151
|
Yang G, Huang SC, Wu JY, Benz EJ. Regulated Fox-2 isoform expression mediates protein 4.1R splicing during erythroid differentiation. Blood 2007; 111:392-401. [PMID: 17715393 PMCID: PMC2200819 DOI: 10.1182/blood-2007-01-068940] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A regulated splicing event in protein 4.1R pre-mRNA-the inclusion of exon 16-encoding peptides for spectrin-actin binding-occurs in late erythroid differentiation. We defined the functional significance of an intronic splicing enhancer, UGCAUG, and its cognate splicing factor, mFox2A, on exon 16 splicing during differentiation. UGCAUG displays cell-type-specific splicing regulation in a test neutral reporter and has a dose-dependent enhancing effect. Erythroid cells express 2 UGCAUG-binding mFox-2 isoforms, an erythroid differentiation-inducible mFox-2A and a commonly expressed mFox-2F. When overexpressed, both enhanced internal exon splicing in an UGCAUG-dependent manner, with mFox-2A exerting a much stronger effect than mFox-2F. A significant reciprocal increase in mFox-2A and decrease in mFox-2F occurred during erythroid differentiation and correlated with exon 16 inclusion. Furthermore, isoform-specific expression reduction reversed mFox-2A-enhancing activity, but not that of mFox-2F on exon 16 inclusion. Our results suggest that an erythroid differentiation-inducible mFox-2A isoform is a critical regulator of the differentiation-specific exon 16 splicing switch, and that its up-regulation in late erythroid differentiation is vital for exon 16 splicing.
Collapse
Affiliation(s)
- Guang Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
152
|
Cekaite L, Peng Q, Reiner A, Shahzidi S, Tveito S, Furre IE, Hovig E. Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate. BMC Genomics 2007; 8:273. [PMID: 17692132 PMCID: PMC2045114 DOI: 10.1186/1471-2164-8-273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 08/13/2007] [Indexed: 11/21/2022] Open
Abstract
Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
- State Key Lab for Advanced Photonic Materials and Devices, Fudan University, Shanghai, P.R. China
| | - Andrew Reiner
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Susan Shahzidi
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Siri Tveito
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Ingegerd E Furre
- Department of Pathology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Rikshopitalet – Radiumhospitalet Medical Center, 0310 Oslo, Norway
| |
Collapse
|
153
|
Tsai KW, Tarn WY, Lin WC. Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3' tandem splice site selection. Mol Cell Biol 2007; 27:5835-48. [PMID: 17562859 PMCID: PMC1952111 DOI: 10.1128/mcb.00363-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the nucleotide preceding the AG dinucleotide may influence 3' splice site utilization; this is also supported by an in vivo splicing assay. Moreover, we found that the intron sequence plays an important role in 3' splice site selection for NAGNAG wobble splicing. Mutations of the region between the branch site and the NAGNAG 3' splice site, indeed, affected the ratio of the distal/proximal AG selection. Finally, we found that single nucleotide polymorphisms around the NAGNAG motif could affect the splice site choice, which may lead to a change in mRNA patterns and influence protein function. We conclude that the NAGNAG motif and its upstream region to the branch point sequence are required for 3' tandem splice site selection.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
154
|
Wimmer K, Roca X, Beiglböck H, Callens T, Etzler J, Rao AR, Krainer AR, Fonatsch C, Messiaen L. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption. Hum Mutat 2007; 28:599-612. [PMID: 17311297 DOI: 10.1002/humu.20493] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.
Collapse
Affiliation(s)
- K Wimmer
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Izquierdo JM, Valcárcel J. Two isoforms of the T-cell intracellular antigen 1 (TIA-1) splicing factor display distinct splicing regulation activities. Control of TIA-1 isoform ratio by TIA-1-related protein. J Biol Chem 2007; 282:19410-7. [PMID: 17488725 DOI: 10.1074/jbc.m700688200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TIA-1 (T-cell Intracellular Antigen 1) and TIAR (TIA-1-related protein) are RNA-binding proteins involved in the regulation of alternative pre-mRNA splicing and other aspects of RNA metabolism. Various isoforms of these proteins exist in mammals. For example, TIA-1 presents two major isoforms (TIA-1a and TIA-1b) generated by alternative splicing of exon 5 that differ by eleven amino acids exclusive of the TIA-1a isoform. Here we show that the relative expression of TIA-1 and TIAR isoforms varies in different human tissues and cell lines, suggesting distinct functional properties and regulated isoform expression. We report that whereas TIA-1 isoforms show similar subcellular distribution and RNA binding, TIA-1b displays enhanced splicing stimulatory activity compared with TIA-1a, both in vitro and in vivo. Interestingly, TIAR depletion from HeLa and mouse embryonic fibroblasts results in an increased ratio of TIA-1b/a expression, suggesting that TIAR regulates the relative expression of TIA-1 isoforms. Taken together, the results reveal distinct functional properties of TIA-1 isoforms and the existence of a regulatory network that controls isoform expression.
Collapse
Affiliation(s)
- José M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
156
|
Foissac S, Sammeth M. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 2007; 35:W297-9. [PMID: 17485470 PMCID: PMC1933205 DOI: 10.1093/nar/gkm311] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the process of establishing more and more complete annotations of eukaryotic genomes, a constantly growing number of alternative splicing (AS) events has been reported over the last decade. Consequently, the increasing transcript coverage also revealed the real complexity of some variations in the exon–intron structure between transcript variants and the need for computational tools to address ‘complex’ AS events. ASTALAVISTA (alternative splicing transcriptional landscape visualization tool) employs an intuitive and complete notation system to univocally identify such events. The method extracts AS events dynamically from custom gene annotations, classifies them into groups of common types and visualizes a comprehensive picture of the resulting AS landscape. Thus, ASTALAVISTA can characterize AS for whole transcriptome data from reference annotations (GENCODE, REFSEQ, ENSEMBL) as well as for genes selected by the user according to common functional/structural attributes of interest: http://genome.imim.es/astalavista
Collapse
|
157
|
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
158
|
Lixia M, Zhijian C, Chao S, Chaojiang G, Congyi Z. Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line. BMB Rep 2007; 40:15-21. [PMID: 17244477 DOI: 10.5483/bmbrep.2007.40.1.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and mutations in the BRCA1 gene produce increased susceptibility to these malignancies in certain families. In this study, the forward 1-13 exons of breast cancer associated gene BRCA1 were cloned from breast cancer cell line ZR-75-30 by RT-PCR method. Sequence analysis showed that nine BRCA1 splice forms were isolated and characterized, compared with wild-type BRCA1 gene, five splice forms of which were novel. These splice isoforms were produced from the molecular mechanism of 5' and 3' alternative splicing. All these splice forms deleting exon 11b and the locations of alternative splicing were focused on two parts:one was exons 2 and 3, and the other was exons 9 and 10. These splice forms accorded with GT-AG rule. Most these BRCA1 splice variants still kept the original reading frame. Western blot analysis indicated that some BRCA1 splice variants were expressed in ZR-75-30 cell line at the protein level. In addition, we confirmed the presence of these new transcripts of BRCA1 gene in MDA-MB-435S, K562, Hela, HLA, HIC, H9, Jurkat and human fetus samples by RT-PCR analysis. These results suggested that breast cancer associated gene BRCA1 may have unexpectedly a large number of splice variants. We hypothesized that alternative splicing of BRCA1 possibly plays a major role in the tumorigenesis of breast and/or ovarian cancer. Thus, the identification of cancer-specific splice forms will provide a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Miao Lixia
- China Center for Type Culture Collection, Wuhan University, 430072, P. R. China
| | | | | | | | | |
Collapse
|
159
|
Tress ML, Martelli PL, Frankish A, Reeves GA, Wesselink JJ, Yeats C, Ólason PĹ, Albrecht M, Hegyi H, Giorgetti A, Raimondo D, Lagarde J, Laskowski RA, López G, Sadowski MI, Watson JD, Fariselli P, Rossi I, Nagy A, Kai W, Størling Z, Orsini M, Assenov Y, Blankenburg H, Huthmacher C, Ramírez F, Schlicker A, Denoeud F, Jones P, Kerrien S, Orchard S, Antonarakis SE, Reymond A, Birney E, Brunak S, Casadio R, Guigo R, Harrow J, Hermjakob H, Jones DT, Lengauer T, A. Orengo C, Patthy L, Thornton JM, Tramontano A, Valencia A. The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci U S A 2007; 104:5495-500. [PMID: 17372197 PMCID: PMC1838448 DOI: 10.1073/pnas.0700800104] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Indexed: 12/22/2022] Open
Abstract
Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as functional proteins, and it seems unlikely that the spectrum of conventional enzymatic or structural functions can be substantially extended through alternative splicing.
Collapse
Affiliation(s)
- Michael L. Tress
- Structural Computational Biology Programme, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | | | - Adam Frankish
- HAVANA Group, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Gabrielle A. Reeves
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Jan Jaap Wesselink
- Structural Computational Biology Programme, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Corin Yeats
- Department of Biochemistry and Molecular Biology and
| | - Páll ĺsólfur Ólason
- Center for Biological Sequence Analysis, BioCentrum-DTU, DK-2800 Lyngby, Denmark
| | - Mario Albrecht
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Hedi Hegyi
- Biological Research Center, Hungarian Academy of Sciences, 1113 Budapest, Hungary
| | - Alejandro Giorgetti
- Department of Biochemical Sciences, University of Rome “La Sapienza,” 2-00185 Rome, Italy
| | - Domenico Raimondo
- Department of Biochemical Sciences, University of Rome “La Sapienza,” 2-00185 Rome, Italy
| | - Julien Lagarde
- Research Unit on Biomedical Informatics, Institut Municipal d'Investigació Mèdica, E-8003 Barcelona, Spain
| | - Roman A. Laskowski
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Gonzalo López
- Structural Computational Biology Programme, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Michael I. Sadowski
- Bioinformatics Unit, University College London, London WC1E 6BT, United Kingdom
| | - James D. Watson
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Piero Fariselli
- Department of Biology, University of Bologna, 33-40126 Bologna, Italy
| | - Ivan Rossi
- Department of Biology, University of Bologna, 33-40126 Bologna, Italy
| | - Alinda Nagy
- Biological Research Center, Hungarian Academy of Sciences, 1113 Budapest, Hungary
| | - Wang Kai
- Center for Biological Sequence Analysis, BioCentrum-DTU, DK-2800 Lyngby, Denmark
| | - Zenia Størling
- Center for Biological Sequence Analysis, BioCentrum-DTU, DK-2800 Lyngby, Denmark
| | - Massimiliano Orsini
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), 09010 Pula, Italy
| | - Yassen Assenov
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | | | | | - Fidel Ramírez
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | | | - France Denoeud
- Research Unit on Biomedical Informatics, Institut Municipal d'Investigació Mèdica, E-8003 Barcelona, Spain
| | - Phil Jones
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Samuel Kerrien
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sandra Orchard
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Genopode building, University of Lausanne, 1015 Lausanne, Switzerland; and
| | - Ewan Birney
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Søren Brunak
- Center for Biological Sequence Analysis, BioCentrum-DTU, DK-2800 Lyngby, Denmark
| | - Rita Casadio
- Department of Biology, University of Bologna, 33-40126 Bologna, Italy
| | - Roderic Guigo
- Research Unit on Biomedical Informatics, Institut Municipal d'Investigació Mèdica, E-8003 Barcelona, Spain
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Jennifer Harrow
- HAVANA Group, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Henning Hermjakob
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David T. Jones
- Bioinformatics Unit, University College London, London WC1E 6BT, United Kingdom
| | - Thomas Lengauer
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | | | - László Patthy
- Biological Research Center, Hungarian Academy of Sciences, 1113 Budapest, Hungary
| | - Janet M. Thornton
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | | | - Alfonso Valencia
- Structural Computational Biology Programme, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| |
Collapse
|
160
|
Rhodes SG, Sawyer J, Whelan AO, Dean GS, Coad M, Ewer KJ, Waldvogel AS, Zakher A, Clifford DJ, Hewinson RG, Vordermeier HM. Is interleukin-4delta3 splice variant expression in bovine tuberculosis a marker of protective immunity? Infect Immun 2007; 75:3006-13. [PMID: 17387165 PMCID: PMC1932844 DOI: 10.1128/iai.01932-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splice variants of the interleukin-4 (IL-4) cytokine gene have been described for humans, mice, and cattle. IL-4 splice variants have been shown to inhibit IL-4-mediated cellular responses and thus act as IL-4 antagonists. Recent work has highlighted the possibility of a correlation between IL-4 splice variants and protection against clinical tuberculosis. In this study we investigated the potential role of IL-4 splice variants IL-4delta2 and IL-4delta3 in cattle with bovine tuberculosis, using quantitative real-time reverse transcription-PCR. For this analysis we used naturally exposed tuberculin skin test-positive field reactor cattle, uninfected control cattle, and cattle from two experimental models of protective immunity against Mycobacterium bovis: (i) vaccination with M. bovis BCG and challenge with virulent M. bovis and (ii) infection with M. bovis and treatment with isoniazid (INH) prior to rechallenge. The cytokine levels of field reactor cattle were compared to the levels of uninfected controls, while in kinetic studies of BCG vaccination and INH treatment we compared pre-experimental values with sequential samples for each individual animal. The data revealed a significant increase in IL-4delta3 mRNA expression in field reactor cattle, which had no visible pathology compared to cattle with gross pathology typical of bovine tuberculosis. Increased IL-4delta3 expression in both cattle models of protective immunity (BCG vaccination and INH treatment) was transient over time, reaching significance in the INH treatment model. Our results support the hypothesis that IL-4delta3 is involved in protective immunity against M. bovis infection in cattle and are in accordance with clinical studies that have suggested a role for IL-4 splice variants in protective immunity in tuberculosis.
Collapse
Affiliation(s)
- Shelley G Rhodes
- Veterinary Laboratories Agency, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Li M, Green PL. Detection and quantitation of HTLV-1 and HTLV-2 mRNA species by real-time RT-PCR. J Virol Methods 2007; 142:159-68. [PMID: 17337070 PMCID: PMC2048902 DOI: 10.1016/j.jviromet.2007.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/18/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
HTLV-1 and HTLV-2 are highly related delta-retroviruses that infect and transform T-lymphocytes, but have distinct pathogenic properties. HTLV replication and survival requires the expression of multiple gene products from an unspliced and a series of highly related alternatively spliced mRNA species. To date, the comparative levels of all known HTLV-1 and HTLV-2 viral mRNAs in different transformed cell lines and at different stages of virus infection have not been assessed. In this study, we compiled a series of oligonucleotide primer pairs and probes to quantify both HTLV-1 and HTLV-2 mRNA species using real-time RT-PCR. The optimized reaction for detection of each mRNA had amplification efficiency greater than 90% with a linear range spanning 25-2.5 x 10(7) copies. The R(2)'s of all standard curves were greater than 0.97. Quantitation of HTLV mRNAs between different cell lines showed variability (gag/pol>or=tax/rex>env>or=accessory proteins), but the overall levels of each mRNA relative to each other within a cell line were similar. These results provide a method to quantify all specific mRNAs from both HTLV-1 and HTLV-2, which can be used to evaluate further viral gene expression and correlate transcript levels to key stages of the virus life cycle and ultimately, pathogenesis.
Collapse
Affiliation(s)
- Min Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210
- * Corresponding Author: Patrick L. Green, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, Tel: (614)-688-4899, Fax: (614)-292-6473,
| |
Collapse
|
162
|
Fic W, Juge F, Soret J, Tazi J. Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless. PLoS One 2007; 2:e253. [PMID: 17327915 PMCID: PMC1803029 DOI: 10.1371/journal.pone.0000253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022] Open
Abstract
The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing.
Collapse
Affiliation(s)
- Weronika Fic
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
Chen K, Baxter T, Muir WM, Groenen MA, Schook LB. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 2007; 3:153-65. [PMID: 17384734 PMCID: PMC1802013 DOI: 10.7150/ijbs.3.153] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/09/2007] [Indexed: 02/01/2023] Open
Abstract
The pig, a representative of the artiodactyla clade, is one of the first animals domesticated, and has become an important agriculture animal as one of the major human nutritional sources of animal based protein. The pig is also a valuable biomedical model organism for human health. The pig's importance to human health and nutrition is reflected in the decision to sequence its genome (3X). As an animal species with its wild ancestors present in the world, the pig provides a unique opportunity for tracing mammalian evolutionary history and defining signatures of selection resulting from both domestication and natural selection. Completion of the pig genome sequencing project will have significant impacts on both agriculture and human health. Following the pig whole genome sequence drafts, along with large-scale polymorphism data, it will be possible to conduct genome sweeps using association mapping, and identify signatures of selection. Here, we provide a description of the pig genome sequencing project and perspectives on utilizing genomic technologies to exploit pig genome evolution and the molecular basis for phenotypic traits for improving pig production and health.
Collapse
Affiliation(s)
- Kefei Chen
- 1. Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Tara Baxter
- 1. Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - William M. Muir
- 2. Department of Animal Science, Purdue University, West Lafayette, Indiana 47907-1151, USA
| | - Martien A. Groenen
- 3. Animal Breeding and Genetics Group, Wageningen University, PO Box 9101, Wageningen, 6701 BH, The Netherlands
| | - Lawrence B. Schook
- 1. Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA
- 4. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL 61801, USA
| |
Collapse
|
164
|
Laliotis GP, Argyrokastritis A, Bizelis I, Rogdakis E. Cloning and characterization of an alternative transcript of ovine glucose 6-phosphate dehydrogenase gene: Comparative approach between ruminant and non-ruminant species. Gene 2007; 388:93-101. [PMID: 17157446 DOI: 10.1016/j.gene.2006.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/25/2006] [Accepted: 10/07/2006] [Indexed: 10/23/2022]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) plays an important role in ruminant's lipogenesis, as it provides necessary compounds of NADPH for the synthesis of fatty acids catalyzing the first committed reaction in the pentose phosphate pathway. In this work the full length ovine glucose 6-phosphate dehydrogenase cDNA was isolated using a polymerase chain reaction based strategy. Two isoforms (OG6PDA and OG6PDB) were detected encoding a protein of 515 and 524 amino acids, respectively. Both deduced amino acid sequences reveal a well conserved protein containing all the important residues for its catalytic role. The extra nine amino acids encoded by OG6PDB cause a frameshift in the polypeptide chain resulting in changes around the area of the potential substrate binding site. A three-dimensional model of ovine G6PD protein shows that this frameshift cause structural changes in the catalytic binding "pocket" of the molecule. Southern blot and RT analysis revealed that ovine G6PD appears as a single copy gene while it is expressed, with slight variability, in all tissues analyzed. Moreover, expression analysis of the ovine G6PD isoforms showed that OG6PDB is expressed only in tissues where lipogenesis is high in ruminants. Thus, we hypothesize that in ruminants G6PD may be regulated by the ratio of the two transcripts, according to the existence stimulus.
Collapse
Affiliation(s)
- George P Laliotis
- Department of Animal Science, Laboratory of Animal Breeding and Husbandry, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | | |
Collapse
|
165
|
Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J 2007; 21:1556-64. [PMID: 17264164 DOI: 10.1096/fj.06-7434com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NO, the product of endothelial NOS (eNOS), is a major regulator of vascular homeostasis and a critical factor in preventing cardiovascular diseases. We previously established a positive correlation between the number of variable CA repeats in intron 13 of human eNOS and the risk of coronary artery disease, and demonstrated that these polymorphic CA repeats function as a length-dependent splicing enhancer. By 5'-RACE polymerase chain reaction (PCR), we detected three splice variants containing novel 3' splice sites within intron 13--termed eNOS13A, eNOS13B, and eNOS13C--which share the first 13 exons of human eNOS and the same polyadenylation site at the end of the novel exon. When translated, all these splice variants would result in truncated proteins lacking eNOS activity. Coexpression of full-length eNOS with eNOS13A diminished eNOS enzyme activity in COS-7 cells by formation of heterodimers. The splice variants were expressed in endothelial cells and various human tissues. Finally, we demonstrate, using minigene transfection, that the expression of the eNOS13A splice variant is increased with high CA repeat numbers in intron 13. These data suggest a new mechanism for the regulation of eNOS activity and NO production in the cardiovascular system by truncated, dominant-negative splice variants of human eNOS.
Collapse
Affiliation(s)
- Mario Lorenz
- Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin, CCM, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Fiol DF, Mak SK, Kültz D. Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS J 2007; 274:109-24. [PMID: 17147695 DOI: 10.1111/j.1742-4658.2006.05569.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently cloned a novel osmotic stress transcription factor 1 (OSTF1) from gills of euryhaline tilapia (Oreochromis mossambicus) and demonstrated that acute hyperosmotic stress transiently increases OSTF1 mRNA and protein abundance [Fiol DF, Kültz D (2005) Proc Natl Acad Sci USA102, 927-932]. In this study, a genome-wide search was conducted to identify nine distinct mouse transforming growth factor (TGF)-beta-stimulated clone 22 domain (TSC22D) transcripts, including glucocorticoid-induced leucine zipper (GILZ), that are orthologs of OSTF1. These nine TSC22D transcripts are encoded at four loci on chromosomes 14 (TSC22D1, two splice variants), 3 (TSC22D2, four splice variants), X (TSC22D3, two splice variants), and 5 (TSC22D4). All nine mouse TSC22D transcripts are expressed in renal cortex, medulla and papilla, and in the mIMCD3 cell line. The two TSC22D3 transcripts (including GILZ) are upregulated by aldosterone but not by hyperosmolality in mIMCD3 cells. In contrast, TSC22D4 is stably upregulated by hyperosmolality in mIMCD3 cells and increased in renal papilla compared with cortex. Moreover, all four TSC22D2 transcripts are transiently upregulated by hyperosmolality and resemble tilapia OSTF1 in this regard. All TSC22D2 transcripts depend on hypertonicity as the signal for their upregulation and are unresponsive to increases in cell-permeable osmolytes. mRNA stabilization is the mechanism for TSC22D2 upregulation by hyperosmolality. Overexpression of TSC22D2-4 in mIMCD3 cells confers protection towards osmotic stress, as evidenced by a 2.7-fold increase in cell survival after 3 days at 600 mOsmol x kg(-1). Based on variable responsiveness to aldosterone and hyperosmolality in kidney cells we conclude that mouse TSC22D genes have diverse physiological functions. TSC22D2 and TSC22D4 are involved in adaptation of renal cells to hypertonicity suggesting that they represent important elements of osmosensory signal transduction in mouse kidney cells.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
167
|
Abstract
Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 isoforms by the alternative splicing of 95 variable exons. In this review, we will describe several genes that use complex alternative splicing to generate large repertoires of mRNAs and what is known about the mechanisms by which they do so.
Collapse
Affiliation(s)
- Jung Woo Park
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
168
|
Qi J, Su S, Mattox W. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer. Mol Cell Biol 2007; 27:699-708. [PMID: 17101798 PMCID: PMC1800821 DOI: 10.1128/mcb.01572-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/03/2006] [Accepted: 10/27/2006] [Indexed: 11/20/2022] Open
Abstract
The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.
Collapse
Affiliation(s)
- Junlin Qi
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
169
|
Haraguchi N, Andoh T, Frendewey D, Tani T. Mutations in the SF1-U2AF59-U2AF23 Complex Cause Exon Skipping in Schizosaccharomyces pombe. J Biol Chem 2007; 282:2221-8. [PMID: 17130122 DOI: 10.1074/jbc.m609430200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes involved in the mechanism to ensure ordered 5' to 3' exon joining in constitutively spliced pre-mRNAs, we screened for mutants that cause exon skipping in the fission yeast Schizosaccharomyces pombe using a reporter plasmid, which contains the ura4+ gene with the nda3 intron 1-exon 2-intron 2 sequence. The reporter plasmid was designed to produce the functional ura4+ mRNA, when the central nda3 exon is skipped during the splicing reaction. We mutagenized cells harboring the plasmid by UV irradiation and isolated 34 ura+ mutants that grew on minimal medium. Of those, eight mutants were found to be temperature sensitive (ts) for growth. Complementation analyses revealed that the ts mutants belong to three distinct complementation groups named ods (ordered splicing) 1, 2, and 3. RT-PCR analyses showed that products of exon skipping were actually generated in the ods mutants. We cloned the genes responsible for the ods mutations, and found that ods1+, ods2+, and ods3+ encode splicing factors Prp2p/U2AF59, U2AF23, and SF1, respectively, which form a SF1-U2AF59-U2AF23 complex involved in recognition of the branch-point and 3' splice site sequences in a pre-mRNA. We also showed that mutations in the SF1-U2AF59-U2AF23 binding sequences in the reporter plasmid result in exon skipping in wild-type S. pombe cells. In addition, drugs that decrease the rate of transcription elongation were found to suppress the exon skipping in the ods mutants. These results suggest that co-transcriptional recognition of a nascent pre-mRNA by the SF1-U2AF59-U2AF23 complex is essential for ordered exon joining in constitutive splicing in S. pombe.
Collapse
Affiliation(s)
- Noriko Haraguchi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
170
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
171
|
Wang NY, Lai HC, Au LC. Methods for enrichment of a mRNA isoform with specific alternative splicing. Anal Biochem 2006; 359:189-93. [PMID: 17055994 DOI: 10.1016/j.ab.2006.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 11/19/2022]
Abstract
Alternative splicing of pre-mRNA is an important mechanism for regulating gene expression in higher eukaryotes. Recent genomewide analyses of alternative splicing indicate that 40-60% of human genes have alternative splice isoforms, although some variants exist only in relatively low abundance. It has been shown that proteins of different functions can be produced by a diverse array of mRNA derived from a single pre-mRNA. Inevitably cloning and expression of the corresponding mRNAs (cDNA) constitute an essential step toward elucidating the function of such protein isoforms. Here, we propose methods for enriching an mRNA isoform, which is carried out before the RNA preparation is subjected to reverse transcription polymerase chain reaction and cloning. While the negative selection method destroys unwanted mRNA variants, the positive selection enriches the desired variant. Focusing on the mRNA of rat ADAR2 (adenosine deaminase 2 that acts on RNA) as an example, we have achieved 16- and 19-fold enrichment of the given mRNA variant via the proposed negative and positive selection, respectively. Single use or combined uses of our method facilitates the isolation and cloning of a minor mRNA variant. Moreover, these methods can also be used to determine whether two alternative splicing events taking place in a pre-mRNA are linked.
Collapse
Affiliation(s)
- Nai-Yu Wang
- Graduate Institute of Medical Technology, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | | | |
Collapse
|
172
|
Qi J, Su S, McGuffin ME, Mattox W. Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing. Nucleic Acids Res 2006; 34:6256-63. [PMID: 17098939 PMCID: PMC1669769 DOI: 10.1093/nar/gkl755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The splicing factor Transformer-2 (Tra2) is expressed almost ubiquitously in Drosophila adults, but participates in the tissue-specific regulation of splicing in several RNAs. In somatic tissues Tra2 participates in the activation of sex-specific splice sites in doublesex and fruitless pre-mRNAs. In the male germline it affects splicing of other transcripts and represses removal of the M1 intron from its own pre-mRNA. Here we test the hypothesis that the germline specificity of M1 repression is determined by tissue-specific differences in Tra2 concentration. We find that Tra2 is expressed at higher levels in primary spermatocytes of males than in other cell types. Increased Tra2 expression in other tissues reduces viability in a manner consistent with known dose-dependent effects of excessive Tra2 expression in the male germline. Somatic cells were found to be competent to repress M1 splicing if the level of Tra2 transcription was raised above endogenous concentrations. This suggests not only that M1 repression is restricted to the germline by a difference in Tra2 transcription levels but also that the protein's threshold concentration for M1 regulation differs from that of doublesex and fruitless RNAs. We propose that quantitative differences in regulator expression can give rise to cell-type-specific restrictions in splicing.
Collapse
Affiliation(s)
| | | | | | - William Mattox
- To whom correspondence should be addressed. Tel: +1 713 834 6329; Fax: +1 713 834 6339;
| |
Collapse
|
173
|
Lopato S, Borisjuk L, Milligan AS, Shirley N, Bazanova N, Parsley K, Langridge P. Systematic identification of factors involved in post-transcriptional processes in wheat grain. PLANT MOLECULAR BIOLOGY 2006; 62:637-53. [PMID: 16941218 DOI: 10.1007/s11103-006-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/06/2006] [Indexed: 05/11/2023]
Abstract
Post-transcriptional processing of primary transcripts can significantly affect both the quantity and the structure of mature mRNAs and the corresponding protein products. It is an important mechanism of gene regulation in animals, yeast and plants. Here we have investigated the interactive networks of pre-mRNA processing factors in the developing grain of wheat (Triticum aestivum), one of the world's major food staples. As a first step we isolated a homologue of the plant specific AtRSZ33 splicing factor, which has been shown to be involved in the early stages of embryo development in Arabidopsis. Real-time PCR showed that the wheat gene, designated TaRSZ38, is expressed mainly in young, developing organs (flowers, root, stem), and expression peaks in immature grain. In situ hybridization and immunodetection revealed preferential abundance of TaRSZ38 in mitotically active tissues of the major storage organ of the grain, the endosperm. The protein encoded by TaRSZ38 was subsequently used as a starting bait in a two-hybrid screen to identify additional factors in grain that are involved in pre-mRNA processing. Most of the identified proteins showed high homology to known splicing factors and splicing related proteins, supporting a role for TaRSZ38 in spliceosome formation and 5' site selection. Several clones were selected as baits in further yeast two-hybrid screens. In total, cDNAs for 16 proteins were isolated. Among these proteins, TaRSZ22, TaSRp30, TaU1-70K, and the large and small subunits of TaU2AF, are wheat homologues of known plant splicing factors. Several, additional proteins are novel for plants and show homology to known pre-mRNA splicing, splicing related and mRNA export factors from yeast and mammals.
Collapse
Affiliation(s)
- Sergiy Lopato
- Australian Centre for Plant Functional Genomics, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | |
Collapse
|
174
|
Marden JH. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity (Edinb) 2006; 100:111-20. [PMID: 17006532 DOI: 10.1038/sj.hdy.6800904] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) of pre-messenger RNA is a common phenomenon that creates different transcripts from a single gene, and these alternative transcripts affect phenotypes. The majority of AS research has examined tissue and developmental specificity of expression of particular AS transcripts, how this specificity affects cell function, and how aberrant AS is related to disease. Few studies have examined quantitative between-individual variation in AS within a cell or tissue type, or in relation to phenotypes, but the results are compelling: quantitative variation in AS affects plastic traits such as stress, anxiety, fear, egg production, muscle performance, energetics and plant growth. Genomic analyses of AS are also at a nascent stage, but have revealed a number of significant evolutionary patterns. Growing knowledge of upstream genes and kinases that regulate AS provides the as-yet little explored potential to examine how these genes and pathways respond to environmental and genotype variables. Research in this area can provide glimpses of a labyrinth of genetic architectures that have rarely been considered in evolutionary and organismal biology, or in quantitative genetics. The scarcity of contribution to knowledge about AS from these fields is illustrated by the fact that heritability of quantitative variation in AS has not yet been determined for any gene in any organism. New research tactics that incorporate quantitative analyses of AS will allow organismal and evolutionary biologists to attain a fuller mechanistic understanding of many of the traits they study, and may lead to more rapid discovery of functionally important polymorphisms.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
175
|
Unoki M, Shen JC, Zheng ZM, Harris CC. Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem 2006; 281:34677-86. [PMID: 16973615 DOI: 10.1074/jbc.m606296200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ING4 gene is a candidate tumor suppressor gene that functions in cell proliferation, contact inhibition, and angiogenesis. We identified three novel splice variants of ING4 with differing activities in controlling cell proliferation, cell spreading, and cell migration. ING4_v1 (the longest splice variant), originally identified as ING4, encodes an intact nuclear localization signal (NLS), whereas the other three splice variants (ING4_v2, ING4_v3, and ING4_v4) lack the full NLS, resulting in increased cytoplasmic localization of these proteins. We found that one of the three ING4 variants, ING4_v2, is expressed at the same level as the original ING4 (ING4_v1), suggesting that ING4 variants may have significant biological functions. Growth suppressive effects of the variants that have a partial NLS (ING4_v2 and ING4_v4) were attenuated by a weaker effect of the variants on p21(WAF1) promoter activation. ING4_v4 lost cell spreading and migration suppressive effects; on the other hand, ING4_v2 retained a cell migration suppressive effect but lost a cell spreading suppressive effect. Therefore, ING4_v2, which localized primarily into cytoplasm, might have an important role in the regulation of cell migration. We also found that ING4_v4 played dominant-negative roles in the induction of p21(WAF1) promoter activation and in the suppression of cell motility by ING4_v1. In addition, ING4 variants had different binding affinities to two cytoplasmic proteins, protein-tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha1, and G3BP2a. Understanding the functions of the four splice variants may aid in defining their roles in human carcinogenesis.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USa
| | | | | | | |
Collapse
|
176
|
Takeda JI, Suzuki Y, Nakao M, Barrero RA, Koyanagi KO, Jin L, Motono C, Hata H, Isogai T, Nagai K, Otsuki T, Kuryshev V, Shionyu M, Yura K, Go M, Thierry-Mieg J, Thierry-Mieg D, Wiemann S, Nomura N, Sugano S, Gojobori T, Imanishi T. Large-scale identification and characterization of alternative splicing variants of human gene transcripts using 56,419 completely sequenced and manually annotated full-length cDNAs. Nucleic Acids Res 2006; 34:3917-28. [PMID: 16914452 PMCID: PMC1557807 DOI: 10.1093/nar/gkl507] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/03/2006] [Accepted: 07/03/2006] [Indexed: 11/12/2022] Open
Abstract
We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56,419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37,670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants.
Collapse
Affiliation(s)
- Jun-ichi Takeda
- Integrated Database Group, Japan Biological Information Research Center, Japan Biological Informatics Consortium, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Mitsuteru Nakao
- Computational Biology Research Center, National Institute of Advanced Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
- Kazusa DNA Research Institute2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Roberto A. Barrero
- Center for Information Biology and DDBJ, National Institute of Genetics1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kanako O. Koyanagi
- Graduate School of Information Science and Technology, Hokkaido UniversityNorth 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
| | - Lihua Jin
- Center for Information Biology and DDBJ, National Institute of Genetics1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Chie Motono
- Computational Biology Research Center, National Institute of Advanced Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroko Hata
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takao Isogai
- Reverse Proteomics Research Institute, 2-6-7 Kazusa-KamatariKisarazu, Chiba 292-0818, Japan
- Helix Research Institute, Inc. 1532-3Yana, Kisarazu, Chiba 292-0812, Japan
| | - Keiichi Nagai
- Helix Research Institute, Inc. 1532-3Yana, Kisarazu, Chiba 292-0812, Japan
- Central Research Laboratory, Hitachi Ltd1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Tetsuji Otsuki
- Helix Research Institute, Inc. 1532-3Yana, Kisarazu, Chiba 292-0812, Japan
| | - Vladimir Kuryshev
- Division of Molecular Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Masafumi Shionyu
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Kei Yura
- Quantum Bioinformatics Team, Center for Computational Science and Engineering, Japan Atomic Energy Agency8-1 Umemidai, Kizu, Souraku, Kyoto 619-0215, Japan
- Core Research for Evolution Science and Technology, Japan Science and Technology AgencyJapan
| | - Mitiko Go
- Division of Molecular Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Ochanomizu University2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD, USA
- Centre National de la Recherche Scientifique, Laboratoire de Physique MathematiqueMontpellier, France
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD, USA
- Centre National de la Recherche Scientifique, Laboratoire de Physique MathematiqueMontpellier, France
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research CenterIm Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Nobuo Nomura
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takashi Gojobori
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
- Center for Information Biology and DDBJ, National Institute of Genetics1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tadashi Imanishi
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, AIST Bio-IT Research BuildingAomi 2-42, Koto-ku, Tokyo 135-0064, Japan
- Graduate School of Information Science and Technology, Hokkaido UniversityNorth 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
| |
Collapse
|
177
|
Tran YH, Xu Z, Kato A, Mistry AC, Goya Y, Taira M, Brandt SJ, Hirose S. Spliced isoforms of LIM-domain-binding protein (CLIM/NLI/Ldb) lacking the LIM-interaction domain. J Biochem 2006; 140:105-19. [PMID: 16815859 DOI: 10.1093/jb/mvj134] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
LIM-domain-binding proteins (CLIM/NLI/Ldb) are nuclear cofactors for LIM homeodomain transcription factors (LIM-HDs) and LIM-only proteins (LMOs). The LIM-interaction domain (LID) of Ldb is located in the carboxy-terminal region and encoded by the last exon (exon 10) of Ldb genes. It is known that the mammalian CLIM1/Ldb2 gene has a splice isoform, named CLIM1b, lacking the LID. However, little is known about the nature of CLIM1b or the evolutionary conservation of this type of alternative splicing in amphibians and teleost fish. Here, we demonstrate that splice isoforms lacking the LID are also present in the Ldb1 genes of mammals, chick, and Xenopus, as well as in fish paralog Ldb4. All these splicing variations occur in intron 9 and exon 10. We observed that Ldb4b (splice isoform lacking LID) is localized in the nucleus when expressed in mammalian culture cells, and binds to Ldb4a (splice isoform containing LID) but not directly to LIM proteins. However, Ldb4b binds to LMO4 via Ldb4a when coexpressed in culture cells. We also found that mouse Ldb1b lacks the ability to activate protein 4.2 promoter, which is stimulated by LMO2 and Ldb1. These findings suggest that splice isoforms of Ldb lacking LID are potential regulators of Ldb function.
Collapse
Affiliation(s)
- Yen Ha Tran
- Department of Biological Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Xing Y, Lee C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet 2006; 7:499-509. [PMID: 16770337 DOI: 10.1038/nrg1896] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome-wide analyses of alternative splicing have established its nearly ubiquitous role in gene regulation in many organisms. Genome sequencing and comparative genomics have made it possible to look in detail at the evolutionary history of specific alternative exons or splice sites, resulting in a flurry of publications in recent years. Here, we consider how alternative splicing has contributed to the evolution of modern genomes, and discuss constraints on evolution associated with alternative splicing that might have important medical implications.
Collapse
Affiliation(s)
- Yi Xing
- Molecular Biology Institute, Center for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
179
|
Fall AM, Johnsen R, Honeyman K, Iversen P, Fletcher S, Wilton SD. Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. GENETIC VACCINES AND THERAPY 2006; 4:3. [PMID: 16719929 PMCID: PMC1481566 DOI: 10.1186/1479-0556-4-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/24/2006] [Indexed: 11/28/2022]
Abstract
Background Duchenne muscular dystrophy is a fatal genetic disorder caused by dystrophin gene mutations that result in premature termination of translation and the absence of functional protein. Despite the primary dystrophin gene lesion, immunostaining studies have shown that at least 50% of DMD patients, mdx mice and a canine model of DMD have rare dystrophin-positive or 'revertant' fibres. Fine epitope mapping has shown that the majority of transcripts responsible for revertant fibres exclude multiple exons, one of which includes the dystrophin mutation. Methods The mdx mouse model of muscular dystrophy has a nonsense mutation in exon 23 of the dystrophin gene. We have shown that antisense oligonucleotides (AOs) can induce the removal of this exon, resulting in an in-frame mRNA transcript encoding a shortened but functional dystrophin protein. To emulate one exonic combination associated with revertant fibres, we target multiple exons for removal by the application of a group of AOs combined as a "cocktail". Results Exons 19–25 were consistently excluded from the dystrophin gene transcript using a cocktail of AOs. This corresponds to an alternatively processed gene transcript that has been sporadically detected in untreated dystrophic mouse muscle, and is presumed to give rise to a revertant dystrophin isoform. The transcript and the resultant correctly localised smaller protein were confirmed by RT-PCR, immunohistochemistry and western blot analysis. Conclusion This work demonstrates the feasibility of AO cocktails to by-pass dystrophin mutation hotspots through multi-exon skipping. Multi-exon skipping could be important in expediting an exon skipping therapy to treat DMD, so that the same AO formulations may be applied to several different mutations within particular domains of the dystrophin gene.
Collapse
Affiliation(s)
- Abbie M Fall
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Russell Johnsen
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Kaite Honeyman
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | | | - Susan Fletcher
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| |
Collapse
|
180
|
Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 2006; 103:8390-5. [PMID: 16717195 PMCID: PMC1482503 DOI: 10.1073/pnas.0507916103] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing of pre-mRNA generates two or more protein isoforms from a single gene, thereby contributing to protein diversity. Despite intensive efforts, an understanding of the protein structure-function implications of alternative splicing is still lacking. Intrinsic disorder, which is a lack of equilibrium 3D structure under physiological conditions, may provide this understanding. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. We hypothesize that polypeptide segments affected by alternative splicing are most often intrinsically disordered such that alternative splicing enables functional and regulatory diversity while avoiding structural complications. We analyzed a set of 46 differentially spliced genes encoding experimentally characterized human proteins containing both structured and intrinsically disordered amino acid segments. We show that 81% of 75 alternatively spliced fragments in these proteins were associated with fully (57%) or partially (24%) disordered protein regions. Regions affected by alternative splicing were significantly biased toward encoding disordered residues, with a vanishingly small P value. A larger data set composed of 558 SwissProt proteins with known isoforms produced by 1,266 alternatively spliced fragments was characterized by applying the pondr vsl1 disorder predictor. Results from prediction data are consistent with those obtained from experimental data, further supporting the proposed hypothesis. Associating alternative splicing with protein disorder enables the time- and tissue-specific modulation of protein function needed for cell differentiation and the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Pedro R. Romero
- *School of Informatics, Indiana University–Purdue University Indianapolis, 535 West Michigan Street, IT475, Indianapolis, IN 46202
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Saima Zaidi
- *School of Informatics, Indiana University–Purdue University Indianapolis, 535 West Michigan Street, IT475, Indianapolis, IN 46202
| | - Ya Yin Fang
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Vladimir N. Uversky
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Predrag Radivojac
- School of Informatics, Indiana University, Eigenmann Hall 1005, 1900 East 10th Street, Bloomington, IN 47406; and
| | - Christopher J. Oldfield
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Marc S. Cortese
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Megan Sickmeier
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Tanguy LeGall
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, 303 Wachman Hall (038-24), 1805 North Broad Street, Philadelphia, PA 19122
| | - A. Keith Dunker
- *School of Informatics, Indiana University–Purdue University Indianapolis, 535 West Michigan Street, IT475, Indianapolis, IN 46202
- Department of Biochemistry and Molecular Biology and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 714 North Senate Avenue, Suite 250, Indianapolis, IN 46202
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
181
|
Thill G, Castelli V, Pallud S, Salanoubat M, Wincker P, de la Grange P, Auboeuf D, Schächter V, Weissenbach J. ASEtrap: a biological method for speeding up the exploration of spliceomes. Genome Res 2006; 16:776-86. [PMID: 16682744 PMCID: PMC1479860 DOI: 10.1101/gr.5063306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alternative splicing (AS) of pre-messenger RNA is a major mechanism for generating protein diversity from a limited number of genes in higher eukaryotes, and it constitutes a central mode of genetic regulation. Thus, efficient methods are needed to systematically identify new AS events at a genomic scale across different tissues, stages of development, and physiological or pathological conditions in order to better understand gene expression. To fulfill this goal, we have designed the ASEtrap, which is a cloning procedure for producing AS libraries that is based on a single-stranded trap consisting of an ssDNA-binding protein. In this paper, we have applied our approach to the construction of an AS library and a Control library from human placenta. By analyzing 9226 and 9999 sequences of the AS and Control libraries, respectively, we show that internal AS events (events that can be identified by the sole resources provided by either the AS or the Control library) and the discovery rate of new AS events measured at early stages of sequencing were nine to 10 times higher in the former than in the latter. Moreover, by performing a search for new AS events within a group of 162 known drug target genes, we identified six new events in six genes, and we observed that they all were discovered exclusively through the AS library. Thus, it appears that ASEtrap has the potential to greatly facilitate the determination of the total complement of splice variants expressed in human, as well as other organisms.
Collapse
Affiliation(s)
- Gilbert Thill
- Genoscope-Centre National de Séquençage and Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-8030, 91000 Evry, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
TSAKONAS ATHANASIOS, TSILIGIANNI THEODORA, DOUNIAS GEORGIOS. EVOLUTIONARY NEURAL LOGIC NETWORKS IN SPLICE-JUNCTION GENE SEQUENCES CLASSIFICATION. INT J ARTIF INTELL T 2006. [DOI: 10.1142/s0218213006002667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The paper demonstrates the efficient use of hybrid intelligent systems for solving the classification problem of splice-junction gene sequences. The aim of the study is to obtain classification schemes able to recognize, given a sequence of DNA, the boundaries between exons and introns. Previous attempts to form efficient classifiers for the same problem using intelligent or standard statistical techniques are discussed throughout the paper. The authors propose the use of evolutionary neural logic networks, an advantageous approach for their ability to interpret their structure into expert rules, a desirable feature for field experts. Evolutionary neural logic networks in fact consist an innovative hybrid intelligent methodology, by which evolutionary programming techniques are used for obtaining the best possible topology of a neural logic network. The genetic programming process is guided using a context-free grammar and indirect encoding of the neural logic networks into the genetic programming individuals. Indicative classification results are presented and discussed in detail in terms of both, classification accuracy and solution interpretability.
Collapse
Affiliation(s)
- ATHANASIOS TSAKONAS
- Aristotle University of Thessaloniki, Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Thessaloniki, Greece
| | - THEODORA TSILIGIANNI
- Aristotle University of Thessaloniki, Department of Biology, Biology Building, Thessaloniki, Greece
| | - GEORGIOS DOUNIAS
- University of the Aegean, Department of Financial and Management Engineering, 31 Fostini Str., Chios, Greece
| |
Collapse
|
183
|
Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, Green MR, Riva S, Biamonti G. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2006; 20:881-90. [PMID: 16364913 DOI: 10.1016/j.molcel.2005.10.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/09/2005] [Accepted: 10/25/2005] [Indexed: 01/01/2023]
Abstract
Ron, the tyrosine kinase receptor for the Macrophage-stimulating protein, is involved in cell dissociation, motility, and matrix invasion. DeltaRon, a constitutively active isoform that confers increased motility to expressing cells, is generated through the skipping of exon 11. We show that abnormal accumulation of DeltaRon mRNA occurs in breast and colon tumors. Skipping of exon 11 is controlled by a silencer and an enhancer of splicing located in the constitutive exon 12. The strength of the enhancer parallels the relative abundance of DeltaRon mRNA and depends on a sequence directly bound by splicing factor SF2/ASF. Overexpression and RNAi experiments demonstrate that SF2/ASF, by controlling the production of DeltaRon, activates epithelial to mesenchymal transition leading to cell locomotion. The effect of SF2/ASF overexpression is reverted by specific knockdown of DeltaRon mRNA. This demonstrates a direct link between SF2/ASF-regulated splicing and cell motility, an activity important for embryogenesis, tissue formation, and tumor metastasis.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
185
|
Davies MA, Chang CY, Roth BL. Polymorphic and Posttranscriptional Modifications of 5-HT Receptor Structure. THE SEROTONIN RECEPTORS 2006. [DOI: 10.1007/978-1-59745-080-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
186
|
Hua B, Tamamori-Adachi M, Luo Y, Tamura K, Morioka M, Fukuda M, Tanaka Y, Kitajima S. A Splice Variant of Stress Response Gene ATF3 Counteracts NF-κB-dependent Anti-apoptosis through Inhibiting Recruitment of CREB-binding Protein/p300 Coactivator. J Biol Chem 2006; 281:1620-9. [PMID: 16291753 DOI: 10.1074/jbc.m508471200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activating transcription factor (ATF) 3 plays a role in determining cell fate and generates a variety of alternatively spliced isoforms in stress response. We have reported previously that splice variant ATF3deltaZip2, which lacks the leucine zipper region, is induced in response to various stress stimuli. However, its biological function has not been elucidated. By using cells treated with tumor necrosis factor-alpha and actinomycin D or cells overexpressing ATF3deltaZip2, we showed that ATF3deltaZip2 sensitizes cells to apoptotic cell death in response to tumor necrosis factor-alpha, at least in part through suppressing nuclear factor (NF)-kappaB-dependent transcription of anti-apoptotic genes such as cIAP2 and XIAP. ATF3deltaZip2 interacts with a p65 (RelA)-cofactor complex containing CBP/p300 and HDAC1 at NF-kappaB sites of the proximal promoter region of the cIAP2 gene in vivo and down-regulates the recruitment of CBP/p300. Our study revealed that ATF3deltaZip2 counteracts anti-apoptotic activity of NF-kappaB, at least in part, by displacing positive cofactor CBP/p300 and provides insight into the mechanism by which ATF3 regulates cell fate through alternative splicing in stress response.
Collapse
Affiliation(s)
- Bayin Hua
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto JI, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 2006; 16:55-65. [PMID: 16344560 PMCID: PMC1356129 DOI: 10.1101/gr.4039406] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 09/19/2005] [Indexed: 12/21/2022]
Abstract
By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.
Collapse
Affiliation(s)
- Kouichi Kimura
- Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Holste D, Huo G, Tung V, Burge CB. HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 2006; 34:D56-62. [PMID: 16381932 PMCID: PMC1347411 DOI: 10.1093/nar/gkj048] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/26/2005] [Accepted: 10/04/2005] [Indexed: 01/05/2023] Open
Abstract
RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.
Collapse
Affiliation(s)
- Dirk Holste
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02319, USA.
| | | | | | | |
Collapse
|
189
|
Lin Z, Thomas N, Wang Y, Guo X, Seifart C, Shakoor H, Floros J. Deletions within a CA-repeat-rich region of intron 4 of the human SP-B gene affect mRNA splicing. Biochem J 2005; 389:403-12. [PMID: 15790313 PMCID: PMC1175118 DOI: 10.1042/bj20042032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Length variants within a CA-repeat-rich region of intron 4 of the human SP-B (pulmonary surfactant protein-B) gene are associated with several lung diseases. The hypothesis that SP-B intron 4 affects mRNA splicing was studied. SP-B minigenes containing exons 1-6 with a normal-sized intron 4 (pBi4normal) or intron 4 containing deletions (pBi4del) of 193, 211, 264 or 340 bp were expressed in CHO (Chinese hamster ovary) cells by transient transfection. Two forms of SP-B transcripts, normal and incompletely spliced, were detected. With pBi4normal, normal-sized SP-B mRNA was the predominant form and a very low amount of incompletely spliced mRNA was present, whereas with the pBi4del variants the amount of normal SP-B mRNAs was lower and the amount of incompletely spliced mRNA was relatively high. Reverse transcription-PCR results and sequencing data indicated that the incompletely spliced SP-B RNA contained intron 4 sequence, and this incompletely spliced RNA was also observed in normal lung. Lung cancer tissues with intron 4 deletions exhibited a larger amount of abnormally spliced RNAs compared with normal lung tissue or cancerous tissue with normal-sized intron 4. The results indicate that intron 4 length variants affect SP-B mRNA splicing, and that this may contribute to lung disease.
Collapse
Affiliation(s)
- Zhenwu Lin
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Neal J. Thomas
- †Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- ‡Department of Health Evaluation Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Yunhua Wang
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Xiaoxuan Guo
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Carola Seifart
- §Department of Clinical and Experimental Pathology, Research Center Borstel, Parkallee, 23845 Borstel, Germany
| | - Hasan Shakoor
- ∥Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Joanna Floros
- *Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- †Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- ¶Department of Obstetric and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
- To whom correspondence should be addressed, at Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, U.S.A. (email )
| |
Collapse
|
190
|
Abstract
Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of alternative splicing in duplicate genes may occur shortly after the gene duplication. These results support the subfunctionization model of alternative splicing in the early stage after gene duplication. Further analysis of the alternative splicing distribution in human duplicate pairs showed the asymmetric evolution of alternative splicing after gene duplications; i.e., the AS forms between duplicates may differ dramatically. We therefore conclude that alternative splicing and gene duplication may not evolve independently. In the early stage after gene duplication, young duplicates may take over a certain amount of protein function diversity that previously was carried out by the alternative splicing mechanism. In the late stage, the gain and loss of alternative splicing seem to be independent between duplicates.
Collapse
Affiliation(s)
- Zhixi Su
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310008, China
| | | | | | | | | |
Collapse
|
191
|
Meidan R, Klipper E, Gilboa T, Muller L, Levy N. Endothelin-converting Enzyme-1, Abundance of Isoforms a-d and Identification of a Novel Alternatively Spliced Variant Lacking a Transmembrane Domain. J Biol Chem 2005; 280:40867-74. [PMID: 16186113 DOI: 10.1074/jbc.m505679200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-converting enzyme-1 (ECE-1) cleaves big endothelins, as well as bradykinin and beta-amyloid peptide. Several isoforms of ECE-1 (a-d) have been identified to date; they differ only in their NH(2) terminus but share the catalytic domain located in the COOH-terminal end. Using quantitative PCR, we found ECE-1d to be the most abundant type in several endothelial cells (EC) types. In addition to full-length ECE-1 forms we have identified novel, alternatively spliced mRNAs of ECE-1 b-d. These splice variants (SVs) lack exon 3', which codes for the transmembrane region and is present in full-length forms. SVs mRNA were highly expressed in EC derived from macro and microvascular beds but much less so in other, non-endothelial cells expressing ECE-1, which suggests that the splicing mechanism is cell-specific. Analyses of ECE-1d and its SV form in stably transfected HEK-293 cells revealed that both proteins were recognized by anti COOH-terminal ECE-1 antibodies, but anti NH(2)-terminal antibodies only bound ECE-1d. The novel protein, designated ECE-1 sv, has an apparent molecular mass of 75 kDa; by using site-directed mutagenesis its start site was identified in a region common to all ECE-1 forms suggesting that ECE-1 b-d SV mRNAs are translated into the same protein. In agreement with the findings demonstrating common COOH terminus for ECE-1sv and ECE-1d, both exhibited a similar catalytic activity. However, immunofluorescence staining and differential centrifugation revealed a distinct intracellular localization for these two proteins. The presence of ECE-1sv in different cellular compartments than full-length forms of the enzyme may suggest a distinct physiological role for these proteins.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
192
|
Roy R, Taourit S, Zaragoza P, Eggen A, Rodellar C. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet Genome Res 2005; 111:65-73. [PMID: 16093723 DOI: 10.1159/000085672] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/29/2004] [Indexed: 11/19/2022] Open
Abstract
Fatty acid synthesis differs considerably between monogastric and ruminant species. Fatty acid synthase (FASN) plays a central role in de novo lipogenesis in mammals. FASN has seven active sites which help to catalyse all the reaction steps in the conversion of acetyl-CoA and malonyl-CoA to palmitate. In this work, the bovine fatty acid synthase gene (FASN) was cloned, characterized and compared to the human and rat orthologs. Comparative analysis reveals evolutionarily conserved exon regions and gene flanking sequences. Analysis of the DNA sequence in the 5' flanking region of the FASN bovine gene revealed a potential TATA box, CAAT box and 5 Sp1 binding sites located in a CpG island. RT-PCR and Western blot analysis showed that FASN expression was higher in brain, testis and adipose tissue than in liver and heart. The longer form of the FASN cDNA includes a 7,542-bp sequence which encodes a protein with 2,513 amino acids. An alternative transcript was discovered in bovine and ovine tissues devoid of part of exon 9. The removal of part of exon 9 by post-transcriptional splicing causes a frameshift in the open reading frame and results in a premature termination codon. We hypothesize that in ruminants, FASN may be regulated by the ratio between the two transcripts. The small transcript is mostly produced in tissues with low fatty acid synthesis.
Collapse
Affiliation(s)
- R Roy
- Laboratorio de Genética Bioquímica y Grupos Sanguíneos, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
193
|
Tan JS, Mohandas N, Conboy JG. High frequency of alternative first exons in erythroid genes suggests a critical role in regulating gene function. Blood 2005; 107:2557-61. [PMID: 16293607 PMCID: PMC1895744 DOI: 10.1182/blood-2005-07-2957] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human genome uses alternative pre-mRNA splicing as an important mechanism to encode a complex proteome from a relatively small number of genes. An unknown number of these genes also possess multiple transcriptional promoters and alternative first exons that contribute another layer of complexity to gene expression mechanisms. Using a collection of more than 100 erythroid-expressed genes as a test group, we used genome browser tools and genetic databases to assess the frequency of alternative first exons in the genome. Remarkably, 35% of these erythroid genes show evidence of alternative first exons. The majority of the candidate first exons are situated upstream of the coding exons, whereas a few are located internally within the gene. Computational analyses predict transcriptional promoters closely associated with many of the candidate first exons, supporting their authenticity. Importantly, the frequent presence of consensus translation initiation sites among the alternative first exons suggests that many proteins have alternative N-terminal structures whose expression can be coupled to promoter choice. These findings indicate that alternative promoters and first exons are more widespread in the human genome than previously appreciated and that they may play a major role in regulating expression of selected protein isoforms in a tissue-specific manner.
Collapse
Affiliation(s)
- Jeff S Tan
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
194
|
Zhao Q, Zhou W, Rank G, Sutton R, Wang X, Cumming H, Cerruti L, Cunningham JM, Jane SM. Repression of human gamma-globin gene expression by a short isoform of the NF-E4 protein is associated with loss of NF-E2 and RNA polymerase II recruitment to the promoter. Blood 2005; 107:2138-45. [PMID: 16263792 PMCID: PMC1895715 DOI: 10.1182/blood-2005-06-2497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of the stage selector protein (SSP) to the stage selector element (SSE) in the human gamma-globin promoter contributes to the preferential expression of the gamma-gene in fetal erythroid cells. The SSP contains the transcription factor CP2 and an erythroid-specific partner, NF-E4. The NF-E4 gene encodes a 22-kDa polypeptide employing a non-AUG initiation codon. Antisera specific to NF-E4 detects this species and an additional 14 kDa protein, which initiates from an internal methionine. Enforced expression of p14 NF-E4 in the K562 fetal/erythroid cell line, and in primary erythroid cord blood progenitors, results in repression of gamma-gene expression. Biochemical studies reveal that p14 NF-E4 interacts with CP2, resulting in diminished association of CP2 with the SSE in chromatin immunoprecipitation assays. p45 NF-E2 recruitment to the gamma-promoter is also lost, resulting in a reduction in RNA polymerase II and TBP binding and a fall in promoter transcriptional activity. This effect is specific, as enforced expression of a mutant form of p14 NF-E4, which fails to interact with CP2, also fails to repress gamma-gene expression in K562 cells. These findings provide one potential mechanism that could contribute to the autonomous silencing of the human gamma-genes in adult erythroid cells.
Collapse
Affiliation(s)
- Quan Zhao
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital Research Foundation, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Le Sommer C, Lesimple M, Mereau A, Menoret S, Allo MR, Hardy S. PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation. Mol Cell Biol 2005; 25:9595-607. [PMID: 16227608 PMCID: PMC1265821 DOI: 10.1128/mcb.25.21.9595-9607.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/05/2005] [Accepted: 08/01/2005] [Indexed: 11/20/2022] Open
Abstract
The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRNA 3' end processing to the somite-specific pattern that results from the utilization of an upstream 3'-terminal exon designed exon 9A9'. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9' and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3' end processing of the alpha-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the Xenopus oocyte, we show that in addition to repressing the splicing of exon 9A9', PTB regulates the cleavage/polyadenylation of this 3'-terminal exon.
Collapse
Affiliation(s)
- Caroline Le Sommer
- UMR 6061 CNRS-Université de Rennes 1, IFR 140 Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
196
|
Kim DS, Gusti V, Pillai SG, Gaur RK. An artificial riboswitch for controlling pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2005; 11:1667-77. [PMID: 16244133 PMCID: PMC1370853 DOI: 10.1261/rna.2162205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Riboswitches, as previously reported, are natural RNA aptamers that regulate the expression of numerous bacterial metabolic genes in response to small molecule ligands. It has recently been shown that these RNA genetic elements are also present near the splice site junctions of plant and fungal introns, thus raising the possibility of their involvement in regulating mRNA splicing. Here it is shown for the first time that a riboswitch can be engineered to regulate pre-mRNA splicing in vitro. We show that insertion of a high-affinity theophylline binding aptamer into the 3' splice site (3' ss) region of a model pre-mRNA (AdML-Theo29AG) enables its splicing to be repressed by the addition theophylline. Our results indicate that the location of 3' ss AG within the aptamer plays a crucial role in conferring theophylline-dependent control of pre-mRNA splicing. We also show that theophylline-mediated control of pre-mRNA splicing is highly specific by first demonstrating that a small molecule ligand similar in shape and size to theophylline had no effect on the splicing of AdML-Theo29AG pre-mRNA. Second, theophylline failed to exert any influence on the splicing of a pre-mRNA that does not contain its binding site. Third, theophylline specifically blocks the step II of the splicing reaction. Finally, we provide evidence that theophylline-dependent control of pre-mRNA splicing is functionally relevant.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
197
|
Ladd AN, Stenberg MG, Swanson MS, Cooper TA. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 2005; 233:783-93. [PMID: 15830352 DOI: 10.1002/dvdy.20382] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac troponin T (cTNT) exon 5 splicing is developmentally regulated such that it is included in embryonic but not adult heart. CUG-BP and ETR-3-like factor (CELF) proteins promote exon inclusion, whereas polypyrimidine tract binding protein (PTB) and muscleblind-like (MBNL) proteins repress inclusion. In this study, we addressed what happens to these regulatory proteins during heart development to shift the regulatory balance of cTNT alternative splicing. Using dominant-negative proteins, we found that both CELF and PTB activities are required for appropriate splicing in cardiomyocytes. Two CELF proteins, CUG-BP and ETR-3, are nuclear and cytoplasmic in embryonic heart but are down-regulated in adult heart concomitant with loss of exon inclusion. In contrast, PTB and MBNL1 are expressed throughout heart development. The patterns of cTNT splicing and expression of its regulatory factors are conserved between mouse and chicken. Thus, alternative splicing is determined by a balance between positive and negative regulation, and modulation of expression levels of auxiliary splicing regulators may drive developmental splicing changes. ETR-3 and CUG-BP proteins are also down-regulated in other tissues during development, suggesting that CELF proteins play a broad role in developmental splicing regulation.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
198
|
Wang M, Marín A. Characterization and prediction of alternative splice sites. Gene 2005; 366:219-27. [PMID: 16226402 DOI: 10.1016/j.gene.2005.07.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 04/20/2005] [Accepted: 07/08/2005] [Indexed: 11/16/2022]
Abstract
Human alternative isoform, cryptic, skipped, and constitutive splice sites from the ALTEXTRON database were analysed regarding splice site strength, composition, GC content, position and binding site strength of polypyrimidine tract and branch site. Several features were identified which distinguish alternative isoform and cryptic splice sites, but not skipped splice sites from constitutive ones. These include splice site strength, introns GC content, U2AF35 binding site score, and oligonucleotide frequencies. For the predictive classification of splice sites, pattern recognition models for different splicing factor binding sites and oligonucleotide frequency models (OFMs) were combined using backpropagation networks. 67.45% of acceptor sites and 71.23% of donor sites are correctly classified by networks trained for classification of constitutive and alternative isoform/cryptic splice sites. A web-application for the prediction of alternative splice sites is available at http://es.embnet.org/~mwang/assp.html .
Collapse
Affiliation(s)
- Magnus Wang
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes 6, E-41012 Sevilla, Spain.
| | | |
Collapse
|
199
|
Pritsker M, Doniger TT, Kramer LC, Westcot SE, Lemischka IR. Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci U S A 2005; 102:14290-5. [PMID: 16183747 PMCID: PMC1242282 DOI: 10.1073/pnas.0502132102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 08/16/2005] [Indexed: 12/29/2022] Open
Abstract
Complete information regarding transcriptional and posttranscriptional gene regulation in stem cells is necessary to understand the regulation of self-renewal and differentiation. Alternative splicing is a prevalent mode of posttranscriptional regulation, and occurs in approximately one half of all mammalian genes. The frequency and functional impact of alternative splicing in stem cells are yet to be determined. In this study we combine computational and experimental methods to identify splice variants in embryonic and hematopoietic stem cells on a genome-wide scale. Using EST collections derived from stem cells, we detect alternative splicing in >1,000 genes. Systematic RT-PCR and sequencing studies show confirmation of computational predictions at a level of 80%. We find that alternative splicing can modify multiple components of signaling pathways important for stem cell function. We also analyze the distribution of splice variants across different classes of genes. We find that tissue-specific genes have a higher tendency to undergo alternative splicing than ubiquitously expressed genes. Furthermore, the patterns of alternative splicing are only weakly conserved between orthologous genes in human and mouse. Our studies reveal extensive modification of the stem cell molecular repertoire by alternative splicing and provide insights into its overall role as a mechanism of generating genomic diversity.
Collapse
Affiliation(s)
- Moshe Pritsker
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
200
|
Kan Z, Garrett-Engele PW, Johnson JM, Castle JC. Evolutionarily conserved and diverged alternative splicing events show different expression and functional profiles. Nucleic Acids Res 2005; 33:5659-66. [PMID: 16195578 PMCID: PMC1240112 DOI: 10.1093/nar/gki834] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To better decipher the functional impact of alternative splicing, we classified alternative splicing events in 10 818 pairs of human and mouse genes based on conservation at genome and transcript levels. Expression levels of conserved alternative splices in human and mouse expressed sequence tag databases show strong correlation, indicating that alternative splicing is similarly regulated in both species. A total of 43% (8921) of mouse alternative splices could be found in the human genome but not in human transcripts. Five of eleven tested mouse predictions were observed in human tissues, demonstrating that mouse transcripts provide a valuable resource for identifying alternative splicing events in human genes. Combining gene-specific measures of conserved and diverged alternative splicing with both gene classification based on Gene Ontology (GO) and microarray-determined gene expression in 52 diverse human tissues and cell lines, we found conserved alternative splicing most enriched in brain-expressed signaling pathways. Diverged alternative splicing is more prevalent in testis and cancerous cell line up-regulated processes, including protein biosynthesis, responses to stress and responses to endogenous stimuli. Using conservation as a surrogate for functional significance, these results suggest that alternative splicing plays an important role in enhancing the functional capacity of central nervous systems, while non-functional splicing more frequently occurs in testis and cell lines, possibly as a result of cellular stress and rapid proliferation.
Collapse
Affiliation(s)
| | | | | | - John C. Castle
- To whom correspondence should be addressed. Tel: +1 206 802 6337; Fax: +1 206 802 6411;
| |
Collapse
|