151
|
Burma JS, Seok J, Johnston NE, Smirl JD. Cerebral blood velocity during concurrent supine cycling, lower body negative pressure, and head-up tilt challenges: implications for concussion rehabilitation. Physiol Meas 2023; 44:084002. [PMID: 37531960 DOI: 10.1088/1361-6579/acecd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Introduction. The effect of concurrent head-up tilt and lower body negative pressure (LBNP) have been examined on middle cerebral artery velocity (MCAv) at rest; however, it is unknown the superimposed effect these factors have on blunting the elevation in cerebral blood velocity associated with moderate-intensity exercise.Methods. 23 healthy adults (11 females / 12 males, 20-33 years) completed three visits. The first consisted of a maximal ramp supine cycling test to identify the wattage associated with individualized maximal MCAv. Subsequent visits included randomized no LBNP (control) or LBNP at -40 Torr (experimental) with successively increasing head-up tilt stages of 0, 15, 30, and 45 degrees during the pre-described individualized wattage. Transcranial Doppler ultrasound was utilized to quantify MCAv. Two-factorial repeated measures analysis of variance with effect sizes were used to determine differences between days and tilt stages.Results. Between-day baseline values for MCAv, heart rate, and blood pressure displayed low variability with <5% variation. With no LBNP, MCAv was above baseline on average for all participants; however, 15 degrees and 30 degrees tilt with concurrent -40 Torr LBNP was sufficient to return MCAv to 100% of baseline values in females and males, respectively. Body-weight did not impact the association between tilt and pressure (R2range: 0.01-0.12).Conclusion. Combined LBNP and tilt were sufficient to reduce the increase in MCAv associated with moderate-intensity exercise. This exercise modality shows utility to enable individuals with a concussion to obtain the positive physiological adaptions associated with exercise while minimizing symptom exacerbation due to the notion of the Monro-Kellie doctrine.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jina Seok
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Nathan E Johnston
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
152
|
Hossain I, Mohammadian M, Maanpää HR, Takala RSK, Tenovuo O, van Gils M, Hutchinson P, Menon DK, Newcombe VF, Tallus J, Hirvonen J, Roine T, Kurki T, Blennow K, Zetterberg H, Posti JP. Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury. BMC Neurol 2023; 23:304. [PMID: 37582732 PMCID: PMC10426141 DOI: 10.1186/s12883-023-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. METHODS Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. RESULTS The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. CONCLUSION In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.
Collapse
Affiliation(s)
- Iftakher Hossain
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland.
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland.
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Intensive Care Medicine and Pain Management, Perioperative Services, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Turku, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Turku, Finland
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
153
|
Dunne LAM, Cole MH, Cormack SJ, Howell DR, Johnston RD. Validity and Reliability of Methods to Assess Movement Deficiencies Following Concussion: A COSMIN Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:76. [PMID: 37578611 PMCID: PMC10425315 DOI: 10.1186/s40798-023-00625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND There is an increased risk of subsequent concussion and musculoskeletal injury upon return to play following a sports-related concussion. Whilst there are numerous assessments available for clinicians for diagnosis and during return to play following concussion, many may lack the ability to detect these subclinical changes in function. Currently, there is no consensus or collated sources on the reliability, validity and feasibility of these assessments, which makes it difficult for clinicians and practitioners to select the most appropriate assessment for their needs. OBJECTIVES This systematic review aims to (1) consolidate the reliability and validity of motor function assessments across the time course of concussion management and (2) summarise their feasibility for clinicians and other end-users. METHODS A systematic search of five databases was conducted. Eligible studies were: (1) original research; (2) full-text English language; (3) peer-reviewed with level III evidence or higher; (4) assessed the validity of lower-limb motor assessments used to diagnose or determine readiness for athletes or military personnel who had sustained a concussion or; (5) assessed the test-retest reliability of lower-limb motor assessments used for concussion management amongst healthy athletes. Acceptable lower-limb motor assessments were dichotomised into instrumented and non-instrumented and then classified into static (stable around a fixed point), dynamic (movement around a fixed point), gait, and other categories. Each study was assessed using the COSMIN checklist to establish methodological and measurement quality. RESULTS A total of 1270 records were identified, with 637 duplicates removed. Titles and abstracts of 633 records were analysed, with 158 being retained for full-text review. A total of 67 records were included in this review; 37 records assessed reliability, and 35 records assessed the validity of lower-limb motor assessments. There were 42 different assessments included in the review, with 43% being non-instrumented, subjective assessments. Consistent evidence supported the use of instrumented assessments over non-instrumented, with gait-based assessments demonstrating sufficient reliability and validity compared to static or dynamic assessments. CONCLUSION These findings suggest that instrumented, gait-based assessments should be prioritised over static or dynamic balance assessments. The use of laboratory equipment (i.e. 3D motion capture, pressure sensitive walkways) on average exhibited sufficient reliability and validity, yet demonstrate poor feasibility. Further high-quality studies evaluating the reliability and validity of more readily available devices (i.e. inertial measurement units) are needed to fill the gap in current concussion management protocols. Practitioners can use this resource to understand the accuracy and precision of the assessments they have at their disposal to make informed decisions regarding the management of concussion. TRAIL REGISTRATION This systematic review was registered on PROSPERO (reg no. CRD42021256298).
Collapse
Affiliation(s)
- Laura A M Dunne
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia.
| | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Stuart J Cormack
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Australia
| | - David R Howell
- Sports Medicine Center, Children's Hospital Colorado, Aurora, CO, USA
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rich D Johnston
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research Centre, School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
154
|
Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol 2023; 14:1239653. [PMID: 37638180 PMCID: PMC10450935 DOI: 10.3389/fneur.2023.1239653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- William P. Flavin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Helia Hosseini
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
| | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - H. Pirouz Kavehpour
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mayumi L. Prins
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
155
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
156
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. Recovery of clinical, cognitive and cortical activity measures following mild traumatic brain injury (mTBI): A longitudinal investigation. Cortex 2023; 165:14-25. [PMID: 37245405 DOI: 10.1016/j.cortex.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
The mechanisms that underpin recovery following mild traumatic brain injury (mTBI) remain poorly understood. Identifying neurophysiological markers and their functional significance is necessary to develop diagnostic and prognostic indicators of recovery. The current study assessed 30 participants in the subacute phase of mTBI (10-31 days post-injury) and 28 demographically matched controls. Participants also completed 3 month (mTBI: N = 21, control: N = 25) and 6 month (mTBI: N = 15, control: N = 25) follow up sessions to track recovery. At each time point, a battery of clinical, cognitive, and neurophysiological assessments was completed. Neurophysiological measures included resting-state electroencephalography (EEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG). Outcome measures were analysed using mixed linear models (MLM). Group differences in mood, post-concussion symptoms and resting-state EEG resolved by 3 months, and recovery was maintained at 6 months. On TMS-EEG derived neurophysiological measures of cortical reactivity, group differences ameliorated at 3 months but re-emerged at 6 months, while on measures of fatigue, group differences persisted across all time points. Persistent neurophysiological changes and greater fatigue in the absence of measurable cognitive impairment may suggest the impact of mTBI on neuronal communication may leads to increased neural effort to maintain efficient function. Neurophysiological measures to track recovery may help identify both temporally optimal windows and therapeutic targets for the development of new treatments in mTBI.
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bionics Institute, East Melbourne, Victoria, Australia.
| |
Collapse
|
157
|
Owens TS, Marley CJ, Calverley TA, Stacey BS, Fall L, Tsukamoto H, Iannetelli A, Filipponi T, Davies B, Jones GL, Hirtz C, Lehmann S, Tuaillon E, Marchi N, Bailey DM. Lower systemic nitric oxide bioactivity, cerebral hypoperfusion and accelerated cognitive decline in formerly concussed retired rugby union players. Exp Physiol 2023; 108:1029-1046. [PMID: 37423736 PMCID: PMC10988504 DOI: 10.1113/ep091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the molecular, cerebrovascular and cognitive biomarkers of retired rugby union players with concussion history? What is the main finding and its importance? Retired rugby players compared with matched controls exhibited lower systemic nitric oxide bioavailability accompanied by lower middle cerebral artery velocity and mild cognitive impairment. Retired rugby players are more susceptible to accelerated cognitive decline. ABSTRACT Following retirement from sport, the chronic consequences of prior-recurrent contact are evident and retired rugby union players may be especially prone to accelerated cognitive decline. The present study sought to integrate molecular, cerebrovascular and cognitive biomarkers in retired rugby players with concussion history. Twenty retired rugby players aged 64 ± 5 years with three (interquartile range (IQR), 3) concussions incurred over 22 (IQR, 6) years were compared to 21 sex-, age-, cardiorespiratory fitness- and education-matched controls with no prior concussion history. Concussion symptoms and severity were assessed using the Sport Concussion Assessment Tool. Plasma/serum nitric oxide (NO) metabolites (reductive ozone-based chemiluminescence), neuron specific enolase, glial fibrillary acidic protein and neurofilament light-chain (ELISA and single molecule array) were assessed. Middle cerebral artery blood velocity (MCAv, doppler ultrasound) and reactivity to hyper/hypocapnia (CVR CO 2 hyper ${\mathrm{CVR}}_{{\mathrm{CO}}_{\mathrm{2}}{\mathrm{hyper}}}$ /CVR CO 2 hypo ${\mathrm{CVR}}_{{\mathrm{CO}}_{\mathrm{2}}{\mathrm{hypo}}}$ ) were assessed. Cognition was determined using the Grooved Pegboard Test and Montreal Cognitive Assessment. Players exhibited persistent neurological symptoms of concussion (U = 109(41) , P = 0.007), with increased severity compared to controls (U = 77(41) , P < 0.001). Lower total NO bioactivity (U = 135(41) , P = 0.049) and lower basal MCAv were apparent in players (F2,39 = 9.344, P = 0.004). This was accompanied by mild cognitive impairment (P = 0.020, 95% CI, -3.95 to -0.34), including impaired fine-motor coordination (U = 141(41) , P = 0.021). Retired rugby union players with history of multiple concussions may be characterised by impaired molecular, cerebral haemodynamic and cognitive function compared to non-concussed, non-contact controls.
Collapse
Affiliation(s)
- Thomas S. Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Christopher J. Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Thomas A. Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Lewis Fall
- Faculty of Computing, Engineering and ScienceUniversity of South WalesUK
| | | | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Teresa Filipponi
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Bruce Davies
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Gareth L. Jones
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| | - Christophe Hirtz
- LBPC‐PPCUniversity of Montpellier, Institute of Regenerative Medicine‐Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERMMontpellierFrance
| | - Sylvain Lehmann
- LBPC‐PPCUniversity of Montpellier, Institute of Regenerative Medicine‐Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERMMontpellierFrance
| | - Edouard Tuaillon
- CHU Montpellier, Department of Bacteriology‐VirologyCentre University ofMontpellierFrance
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of NeuroscienceInstitute of Functional Genomics (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesUK
| |
Collapse
|
158
|
Wright B, Guilliod R, Thakur B, Kundig C, Morales J, Tessler J, Berry J, Zhang R, Bell KR, Pinto SM. Hyperbaric Oxygen Therapy versus placebo for post-concussion syndrome (HOT-POCS): A randomized, double-blinded controlled pilot study. Contemp Clin Trials Commun 2023; 34:101176. [PMID: 37416626 PMCID: PMC10320499 DOI: 10.1016/j.conctc.2023.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Post-Concussion Syndrome (PCS) refers to the persistence of physical, cognitive, and emotional symptoms following mild traumatic brain injury (mTBI)/concussion, occurring in roughly 15-30% of individuals. Hyperbaric oxygen therapy (HBOT) has been suggested as a potential treatment for PCS; however, the evidence to date is mixed due to inconsistencies in the treatment protocol and focus on veterans with combat-related injuries, which may not be generalizable to the general population. The goal of Hyperbaric Oxygen Therapy for Post-Concussion Syndrome (HOT-POCS) is to assess the efficacy and safety of HBOT for the treatment of PCS in the civilian population. This randomized, controlled pilot study will be using a standardized HBOT protocol (20 sessions of 100% O2 at 2.0 atm absolute [ATA]) compared with a true placebo gas system that mimics the oxygen composition at room air (20 sessions of 10.5% O2 and 89.5% nitrogen at 2.0 ATA) in a cohort of 100 adults with persistent post-concussive symptoms 3-12 months following injury. Change in symptoms on the Rivermead Post-concussion Questionnaire (RPQ) will be the primary outcome of interest. Secondary outcomes include the rate of adverse events, change in the quality of life, and change in cognitive function. Exploratory outcome measures will include changes in physical function and changes in cerebral brain perfusion and oxygen metabolism on MRI brain imaging. Overall, the HOT-POCS study will compare the efficacy of a standardized HBOT treatment protocol against a true placebo gas for the treatment of PCS within 12 months after injury.
Collapse
Affiliation(s)
- Brittany Wright
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renie Guilliod
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bhaskar Thakur
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Family and Community Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles Kundig
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill Morales
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Tessler
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Berry
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rong Zhang
- Departments of Neurology and Internal Medicine, University of Texas Southwestern Medical Center, Director of Cerebrovascular Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA
| | - Kathleen R. Bell
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanti M. Pinto
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
159
|
Powell JR, Hopfinger JB, Giovanello KS, Walton SR, DeLellis SM, Kane SF, Means GE, Mihalik JP. Mild traumatic brain injury history is associated with lower brain network resilience in soldiers. Brain Commun 2023; 5:fcad201. [PMID: 37545546 PMCID: PMC10400114 DOI: 10.1093/braincomms/fcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Special Operations Forces combat soldiers sustain frequent blast and blunt neurotrauma, most often classified as mild traumatic brain injuries. Exposure to repetitive mild traumatic brain injuries is associated with persistent behavioural, cognitive, emotional and neurological symptoms later in life. Identifying neurophysiological changes associated with mild traumatic brain injury exposure, in the absence of present-day symptoms, is necessary for detecting future neurological risk. Advancements in graph theory and functional MRI have offered novel ways to analyse complex whole-brain network connectivity. Our purpose was to determine how mild traumatic brain injury history, lifetime incidence and recency affected whole-brain graph theoretical outcome measures. Healthy male Special Operations Forces combat soldiers (age = 33.2 ± 4.3 years) underwent multimodal neuroimaging at a biomedical research imaging centre using 3T Siemens Prisma or Biograph MRI scanners in this cross-sectional study. Anatomical and functional scans were preprocessed. The blood-oxygen-level-dependent signal was extracted from each functional MRI time series using the Big Brain 300 atlas. Correlations between atlas regions were calculated and Fisher z-transformed to generate subject-level correlation matrices. The Brain Connectivity Toolbox was used to obtain functional network measures for global efficiency (the average inverse shortest path length), local efficiency (the average global efficiency of each node and its neighbours), and assortativity coefficient (the correlation coefficient between the degrees of all nodes on two opposite ends of a link). General linear models were fit to compare mild traumatic brain injury lifetime incidence and recency. Nonparametric ANOVAs were used for tests on non-normally distributed data. Soldiers with a history of mild traumatic brain injury had significantly lower assortativity than those who did not self-report mild traumatic brain injury (t148 = 2.44, P = 0.016). The assortativity coefficient was significantly predicted by continuous mild traumatic brain injury lifetime incidence [F1,144 = 6.51, P = 0.012]. No differences were observed between recency groups, and no global or local efficiency differences were observed between mild traumatic brain injury history and lifetime incidence groups. Brain networks with greater assortativity have more resilient, interconnected hubs, while those with lower assortativity indicate widely distributed, vulnerable hubs. Greater lifetime mild traumatic brain injury incidence predicted lower assortativity in our study sample. Less resilient brain networks may represent a lack of physiological recovery in mild traumatic brain injury patients, who otherwise demonstrate clinical recovery, more vulnerability to future brain injury and increased risk for accelerated age-related neurodegenerative changes. Future longitudinal studies should investigate whether decreased brain network resilience may be a predictor for long-term neurological dysfunction.
Collapse
Affiliation(s)
- Jacob R Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph B Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel R Walton
- Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephen M DeLellis
- Fort Liberty Research Institute, The Geneva Foundation, Tacoma, WA 98402, USA
| | - Shawn F Kane
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC 28303, USA
| | - Jason P Mihalik
- Correspondence to: Jason P. Mihalik Matthew Gfeller Center, Department of Exercise and Sport Science The University of North Carolina at Chapel Hill, 2201 Stallings-Evans Sports Medicine Center Campus Box 8700, Chapel Hill, NC 27599, USA E-mail:
| |
Collapse
|
160
|
Kamali A, Dieckhaus L, Peters EC, Preszler CA, Witte RS, Pires PW, Hutchinson EB, Laksari K. Ultrasound, photoacoustic, and magnetic resonance imaging to study hyperacute pathophysiology of traumatic and vascular brain injury. J Neuroimaging 2023; 33:534-546. [PMID: 37183044 PMCID: PMC10525021 DOI: 10.1111/jon.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular dynamics and pathomechanisms that evolve in the minutes and hours following traumatic vascular injury in the brain remain largely unknown. We investigated the pathophysiology evolution in mice within the first 3 hours after closed-head traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH), two significant traumatic vascular injuries. METHODS We took a multimodal imaging approach using photoacoustic imaging, color Doppler ultrasound, and MRI to track injury outcomes using a variety of metrics. RESULTS Brain oxygenation and velocity-weighted volume of blood flow (VVF) values significantly decreased from baseline to 15 minutes after both TBI and SAH. TBI resulted in 19.2% and 41.0% ipsilateral oxygenation and VVF reductions 15 minutes postinjury, while SAH resulted in 43.9% and 85.0% ipsilateral oxygenation and VVF reduction (p < .001). We found partial recovery of oxygenation from 15 minutes to 3 hours after injury for TBI but not SAH. Hemorrhage, edema, reduced perfusion, and altered diffusivity were evident from MRI scans acquired 90-150 minutes after injury in both injury models, although the spatial distribution was mostly focal for TBI and diffuse for SAH. CONCLUSIONS The results reveal that the cerebral oxygenation deficits immediately following injuries are reversible for TBI and irreversible for SAH. Our findings can inform future studies on mitigating these early responses to improve long-term recovery.
Collapse
Affiliation(s)
- Ali Kamali
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Laurel Dieckhaus
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Emily C. Peters
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| | - Collin A. Preszler
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Russel S. Witte
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
- College of Optical Sciences, University of Arizona, Tucson, AZ
| | - Paulo W. Pires
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| | - Elizabeth B. Hutchinson
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
- Department of Aerospace and Mechanical Engineering, University of Arizona College of Engineering, Tucson, AZ
| |
Collapse
|
161
|
Weil ZM, Ivey JT, Karelina K. Putting the Mind to Rest: A Historical Foundation for Rest as a Treatment for Traumatic Brain Injury. J Neurotrauma 2023; 40:1286-1296. [PMID: 36310426 PMCID: PMC10294563 DOI: 10.1089/neu.2022.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rest after traumatic brain injury (TBI) has been a part of clinical practice for more than a century but the use of rest as a treatment has ancient roots. In contemporary practice, rest recommendations have been significantly reduced but are still present. This advice to brain injured patients, on the face of it makes some logical sense but was not historically anchored in either theory or empirical data. The definition and parameters of rest have evolved over time but have encompassed recommendations including avoiding physical exercise, sensory stimulation, social contact, and even cognitive exertion. The goals and theoretical explanations for this approach have evolved and in modern conception include avoiding reinjury and reducing the metabolic demands on injured tissue. Moreover, as cellular and molecular understanding of the physiology of TBI developed, scientists and clinicians sometimes retroactively cited these new data in support of rest recommendations. Here, we trace the history of this approach and how it has been shaped by new understanding of the underlying pathology associated with brain injury.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Julia T. Ivey
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
162
|
Coenen J, Reinsberger C. Neurophysiological Markers to Guide Return to Sport After Sport-Related Concussion. J Clin Neurophysiol 2023; 40:391-397. [PMID: 36930211 DOI: 10.1097/wnp.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sport-related concussion (SRC) has been defined as a subset of mild traumatic brain injury (mTBI), without structural abnormalities, reflecting a functional disturbance. Over the past decade, SRC has gained increasing awareness and attention, which coincides with an increase in incidence rates. Because this injury has been considered one of the most challenging encounters for clinicians, there is a need for objective biomarkers to aid in diagnosis (i.e., presence/severity) and management (i.e., return to sport) of SRC/mTBI.The primary aim of this article was to present state-of-the-art neurophysiologic methods (e.g., electroencephalography, magnetoencephalography, transcranial magnetic stimulation, and autonomic nervous system) that are appropriate to investigate the complex pathophysiological process of a concussion. A secondary aim was to explore the potential for evidence-based markers to be used in clinical practice for SRC management. The article concludes with a discussion of future directions for SRC research with specific focus on clinical neurophysiology.
Collapse
Affiliation(s)
- Jessica Coenen
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Paderborn, Germany; and
| | - Claus Reinsberger
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Paderborn, Germany; and
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
163
|
Callahan CE, Stoner L, Zieff GH, Register-Mihalik JK. The Additive Benefits of Aerobic Exercise and Cognitive Training Postconcussion: Current Clinical Concepts. J Athl Train 2023; 58:602-610. [PMID: 35984726 PMCID: PMC10569252 DOI: 10.4085/1062-6050-0186.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Concussion induces the rapid onset of a short-lived neurophysiological disturbance that often results in autonomic nervous system dysfunction. This dysfunction affects both cardiovascular functioning and higher cognitive processing, inducing postconcussion clinical symptoms (somatic, cognitive, or emotional or a combination) and functional disturbances (impaired balance, cognition, and visual-vestibular performance). Current concussion rehabilitation paradigms using aerobic exercise may improve concussion symptoms. Additionally, cognitive training-focused rehabilitation interventions may enhance cognitive function postinjury. Though aerobic exercise and cognitive training-based concussion rehabilitation are successful independently, the multifaceted nature of concussion suggests the potential benefit of integrating both to improve concussion outcomes and clinician implementation. To support this clinical recommendation, we critiqued the existing research in which authors investigated aerobic exercise and cognitive training as postconcussion rehabilitation modalities, identified keys gaps in the literature, and proposed a practical clinical recommendation to integrate both modalities during concussion rehabilitation.
Collapse
Affiliation(s)
- Christine E. Callahan
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, The University of North Carolina at Chapel Hill
| | - Lee Stoner
- Cardiometabolic Laboratory, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill
| | - Gabriel H. Zieff
- Human Movement Science Curriculum, The University of North Carolina at Chapel Hill
- Cardiometabolic Laboratory, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill
| | - Johna K. Register-Mihalik
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill
- Injury Prevention Research Center, The University of North Carolina at Chapel Hill
- STAR Heel Performance Laboratory, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill
| |
Collapse
|
164
|
Memmini AK, Popovich MJ, Schuyten KH, Herring SA, Scott KL, Clugston JR, Choe MC, Bailey CM, Brooks MA, Anderson SA, McCrea MA, Kontos AP, Wallace JS, Mihalik JKR, Kasamatsu TM, McLeod TV, Rawlins MLW, Snedden TR, Kaplan M, Akani B, Orr LCL, Hasson RE, Rifat SF, Broglio SP. Recommendations for Medical Discharge Documentation and Academic Supports for University Students Recovering From Concussion. J Head Trauma Rehabil 2023; 38:E299-E311. [PMID: 36731046 DOI: 10.1097/htr.0000000000000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study sought to (1) collate the experiences of university students with concussion history and academic stakeholders through interviews and (2) develop concussion management recommendations for institutions of higher learning using a multidisciplinary Delphi procedure. SETTING Remote semistructured interviews and online surveys. PARTICIPANTS The first aim of this study included undergraduate university students with concussion history who did not participate in varsity athletics ( n = 21; 57.1% female), as well as academic faculty/staff with experience assisting university students with their postconcussion academic needs ( n = 7; 71.4% female). The second aim enrolled 22 participants (54.5% female) to serve on the Delphi panel including 9 clinicians, 8 researchers, and 5 academic faculty/staff. DESIGN An exploratory-sequential mixed-methods approach. MAIN MEASURES Semistructured interviews were conducted to unveil barriers regarding the return-to-learn (RTL) process after concussion, with emergent themes serving as a general framework for the Delphi procedure. Panelists participated in 3 stages of a modified Delphi process beginning with a series of open-ended questions regarding postconcussion management in higher education. The second stage included anonymous ratings of the recommendations, followed by an opportunity to review and/or modify responses based on the group's consensus. RESULTS The results from the semistructured interviews indicated students felt supported by their instructors; however, academic faculty/staff lacked information on appropriate academic supports and/or pathways to facilitate the RTL process. Of the original 67 statements, 39 achieved consensus (58.2%) upon cessation of the Delphi procedure across 3 main categories: recommendations for discharge documentation (21 statements), guidelines to facilitate a multidisciplinary RTL approach (10 statements), and processes to obtain academic supports for students who require them after concussion (8 statements). CONCLUSIONS These findings serve as a basis for future policy in higher education to standardize RTL processes for students who may need academic supports following concussion.
Collapse
Affiliation(s)
- Allyssa K Memmini
- Concussion Center, University of Michigan, Ann Arbor, Michigan (Drs Memmini and Broglio); Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico (Dr Memmini); Department of Neurology, University of Michigan, Ann Arbor, Michigan (Dr Popovich); MedSport Physical Therapy, Michigan Medicine, Ann Arbor, Michigan (Dr Schuyten); Rehabilitation Medicine, University of Washington, Seattle, Washington (Dr Herring); Behavioral Medicine, Brooks Rehabilitation, Jacksonville, Florida (Dr Scott); Department of Community Health & Family Medicine and Department of Neurology, University of Florida, Gainesville, Florida (Dr Clugston); Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (Dr Choe); Department of Neurology, Case Western Reserve School of Medicine/University Hospitals, Cleveland, Ohio (Dr Bailey); Department of Orthopedics & Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin (Dr Brooks); Department of Athletics, University of Oklahoma, Norman, Oklahoma (Mr Anderson); Center for Neurotrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin (Dr McCrea); Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Kontos); Department of Health Science, The University of Alabama, Tuscaloosa, Alabama (Dr Wallace); Matthew Gfeller Center and STAR Heel Performance Laboratory, Department of Exercise and Sport Science, The University of North Carolina Chapel Hill, Durham, North Carolina (Dr Mihalik); Department of Kinesiology, California State University, Fullerton, California (Dr Kasamatsu); Athletic Training Programs, A. T. Still University, Mesa, Arizona (Dr McLeod); School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California (Dr Rawlins); School of Nursing, University of Wisconsin-Madison, Madison, Wisconsin (Dr Snedden); Center for Research on Learning & Teaching, University of Michigan, Ann Arbor, Michigan (Dr Kaplan); College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan (Ms Akani); School of Kinesiology, University of Michigan, Ann Arbor, Michigan (Ms Orr and Dr Hasson); and University of Michigan Athletics, Michigan Medicine, Ann Arbor, Michigan and Department of Orthopaedics, Cleveland Clinic, Cleveland, Ohio (Dr Rifat)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Allen J, Pham L, Bond ST, O’Brien WT, Spitz G, Shultz SR, Drew BG, Wright DK, McDonald SJ. Acute effects of single and repeated mild traumatic brain injury on levels of neurometabolites, lipids, and mitochondrial function in male rats. Front Mol Neurosci 2023; 16:1208697. [PMID: 37456524 PMCID: PMC10338885 DOI: 10.3389/fnmol.2023.1208697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon T. Bond
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - William T. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian G. Drew
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
166
|
Oeur A, Torp WH, Arbogast KB, Master CL, Margulies SS. Altered Auditory and Visual Evoked Potentials following Single and Repeated Low-Velocity Head Rotations in 4-Week-Old Swine. Biomedicines 2023; 11:1816. [PMID: 37509456 PMCID: PMC10376588 DOI: 10.3390/biomedicines11071816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Auditory and visually evoked potentials (EP) have the ability to monitor cognitive changes after concussion. In the literature, decreases in EP are commonly reported; however, a subset of studies shows increased cortical activity after injury. We studied auditory and visual EP in 4-week-old female Yorkshire piglets (N = 35) divided into anesthetized sham, and animals subject to single (sRNR) and repeated (rRNR) rapid non-impact head rotations (RNR) in the sagittal direction. Two-tone auditory oddball tasks and a simple white-light visual stimulus were evaluated in piglets pre-injury, and at days 1, 4- and 7 post injury using a 32-electrode net. Traditional EP indices (N1, P2 amplitudes and latencies) were extracted, and a piglet model was used to source-localize the data to estimate brain regions related to auditory and visual processing. In comparison to each group's pre-injury baselines, auditory Eps and brain activity (but not visual activity) were decreased in sham. In contrast, sRNR had increases in N1 and P2 amplitudes from both stimuli. The rRNR group had decreased visual N1 amplitudes but faster visual P2 latencies. Auditory and visual EPs have different change trajectories after sRNR and rRNR, suggesting that injury biomechanics are an important factor to delineate neurofunctional deficits after concussion.
Collapse
Affiliation(s)
- Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; (A.O.); (W.H.T.)
| | - William H. Torp
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; (A.O.); (W.H.T.)
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA; (K.B.A.); (C.L.M.)
- Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina L. Master
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA; (K.B.A.); (C.L.M.)
- Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Sports Medicine and Performance Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; (A.O.); (W.H.T.)
| |
Collapse
|
167
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
168
|
Christensen J, MacPherson N, Li C, Yamakawa GR, Mychasiuk R. Repeat mild traumatic brain injuries (RmTBI) modify nociception and disrupt orexinergic connectivity within the descending pain pathway. J Headache Pain 2023; 24:72. [PMID: 37316796 DOI: 10.1186/s10194-023-01608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Repeat mild traumatic brain injuries (RmTBI) result in substantial burden to the public health system given their association with chronic post-injury pathologies, such as chronic pain and post-traumatic headache. Although this may relate to dysfunctional descending pain modulation (DPM), it is uncertain what mechanisms drive changes within this pathway. One possibility is altered orexinergic system functioning, as orexin is a potent anti-nociceptive neuromodulator. Orexin is exclusively produced by the lateral hypothalamus (LH) and receives excitatory innervation from the lateral parabrachial nucleus (lPBN). Therefore, we used neuronal tract-tracing to investigate the relationship between RmTBI and connectivity between lPBN and the LH, as well as orexinergic projections to a key site within the DPM, the periaqueductal gray (PAG). Prior to injury induction, retrograde and anterograde tract-tracing surgery was performed on 70 young-adult male Sprague Dawley rats, targeting the lPBN and PAG. Rodents were then randomly assigned to receive RmTBIs or sham injuries before undergoing testing for anxiety-like behaviour and nociceptive sensitivity. Immunohistochemical analysis identified distinct and co-localized orexin and tract-tracing cell bodies and projections within the LH. The RmTBI group exhibited altered nociception and reduced anxiety as well as a loss of orexin cell bodies and a reduction of hypothalamic projections to the ventrolateral nucleus of the PAG. However, there was no significant effect of injury on neuronal connectivity between the lPBN and orexinergic cell bodies within the LH. Our identification of structural losses and the resulting physiological changes in the orexinergic system following RmTBI begins to clarify acute post-injury mechanistic changes that drive may drive the development of post-traumatic headache and the chronification of pain.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Naomi MacPherson
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, 99 Commercial Road, VIC, 3004, Melbourne, Australia.
| |
Collapse
|
169
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
170
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
171
|
Daugherty J, Sarmiento K, Waltzman D, Schmidt J. Special Report from the CDC Healthcare provider influence on driving behavior after a mild traumatic brain injury: Findings from the 2021 SummerStyles survey. JOURNAL OF SAFETY RESEARCH 2023; 85:507-512. [PMID: 37330900 PMCID: PMC10440851 DOI: 10.1016/j.jsr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Research shows that a mild traumatic brain injury (mTBI) impairs a person's ability to identify driving hazards 24 h post injury and increases the risk for motor vehicle crash. This study examined the percentage of people who reported driving after their most serious mTBI and whether healthcare provider education influenced this behavior. METHODS Self-reported data were collected from 4,082 adult respondents in the summer wave of Porter Novelli's 2021 ConsumerStyles survey. Respondents with a driver's license were asked whether they drove right after their most serious mTBI, how safe they felt driving, and whether a doctor or nurse talked to them about when it was ok to drive after their injury. RESULTS About one in five (18.8 %) respondents reported sustaining an mTBI in their lifetime. Twenty-two percent (22.3 %) of those with a driver's license at the time of their most serious mTBI drove within 24 h, and 20 % felt very or somewhat unsafe doing so. About 19 % of drivers reported that a doctor or nurse talked to them about when it was safe to return to driving. Those who had a healthcare provider talk to them about driving were 66 % less likely to drive a car within 24 h of their most serious mTBI (APR = 0.34, 95 % CI: 0.20, 0.60) compared to those who did not speak to a healthcare provider about driving. CONCLUSIONS Increasing the number of healthcare providers who discuss safe driving practices after a mTBI may reduce acute post-mTBI driving. PRACTICAL APPLICATIONS Inclusion of information in patient discharge instructions and prompts for healthcare providers in electronic medical records may help encourage conversations about post-mTBI driving.
Collapse
Affiliation(s)
- Jill Daugherty
- Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Division of Injury Prevention, 4770 Buford Highway NE MS S106-9, Atlanta, GA 30307, USA.
| | - Kelly Sarmiento
- Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Division of Injury Prevention, 4770 Buford Highway NE MS S106-9, Atlanta, GA 30307, USA
| | - Dana Waltzman
- Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Division of Injury Prevention, 4770 Buford Highway NE MS S106-9, Atlanta, GA 30307, USA
| | - Julianne Schmidt
- University of Georgia Concussion Research Laboratory, Department of Kinesiology, 110 Carlton Street, Athens, GA 30602, USA
| |
Collapse
|
172
|
Buzzanca‐Fried K, Morgan‐Daniel J, Snyder A, Bauer R, Lahey S, Addeo R, Houck Z, Perez C, Beneciuk J. PROTOCOL: Fear avoidance model psychological factors as predictors for persistent post-concussion clinical outcomes: An integrative review. CAMPBELL SYSTEMATIC REVIEWS 2023; 19:e1311. [PMID: 37131460 PMCID: PMC10052450 DOI: 10.1002/cl2.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Persisting symptoms after concussion (PSaC) include physical, cognitive, and psychological symptoms which contribute to rehabilitation challenges. Previous research has not thoroughly investigated the association between PSaC and pain-related psychological factors. Therefore, there is an opportunity to use current pain models, such as the Fear Avoidance Model (FAM), as a framework to explore these relationships. The goals of this integrative review are to (1) identify and describe range of evidence that explores relationships between psychological factors and clinical outcomes in patients with PSaC, and (2) develop a comprehensive understanding of FAM-specific psychological factors that have been identified as potential predictors of clinical outcomes in patients with PSaC. Methods This review will be based on principles and stages of an integrative review which will allow for inclusion of diverse methodologies: (1) problem formulation, (2) literature search, (3) data evaluation, (4) data analysis, and (5) presentation. Methods for reporting this review will be informed by the 2020 PRISMA guidelines for systematic reviews. Discussion The findings from this integrative review will inform healthcare professionals working in post-concussion rehabilitation settings regarding relationships between FAM psychological factors and PSaC-an area that until recently has not been thoroughly explored. Additionally, this review will inform the development of other reviews and clinical studies to further investigate relationships between FAM psychological factors and PSaC. Integrative Review Registration OSF DOI 10.17605/OSF.IO/CNGPW.
Collapse
Affiliation(s)
| | - Jane Morgan‐Daniel
- University of Florida Health Science Center LibrariesGainesvilleFloridaUSA
| | - Aliyah Snyder
- Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFloridaUSA
| | - Russell Bauer
- Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFloridaUSA
| | - Sarah Lahey
- Brooks RehabilitationDepartment of Behavioral MedicineJacksonvilleFloridaUSA
| | - Russell Addeo
- Brooks RehabilitationDepartment of Behavioral MedicineJacksonvilleFloridaUSA
| | - Zachary Houck
- Brooks RehabilitationDepartment of Behavioral MedicineJacksonvilleFloridaUSA
| | - Christopher Perez
- Brooks RehabilitationDepartment of Behavioral MedicineJacksonvilleFloridaUSA
| | - Jason Beneciuk
- Department of Rehabilitation ScienceUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
173
|
Patricios JS, Schneider GM, van Ierssel J, Purcell LK, Davis GA, Echemendia RJ, Fremont P, Fuller GW, Herring SA, Harmon KG, Holte K, Loosemore M, Makdissi M, McCrea M, Meehan WP, O'Halloran P, Premji Z, Putukian M, Shill IJ, Turner M, Vaandering K, Webborn N, Yeates KO, Schneider KJ. Beyond acute concussion assessment to office management: a systematic review informing the development of a Sport Concussion Office Assessment Tool (SCOAT6) for adults and children. Br J Sports Med 2023; 57:737-748. [PMID: 37316204 DOI: 10.1136/bjsports-2023-106897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the assessment of sport-related concussion (SRC) in the subacute phase (3-30 days) and provide recommendations for developing a Sport Concussion Office Assessment Tool (SCOAT6). DATA SOURCES MEDLINE, Embase, PsycINFO, Cochrane CENTRAL, CINAHL, SPORTDiscus and Web of Science searched from 2001 to 2022. Data extracted included study design, population, definition of SRC diagnosis, outcome measure(s) and results. ELIGIBILITY CRITERIA (1) Original research, cohort studies, case-control studies, diagnostic accuracy and case series with samples >10; (2) SRC; (3) screening/technology that assessed SRC in the subacute period and (4) low risk of bias (ROB). ROB was performed using adapted Scottish Intercollegiate Guidelines Network criteria. Quality of evidence was evaluated using the Strength of Recommendation Taxonomy classification. RESULTS Of 9913 studies screened, 127 met inclusion, assessing 12 overlapping domains. Results were summarised narratively. Studies of acceptable (81) or high (2) quality were used to inform the SCOAT6, finding sufficient evidence for including the assessment of autonomic function, dual gait, vestibular ocular motor screening (VOMS) and mental health screening. CONCLUSION Current SRC tools have limited utility beyond 72 hours. Incorporation of a multimodal clinical assessment in the subacute phase of SRC may include symptom evaluation, orthostatic hypotension screen, verbal neurocognitive tests, cervical spine evaluation, neurological screen, Modified Balance Error Scoring System, single/dual task tandem gait, modified VOMS and provocative exercise tests. Screens for sleep disturbance, anxiety and depression are recommended. Studies to evaluate the psychometric properties, clinical feasibility in different environments and time frames are needed. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | - Geoff M Schneider
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Laura K Purcell
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ruben J Echemendia
- Psychology, University of Missouri, Kansas City, Missouri, USA
- University Orthopedics Concussion Care Clinic, State College Area School District, State College, Pennsylvania, USA
| | - Pierre Fremont
- Rehabilitation, Laval University, Quebec, Quebec, Canada
| | - Gordon Ward Fuller
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Stanley A Herring
- Departments of Rehabilitation Medicine, Orthopaedics and Sports Medicine and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | | | - Mike Loosemore
- Institute for Sport Exercise and Health, University Collage Hospital London, London, UK
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Michael McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Patrick O'Halloran
- Neurotrauma and Ophthalmology Research Group, University of Birmingham, Birmingham, UK
- Health Education England West Midlands, Edgbaston, UK
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | - Isla Jordan Shill
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Michael Turner
- International Concussion and Head Injury Research Foundation, London, UK
- University College London, London, UK
| | - Kenzie Vaandering
- University of Calgary Faculty of Kinesiology, Calgary, Alberta, Canada
| | - Nick Webborn
- Medical Committee, International Paralympic Committee, Bonn, Germany
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
174
|
Ware AL, Onicas AI, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Doan Q, Freedman SB, Goodyear BG, Gravel J, Ledoux AA, Zemek R, Yeates KO, Lebel C. Altered longitudinal structural connectome in paediatric mild traumatic brain injury: an Advancing Concussion Assessment in Paediatrics study. Brain Commun 2023; 5:fcad173. [PMID: 37324241 PMCID: PMC10265725 DOI: 10.1093/braincomms/fcad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Advanced diffusion-weighted imaging techniques have increased understanding of the neuropathology of paediatric mild traumatic brain injury (i.e. concussion). Most studies have examined discrete white-matter pathways, which may not capture the characteristically subtle, diffuse and heterogenous effects of paediatric concussion on brain microstructure. This study compared the structural connectome of children with concussion to those with mild orthopaedic injury to determine whether network metrics and their trajectories across time post-injury differentiate paediatric concussion from mild traumatic injury more generally. Data were drawn from of a large study of outcomes in paediatric concussion. Children aged 8-16.99 years were recruited from five paediatric emergency departments within 48 h of sustaining a concussion (n = 360; 56% male) or mild orthopaedic injury (n = 196; 62% male). A reliable change score was used to classify children with concussion into two groups: concussion with or without persistent symptoms. Children completed 3 T MRI at post-acute (2-33 days) and/or chronic (3 or 6 months, via random assignment) post-injury follow-ups. Diffusion-weighted images were used to calculate the diffusion tensor, conduct deterministic whole-brain fibre tractography and compute connectivity matrices in native (diffusion) space for 90 supratentorial regions. Weighted adjacency matrices were constructed using average fractional anisotropy and used to calculate global and local (regional) graph theory metrics. Linear mixed effects modelling was performed to compare groups, correcting for multiple comparisons. Groups did not differ in global network metrics. However, the clustering coefficient, betweenness centrality and efficiency of the insula, cingulate, parietal, occipital and subcortical regions differed among groups, with differences moderated by time (days) post-injury, biological sex and age at time of injury. Post-acute differences were minimal, whereas more robust alterations emerged at 3 and especially 6 months in children with concussion with persistent symptoms, albeit differently by sex and age. In the largest neuroimaging study to date, post-acute regional network metrics distinguished concussion from mild orthopaedic injury and predicted symptom recovery 1-month post-injury. Regional network parameters alterations were more robust and widespread at chronic timepoints than post-acutely after concussion. Results suggest that increased regional and local subnetwork segregation (modularity) and inefficiency occurs across time after concussion, emerging after post-concussive symptom resolve in most children. These differences persist up to 6 months after concussion, especially in children who showed persistent symptoms. While prognostic, the small to modest effect size of group differences and the moderating effects of sex likely would preclude effective clinical application in individual patients.
Collapse
Affiliation(s)
- Ashley L Ware
- Correspondence to: Ashley L. Ware, PhD Department of Psychology, Georgia State University 140 Decatur Street SE, Atlanta, GA 30303, USA E-mail:
| | - Adrian I Onicas
- Department of Psychology, University of Calgary, Calgary, AB T2N 0V2, Canada
- Computer Vision Group, Sano Centre for Computational Medicine, Kraków 30-054, Poland
| | - Nishard Abdeen
- Department of Radiology, Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa,Ottawa, ON, Canada K1H 8L1
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and CHU Sainte-Justine Hospital Research Center, Montréal, QC, Canada H3C 3J7
| | - Christian Beaulieu
- Department of Biomedical Engineering, 1098 Research Transition Facility, University of Alberta, Edmonton, AB, Canada T6G 2V2
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada V6H 3V4
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada V6H 3V4
| | - William Craig
- University of Alberta and Stollery Children’s Hospital, Edmonton, AB, Canada T6G 1C9
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada H3T1J4
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Sylvain Deschenes
- CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montréal, QC, CHU Sainte-Justine Research Center, Montréal, QC, Canada H3T1C5
| | - Quynh Doan
- Department of Pediatrics University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC, Canada V5Z 4H4
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Bradley G Goodyear
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, AB T2N 0V2, Canada
- Department of Radiology, University of Calgary, Calgary, AB T2N 0V2, Canada
| | - Jocelyn Gravel
- Pediatric Emergency Department, CHU Sainte-Justine, Montréal, QC H3T1C5, Canada
- Department of Pediatric, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada K1H8L1
| | | | | |
Collapse
|
175
|
Brand J, McDonald SJ, Gawryluk JR, Christie BR, Shultz SR. Stress and traumatic brain injury: An inherent bi-directional relationship with temporal and synergistic complexities. Neurosci Biobehav Rev 2023; 151:105242. [PMID: 37225064 DOI: 10.1016/j.neubiorev.2023.105242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Traumatic brain injury (TBI) and stress are prevalent worldwide and can both result in life-altering health problems. While stress often occurs in the absence of TBI, TBI inherently involves some element of stress. Furthermore, because there is pathophysiological overlap between stress and TBI, it is likely that stress influences TBI outcomes. However, there are temporal complexities in this relationship (e.g., when the stress occurs) that have been understudied despite their potential importance. This paper begins by introducing TBI and stress and highlighting some of their possible synergistic mechanisms including inflammation, excitotoxicity, oxidative stress, hypothalamic-pituitary-adrenal axis dysregulation, and autonomic nervous system dysfunction. We next describe different temporal scenarios involving TBI and stress and review the available literature on this topic. In doing so we find initial evidence that in some contexts stress is a highly influential factor in TBI pathophysiology and recovery, and vice versa. We also identify important knowledge gaps and suggest future research avenues that will increase our understanding of this inherent bidirectional relationship and could one day result in improved patient care.
Collapse
Affiliation(s)
- Justin Brand
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Neuroscience, Monash University, Melbourne, Victoria, Australia; Faculty of Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada.
| |
Collapse
|
176
|
Malik S, Alnaji O, Malik M, Gambale T, Farrokhyar F, Rathbone MP. Inflammatory cytokines associated with mild traumatic brain injury and clinical outcomes: a systematic review and meta-analysis. Front Neurol 2023; 14:1123407. [PMID: 37251220 PMCID: PMC10213278 DOI: 10.3389/fneur.2023.1123407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mild traumatic brain injuries (mTBIs) trigger a neuroinflammatory response, which leads to perturbations in the levels of inflammatory cytokines, resulting in a distinctive profile. A systematic review and meta-analysis were conducted to synthesize data related to levels of inflammatory cytokines in patients with mTBI. The electronic databases EMBASE, MEDLINE, and PUBMED were searched from January 2014 to December 12, 2021. A total of 5,138 articles were screened using a systematic approach based on the PRISMA and R-AMSTAR guidelines. Of these articles, 174 were selected for full-text review and 26 were included in the final analysis. The results of this study demonstrate that within 24 hours, patients with mTBI have significantly higher levels of Interleukin-6 (IL-6), Interleukin-1 Receptor Antagonist (IL-1RA), and Interferon-γ (IFN-γ) in blood, compared to healthy controls in majority of the included studies. Similarly one week following the injury, patients with mTBI have higher circulatory levels of Monocyte Chemoattractant Protein-1/C-C Motif Chemokine Ligand 2 (MCP-1/CCL2), compared to healthy controls in majority of the included studies. The results of the meta-analysis also confirmed these findings by demonstrating significantly elevated blood levels of IL-6, MCP-1/CCL2, and Interleukin-1 beta (IL-1β) in the mTBI population compared to healthy controls (p < 0.0001), particularly in the acute stages (<7 days). Furthermore, it was found that IL-6, Tumor Necrosis Factor-alpha (TNF-α), IL-1RA, IL-10, and MCP-1/CCL2 were associated with poor clinical outcomes following the mTBI. Finally, this research highlights the lack of consensus in the methodology of mTBI studies that measure inflammatory cytokines in the blood, and also provides direction for future mTBI research.
Collapse
Affiliation(s)
- Shazia Malik
- Neurosciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Omar Alnaji
- Faculty of Life Sciences, McMaster University, Hamilton, ON, Canada
| | - Mahnoor Malik
- Bachelor of Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Teresa Gambale
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Surgery and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Michel P. Rathbone
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
177
|
Ware JB, Sandsmark DK. Imaging Approach to Concussion. Neuroimaging Clin N Am 2023; 33:261-269. [PMID: 36965944 DOI: 10.1016/j.nic.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The acute and long-term neurobiological sequelae of concussion (mild traumatic brain injury [mTBI]) and sub-concussive head trauma have become increasingly apparent in recent decades in part due to neuroimaging research. Although imaging has an established role in the clinical management of mTBI for the identification of intracranial lesions warranting urgent interventions, MR imaging is increasingly employed for the detection of post-traumatic sequelae which carry important prognostic significance. As neuroimaging research continues to elucidate the pathophysiology of TBI underlying prolonged recovery and the development of persistent post-concussive symptoms, there is a strong motivation to translate these techniques into clinical use for improved diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Department of Radiology, Neuroradiology Division, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
178
|
Churchill NW, Graham SJ, Schweizer TA. Perfusion Imaging of Traumatic Brain Injury. Neuroimaging Clin N Am 2023; 33:315-324. [PMID: 36965948 DOI: 10.1016/j.nic.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Physics Department, Toronto Metropolitan University, 60 St George St, Toronto, ON M5S 1A7, Canada.
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, ON M5G 1L7, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Wellness Way, Toronto, ON M4N 3M5, Canada; Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
179
|
Sgro M, Ellens S, Kodila ZN, Christensen J, Li C, Mychasiuk R, Yamakawa GR. Repetitive mild traumatic brain injury alters central and peripheral clock gene expression in the adolescent rat. Neurobiol Sleep Circadian Rhythms 2023; 14:100090. [PMID: 36942266 PMCID: PMC10024151 DOI: 10.1016/j.nbscr.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common injury worldwide leading to substantial medical costs and a high burden on society. In adolescents, falls and sports related trauma are often the causes of mTBI. Importantly, critical brain growth and development occurs during this sensitive period making the prospect of a brain injury a worrying phenomenon. Upwards of 70% of patients report circadian disruption following these injuries and this has been shown to impede recovery. Therefore, we sought to determine if core circadian clock gene expression was disrupted in rat model of repetitive mTBI (RmTBI). Male and female adolescent rats (n = 129) received sham or RmTBI. The animals were then euthanized at different times throughout the day and night. Tissue from the hypothalamus, cerebellum, hippocampus, liver, and small intestine were evaluated for the expression of per1, per2, cry1, clock, bmal1 and rev-erb-α. We found most clock genes varied across the day/night indicating circadian expression patterns. In the hypothalamus we found RmTBI altered the expression of cry1 and bmal1 in addition to sex differences in per2, cry1, clock, bmal1 and rev-erb- α. In the cerebellum, per1, per2, cry1, clock, bmal1 and rev-erb-α rhythms were all knocked out by RmTBI in addition to sex differences in cry1, clock and bmal1 expression. We also detected a significant decrease in overall expression of all clock genes in males in the middle of the night. In the hippocampus we found that RmTBI changed the rhythm of rev-erb-α expression in addition to sex differences in bmal1 expression. In the liver we detected strong rhythms in all genes examined, however only per2 expression was knocked out by RmTBI, in addition we also detected sex differences in per2 and cry1. We also detected an overall decrease in female clock gene expression in the early night. In the small intestine, RmTBI altered cry1 expression and there were sex differences in rev-erb-α. These results indicate that RmTBI alters core circadian clock gene expression in the central and peripheral nervous system in a time, tissue and sex dependent manner. This may be disrupting important phase relationships between the brain and peripheral nervous system and contributing to post-injury symptomology and also highlights the importance for time and sex dependent assessment of injury outcomes.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Susanne Ellens
- Sport and Exercise Science, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Corresponding author. Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
180
|
Brown O, Healey K, Fang Z, Zemek R, Smith A, Ledoux AA. Associations between psychological resilience and metrics of white matter microstructure in pediatric concussion. Hum Brain Mapp 2023. [PMID: 37126608 DOI: 10.1002/hbm.26321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
This study investigated associations between psychological resilience and characteristics of white matter microstructure in pediatric concussion. This is a case control study and a planned substudy of a larger randomized controlled trial. Children with an acute concussion or orthopedic injury were recruited from the emergency department. Participants completed both the Connor-Davidson Resilience Scale 10 and an MRI at 72 h and 4-weeks post-injury. The association between resiliency and fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) at both timepoints were examined. We examined whether these associations were moderated by group. The association between resiliency captured at 72 h and diffusion tensor imaging metrics at 4 weeks was also investigated. Clusters were extracted using a significance threshold of threshold-free cluster enhancement corrected p < .05. A total of 66 children with concussion (median (IQR) age = 12.88 (IQR: 11.80-14.36); 47% female) and 29 children with orthopedic-injury (median (IQR) age = 12.49 (IQR: 11.18-14.01); 41% female) were included. A negative correlation was identified in the concussion group between 72 h resilience and 72 h FA. Meanwhile, positive correlations were identified in the concussion group with concussion between 72 h resilience and both 72 h MD and 72 h RD. These findings suggest that 72 h resilience is associated with white matter microstructure of the forceps minor, superior longitudinal fasciculus, and anterior thalamic radiation at 72 h post-concussion. Resilience seems to be associated with neural integrity only in the acute phase of concussion and thus may be considered when researching concussion recovery.
Collapse
Affiliation(s)
- Olivier Brown
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics and Emergency Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra Smith
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
181
|
Hutchison MG, Di Battista AP, Pyndiura K, Blanc S, Quaid PT, Richards D. Incidence of Remote Near-Point of Convergence in University Athletes After Sport-Related Concussion. Clin J Sport Med 2023; 33:258-263. [PMID: 36584046 PMCID: PMC10128903 DOI: 10.1097/jsm.0000000000001102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Near-point of convergence (NPC) testing is an attractive screening tool in the sport setting because it is rapid, requires few resources, and is easy to administer. Remote NPC has been reported after sport-related concussion (SRC), although the incidence among a university-aged population is not well defined. The purpose of the study was to examine the incidence of remote NPC after SRC in a cohort of Canadian interuniversity athletes. DESIGN Cross-sequential. SETTING University. PARTICIPANTS One hundred thirty-two university athletes [SRC, n = 68; musculoskeletal (MSK) injury, n = 64] were tested before the beginning of their competitive season and again after their injury. INDEPENDENT VARIABLES Healthy athletes measured preseason were compared with athletes after SRC or MSK injury using both longitudinal and cross-sectional designs. MAIN OUTCOME MEASURES Remote NPC (pass/fail), measured at 6 cm or greater, repeated 3 times. RESULTS After SRC, 22% of athletes failed their test postinjury (95% CI, 14%-33%). Comparatively, in the MSK group, 3% of athletes failed their test postinjury (95% CI, 1%-7%). A direct comparison of both injury groups yielded a mean 19% higher prevalence of failed NPC tests after SRC versus MSK injury (95% CI, 10%-30%). There seems to be no relationship between reported symptom burden and NPC performance after SRC. CONCLUSION Remote NPC occurs in approximately 1 of 5 athletes after SRC and is rarely observed after MSK injury.
Collapse
Affiliation(s)
- Michael G. Hutchison
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Alex P. Di Battista
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Kyla Pyndiura
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, Canada
| | - Shirley Blanc
- Complete Eye Care Services, Toronto, ON, Canada; and
| | | | - Doug Richards
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto ON, Canada
| |
Collapse
|
182
|
Valente JH, Anderson JD, Paolo WF, Sarmiento K, Tomaszewski CA, Haukoos JS, Diercks DB, Diercks DB, Anderson JD, Byyny R, Carpenter CR, Friedman B, Gemme SR, Gerardo CJ, Godwin SA, Hahn SA, Hatten BW, Haukoos JS, Kaji A, Kwok H, Lo BM, Mace SE, Moran M, Promes SB, Shah KH, Shih RD, Silvers SM, Slivinski A, Smith MD, Thiessen MEW, Tomaszewski CA, Trent S, Valente JH, Wall SP, Westafer LM, Yu Y, Cantrill SV, Finnell JT, Schulz T, Vandertulip K. Clinical Policy: Critical Issues in the Management of Adult Patients Presenting to the Emergency Department With Mild Traumatic Brain Injury: Approved by ACEP Board of Directors, February 1, 2023 Clinical Policy Endorsed by the Emergency Nurses Association (April 5, 2023). Ann Emerg Med 2023; 81:e63-e105. [PMID: 37085214 PMCID: PMC10617828 DOI: 10.1016/j.annemergmed.2023.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
This 2023 Clinical Policy from the American College of Emergency Physicians is an update of the 2008 “Clinical Policy: Neuroimaging and Decisionmaking in Adult Mild Traumatic Brain Injury in the Acute Setting.” A writing subcommittee conducted a systematic review of the literature to derive evidence-based recommendations to answer the following questions: 1) In the adult emergency department patient presenting with minor head injury, are there clinical decision tools to identify patients who do not require a head computed tomography? 2) In the adult emergency department patient presenting with minor head injury, a normal baseline neurologic examination, and taking an anticoagulant or antiplatelet medication, is discharge safe after a single head computed tomography? and 3) In the adult emergency department patient diagnosed with mild traumatic brain injury or concussion, are there clinical decision tools or factors to identify patients requiring follow-up care for postconcussive syndrome or to identify patients with delayed sequelae after emergency department discharge? Evidence was graded and recommendations were made based on the strength of the available data. Widespread and consistent implementation of evidence-based clinical recommendations is warranted to improve patient care.
Collapse
|
183
|
Lazzarino G, Mangione R, Saab MW, Tavazzi B, Pittalà A, Signoretti S, Di Pietro V, Lazzarino G, Amorini AM. Traumatic Brain Injury Alters Cerebral Concentrations and Redox States of Coenzymes Q 9 and Q 10 in the Rat. Antioxidants (Basel) 2023; 12:antiox12050985. [PMID: 37237851 DOI: 10.3390/antiox12050985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
To date, there is no information on the effect of TBI on the changes in brain CoQ levels and possible variations in its redox state. In this study, we induced graded TBIs (mild TBI, mTBI and severe TBI, sTBI) in male rats, using the weight-drop closed-head impact acceleration model of trauma. At 7 days post-injury, CoQ9, CoQ10 and α-tocopherol were measured by HPLC in brain extracts of the injured rats, as well as in those of a group of control sham-operated rats. In the controls, about the 69% of total CoQ was in the form of CoQ9 and the oxidized/reduced ratios of CoQ9 and CoQ10 were, respectively, 1.05 ± 0.07 and 1.42 ± 0.17. No significant changes in these values were observed in rats experiencing mTBI. Conversely, in the brains of sTBI-injured animals, an increase in reduced and a decrease in oxidized CoQ9 produced an oxidized/reduced ratio of 0.81 ± 0.1 (p < 0.001 compared with both controls and mTBI). A concomitant decrease in both reduced and oxidized CoQ10 generated a corresponding oxidized/reduced ratio of 1.38 ± 0.23 (p < 0.001 compared with both controls and mTBI). An overall decrease in the concentration of the total CoQ pool was also found in sTBI-injured rats (p < 0.001 compared with both controls and mTBI). Concerning α-tocopherol, whilst no differences compared with the controls were found in mTBI animals, a significant decrease was observed in rats experiencing sTBI (p < 0.01 compared with both controls and mTBI). Besides suggesting potentially different functions and intracellular distributions of CoQ9 and CoQ10 in rat brain mitochondria, these results demonstrate, for the first time to the best of knowledge, that sTBI alters the levels and redox states of CoQ9 and CoQ10, thus adding a new explanation to the mitochondrial impairment affecting ETC, OXPHOS, energy supply and antioxidant defenses following sTBI.
Collapse
Affiliation(s)
- Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Barbara Tavazzi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Stefano Signoretti
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
- Department of Emergency and Urgency, Division of Neurosurgery, S. Eugenio/CTO Hospital, A.S.L. Roma2 Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
184
|
Elsaid S, Truong P, Sailasuta N, Le Foll B. Evaluating Back-to-Back and Day-to-Day Reproducibility of Cortical GABA+ Measurements Using Proton Magnetic Resonance Spectroscopy ( 1H MRS). Int J Mol Sci 2023; 24:ijms24097713. [PMID: 37175420 PMCID: PMC10178500 DOI: 10.3390/ijms24097713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
γ-aminobutyric acid (GABA) is a major inhibitory neurotransmitter implicated in neuropsychiatric disorders. The best method for quantifying GABA is proton magnetic resonance spectroscopy (1H MRS). Considering that accurate measurements of GABA are affected by slight methodological alterations, demonstrating GABA reproducibility in healthy volunteers is essential before implementing the changes in vivo. Thus, our study aimed to evaluate the back-to-back (B2B) and day-to-day (D2D) reproducibility of GABA+ macromolecules (GABA+) using a 3 Tesla MRI scanner, the new 32-channel head coil (CHC), and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) technique with the scan time (approximately 10 min), adequate for psychiatric patients. The dorsomedial pre-frontal cortex/anterior cingulate cortex (dmPFC/ACC) was scanned in 29 and the dorsolateral pre-frontal cortex (dlPFC) in 28 healthy volunteers on two separate days. Gannet 3.1 was used to quantify GABA+. The reproducibility was evaluated by Pearson's r correlation, the interclass-correlation coefficient (ICC), and the coefficient of variation (CV%) (r/ICC/CV%). For Day 1, B2B reproducibility was 0.59/0.60/5.02% in the dmPFC/ACC and 0.74/0.73/5.15% for dlPFC. For Day 2, it was 0.60/0.59/6.26% for the dmPFC/ACC and 0.54/0.54/6.89 for dlPFC. D2D reproducibility of averaged GABA+ was 0.62/0.61/4.95% for the dmPFC/ACC and 0.58/0.58/5.85% for dlPFC. Our study found excellent GABA+ repeatability and reliability in the dmPFC/ACC and dlPFC.
Collapse
Affiliation(s)
- Sonja Elsaid
- Translation Addiction Research Laboratory (TARL), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
- Institute of Medical Science (IMS), Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Brain Health Imaging Centre (BHIC), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Peter Truong
- Brain Health Imaging Centre (BHIC), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Sunnybrook Health Science Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Napapon Sailasuta
- Brain Health Imaging Centre (BHIC), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Departments of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bernard Le Foll
- Translation Addiction Research Laboratory (TARL), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
- Institute of Medical Science (IMS), Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Brain Health Imaging Centre (BHIC), Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Waypoint Centre for Mental Health Care, Waypoint Research Institute, Penetanguishene, ON L9M 1G3, Canada
| |
Collapse
|
185
|
Hurtubise JM, Gorbet DJ, Hynes L, Macpherson AK, Sergio LE. Cortical and cerebellar structural correlates of cognitive-motor integration performance in females with and without persistent concussion symptoms. Brain Inj 2023; 37:397-411. [PMID: 36548113 DOI: 10.1080/02699052.2022.2158231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fifteen percent of individuals who sustain a concussion develop persistent concussion symptoms (PCS). Recent literature has demonstrated atrophy of the frontal, parietal, and cerebellar regions following acute concussive injury. The frontoparietal-cerebellar network is essential for the performance of visuomotor transformation tasks requiring cognitive-motor integration (CMI), important for daily function. PURPOSE We investigated cortical and subcortical structural differences and how these differences are associated with CMI performance in those with PCS versus healthy controls. METHODS Twenty-six age-matched female participants (13 PCS, 13 healthy) completed four visuomotor tasks. Additionally, MR-images were analyzed for cortical thickness and volume, and cerebellar lobule volume. RESULTS No statistically significant group differences were found in CMI performance. However, those with PCS demonstrated a significantly thicker and larger precuneus, and significantly smaller cerebellar lobules (VIIIa, VIIIb, X) compared to controls. When groups were combined, volumes of both the cerebellar lobules and cortical regions were associated with CMI task performance. CONCLUSION The lack of behavioral differences combined with the structural differences may reflect a compensatory mechanism for those with PCS. In addition, this study highlights the effectiveness of CMI tasks in estimating the structural integrity of the frontoparietal-cerebellar network and is among the first to demonstrate structural correlates of PCS.
Collapse
Affiliation(s)
- Johanna M Hurtubise
- School of Kinesiology and Health Science, York University, Toronto, Canada
- Centre for Sport and Exercise Education, Camosun College, Victoria, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Loriann Hynes
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | | | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
186
|
La PL, Joyce JM, Bell TK, Mauthner M, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Brain metabolites measured with magnetic resonance spectroscopy in pediatric concussion and orthopedic injury: An Advancing Concussion Assessment in Pediatrics (A-CAP) study. Hum Brain Mapp 2023; 44:2493-2508. [PMID: 36763547 PMCID: PMC10028643 DOI: 10.1002/hbm.26226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Millions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.g., N-acetyl Aspartate (tNAA), glutamate (Glx), creatine (tCr), choline (tCho), and myo-Inositol (mI)) to better understand these disruptions. In this study, we used MRS to examine differences in brain metabolites between children and adolescents with concussion versus orthopedic injury. Children and adolescents with concussion (n = 361) or orthopedic injury (OI) (n = 184) aged 8 to 17 years were recruited from five emergency departments across Canada. MRS data were collected from the left dorsolateral prefrontal cortex (L-DLPFC) using point resolved spectroscopy (PRESS) at 3 T at a mean of 12 days post-injury (median 10 days post-injury, range 2-33 days). Univariate analyses for each metabolite found no statistically significant metabolite differences between groups. Within each analysis, several covariates were statistically significant. Follow-up analyses designed to account for possible confounding factors including age, site, scanner, vendor, time since injury, and tissue type (and interactions as appropriate) did not find any metabolite group differences. In the largest sample of pediatric concussion studied with MRS to date, we found no metabolite differences between concussion and OI groups in the L-DLPFC. We suggest that at 2 weeks post-injury in a general pediatric concussion population, brain metabolites in the L-DLPFC are not specifically affected by brain injury.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Julie M Joyce
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Ste Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
187
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
188
|
Nolan KE, Caccese JB, Kontos AP, Buckley TA, Garcia GGP, Port N, Broglio SP, McAllister TW, McCrea M, Pasquina PF, Hayes JP. Primary and Secondary Risk Factors Associated With Concussion Symptom Clusters in Collegiate Athletes: Results From the NCAA-DoD Grand Alliance CARE Consortium. Orthop J Sports Med 2023; 11:23259671231163581. [PMID: 37077715 PMCID: PMC10108418 DOI: 10.1177/23259671231163581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 04/21/2023] Open
Abstract
Background There is a broad and diverse range of symptoms after a concussion, from irritability to nausea. This heterogeneity of symptoms is a challenge for clinicians managing the different presentations among injuries. Prior research has investigated the structure of postconcussive symptoms to determine if they can be grouped into clusters of related symptoms. Purpose/Hypothesis The purpose of this study was to identify symptom clusters during the acute phase after a sports-related concussion using exploratory factor analysis and to understand the relationship between risk factors for postconcussion symptoms (ie, demographics, injury characteristics, mental health, and sleep qualities) and different symptom clusters. We hypothesized that certain factors would be predictive of specific symptom clusters. Study Design Cross-sectional study; Level of evidence, 3. Methods Collegiate athletes (N = 1104) from the Concussion, Assessment, Research, and Education (CARE) Consortium completed the Sport Concussion Assessment Tool-Third Edition symptom assessment tool 24 to 48 hours after concussion. Exploratory factor analysis was conducted on the symptom evaluation to determine symptom clusters 24 to 48 hours after concussion. Regression analysis was used to examine the effects of pre- and postinjury characteristics. Results Exploratory factor analysis revealed a 4-cluster structure for acute postconcussive symptoms that explained 62% of the variance in symptom reporting: vestibular-cognitive, migrainous, cognitive fatigue, and affective. Delayed reporting, less sleep before assessment, female sex, and being hurt outside of competition (during practice/training) was correlated with increased symptoms for 4 symptom clusters. Depression predicted higher vestibular-cognitive and affective symptoms. Amnesia was correlated with higher vestibular-cognitive and migrainous symptoms, whereas migraine history was associated with more migrainous and affective symptoms. Conclusion Symptoms can be grouped into 1 of 4 distinct clusters. Certain variables were associated with increased symptoms across multiple clusters and may be indicative of greater injury severity. Other factors (ie, migraine history, depression, amnesia) were associated with a more specific symptom presentation and may be mechanistically related to concussion outcomes and biological markers.
Collapse
Affiliation(s)
- Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | | | - Anthony P. Kontos
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | - Paul F. Pasquina
- Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Jasmeet P. Hayes, PhD, Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH 43215, USA ()
| | | |
Collapse
|
189
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
190
|
Hallock H, Mantwill M, Vajkoczy P, Wolfarth B, Reinsberger C, Lampit A, Finke C. Sport-Related Concussion: A Cognitive Perspective. Neurol Clin Pract 2023; 13:e200123. [PMID: 36891462 PMCID: PMC9987206 DOI: 10.1212/cpj.0000000000200123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/03/2022] [Indexed: 02/25/2023]
Abstract
Purpose of Review The incidence of sport-related concussion (SRC) has been increasing in different sports and its impact on long-term cognitive function is increasingly recognized. In this study, we review the epidemiology, neuropathophysiology, clinical symptoms, and long-term consequences of SRC with a specific focus on cognition. Recent Findings Repeated concussions are associated with an increased risk of several neurologic diseases and long-term cognitive deficits. To improve cognitive outcomes in athletes with SRC, standardized guidelines for the assessment and management of SRC are vital. However, current concussion management guidelines lack procedures for rehabilitating acute and long-term cognitive symptoms. Summary Increased awareness for the management and rehabilitation of cognitive symptoms in SRC is needed in all clinical neurologists treating professional and amateur athletes. We propose cognitive training as a prehabilitation tool to alleviate the severity of cognitive symptoms and as a rehabilitative tool to improve cognitive recovery postinjury.
Collapse
Affiliation(s)
- Harry Hallock
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Maron Mantwill
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Peter Vajkoczy
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Bernd Wolfarth
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Claus Reinsberger
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Amit Lampit
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| | - Carsten Finke
- Berlin School of Mind and Brain (HH, MM, AL, CF), Humboldt-Universität zu Berlin; Departments of Neurology (HH, MM, AL, CF) and Neurosurgery (PV) and of Sports Medicine (BW), Charité Universitätsmedizin, Berlin; Institute of Sports Medicine (CR), University of Paderborn, Germany; and Department of Psychiatry (AL), University of Melbourne, Parkville, Australia
| |
Collapse
|
191
|
Sandri Heidner G, O'Connell C, Domire ZJ, Rider P, Mizelle C, Murray NP. Concussed Neural Signature is Substantially Different than Fatigue Neural Signature in Non-concussed Controls. J Mot Behav 2023; 55:302-312. [PMID: 36990462 DOI: 10.1080/00222895.2023.2194852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Traumatic brain injuries can result in short-lived and long-lasting neurological impairment. Identifying the correct recovery timeframe is challenging, as balance-based metrics may be negatively impacted if testing is performed soon after exercise. Thirty-two healthy controls and seventeen concussed individuals performed a series of balance challenges, including virtual reality optical flow perturbation. The control group completed a backpacking protocol to induce moderate fatigue. Concussed participants had lower spectral power in the motor cortex and central sulcus when compared to fatigued controls. Moreover, concussed participants experienced a decrease in overall theta band spectral power while fatigued controls showed an increase in theta band spectral power. This neural signature may be useful to distinguish between concussed and non-concussed fatigued participants in future assessments.
Collapse
Affiliation(s)
- Gustavo Sandri Heidner
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, Montclair State University, Montclair, NJ, USA
| | - Caitlin O'Connell
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Zachary J Domire
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Patrick Rider
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chris Mizelle
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Nicholas P Murray
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
192
|
Christensen BA, Clark B, Muir AM, Allen WD, Corbin EM, Jaggi T, Alder N, Clawson A, Farrer TJ, Bigler ED, Larson MJ. Interhemispheric transfer time and concussion in adolescents: A longitudinal study using response time and event-related potential measures. Front Hum Neurosci 2023; 17:1161156. [PMID: 37056961 PMCID: PMC10086259 DOI: 10.3389/fnhum.2023.1161156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionConcussion in children and adolescents is a public health concern with higher concussion incidence than adults and increased susceptibility to axonal injury. The corpus callosum is a vulnerable location of concussion-related white matter damage that can be associated with short- and long-term effects of concussion. Interhemispheric transfer time (IHTT) of visual information across the corpus callosum can be used as a direct measure of corpus callosum functioning that may be impacted by adolescent concussion with slower IHTT relative to matched controls. Longitudinal studies and studies testing physiological measures of IHTT following concussion in adolescents are lacking.MethodsWe used the N1 and P1 components of the scalp-recorded brain event-related potential (ERP) to measure IHTT in 20 adolescents (ages 12–19 years old) with confirmed concussion and 16 neurologically-healthy control participants within 3 weeks of concussion (subacute stage) and approximately 10 months after injury (longitudinal).ResultsSeparate two-group (concussion, control) by two-time (3 weeks, 10 months) repeated measures ANOVAs on difference response times and IHTT latencies of the P1 and N1 components showed no significant differences by group (ps ≥ 0.25) nor by time (ps ≥ 0.64), with no significant interactions (ps ≥ 0.15).DiscussionResults from the current sample suggest that measures of IHTT may not be strongly influenced at 3 weeks or longitudinally following adolescent concussion using the current IHTT paradigm.
Collapse
Affiliation(s)
- Benjamin A. Christensen
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Bradley Clark
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Alexandra M. Muir
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Whitney D. Allen
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Erin M. Corbin
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Tyshae Jaggi
- Pacific Northwest University of Health Sciences, Yakima, WA, United States
| | - Nathan Alder
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ann Clawson
- Children’s National Hospital, Washington, DC, United States
| | - Thomas J. Farrer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Erin D. Bigler
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
- Departments of Psychiatry and Neurology, University of Utah, Salt Lake City, UT, United States
| | - Michael J. Larson
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
- *Correspondence: Michael J. Larson,
| |
Collapse
|
193
|
Neumann KD, Seshadri V, Thompson XD, Broshek DK, Druzgal J, Massey JC, Newman B, Reyes J, Simpson SR, McCauley KS, Patrie J, Stone JR, Kundu BK, Resch JE. Microglial activation persists beyond clinical recovery following sport concussion in collegiate athletes. Front Neurol 2023; 14:1127708. [PMID: 37034078 PMCID: PMC10080132 DOI: 10.3389/fneur.2023.1127708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.
Collapse
Affiliation(s)
- Kiel D Neumann
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Xavier D Thompson
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| | - Donna K Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James C Massey
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Benjamin Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Jose Reyes
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Spenser R Simpson
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katelyenn S McCauley
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - James Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - James R Stone
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jacob E Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
194
|
Kemp AM, O'Brien KH, Wallace T. Reconceptualizing Recovery After Concussion: A Phenomenological Exploration of College Student Experiences. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:867-882. [PMID: 36108288 DOI: 10.1044/2022_ajslp-22-00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Typical measures of recovery from concussion-such as symptom scales, neurocognitive testing, or exertion measures-may not capture individualized experiences of concussion. This report examines how college students with concussion interact with and consider their recovery. METHOD Sixteen college students who sustained concussions while in college completed 40- to 75-min semistructured interviews. All were enrolling to become mentors in a peer mentoring program for students with concussion. Questions addressed experiences as a college student with concussion, life changes following concussion, and role of peers in recovery. Using phenomenological reduction, analysis focused on the phenomenon of recovery and motivation for participation in a mentoring program. RESULTS Two main themes were found: (a) What Recovery Looks Like and (b) Gaining Perspective, Learning to Cope and Adapting to Change. Thirteen participants denied the label of "recovered" even though all had been deemed recovered and discharged from medical care. Instead, two subthemes emerged within What Recovery Looks Like: Ongoing Recovery and Reconceptualizing Recovery. Perceptions of recovery were influenced by effort, capacity, and resilience. In the second theme, students described strategies, resources, and supports used to cope with their injuries; most commonly used was emotion-focused coping. CONCLUSIONS College students with concussion consider recovery as an ongoing process rather than a dichotomized condition. Student experiences may not be reflected in commonly used symptom scales or objective assessments. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21084925.
Collapse
Affiliation(s)
- Amy M Kemp
- Department of Communication Sciences and Special Education, University of Georgia, Athens
| | - Katy H O'Brien
- Department of Communication Sciences and Special Education, University of Georgia, Athens
| | - Tracey Wallace
- SHARE Military Initiative at Shepherd Center, Crawford Research Institute, Complex Concussion Clinic, Atlanta, GA
| |
Collapse
|
195
|
Butterfield J, Post A, Karton C, Robidoux MA, Gilchrist M, Hoshizaki TB. A video analysis examination of the frequency and type of head impacts for player positions in youth ice hockey and FE estimation of their impact severity. Sports Biomech 2023:1-17. [PMID: 36911883 DOI: 10.1080/14763141.2023.2186941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
This research employed head impact frequency and frequency of estimated strain to analyse the influence of player position on brain trauma in U15 and U18 youth ice hockey. The methods involved a video analysis of 30 U15 and 30 U18 games where frequency, type of head impact event, and player position during impact was recorded. These impacts were then simulated in the laboratory using physical reconstructions and finite element modelling to determine the brain strains for each impact category. U15 forwards experienced significantly higher head impact frequencies (139) when compared to defenceman (50), with goalies showing the lowest frequency (6) (p < 0.05). U18 forwards experienced significantly higher head impact frequencies (220) when compared to defenceman (92), with goalies having the least frequent head impacts (4) (p < 0.05). The U15 forwards had a significantly higher frequency of head impacts at the very low and med strains and the U18s had higher frequency of head impacts for the very low and low level strains (p < 0.05). Game rule changes and equipment innovation may be considered to mitigate the increased risk faced by forwards compared to other positions in U15 and U18 youth ice hockey.
Collapse
Affiliation(s)
| | - Andrew Post
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Clara Karton
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Michael Gilchrist
- Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
196
|
Wang Y, Bartels HM, Nelson LD. A Systematic Review of ASL Perfusion MRI in Mild TBI. Neuropsychol Rev 2023; 33:160-191. [PMID: 32808244 PMCID: PMC7889778 DOI: 10.1007/s11065-020-09451-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 08/06/2020] [Indexed: 01/06/2023]
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern. Cerebrovascular alterations play a significant role in the evolution of injury sequelae and in the process of post-traumatic brain repair. Arterial spin labeling (ASL) is an advanced perfusion magnetic resonance imaging technique that permits noninvasive quantification of cerebral blood flow (CBF). This is the first systematic review of ASL research findings in patients with mTBI. Our approach followed the American Academy of Neurology (AAN) and PRISMA guidelines. We searched Ovid/MEDLINE, Web of Science, Scopus, and the Cochrane Index for relevant articles published as of February 20, 2020. Full-text results were combined into Rayyan software for further evaluation. Data extraction, including risk of bias ratings, was performed using American Academy of Neurology's four-tiered classification scheme. Twenty-three articles met inclusion criteria comprising data on up to 566 mTBI patients and 654 control subjects. Of the 23 studies, 18 reported some type of regional CBF abnormality in mTBI patients at rest or during a cognitive task, with more findings of decreased than increased CBF. The evidence supports the conclusion that mTBI likely causes ASL-derived CBF anomalies. However, synthesis of findings was challenging due to substantial methodological variations across studies and few studies with low risk of bias. Thus, larger-scale prospective cohort studies are needed to more definitively chart the course of CBF changes in humans after mTBI and to understand how individual difference factors contribute to post-injury CBF changes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Hannah M Bartels
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| |
Collapse
|
197
|
Lempke LB, Hoch MC, Call JA, Schmidt JD, Lynall RC. Lower Extremity Somatosensory Function Throughout Concussion Recovery: A Prospective Cohort Study. J Head Trauma Rehabil 2023; 38:E156-E166. [PMID: 35687895 DOI: 10.1097/htr.0000000000000805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Balance impairments may suggest somatosensory disruption beyond concussion clinical recovery, but somatosensory subsystems have never been directly assessed. Our objective was to examine somatosensory function between individuals with a concussion and healthy matched-controls at acute (<7 days) and asymptomatic (<72 hours of being symptom-free) time points. SETTING Laboratory. PARTICIPANTS Participants with a concussion and matched controls ( n = 24; 58% male, age: 19.3 ± 1.1 years, mass: 70.3 ± 16.4 kg, height: 177.3 ± 12.7 cm). DESIGN Prospective cohort. MAIN MEASURES Somatosensory assessments on the dominant limb at both time points included: (1) plantar touch sensation threshold via Semmes-Weinstein monofilaments, (2) plantar pressure pain threshold via algometry, and (3) knee absolute passive joint repositioning (PJR) error via Biodex across 3 arcs (105°-75°, 30°-60°, 90°-45° knee-flexion). We used mixed-model analyses of variance, post hoc Tukey honestly significant difference t tests with mean difference, 95% CI, and Hedges' g effect sizes to examine outcomes. RESULTS Touch sensation had a group effect with the concussion cohort needing 0.95 grams of force (gf) more relative to controls (95% CI: 0.03 to 1.87; P = .043). No touch sensation interaction was present, but medium and large effects were observed for greater gf needed among the concussed cohort at the acute (1.11 gf; 95% CI: 0.17 to 2.05; g = 0.96) and asymptomatic time points (0.79 gf; 95% CI: -0.15 to 1.73; g = 0.73). No plantar pressure pain threshold effects were observed ( P ≥ .311), with negligible pressure difference magnitudes at the acute (0.26 pound force [lbf]/cm 2 ; 95% CI: -1.54 to 2.06; g = 0.13) and medium magnitudes at the asymptomatic time points (0.99 lbf/cm 2 ; 95% CI: -0.81 to 2.80; g = 0.42) for the concussed cohort needing more pressure to detect pain. The 30° to 60° PJR had a time effect, with asymptomatic time point having 3.12° better accuracy (95% CI: 1.23° to 5.02; P = .002). The concussed cohort had small-to-medium magnitude differences relative to controls at the acute time point for PJR during 105° to 75° (0.89°; g = 0.30) and 90° to 45° (0.62°; g = 0.17), but not 30° to 60° (-1.75°; g = -0.40). CONCLUSIONS Individuals with a concussion exhibited large effects for diminished plantar touch sensation and small to medium effects for inhibited plantar pressure pain sensation compared with controls, which may indicate altered somatosensory function. Negligible PJR differences suggest knee joint position sense is not altered post-concussion. Pre- and postconcussion examination is warranted to understand causal somatosensory mechanisms.
Collapse
Affiliation(s)
- Landon B Lempke
- UGA Concussion Research Laboratory, University of Georgia, Athens (Drs Lempke, Schmidt, and Lynall); Department of Kinesiology, University of Georgia, Athens (Drs Lempke, Call, Schmidt, and Lynall); Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, and Micheli Center for Sports Injury Prevention, Waltham, Massachusetts (Dr Lempke); Sports Medicine Research Institute, University of Kentucky, Lexington (Dr Hoch); and Skeletal Muscle Dysfunction Laboratory, University of Georgia, Athens (Dr Call)
| | | | | | | | | |
Collapse
|
198
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
199
|
Corbin-Berrigan LA, Teel E, Vinet SA, P De Koninck B, Guay S, Beaulieu C, De Beaumont L. The Use of Electroencephalography as an Informative Tool in Assisting Early Clinical Management after Sport-Related Concussion: a Systematic Review. Neuropsychol Rev 2023; 33:144-159. [PMID: 32577950 DOI: 10.1007/s11065-020-09442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/07/2020] [Indexed: 12/21/2022]
Abstract
Sport-related concussion (SRC) is managed primarily through serial clinical evaluations throughout recovery. However, studies suggest that clinical measures may not be suitable to detect subtle alterations in functioning and are limited by numerous internal and external factors. Electroencephalography (EEG) has been used for over eight decades to discern altered function following illnesses and injuries, including traumatic brain injury. This study evaluated the associations between EEG measures and clinical presentation within three-months following SRC. A systematic review of the literature was performed in Medline, Embase, PsycINFO, CINAHL and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines, yielding a total of 13 peer-reviewed articles. Most studies showed low to moderate bias and moderate to high quality. The majority of the existing literature on the impact of concussion within the first 3 months post-injury suggests that individuals with concussion show altered brain function, with EEG abnormalities outlasting clinical dysfunction. Of all EEG biomarkers evaluated, P300 shows the most promise and should be explored further. Despite the relatively high quality of included articles, significant limitations are still present within this body of literature, including potential conflicts of interest and proprietary algorithms, making it difficult to draw strong and meaningful conclusions on the use of EEG in the early stages of SRC. Therefore, further exploration of the relationship between EEG measures and acute clinical presentation is warranted to determine if EEG provides additional benefits over current clinical assessments and is a feasible tool in clinical settings.
Collapse
Affiliation(s)
- Laurie-Ann Corbin-Berrigan
- Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada
| | | | | | - Béatrice P De Koninck
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada.,Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Guay
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada.,Université de Montréal, Montréal, Quebec, Canada
| | | | - Louis De Beaumont
- Research Center, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Quebec, Canada. .,Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
200
|
Hagey DW, El Andaloussi S. The promise and challenges of extracellular vesicles in the diagnosis of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:227-241. [PMID: 36803813 DOI: 10.1016/b978-0-323-85555-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as essential means of intercommunication for all cell types, and their role in CNS physiology is increasingly appreciated. Accumulating evidence has demonstrated that EVs play important roles in neural cell maintenance, plasticity, and growth. However, EVs have also been demonstrated to spread amyloids and inflammation characteristic of neurodegenerative disease. Such dual roles suggest that EVs may be prime candidates for neurodegenerative disease biomarker analysis. This is supported by several intrinsic properties of EVs: Populations can be enriched by capturing surface proteins from their cell of origin, their diverse cargo represent the complex intracellular states of the cells they derive from, and they can pass the blood-brain barrier. Despite this promise, there are important questions outstanding in this young field that will need to be answered before it can fulfill its potential. Namely, overcoming the technical challenges of isolating rare EV populations, the difficulties inherent in detecting neurodegeneration, and the ethical considerations of diagnosing asymptomatic individuals. Although daunting, succeeding to answer these questions has the potential to provide unprecedented insight and improved treatment of neurodegenerative disease in the future.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|