
197
|
Abstract
The specificity parameters counteracting the heterologous expression in Escherichia coli of the Desulfomicrobium baculatum gene (hydV) coding for the large subunit of the periplasmic hydrogenase which is a selenoprotein have been studied. hydV'-'lacZ fusions were constructed, and it was shown that they do not direct the incorporation of selenocysteine in E. coli. Rather, the UGA codon is efficiently suppressed by some other aminoacyl-tRNA in an E. coli strain possessing a ribosomal ambiguity mutation. The suppression is decreased by the strA1 allele, indicating that the hydV selenocysteine UGA codon has the properties of a "normal" and suppressible nonsense codon. The SelB protein from D. baculatum was purified; in gel shift experiments, D. baculatum SelB displayed a lower affinity for the E. coli fdhF selenoprotein mRNA than E. coli SelB did and vice versa. Coexpression of the hydV'-'lacZ fusion and of the selB and tRNA(Sec) genes from D. baculatum, however, did not lead to selenocysteine insertion into the protein, although the formation of the quaternary complex between SelB, selenocysteyl-tRNA(Sec), and the hydV mRNA recognition sequence took place. The results demonstrate (i) that the selenocysteine-specific UGA codon is readily suppressed under conditions where the homologous SelB protein is absent and (ii) that apart from the specificity of the SelB-mRNA interaction, a structural compatibility of the quaternary complex with the ribosome is required.
Collapse
Affiliation(s)
- P Tormay
- Lehrstuhl für Mikrobiologie der Universität München, Munich, Germany
| | | |
Collapse
|
198
|
Abstract
Errors that alter the reading frame occur extremely rarely during translation, yet some genes have evolved sequences that efficiently induce frameshifting. These sequences, termed programmed frameshift sites, manipulate the translational apparatus to promote non-canonical decoding. Frameshifts are mechanistically diverse. Most cause a -1 shift of frames; the first such site was discovered in a metazoan retrovirus, but they are now known to be dispersed quite widely among evolutionarily diverse species. +1 frameshift sites are much less common, but again dispersed widely. The rarest form are the translational hop sites which program the ribosome to bypass a region of several dozen nucleotides. Each of these types of events are stimulated by distinct mechanisms. All of the events share a common phenomenology in which the programmed frameshift site causes the ribosome to pause during elongation so that the kinetically unfavorable alternative decoding event can occur. During this pause most frameshifts occur because one or more ribosome-bound tRNAs slip between cognate or near-cognate codons. However, even this generalization is not entirely consistent, since some frameshifts occur without slippage. Because of their similarity to rarer translational errors, programmed frameshift sites provide a tool with which to probe the mechanism of frame maintenance.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
199
|
Abstract
Missense substitutions and processivity errors in the translation of heterologous proteins are expected to occur at higher frequencies than the corresponding errors of normal translation. The resulting error-containing products may overload chaperone systems. Likewise, there may be a risk of an immunogenic response to heterologous proteins introduced into vertebrates. Recent work has been carried out on the mechanisms by which such errors arise and on their occurrence in cloned, heterologous gene products.
Collapse
Affiliation(s)
- C Kurland
- Department of Molecular Biology, Uppsala University, Box 590, Uppsala, S751 24, Sweden
| | | |
Collapse
|
200
|
Abstract
Mutators are cells that have a higher mutation rate than the wild type. Such mutators have been extensively studied in bacteria, and this has led to the elucidation of a number of important DNA repair pathways, as well as revealing new pathways of mutagenesis. Repair defects in humans that lead to mutator phenotypes are responsible for a number of cancer susceptibilities. In some cases, these repair systems are the close counterparts of the equivalent bacterial repair system. Therefore, characterizing bacterial mutators and the repair systems that are deficient can aid in discovering the human homolog of these systems.
Collapse
Affiliation(s)
- J H Miller
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90049, USA.
| |
Collapse
|