151
|
Kloc M, Liu Y, Zhang L, Tejpal N, Kubiak J, Ghobrial R, Li X. TCTP Silencing in Ovarian Cancer Cells Results in Actin Cytoskeleton Remodeling and Motility Increase. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1927-7229.2015.04.04.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
152
|
Jaiswal JK, Nylandsted J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 2015; 14:502-9. [PMID: 25565331 DOI: 10.1080/15384101.2014.995495] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca(2+) entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca(2+) entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca(2+)-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member--S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- a Center for Genetic Medicine Research ; Children's National Medical Center ; Washington , DC USA
| | | |
Collapse
|
153
|
Mardakheh FK, Paul A, Kümper S, Sadok A, Paterson H, Mccarthy A, Yuan Y, Marshall CJ. Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions. Dev Cell 2015; 35:344-57. [PMID: 26555054 PMCID: PMC4643311 DOI: 10.1016/j.devcel.2015.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/23/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Polarization of cells into a protrusive front and a retracting cell body is the hallmark of mesenchymal-like cell migration. Many mRNAs are localized to protrusions, but it is unclear to what degree mRNA localization contributes toward protrusion formation. We performed global quantitative analysis of the distributions of mRNAs, proteins, and translation rates between protrusions and the cell body by RNA sequencing (RNA-seq) and quantitative proteomics. Our results reveal local translation as a key determinant of protein localization to protrusions. Accordingly, inhibition of local translation destabilizes protrusions and inhibits mesenchymal-like morphology. Interestingly, many mRNAs localized to protrusions are translationally repressed. Specific cis-regulatory elements within mRNA UTRs define whether mRNAs are locally translated or repressed. Finally, RNAi screening of RNA-binding proteins (RBPs) enriched in protrusions revealed trans-regulators of localized translation that are functionally important for protrusions. We propose that by deciphering the localized mRNA UTR code, these proteins regulate protrusion stability and mesenchymal-like morphology.
Collapse
Affiliation(s)
- Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Angela Paul
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Sandra Kümper
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Hugh Paterson
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Afshan Mccarthy
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Yinyin Yuan
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Marshall
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
154
|
Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 2015; 37:4755-65. [PMID: 26515338 DOI: 10.1007/s13277-015-4304-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient's life quality.
Collapse
|
155
|
Ko YS, Cho SJ, Park J, Kim Y, Choi YJ, Pyo JS, Jang BG, Park JW, Kim WH, Lee BL. Loss of FOXO1 promotes gastric tumour growth and metastasis through upregulation of human epidermal growth factor receptor 2/neu expression. Br J Cancer 2015; 113:1186-96. [PMID: 26448177 PMCID: PMC4647872 DOI: 10.1038/bjc.2015.273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/04/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The biological significance of FOXO1, a member of the forkhead box O transcription factor family, in gastric cancer (GC) remains unclear. The present study provides direct evidence of the role of FOXO1 in tumour growth and metastasis of GC in relation to human epidermal growth factor receptor 2 (HER2). METHODS The expressions of FOXO1 and HER2 were modulated in GC cell lines (SNU-638, MKN45, SNU-216 and NCI-N87) by stable transfections. The effects of transfection on GC phenotypes were evaluated in vitro and in animal models. In addition, the relationship between FOXO1 and HER2 was analysed using GC clinical specimens, cell lines and xenografts. RESULTS FOXO1 silencing in GC cells increased colony formation and mesenchymal transition in vitro, as well as tumour growth and metastasis in nude mice, whereas HER2 silencing induced the opposite results.. Furthermore, an inverse relationship between FOXO1 and HER2 was found in clinical specimens of GC, GC cells and GC xenograft tumours. Although a negative crosstalk between these two molecules was shown, double knockdown of both FOXO1 and HER2 in GC cells revealed that HER2 silencing reversed the FOXO1 shRNA-induced migration and invasion even without the FOXO1 restoration. CONCLUSIONS Our results indicate that loss of FOXO1 promotes GC growth and metastasis by upregulating HER2 expression and that the HER2 expression is more critical to the induction of GC cell metastasis. The present study provides evidence that the FOXO1/HER2 pathway may regulate GC progression in a subgroup of GC patients.
Collapse
Affiliation(s)
- Young San Ko
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea
| | - Sung Jin Cho
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea
| | - Jinju Park
- Tumour Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Yong Joon Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jung-Soo Pyo
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju 690-767, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea.,Tumour Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 110-799, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| |
Collapse
|
156
|
Tyagi N, Bhardwaj A, Srivastava SK, Arora S, Marimuthu S, Deshmukh SK, Singh AP, Carter JE, Singh S. Development and Characterization of a Novel in vitro Progression Model for UVB-Induced Skin Carcinogenesis. Sci Rep 2015; 5:13894. [PMID: 26349906 PMCID: PMC4563561 DOI: 10.1038/srep13894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies suggest ultraviolet B (UVB) component (290-320 nm) of sun light is the most prevalent etiologic factor for skin carcinogenesis--a disease accounting for more than two million new cases each year in the USA alone. Development of UVB-induced skin carcinoma is a multistep and complex process. The molecular events that occur during UVB-induced skin carcinogenesis are poorly understood largely due to the lack of an appropriate cellular model system. Therefore, to make a progress in this area, we have developed an in vitro model for UVB-induced skin cancer using immortalized human epidermal keratinocyte (HaCaT) cells through repetitive exposure to UVB radiation. We demonstrate that UVB-transformed HaCaT cells gain enhanced proliferation rate, apoptosis-resistance, and colony- and sphere-forming abilities in a progressive manner. Moreover, these cells exhibit increased aggressiveness with enhanced migration and invasive potential and mesenchymal phenotypes. Furthermore, these derived cells are able to form aggressive squamous cell carcinoma upon inoculation into the nude mice, while parental HaCaT cells remain non-tumorigenic. Together, these novel, UVB-transformed progression model cell lines can be very helpful in gaining valuable mechanistic insight into UVB-induced skin carcinogenesis, identification of novel molecular targets of diagnostic and therapeutic significance, and in vitro screening for novel preventive and therapeutic agents.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Sanjeev K. Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Saravanakumar Marimuthu
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Sachin K. Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Ajay P. Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | - James E. Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| |
Collapse
|
157
|
Cheng F, Liu C, Lin CC, Zhao J, Jia P, Li WH, Zhao Z. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. PLoS Comput Biol 2015; 11:e1004497. [PMID: 26352260 PMCID: PMC4564226 DOI: 10.1371/journal.pcbi.1004497] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.
Collapse
Affiliation(s)
- Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chuang Liu
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Peilin Jia
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wen-Hsiung Li
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Biodiversity Research Center and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
158
|
Agajanian M, Runa F, Kelber JA. Identification of a PEAK1/ZEB1 signaling axis during TGFβ/fibronectin-induced EMT in breast cancer. Biochem Biophys Res Commun 2015; 465:606-12. [DOI: 10.1016/j.bbrc.2015.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
159
|
Lauritzen SP, Boye TL, Nylandsted J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 2015; 45:32-8. [DOI: 10.1016/j.semcdb.2015.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
|
160
|
Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep 2015; 3:603-610. [PMID: 26405532 DOI: 10.3892/br.2015.494] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration.
Collapse
Affiliation(s)
- B O Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yantian Fang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
161
|
Cheng J, Zhu X, Cheng H, Zhao H, Wong STC. A quantitative analysis of F-actin features and distribution in fluorescence microscopy images to distinguish cells with different modes of motility. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:136-9. [PMID: 24109643 DOI: 10.1109/embc.2013.6609456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Actin is one of the most abundant proteins in eukaryote cells, playing a key role in cell dynamic morphological alterations and tumor metastatic spread. To investigate the relationship between the distribution patterns of actin and the aggressiveness of cancer cells, we developed an image analysis framework for quantifying cell F-actin distributions examined with fluorescence microscopy. The images are first segmented with multichannel information of both F-actin and nuclear staining. Using the watershed method and Voronoi tessellation, the cells can be well segmented based on both F-actin and nuclear information. Altogether, sixteen F-actin distribution features are calculated for each individual cell. A linear Support Vector Machine (SVM) is then applied in the feature space to separate cells with different modes of motility. Our results show that cells with different modes of motility can be distinguished by F-actin distributions. To our knowledge, this is the first study managing to distinguish cancer cells with different aggressiveness based on quantitative analysis of F-actin distribution patterns.
Collapse
|
162
|
Randall JM, Millard F, Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev 2015; 33:1109-24. [PMID: 25365943 DOI: 10.1007/s10555-014-9533-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.
Collapse
Affiliation(s)
- J Michael Randall
- Department of Medicine, Division of Hematology/Oncology, UCSD Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, #0987, La Jolla, CA, 92093-0987, USA,
| | | | | |
Collapse
|
163
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
164
|
A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS One 2015; 10:e0125041. [PMID: 25928810 PMCID: PMC4416022 DOI: 10.1371/journal.pone.0125041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background Specific genes are methylated with high frequency in colorectal neoplasia, and may leak into blood. Detection of multiple methylated DNA biomarkers in blood may improve assay sensitivity for colorectal cancer (CRC) relative to a single marker. We undertook a case-control study evaluating the presence of two methylation DNA markers, BCAT1 and IKZF1, in circulation to determine if they were complementary for detection of CRC. Methods Methylation-specific PCR assays were developed to measure the level of methylated BCAT1 and IKZF1 in DNA extracted from plasma obtained from colonoscopy-confirmed 144 healthy controls and 74 CRC cases. Results DNA yields ranged from 2 to 730 ng/mL plasma (mean 18.6ng/mL; 95% CI 11-26 ng/mL) and did not correlate with gender, age or CRC status. Methylated BCAT1 and IKZF1 DNA were detected in respectively 48 (65%) and 50 (68%) of the 74 cancers. In contrast, only 5 (4%) and 7 (5%) controls were positive for BCAT1 and IKZF1 DNA methylation, respectively. A two-gene classifier model (“either or” rule) improved segregation of CRC from controls, with 57 of 74 cancers (77%) compared to only 11 of 144 (7.6%) controls being positive for BCAT1 and/or IKZF1 DNA methylation. Increasing levels of methylated DNA were observed as CRC stage progressed. Conclusions Detection of methylated BCAT1 and/or IKZF1 DNA in plasma may have clinical application as a novel blood test for CRC. Combining the results from the two methylation-specific PCR assays improved CRC detection with minimal change in specificity. Further validation of this two-gene blood test with a view to application in screening is now indicated.
Collapse
|
165
|
Grassilli S, Brugnoli F, Lattanzio R, Rossi C, Perracchio L, Mottolese M, Marchisio M, Palomba M, Nika E, Natali PG, Piantelli M, Capitani S, Bertagnolo V. High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process. Oncotarget 2015; 5:4320-36. [PMID: 24962430 PMCID: PMC4147326 DOI: 10.18632/oncotarget.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.
Collapse
Affiliation(s)
- Silvia Grassilli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. These authors contributed equally to this work
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. These authors contributed equally to this work
| | - Rossano Lattanzio
- Department of Experimental and Clinical Sciences, University "G. d'Annunzio" Chieti, Italy. Center of Excellence for Research on Aging, Foundation University "G. d'Annunzio", Chieti, Italy
| | - Cosmo Rossi
- Center of Excellence for Research on Aging, Foundation University "G. d'Annunzio", Chieti, Italy. Department of Biomorphology, University "G. D'Annunzio" Chieti, Italy
| | | | | | - Marco Marchisio
- Center of Excellence for Research on Aging, Foundation University "G. d'Annunzio", Chieti, Italy. Department of Biomorphology, University "G. D'Annunzio" Chieti, Italy
| | - Maria Palomba
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ervin Nika
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Mauro Piantelli
- Department of Experimental and Clinical Sciences, University "G. d'Annunzio" Chieti, Italy. Center of Excellence for Research on Aging, Foundation University "G. d'Annunzio", Chieti, Italy
| | - Silvano Capitani
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
166
|
Yoon J, Ko YS, Cho SJ, Park J, Choi YS, Choi Y, Pyo JS, Ye SK, Youn HD, Lee JS, Chang MS, Kim MA, Lee BL. Signal transducers and activators of transcription 3-induced metastatic potential in gastric cancer cells is enhanced by glycogen synthase kinase-3β. APMIS 2015; 123:373-82. [PMID: 25846563 DOI: 10.1111/apm.12370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/02/2015] [Indexed: 01/29/2023]
Abstract
The transcription factor signal transducers and activators of transcription 3 (STAT3) can promote cancer metastasis, but its underlying regulatory mechanisms in gastric cancer cell invasiveness still remain obscure. We investigated the relationship between STAT3 and glycogen synthase kinase-3β (GSK-3β) and its significance in metastatic potential in gastric cancer cells. Immunohistochemical tissue array analysis of 267 human gastric carcinoma specimens showed that the expressions of active forms of STAT3 (pSTAT3) and GSK-3β (pGSK-3β) were found in 68 (25%) and 124 (46%) of 267 gastric cancer cases, respectively, showing a positive correlation (p < 0.001). Cell culture experiments using gastric cancer cell lines SNU-638 and SNU-668 revealed that STAT3 suppression did not affect pGSK-3β expression, whereas GSK-3β inhibition reduced pSTAT3 expression. With respect to metastatic potential in gastric cancer cells, both STAT3 suppression and GSK-3β inhibition decreased cell migration, invasion, and mesenchymal marker (Snail, Vimentin, and MMP9) expression. Moreover, the inhibitory effects of STAT3 and GSK-3β on cell migration were synergistic. These results demonstrated that STAT3 and GSK-3β are positively associated and synergistically contribute to metastatic potential in gastric cancer cells. Thus, dual use of STAT3 and GSK-3β inhibitors may enhance the efficacy of the anti-metastatic treatment of gastric cancer.
Collapse
Affiliation(s)
- Jiyeon Yoon
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Shankar J, Nabi IR. Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One 2015; 10:e0119954. [PMID: 25756282 PMCID: PMC4355409 DOI: 10.1371/journal.pone.0119954] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is associated with loss of the cell-cell adhesion molecule E-cadherin and disruption of cell-cell junctions as well as with acquisition of migratory properties including reorganization of the actin cytoskeleton and activation of the RhoA GTPase. Here we show that depolymerization of the actin cytoskeleton of various metastatic cancer cell lines with Cytochalasin D (Cyt D) reduces cell size and F-actin levels and induces E-cadherin expression at both the protein and mRNA level. Induction of E-cadherin was dose dependent and paralleled loss of the mesenchymal markers N-cadherin and vimentin. E-cadherin levels increased 2 hours after addition of Cyt D in cells showing an E-cadherin mRNA response but only after 10-12 hours in HT-1080 fibrosarcoma and MDA-MB-231 cells in which E-cadherin mRNA level were only minimally affected by Cyt D. Cyt D treatment induced the nuclear-cytoplasmic translocation of EMT-associated SNAI 1 and SMAD1/2/3 transcription factors. In non-metastatic MCF-7 breast cancer cells, that express E-cadherin and represent a cancer cell model for EMT, actin depolymerization with Cyt D induced elevated E-cadherin while actin stabilization with Jasplakinolide reduced E-cadherin levels. Elevated E-cadherin levels due to Cyt D were associated with reduced activation of Rho A. Expression of dominant-negative Rho A mutant increased and dominant-active Rho A mutant decreased E-cadherin levels and also prevented Cyt D induction of E-cadherin. Reduced Rho A activation downstream of actin remodelling therefore induces E-cadherin and reverses EMT in cancer cells. Cyt D treatment inhibited migration and, at higher concentrations, induced cytotoxicity of both HT-1080 fibrosarcoma cells and normal Hs27 fibroblasts, but only induced mesenchymal-epithelial transition in HT-1080 cancer cells. Our studies suggest that actin remodelling is an upstream regulator of EMT in metastatic cancer cells.
Collapse
Affiliation(s)
- Jay Shankar
- Departments of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan R Nabi
- Departments of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
168
|
Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, Bergan RC. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 2015; 5:2648-63. [PMID: 24798191 PMCID: PMC4058034 DOI: 10.18632/oncotarget.1917] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is the most common form of cancer in American men. Mortality from PCa is caused by the movement of cancer cells from the primary organ to form metastatic tumors at distant sites. Heat shock protein 27 (HSP27) is known to increase human PCa cell invasion and its overexpression is associated with metastatic disease. The role of HSP27 in driving PCa cell movement from the prostate to distant metastatic sites is unknown. Increased HSP27 expression increased metastasis as well as primary tumor mass. In vitro studies further examined the mechanism of HSP27-induced metastatic behavior. HSP27 did not affect cell detachment, adhesion, or migration, but did increase cell invasion. Cell invasion was dependent upon matrix metalloproteinase 2 (MMP-2), whose expression was increased by HSP27. In vivo, HSP27 induced commensurate changes in MMP-2 expression in tumors. These findings demonstrate that HSP27 drives metastatic spread of cancer cells from the prostate to distant sites, does so across a continuum of expression levels, and identifies HSP27-driven increases in MMP-2 expression as functionally relevant. These findings add to prior studies demonstrating that HSP27 increases PCa cell motility, growth and survival. Together, they demonstrate that HSP27 plays an important role in PCa progression.
Collapse
Affiliation(s)
- Eric A Voll
- Department of Medicine, Northwestern University, 303 E Superior, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
169
|
eIF4E is an adverse prognostic marker of melanoma patient survival by increasing melanoma cell invasion. J Invest Dermatol 2015; 135:1358-1367. [PMID: 25562667 DOI: 10.1038/jid.2014.552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 12/26/2022]
Abstract
Human cutaneous melanoma is a devastating skin cancer because of its invasive nature and high metastatic potential. We used tissue microarray to study the role of human eukaryotic translation initiation factor 4E (eIF4E) in melanoma progression in 448 melanocytic lesions and found that high eIF4E expression was significantly increased in primary melanomas compared with dysplastic nevi (P<0.001), and further increased in metastatic melanomas (P<0.001). High eIF4E expression was associated with melanoma thickness (P=0.046), and poor overall and disease-specific 5-year survival of all, and primary melanoma patients, especially those with tumors ≥1 mm thick. Multivariate Cox regression analysis revealed that eIF4E is an independent prognostic marker. eIF4E knockdown (KD) in melanoma cells resulted in a significant increase in apoptosis (sub-G1 populations) and decrease in cell proliferation, and also resulted in downregulation of mesenchymal markers and upregulation of E-cadherin. In addition, eIF4E KD led to a decrease in melanoma cell invasion, matrix metalloproteinase-2 expression and activity, c-myc and BCL2 expression, and an increase in cleaved PARP and cleaved caspase-3 expression and chemosensitivity. Taken together, our data suggest that the eIF4E may promote melanoma cell invasion and metastasis, and may also serve as a promising prognostic marker and a potential therapeutic target for melanoma.
Collapse
|
170
|
Dalmau N, Jaumot J, Tauler R, Bedia C. Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. MOLECULAR BIOSYSTEMS 2015; 11:3397-406. [DOI: 10.1039/c5mb00413f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays a crucial role in cancer metastasis.
Collapse
Affiliation(s)
- Núria Dalmau
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | - Romà Tauler
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | - Carmen Bedia
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
171
|
Dong Y, Zhang T, Li J, Deng H, Song Y, Zhai D, Peng Y, Lu X, Liu M, Zhao Y, Yi Z. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling. PLoS One 2014; 9:e113830. [PMID: 25485753 PMCID: PMC4259472 DOI: 10.1371/journal.pone.0113830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs) proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.
Collapse
Affiliation(s)
- Yanmin Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjie Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Huayun Deng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yajuan Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dong Zhai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Peng
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd, Nanning, Guangxi 530021, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, United States of America
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd, Nanning, Guangxi 530021, China
- * E-mail: (ZY); (YZ)
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- * E-mail: (ZY); (YZ)
| |
Collapse
|
172
|
Fung KYY, Dai L, Trimble WS. Cell and molecular biology of septins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:289-339. [PMID: 24725429 DOI: 10.1016/b978-0-12-800180-6.00007-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Lu Dai
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
173
|
An eIF4E-interacting peptide induces cell death in cancer cell lines. Cell Death Dis 2014; 5:e1500. [PMID: 25356869 PMCID: PMC4237268 DOI: 10.1038/cddis.2014.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
The eukaryotic initiation factor eIF4E is essential for cap-dependent initiation of translation in eukaryotes. Abnormal regulation of eIF4E has been implicated in oncogenic transformation. We developed an eIF4E-binding peptide derived from Angel1, a partner of eIF4E that we recently identified. We show here that this peptide fused to a penetratin motif causes drastic and rapid cell death in several epithelial cancer cell lines. This necrotic cell death was characterized by a drop in ATP levels with F-actin network injury being a key step in extensive plasma membrane blebbing and membrane permeabilization. This synthetic eIF4E-binding peptide provides a candidate pharmacophore for a promising new cancer therapy strategy.
Collapse
|
174
|
Griner NB, Young D, Chaudhary P, Mohamed AA, Huang W, Chen Y, Sreenath T, Dobi A, Petrovics G, Vishwanatha JK, Sesterhenn IA, Srivastava S, Tan SH. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res 2014; 13:368-79. [PMID: 25344575 DOI: 10.1158/1541-7786.mcr-14-0275-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Overexpression of ERG in the prostate epithelium, due to chromosomal translocations, contributes to prostate tumorigenesis. Here, genomic analysis of ERG siRNA-treated prostate cells harboring the endogenous TMPRSS2-ERG fusion revealed an inverse relationship between ERG and Annexin A2 (ANXA2) expression at both the RNA and protein level. ANXA2, a Ca(2+)-dependent and phospholipid-binding protein, is involved in various cellular functions, including maintenance of epithelial cell polarity. Mechanistic studies defined the prostate-specific transcription start site of ANXA2 and showed that the recruitment of ERG to the ANXA2 promoter is required for transcriptional repression by ERG. Knockdown of ERG enhanced the apical localization of ANXA2, the bundling of actin filaments at cell-cell junctions and formation of a polarized epithelial phenotype. ERG overexpression disrupted ANXA2-mediated cell polarity and promoted epithelial-mesenchymal transition (EMT) by inhibiting CDC42 and RHOA, and by activating cofilin. Immunohistochemistry demonstrated a reciprocal relationship of ANXA2 and ERG expression in a large fraction of primary prostate cancer clinical specimens. ANXA2 was absent or markedly reduced in ERG(+) tumors, which were mostly well differentiated. ERG(-) tumors, meanwhile, expressed moderate to high levels of ANXA2, and were either poorly differentiated or displayed subsets of poorly differentiated cells. Taken together, the transcriptional repression of ANXA2 by ERG in prostate epithelial cells plays a critical role in abrogating differentiation, promoting EMT, and in the reciprocal correlation of ERG and ANXA2 expression observed in human prostate cancer. IMPLICATIONS ANXA2 is a new component of the ERG network with potential to enhance biologic stratification and therapeutic targeting of ERG-stratified prostate cancers.
Collapse
Affiliation(s)
- Nicholas B Griner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Pankaj Chaudhary
- Department of Molecular and Medical Genetics, Texas Center for Health Disparities and the Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Taduru Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics, Texas Center for Health Disparities and the Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, Maryland.
| |
Collapse
|
175
|
Mimae T, Ito A. New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:538-46. [PMID: 25461796 DOI: 10.1016/j.bbapap.2014.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Pseudopodia are ventral membrane protrusions that extend toward higher concentrations of chemoattractants and play key roles in cell migration and cancer cell invasion. Cancers, including carcinoma and sarcoma, become life threatening when they invade surrounding structures and other organs. Understanding the molecular basis of invasiveness is important for the elimination of cancers. Thus, determining the pseudopodial composition will offer insights into the mechanisms underlying tumor cell invasiveness and provide potential biomarkers and therapeutic targets. Pseudopodial composition has been extensively investigated by using proteomic approaches. A variety of modalities, including gel-based and mass spectrometry-based methods, have been employed for pseudopodial proteomics. Our research group recently established a novel method using excimer laser pulses to selectively harvest pseudopodia, and we successfully identified a number of new pseudopodial constituents. Here, we summarized the conventional proteomic procedures and describe our new excimer laser-assisted method, with a special emphasis on the differences in the methods used to isolate pseudopodia. In addition, we discussed the theoretical background for the use of excimer laser-mediated cell ablation in proteomic applications. Using the excimer laser-assisted method, we showed that alpha-parvin, an actin-binding adaptor protein, is localized to pseudopodia, and is involved in breast cancer invasiveness. Our results clearly indicate that excimer laser-assisted cell etching is a useful technique for pseudopodial proteomics. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| |
Collapse
|
176
|
Guo Q, Qin W, Li B, Yang H, Guan J, Liu Z, Li S. Analysis of a cytoskeleton-associated kinase PEAK1 and E-cadherin in gastric cancer. Pathol Res Pract 2014; 210:793-8. [PMID: 25445115 DOI: 10.1016/j.prp.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/24/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
The expression of pseudopodium-enriched atypical kinase 1(PEAK1) has been studied in human cancers. However, their roles in gastric cancer are still unknown. In this study, gastric cancer tissue microarrays were constructed with 159 gastric cancer tissue samples, 150 non-neoplastic gastric epithelium specimens and 152 lymph node samples. Immunohistochemical staining for PEAK1 and E-cadherin was performed. Our study found negative expression of PEAK1 in 113 of 159 (71.1%) gastric cancers, in 46 of 150 (30.7%) non-neoplastic gastric epithelium tissues and in 69 of 94 (73.4%) metastatic lymph nodes. Negative expression of PEAK1 and E-cadherin associated with tumor grading, depth of invasion, lymph node metastases, pTNM stage and macroscopic type. Patients with either positive PEAK1 or E-cadherin expression had a significantly higher survival than those with negative expression. When combined, PEAK1(-)/E-cadherin(-) had a significantly poor prognosis than the rest of the patients. The expression of PEAK1 protein was positively correlated with E-cadherin in cancer tissues. Cox regression analyses showed that PEAK1, E-cadherin and PEAK1(-)/E-cadherin(-) were independent predictors of overall survival. In conclusion, our findings suggest that loss of PEAK1 may play an important role in carcinogenesis and development of gastric cancer through activating epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Qingqu Guo
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| | - Wenjie Qin
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Baozhong Li
- Department of Oncosurgery, Anyang Tumor Hospital, Anyang, Henan Province, PR China
| | - Haijun Yang
- Department of Pathology, Anyang Tumor Hospital, Anyang, Henan Province, PR China
| | - Jianyun Guan
- Department of Oncosurgery, Anyang Tumor Hospital, Anyang, Henan Province, PR China
| | - Zhiqiang Liu
- Department of Oncosurgery, Anyang Tumor Hospital, Anyang, Henan Province, PR China
| | - Shoumiao Li
- Department of Oncosurgery, Anyang Tumor Hospital, Anyang, Henan Province, PR China
| |
Collapse
|
177
|
Davis TA, Loos B, Engelbrecht AM. AHNAK: the giant jack of all trades. Cell Signal 2014; 26:2683-93. [PMID: 25172424 DOI: 10.1016/j.cellsig.2014.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
The nucleoprotein AHNAK is an unusual and somewhat mysterious scaffolding protein characterised by its large size of approximately 700 kDa. Several aspects of this protein remain uncertain, including its exact molecular function and regulation on both the gene and protein levels. Various studies have attempted to annotate AHNAK and, notably, protein interaction and expression analyses have contributed greatly to our current understanding of the protein. The implicated biological processes are, however, very diverse, ranging from a role in the formation of the blood-brain barrier, cell architecture and migration, to the regulation of cardiac calcium channels and muscle membrane repair. In addition, recent evidence suggests that AHNAK might be yet another accomplice in the development of tumour metastasis. This review will discuss the different functional roles of AHNAK, highlighting recent advancements that have added foundation to the proposed roles while identifying ties between them. Implications for related fields of research are noted and suggestions for future research that will assist in unravelling the function of AHNAK are offered.
Collapse
Affiliation(s)
- T A Davis
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa.
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| |
Collapse
|
178
|
Naiditch JA, Jie C, Lautz TB, Yu S, Clark S, Voronov D, Chu F, Madonna MB. Mesenchymal change and drug resistance in neuroblastoma. J Surg Res 2014; 193:279-88. [PMID: 25128389 DOI: 10.1016/j.jss.2014.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. MATERIALS AND METHODS Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. RESULTS Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. CONCLUSIONS Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state.
Collapse
Affiliation(s)
- Jessica A Naiditch
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Chunfa Jie
- Whole Genome Core Facility, Northwestern University, Chicago, Illinois
| | - Timothy B Lautz
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Songtao Yu
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Sandra Clark
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Dimitry Voronov
- Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Fei Chu
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois.
| | - Mary Beth Madonna
- Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois; Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
179
|
Jaiswal JK, Lauritzen SP, Scheffer L, Sakaguchi M, Bunkenborg J, Simon SM, Kallunki T, Jäättelä M, Nylandsted J. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 2014; 5:3795. [PMID: 24806074 PMCID: PMC4026250 DOI: 10.1038/ncomms4795] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/02/2014] [Indexed: 12/30/2022] Open
Abstract
Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein upregulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells. Plasma membrane injury-induced entry of calcium into the cell triggers recruitment of S100A11 and Annexin A2 to the site of injury. We show that S100A11 in a complex with Annexin A2 helps reseal the plasma membrane by facilitating polymerization of cortical F-actin and excision of the damaged part of the plasma membrane. These data reveal plasma membrane repair in general and S100A11 and Annexin A2 in particular as new targets for the therapy of metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington, District of Columbia 20010-2970, USA
| | - Stine P Lauritzen
- Unit for Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Luana Scheffer
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington, District of Columbia 20010-2970, USA
| | - Masakiyo Sakaguchi
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Kitaku, 2-5-1 Shikajta-cho, Okayama 700-8558, Japan
| | - Jakob Bunkenborg
- Department of Clinical Biochemistry, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Tuula Kallunki
- Unit for Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Unit for Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Unit for Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| |
Collapse
|
180
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Goonesekere NCW, Wang X, Ludwig L, Guda C. A meta analysis of pancreatic microarray datasets yields new targets as cancer genes and biomarkers. PLoS One 2014; 9:e93046. [PMID: 24740004 PMCID: PMC3989178 DOI: 10.1371/journal.pone.0093046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/28/2014] [Indexed: 12/22/2022] Open
Abstract
The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a five year survival rate of less than 5%. Improved screening for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity. In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated 800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.
Collapse
Affiliation(s)
- Nalin C. W. Goonesekere
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Xiaosheng Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lindsey Ludwig
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
182
|
Tu TY, Wang Z, Bai J, Sun W, Peng WK, Huang RYJ, Thiery JP, Kamm RD. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Adv Healthc Mater 2014; 3:609-16. [PMID: 23983140 PMCID: PMC4038742 DOI: 10.1002/adhm.201300151] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/04/2013] [Indexed: 01/27/2023]
Abstract
Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories. Polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polystyrene (PS) microwells are investigated, and each produces distinctive microwell features. Among these three materials, PS cell culture dishes produce the optimal surface smoothness and roundness. A549 lung cancer cells are grown to form cancer aggregates of controllable size from ≈40 to ≈80 μm in PS microwells. Functional assays of spheroids are performed to study migration on 2D substrates and in 3D hydrogel conditions as a step towards recapitulating the dissemination of cancer cells. Preclinical anti-cancer drug screening is investigated and reveals considerable differences between 2D and 3D conditions, indicating the importance of assay type as well as the utility of the present approach.
Collapse
Affiliation(s)
- Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Zhe Wang
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Wei Sun
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Weng Kung Peng
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore MD6, Medical Drive, Singapore 117456, Singapore
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology (IMCB), A-STAR Departement of Biochemistry School of Medicine, National University of Singapore Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Roger D. Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| |
Collapse
|
183
|
Yin X, Kim RH, Sun G, Miller JK, Li BD. Overexpression of Eukaryotic Initiation Factor 4E Is Correlated with Increased Risk for Systemic Dissemination in Node-Positive Breast Cancer Patients. J Am Coll Surg 2014; 218:663-71. [DOI: 10.1016/j.jamcollsurg.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
184
|
Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model. Br J Cancer 2014; 110:2000-10. [PMID: 24642616 PMCID: PMC3992501 DOI: 10.1038/bjc.2014.141] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Emergence of castration-resistance in prostate cancer (PCa) is invariably associated with aggressive and metastatic disease. Previously, we reported promotion of castration-resistance upon downregulation of PPP2CA (encoding catalytic subunit of protein phosphatase 2A (PP2A), α-isoform); however, its role in PCa growth and metastasis remained undetermined. METHODS PPP2CA was overexpressed/silenced in PCa cells by stable transfection. Gene expression was examined by reverse transcription polymerase chain reaction, immunoblot and immunofluorescence analyses, and transcriptional activity measured by luciferase-based promoter-reporter assay. Effect on PCa phenotype was studied in vitro and in orthotopic mouse model, and immunohistochemical/histological analyses performed to assess proliferation/apoptosis and confirm metastatic lesions. RESULTS An inverse association of PPP2CA expression was observed with epithelial-to-mesenchymal transition (EMT) and aggressive PCa phenotype. PPP2CA restoration resulted in decreased nuclear accumulation and transcriptional activity of β-catenin/NF-κB, and restitution of their activity abrogated PPP2CA-induced EMT reversal and suppression of PCa invasiveness. Akt mediated PPP2CA loss-induced nuclear accumulation of β-catenin/NF-κB through inactivation of Gsk3-β and IκB-α, respectively. Animal studies revealed a suppressive effect of PPP2CA expression on PCa growth and metastasis. CONCLUSIONS Our findings suggest that PPP2CA downregulation serves as a molecular link between gain of castration-resistance and aggressive PCa phenotype, and its restoration could be an effective preventive/therapeutic approach against the advanced disease.
Collapse
|
185
|
Weller P, Bankfalvi A, Gu X, Dominas N, Lehnerdt GF, Zeidler R, Lang S, Brandau S, Dumitru CA. The role of tumour FoxP3 as prognostic marker in different subtypes of head and neck cancer. Eur J Cancer 2014; 50:1291-300. [PMID: 24630394 DOI: 10.1016/j.ejca.2014.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
Abstract
Expression of the forkhead transcription factor (FoxP3)--an established marker of regulatory T cells--has been found in other cell types as well, including tumour cells. Recent studies indicated that high tumour FoxP3 expression might be associated with a poor outcome of patients with several types of solid cancers. Here, we investigated the role of FoxP3 expressed by the tumour cells in the prognosis of larynx and oro-hypopharynx squamous cell carcinoma (LSCC and OHSCC)--two major subtypes of head and neck cancer. To this end, we analysed by immunohistochemistry the expression of tumour FoxP3 in tissues from 83 LSCC and 89 OHSCC patients in relation to overall survival. In multivariate analysis we found that high tumour FoxP3 expression significantly associated with poor survival in OHSCC but not in LSCC patients. In further studies, we combined the prognostic value of FoxP3 with selected markers of inflammation (cyclooxygenase-2; COX2) or with markers of enhanced tumour migration/invasion (AHNAK and CORTACTIN). Interestingly, we found that the combination of FoxP3 and AHNAK (in LSCC) or FoxP3 and CORTACTIN (in OHSCC) had significantly stronger prognostic values than either marker analysed individually. Combination of FoxP3 and COX2 enhanced the prognostic accuracy only in OHSCC. Thus, our study identifies novel individual and combination markers that might have enhanced and distinct prognostic relevance in different subtypes of head and neck cancer.
Collapse
Affiliation(s)
- Patrick Weller
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Agnes Bankfalvi
- Department of Pathology/Neuropathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Xiang Gu
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Nina Dominas
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Götz F Lehnerdt
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, Ludwig Maximilians University, Marchioninistrasse 15-25, 81377 Munich, Germany; Research Unit Gene Vectors, German Research Center for Environmental Health, Marchioninistrasse 15-25, 81377 Munich, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Claudia A Dumitru
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| |
Collapse
|
186
|
Koushik AB, Welter BH, Rock ML, Temesvari LA. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2014; 13:401-11. [PMID: 24442890 PMCID: PMC3957588 DOI: 10.1128/ec.00329-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
Collapse
Affiliation(s)
- Amrita B. Koushik
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Michelle L. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
187
|
Zhang W, Choi DS, Nguyen YH, Chang J, Qin L. Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep 2014; 3:2332. [PMID: 23900274 PMCID: PMC3728601 DOI: 10.1038/srep02332] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023] Open
Abstract
This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
188
|
Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol 2014; 16:64-77. [PMID: 23931152 PMCID: PMC3921270 DOI: 10.1111/cmi.12180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium- and phospholipid-binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS-mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho-family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.
Collapse
Affiliation(s)
- Carrie Jolly
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Seth Winfree
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Olivia Steele-Mortimer
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| |
Collapse
|
189
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
190
|
Luo X, Xie H, Long X, Zhou M, Xu Z, Shi B, Jiang H, Li Z. EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression. PLoS One 2013; 8:e83332. [PMID: 24376686 PMCID: PMC3869758 DOI: 10.1371/journal.pone.0083332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently aberrantly expressed in cancer, and abnormal signalling downstream of this receptor contributes to tumour growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. Aberrant signalling downstream of this receptor contributes to tumour invasion. We previously reported that EGFRvIII can promote hepatocellular carcinoma (HCC) invasion. However, little is known concerning the mechanisms underlying EGFRvIII-mediated increases in cell motility and invasion in HCC. In this study, we observed that S100A11 was significantly upregulated in Huh-7 cells that overexpressed EGFRvIII. Moreover, S100A11 expression was elevated in HCC tissue samples (68.6%; 35/51), and this elevation was correlated with EGFRvIII expression (p = 0.0020; n = 20). Furthermore, the overexpression of S100A11 can promote HCC cell invasiveness, whereas siRNA against S100A11 can suppress the invasiveness of HCC cells stably transfected with EGFRvIII. Additionally, STAT3 inhibitors can block S100A11 expression and S100A11 promoter activity in HCC cells with stable overexpression of EGFRvIII. Furthermore, mutation in STATx binding sites could abolish the S1000A11 promoter activity stimulation by EGFRvIII. Taken together, the results demonstrate that the EGFRvIII-STAT3 pathway promotes cell migration and invasion by upregulating S100A11.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailong Xie
- Cancer Research Institute, University of South China; Hengyang, Hunan, China
| | - Xiaolan Long
- Cancer Research Institute, University of South China; Hengyang, Hunan, China
| | - Min Zhou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhibin Xu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
191
|
Lemmo S, Nasrollahi S, Tavana H. Aqueous biphasic cancer cell migration assay enables robust, high-throughput screening of anti-cancer compounds. Biotechnol J 2013; 9:426-34. [PMID: 24265131 DOI: 10.1002/biot.201300227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/13/2013] [Accepted: 11/19/2013] [Indexed: 11/07/2022]
Abstract
Migration of tumor cells is a fundamental event implicated in metastatic progression of cancer. Therapeutic compounds with the ability to inhibit the motility of cancer cells are critical for preventing cancer metastasis. Achieving this goal requires new technologies that enable high-throughput drug screening against migration of cancer cells and expedite drug discovery. We report an easy-to-implement, robotically operated, cell migration microtechnology with the capability of simultaneous screening of multiple compounds. The technology utilizes a fully biocompatible polymeric aqueous two-phase system to pattern a monolayer of cells containing a cell-excluded gap that serves as the migration niche. We adapted this technology to a standard 96-well plate format and parametrically optimized it to generate highly consistent migration niches. The analysis of migration is done automatically using computerized schemes. We use statistical metrics and show the robustness of this assay for drug screening and its sensitivity to identify effects of different drug compounds on migration of cancer cells. This technology can be employed in core centers, research laboratories, and pharmaceutical industries to evaluate the efficacy of compounds against migration of various types of metastatic cancer cells prior to expensive animal tests and thus, streamline anti-migratory drug screening.
Collapse
Affiliation(s)
- Stephanie Lemmo
- Department of Biomedical Engineering, The University of Akron, Akron, OH, USA
| | | | | |
Collapse
|
192
|
Sudo H, Tsuji AB, Sugyo A, Abe M, Hino O, Saga T. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma. Int J Oncol 2013; 44:530-8. [PMID: 24253341 DOI: 10.3892/ijo.2013.2183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/10/2013] [Indexed: 11/06/2022] Open
Abstract
The worldwide incidence of the highly aggressive tumor mesothelioma is expected to increase. Mesothelioma is classified into three main histological subtypes: epithelioid, sarcomatoid and biphasic. Although the pathological diagnostic markers for epithelioid are established, to date no adequate marker for sarcomatoid mesothelioma has been found. Thus, a reliable diagnostic marker of sarcomatoid mesothelioma is necessary. In this study, to identify an unknown protein with 120 kDa expressed only in the mesothelioma cell line 211H, we conducted proteomic analysis and found five candidate proteins. One such protein, AHNAK, was highly expressed in all seven mesothelioma cell lines (211H, H28, H226, H2052, H2452, MESO1 and MESO4), but not in the mesothelial cell line MeT-5A by RT-PCR and immunofluorescence staining. Furthermore, we confirmed high AHNAK expression not only in xenografts but also in human mesothelioma specimens including sarcomatoid, epithelioid and biphasic mesothelioma using immunohistochemical staining. These findings suggest that AHNAK has the potential to be a new marker for detecting mesothelioma. Since AHNAK is involved in cell migration and invasion in other metastatic tumor cells, we conducted migration and invasion assays in mesothelioma cell lines. The number of migrating cells in six of seven mesothelioma cell lines and the number of invading cells in all seven cell lines were significantly increased compared with those in MeT-5A. Knockdown of AHNAK significantly reduced the cell migration and invasion ability in all seven mesothelioma cell lines. These results support further clinical evaluation of the association of AHNAK and metastasis in mesothelioma.
Collapse
Affiliation(s)
- Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263‑8555, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263‑8555, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263‑8555, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263‑8555, Japan
| |
Collapse
|
193
|
Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. ACTA ACUST UNITED AC 2013; 201:1069-84. [PMID: 23798731 PMCID: PMC3691458 DOI: 10.1083/jcb.201210152] [Citation(s) in RCA: 982] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration through 3D tissue depends on a physicochemical balance between cell deformability and physical tissue constraints. Migration rates are further governed by the capacity to degrade ECM by proteolytic enzymes, particularly matrix metalloproteinases (MMPs), and integrin- and actomyosin-mediated mechanocoupling. Yet, how these parameters cooperate when space is confined remains unclear. Using MMP-degradable collagen lattices or nondegradable substrates of varying porosity, we quantitatively identify the limits of cell migration by physical arrest. MMP-independent migration declined as linear function of pore size and with deformation of the nucleus, with arrest reached at 10% of the nuclear cross section (tumor cells, 7 µm²; T cells, 4 µm²; neutrophils, 2 µm²). Residual migration under space restriction strongly depended upon MMP-dependent ECM cleavage by enlarging matrix pore diameters, and integrin- and actomyosin-dependent force generation, which jointly propelled the nucleus. The limits of interstitial cell migration thus depend upon scaffold porosity and deformation of the nucleus, with pericellular collagenolysis and mechanocoupling as modulators.
Collapse
Affiliation(s)
- Katarina Wolf
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Thomsen R, Pallesen J, Daugaard TF, Børglum AD, Nielsen AL. Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia 2013; 61:1922-37. [DOI: 10.1002/glia.22569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Rune Thomsen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Jonatan Pallesen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | | | - Anders D. Børglum
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Psychiatric Research; Aarhus University Hospital; Aarhus Denmark
| | - Anders L. Nielsen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
195
|
Direct RNA sequencing mediated identification of mRNA localized in protrusions of human MDA-MB-231 metastatic breast cancer cells. J Mol Signal 2013; 8:9. [PMID: 24004954 PMCID: PMC3844448 DOI: 10.1186/1750-2187-8-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/20/2013] [Indexed: 01/13/2023] Open
Abstract
Background Protrusions of cancer cells conferrers a vital function for cell migration and metastasis. Protein and RNA localization mechanisms have been extensively examined and shown to play pivotal roles for the functional presence of specific protein components in cancer cell protrusions. Methods To describe genome wide RNA localized in protrusions of the metastatic human breast cancer cell line MDA-MB-231 we used Boyden chamber based methodology followed by direct mRNA sequencing. Results In the hereby identified group of protrusion localized mRNA some previously were described to be localized exemplified by mRNA for Ras-Related protein 13 (RAB13) and p0071 (Plakophilin-4/PKP4). For other transcripts, exemplified by mRNA for SH3PXD2A/TKS5 and PPFIA1/Liprin-α1, only the corresponding proteins previously were described to have protrusion localization. Finally, a cohort of MDA-MB-231 protrusion localized transcripts represents novel candidates to mediate cancer cell subcellular region specific functions through mRNA direction to protrusions. We included a further characterization of p0071, an armadillo repeat protein of adherence junctions and desmosomes, in MDA-MB-231 and non-metastatic MCF7 cells including analysis of novel identified alternative spliced p0071 mRNA isoforms. The results showed isoform and cell type specific p0071 mRNA localization. Conclusions Altogether, the presented data represents a genome wide and gene specific descriptive and functional analyses of RNA localization in protrusions of MDA-MB-231 metastatic cancer cells.
Collapse
|
196
|
Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 2013; 13:398. [PMID: 23988185 PMCID: PMC3837632 DOI: 10.1186/1471-2407-13-398] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022] Open
Abstract
Background The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. Methods Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). Results Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. Conclusions Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to acquire hypermethylation subsequent to epithelial cells, possibly through field effects. The region in SEPT9 with disease-related hypermethylation also contains the CpGs targeted by a novel blood-based screening test (Epi proColon®), providing further support for the clinical relevance of this biomarker.
Collapse
|
197
|
Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013; 341:111-26. [PMID: 23933176 DOI: 10.1016/j.canlet.2013.08.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers.
Collapse
|
198
|
Circulating methylated septin 9 nucleic Acid in the plasma of patients with gastrointestinal cancer in the stomach and colon. Transl Oncol 2013; 6:290-6. [PMID: 23730408 DOI: 10.1593/tlo.13118] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Methylated Septin 9 (mSEPT9) in plasma has recently been suggested as a screening marker for colorectal cancer (CRC) with variable sensitivity. We aimed to determine the usefulness of plasma mSEPT9 for screening CRC and gastric cancer (GC) and its diagnostic role in postoperative CRC patients. METHODS A total of 350 peripheral blood samples from 101 CRC patients, 153 GC patients, and 96 healthy persons were collected. In addition, we obtained 35 follow-up blood samples from 27 CRC patients after curative radical surgery. Plasma mSEPT9, serum carcinoembryonic antigen (CEA), and serum CA19-9 were evaluated with clinicopathologic features. RESULTS The sensitivity of plasma mSEPT9 was 36.6% for detecting CRC and 17.7% for detecting GC, and the specificity was 90.6%. During follow-up periods, mSEPT9 showed negative conversion in eight of nine CRC patients (88.9%) whose plasma mSEPT9 had been positive before radical surgery. The patients with plasma mSEPT9 had a tendency of presence of distant metastasis and lower disease-free survival in both CRC and GC. In GC patients, plasma mSEPT9 was more frequently observed in intestinal (23.5%) and mixed type (40.0%) than diffuse type (7.3%; P =.009). Combined analysis of mSEPT9, CEA, and CA19-9 increased the sensitivity for diagnosing GC to 32.7% (P = .002). CONCLUSION Considering the high incidence of plasma mSEPT9 in intestinal or mixed type GCs similar to CRCs, GC should be examined through the plasma mSEPT9 screening test. In addition, plasma mSEPT9 is proposed as a follow-up marker in CRC patients, but further validation is required.
Collapse
|
199
|
Pacurari M, Addison JB, Bondalapati N, Wan YW, Luo D, Qian Y, Castranova V, Ivanov AV, Guo NL. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells. Int J Oncol 2013; 43:548-60. [PMID: 23708087 PMCID: PMC3775564 DOI: 10.3892/ijo.2013.1963] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Maricica Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Bryce NS, Reynolds AB, Koleske AJ, Weaver AM. WAVE2 regulates epithelial morphology and cadherin isoform switching through regulation of Twist and Abl. PLoS One 2013; 8:e64533. [PMID: 23691243 PMCID: PMC3654908 DOI: 10.1371/journal.pone.0064533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Background Epithelial morphogenesis is a dynamic process that involves coordination of signaling and actin cytoskeletal rearrangements. Principal Findings We analyzed the contribution of the branched actin regulator WAVE2 in the development of 3-dimensional (3D) epithelial structures. WAVE2-knockdown (WAVE2-KD) cells formed large multi-lobular acini that continued to proliferate at an abnormally late stage compared to control acini. Immunostaining of the cell-cell junctions of WAVE2-KD acini revealed weak and heterogeneous E-cadherin staining despite little change in actin filament localization to the same junctions. Analysis of cadherin expression demonstrated a decrease in E-cadherin and an increase in N-cadherin protein and mRNA abundance in total cell lysates. In addition, WAVE2-KD cells exhibited an increase in the mRNA levels of the epithelial-mesenchymal transition (EMT)-associated transcription factor Twist1. KD of Twist1 expression in WAVE2-KD cells reversed the cadherin switching and completely rescued the aberrant 3D morphological phenotype. Activity of the WAVE2 complex binding partner Abl kinase was also increased in WAVE2-KD cells, as assessed by tyrosine phosphorylation of the Abl substrate CrkL. Inhibition of Abl with STI571 rescued the multi-lobular WAVE2-KD 3D phenotype whereas overexpression of Abl kinase phenocopied the WAVE2-KD phenotype. Conclusions The WAVE2 complex regulates breast epithelial morphology by a complex mechanism involving repression of Twist1 expression and Abl kinase activity. These data reveal a critical role for WAVE2 complex in regulation of cellular signaling and epithelial morphogenesis.
Collapse
Affiliation(s)
- Nicole S Bryce
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | | | | |
Collapse
|