151
|
Zoppi N, Ritelli M, Colombi M. Type III and V collagens modulate the expression and assembly of EDA(+) fibronectin in the extracellular matrix of defective Ehlers-Danlos syndrome fibroblasts. Biochim Biophys Acta Gen Subj 2012; 1820:1576-87. [PMID: 22705941 DOI: 10.1016/j.bbagen.2012.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/25/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alternative splicing of EDA fibronectin (FN) region is a cell type- and development-regulated mechanism controlled by pathological processes, growth factors and extracellular matrix (ECM). Classic and vascular Ehlers-Danlos syndrome (cEDS and vEDS) are connective tissue disorders caused by COL5A1/COL5A2 and COL3A1 gene mutations, leading to an in vivo abnormal collagen fibrillogenesis and to an in vitro defective organisation in the ECM of type V (COLLV) and type III collagen (COLLIII). These defects induce the FN-ECM disarray and the decrease of COLLs and FN receptors, the α2β1 and α5β1 integrins. Purified COLLV and COLLIII restore the COLL-FN-ECMs in both EDS cell strains. METHODS Real-time PCR, immunofluorescence microscopy, and Western blotting were used to investigate the effects of COLLs on FN1 gene expression, EDA region alternative splicing, EDA(+)-FN-ECM assembly, α5β1 integrin and EDA(+)-FN-specific α9 integrin subunit organisation, α5β1 integrin and FAK co-regulation in EDS fibroblasts. RESULTS COLLV-treated cEDS and COLLIII-treated vEDS fibroblasts up-regulate the FN1 gene expression, modulate the EDA(+) mRNA maturation and increase the EDA(+)-FN levels, thus restoring a control-like FN-ECM, which elicits the EDA(+)-FN-specific α9β1 integrin organisation, recruits the α5β1 integrin and switches on the FAK binding and phosphorylation. CONCLUSION COLLs regulate the EDA(+)-FN-ECM organisation at transcriptional and post-transcriptional level and activate the α5β1-FAK complexes. COLLs also recruit the α9β1 integrin involved in the assembly of the EDA(+)-FN-ECM in EDS cells. GENERAL SIGNIFICANCE The knowledge of the COLLs-ECM role in FN isotype expression and in EDA(+)-FN-ECM-mediated signal transduction adds insights in the ECM remodelling mechanisms in EDS cells.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, Medical Faculty, University of Brescia, 25123 Brescia, Italy.
| | | | | |
Collapse
|
152
|
Kameyama T, Suzuki H, Mayeda A. Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites. Nucleic Acids Res 2012; 40:7896-906. [PMID: 22675076 PMCID: PMC3439910 DOI: 10.1093/nar/gks520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcripts of the human tumor susceptibility gene 101 (TSG101) are aberrantly spliced in many cancers. A major aberrant splicing event on the TSG101 pre-mRNA involves joining of distant alternative 5′ and 3′ splice sites within exon 2 and exon 9, respectively, resulting in the extensive elimination of the mRNA. The estimated strengths of the alternative splice sites are much lower than those of authentic splice sites. We observed that the equivalent aberrant mRNA could be generated from an intron-less TSG101 gene expressed ectopically in breast cancer cells. Remarkably, we identified a pathway-specific endogenous lariat RNA consisting solely of exonic sequences, predicted to be generated by a re-splicing between exon 2 and exon 9 on the spliced mRNA. Our results provide evidence for a two-step splicing pathway in which the initial constitutive splicing removes all 14 authentic splice sites, thereby bringing the weak alternative splice sites into close proximity. We also demonstrate that aberrant multiple-exon skipping of the fragile histidine triad (FHIT) pre-mRNA in cancer cells occurs via re-splicing of spliced FHIT mRNA. The re-splicing of mature mRNA can potentially generate mutation-independent diversity in cancer transcriptomes. Conversely, a mechanism may exist in normal cells to prevent potentially deleterious mRNA re-splicing events.
Collapse
Affiliation(s)
- Toshiki Kameyama
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
153
|
Whittaker MM, Whittaker JW. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae. Arch Biochem Biophys 2012; 523:191-7. [PMID: 22561997 DOI: 10.1016/j.abb.2012.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | |
Collapse
|
154
|
Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, Muthuswamy SK, Krainer AR. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 2012; 19:220-8. [PMID: 22245967 PMCID: PMC3272117 DOI: 10.1038/nsmb.2207] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/16/2011] [Indexed: 01/13/2023]
Abstract
The splicing-factor oncoprotein SRSF1 (also known as SF2/ASF) is upregulated in breast cancers. We investigated SRSF1’s ability to transform human and mouse mammary epithelial cells in vivo and in vitro. SRSF1-overexpressing COMMA-1D cells formed tumors, following orthotopic transplantation to reconstitute the mammary gland. In 3-D culture, SRSF1-overexpressing MCF-10A cells formed larger acini than control cells, reflecting increased proliferation and delayed apoptosis during acinar morphogenesis. These effects required the first RNA-recognition motif and nuclear functions of SRSF1. SRSF1 overexpression promoted alternative splicing of BIM and BIN1 isoforms that lack pro-apoptotic functions and contribute to the phenotype. Finally, SRSF1 cooperated specifically with MYC to transform mammary epithelial cells, in part by potentiating eIF4E activation, and these cooperating oncogenes are significantly co-expressed in human breast tumors. Thus, SRSF1 can promote breast cancer, and SRSF1 itself or its downstream effectors may be valuable targets for therapeutics development.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Chien MH, Ying TH, Hsieh YH, Lin CH, Shih CH, Wei LH, Yang SF. Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol 2011; 48:417-23. [PMID: 22172588 DOI: 10.1016/j.oraloncology.2011.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/09/2011] [Accepted: 11/20/2011] [Indexed: 01/22/2023]
Abstract
The pattern of protein expression in tumors is under the influence of nutrient stress, hypoxia, and low pH, which determines the survival of neoplastic cells and the development of tumors. Carbonic anhydrase (CA) XII is a transmembrane enzyme that catalyzes the reversible hydration of cell-generated carbon dioxide into protons and bicarbonate. Hypoxic conditions activate its transcription and translation, and enhanced expression is often present in several types of tumors. However, CA XII expression in oral squamous cell carcinoma (OSCC) and its correlation with patients' prognosis have not been investigated so far. In this study, we detected the expression of CA XII in 264 patients with OSCC using tissue microarrays (TMAs), and evaluated its correlation with clinicopathologic factors and disease prognosis. CA XII expression was present in 185/264 (70%) cases and was associated with more-advanced clinical stages (p=0.003), a larger tumor size (p<0.001), and postoperative recurrence (p=0.047), but was not associated with positive lymph node metastasis or distal metastasis. Importantly, CA XII expression was correlated with a poorer patient prognosis in a univariate (p=0.034, log-rank test) survival analysis. According to our results, the expression of CA XII in OSCC samples can predict the progression of OSCC and survival of OSCC patients.
Collapse
|
156
|
Markus MA, Marques FZ, Morris BJ. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs. PLoS One 2011; 6:e28926. [PMID: 22174926 PMCID: PMC3236773 DOI: 10.1371/journal.pone.0028926] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.
Collapse
Affiliation(s)
- M. Andrea Markus
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Francine Z. Marques
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Brian J. Morris
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
157
|
Yoshino H, Enokida H, Chiyomaru T, Tatarano S, Hidaka H, Yamasaki T, Gotannda T, Tachiwada T, Nohata N, Yamane T, Seki N, Nakagawa M. Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer. Biochem Biophys Res Commun 2011; 417:588-93. [PMID: 22178073 DOI: 10.1016/j.bbrc.2011.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/02/2011] [Indexed: 01/04/2023]
Abstract
We have previously found that restoration of tumor suppressive microRNA-1 (miR-1), induced cell apoptosis in bladder cancer (BC) cell lines. However, the apoptosis mechanism induced by miR-1 was not fully elucidated. Alternative splicing of mRNA precursors provides cancer cells with opportunities to translate many oncogenic protein variants, which promote cell proliferation and survival under unpreferable condition for cancer development. Serine/arginine-rich (SR) protein family, which involved in alternative pre-mRNA splicing, plays a critical role for regulating apoptosis by splicing apoptosis-related genes. However, transcriptional regulation of SR proteins, themselves, has not been elucidated. In this study, we focused on splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) on the basis of our previous genome-wide gene expression analysis using miR-1-transfected BC cell lines because putative target sites of miR-1 are existed in 3'-untranslated region (UTR) of SRSF9 mRNA. The expression levels of mRNA of SRSF9 were extremely reduced in the miR-1 transfectants. A luciferase activity significantly decreased in the transfectants suggesting that actual binding occurred between miR-1 and 3'UTR of SRSF9 mRNA. Loss-of-function assays demonstrated that significant inhibitions of cell proliferation, migration, and invasion were observed in the si-SRSF9 transfectants. Apoptosis assays demonstrated that cell apoptosis fraction increased and that caspase-3/7 was activated in the si-SRSF9 transfectants. Our data indicated that tumor suppressive miR-1 induces apoptosis through direct inhibition of SRSF9 in BC. The identification of molecular mechanisms between miRNAs and SR proteins could provide novel apoptosis pathways and their epigenetic regulations and offer new strategies for BC treatment.
Collapse
Affiliation(s)
- Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ortiz-Zapater E, Pineda D, Martínez-Bosch N, Fernández-Miranda G, Iglesias M, Alameda F, Moreno M, Eliscovich C, Eyras E, Real FX, Méndez R, Navarro P. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 2011; 18:83-90. [PMID: 22138752 DOI: 10.1038/nm.2540] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/28/2011] [Indexed: 02/06/2023]
Abstract
Malignant transformation, invasion and angiogenesis rely on the coordinated reprogramming of gene expression in the cells from which the tumor originated. Although deregulated gene expression has been extensively studied at genomic and epigenetic scales, the contribution of the regulation of mRNA-specific translation to this reprogramming is not well understood. Here we show that cytoplasmic polyadenylation element binding protein 4 (CPEB4), an RNA binding protein that mediates meiotic mRNA cytoplasmic polyadenylation and translation, is overexpressed in pancreatic ductal adenocarcinomas and glioblastomas, where it supports tumor growth, vascularization and invasion. We also show that, in pancreatic tumors, the pro-oncogenic functions of CPEB4 originate in the translational activation of mRNAs that are silenced in normal tissue, including the mRNA of tissue plasminogen activator, a key contributor to pancreatic ductal adenocarcinoma malignancy. Taken together, our results document a key role for post-transcriptional gene regulation in tumor development and describe a detailed mechanism for gene expression reprogramming underlying malignant tumor progression.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Cancer Research Programme, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Expression of transglutaminase-2 isoforms in normal human tissues and cancer cell lines: dysregulation of alternative splicing in cancer. Amino Acids 2011; 44:33-44. [DOI: 10.1007/s00726-011-1127-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/15/2011] [Indexed: 01/05/2023]
|
160
|
Regulation of alternative splicing within the supraspliceosome. J Struct Biol 2011; 177:152-9. [PMID: 22100336 DOI: 10.1016/j.jsb.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing.
Collapse
|
161
|
Abstract
Numerous studies
report splicing alterations in a multitude of
cancers by using gene-by-gene analysis. However,
understanding of the role of alternative
splicing in cancer is now reaching a new level,
thanks to the use of novel technologies allowing
the analysis of splicing at a large-scale level.
Genome-wide analyses of alternative splicing
indicate that splicing alterations can affect
the products of gene networks involved in key
cellular programs. In addition, many splicing
variants identified as being misregulated in
cancer are expressed in normal tissues. These
observations suggest that splicing programs
contribute to specific cellular programs that
are altered during cancer initiation and
progression. Supporting this model, recent
studies have identified splicing factors
controlling cancer-associated splicing programs.
The characterization of splicing programs and
their regulation by splicing factors will allow
a better understanding of the genetic mechanisms
involved in cancer initiation and progression
and the development of new therapeutic
targets.
Collapse
|
162
|
Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, Burge CB, Gertler FB. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7:e1002218. [PMID: 21876675 PMCID: PMC3158048 DOI: 10.1371/journal.pgen.1002218] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/17/2011] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. Epithelial-to-mesenchymal transition (EMT) is the process by which cancer cells lose their epithelial characteristics and obtain a mesenchymal phenotype that is thought to allow them to migrate away from the primary tumor. A better understanding of how EMT is controlled would be valuable in predicting the likelihood of metastasis and in designing targeted therapies to block metastatic progression. While there have been many studies on the contribution of changes in gene expression to EMT, much less is known regarding the role of alternative splicing of mRNA during EMT. Alternative splicing can produce different protein isoforms from the same gene that often have distinct activities and functions. Here, we used a recently developed method to characterize changes in alternative splicing during EMT and found that thousands of multi-exon genes underwent alternative splicing. Alternative isoform expression was confirmed in human breast cancer cell lines and in primary human breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. Since EMT is considered an early step in metastatic progression, novel markers of EMT that we identified in human breast cancer samples might become valuable prognostic and diagnostic tools if confirmed in a larger cohort of patients.
Collapse
Affiliation(s)
- Irina M. Shapiro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Albert W. Cheng
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nicholas C. Flytzanis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John S. Condeelis
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Christopher B. Burge
- Department of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| | - Frank B. Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (FBG); (CBB)
| |
Collapse
|
163
|
Crist RC, Roth JJ, Waldman SA, Buchberg AM. A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. PLoS One 2011; 6:e23665. [PMID: 21858198 PMCID: PMC3157405 DOI: 10.1371/journal.pone.0023665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/22/2011] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer is one of the most common cancers in developed nations and is the result of both environmental and genetic factors. Many of the genetic lesions observed in colorectal cancer alter expression of homeobox genes, which encode homeodomain transcription factors. The MEIS1 homeobox gene is known to be involved in several hematological malignancies and solid tumors and recent evidence suggests that expression of the MEIS1 transcript is altered in colorectal cancer. Despite this potential connection, little is known about the role of the gene in the intestines. We probed murine gastrointestinal tissue samples with an N-terminal Meis1 antibody, revealing expression of two previously described isoforms, as well as two novel Meis1 products. A 32 kD Meis1 product was expressed in the nuclei of non-epithelial cells in the stomach and colon, while a 27 kD product was expressed in the cytoplasm of epithelial cells in the proximal colon. Our data suggest that the 27 kD and 32 kD Meis1 proteins are both forms of the Meis1d protein, a homeodomain-less isoform whose transcript was previously identified in cDNA screens. Both the MEIS1D transcript and protein were expressed in human colon mucosa. Expression of the MEIS1D protein was downregulated in 83% (10/12) of primary colorectal cancer samples compared to matched normal mucosa, indicating that MEIS1D is a biomarker of colorectal tumorigenesis. The decreased expression of MEIS1D in colon tumors also suggests that this conserved homeodomain-less isoform may act as a tumor suppressor in human colorectal cancer.
Collapse
Affiliation(s)
- Richard C. Crist
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jacquelyn J. Roth
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Arthur M. Buchberg
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
164
|
Hsu JBK, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD. miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 2011; 12:300. [PMID: 21791068 PMCID: PMC3162936 DOI: 10.1186/1471-2105-12-300] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 07/26/2011] [Indexed: 01/28/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNA molecules that are ~22-nt-long sequences capable of suppressing protein synthesis. Previous research has suggested that miRNAs regulate 30% or more of the human protein-coding genes. The aim of this work is to consider various analyzing scenarios in the identification of miRNA-target interactions, as well as to provide an integrated system that will aid in facilitating investigation on the influence of miRNA targets by alternative splicing and the biological function of miRNAs in biological pathways. Results This work presents an integrated system, miRTar, which adopts various analyzing scenarios to identify putative miRNA target sites of the gene transcripts and elucidates the biological functions of miRNAs toward their targets in biological pathways. The system has three major features. First, the prediction system is able to consider various analyzing scenarios (1 miRNA:1 gene, 1:N, N:1, N:M, all miRNAs:N genes, and N miRNAs: genes involved in a pathway) to easily identify the regulatory relationships between interesting miRNAs and their targets, in 3'UTR, 5'UTR and coding regions. Second, miRTar can analyze and highlight a group of miRNA-regulated genes that participate in particular KEGG pathways to elucidate the biological roles of miRNAs in biological pathways. Third, miRTar can provide further information for elucidating the miRNA regulation, i.e., miRNA-target interactions, affected by alternative splicing. Conclusions In this work, we developed an integrated resource, miRTar, to enable biologists to easily identify the biological functions and regulatory relationships between a group of known/putative miRNAs and protein coding genes. miRTar is now available at http://miRTar.mbc.nctu.edu.tw/.
Collapse
Affiliation(s)
- Justin Bo-Kai Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
165
|
Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genomics 2011; 9:556-70. [PMID: 19516963 PMCID: PMC2694562 DOI: 10.2174/138920208786847971] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing is a key molecular mechanism for increasing the functional diversity of the eukaryotic proteomes. A large body of experimental data implicates aberrant splicing in various human diseases, including cancer. Both mutations in cis-acting splicing elements and alterations in the expression and/or activity of splicing regulatory factors drastically affect the splicing profile of many cancer-associated genes. In addition, the splicing profile of several cancer-associated genes is altered in particular types of cancer arguing for a direct role of specific splicing isoforms in tumor progression. Deciphering the mechanisms underlying aberrant splicing in cancer may prove crucial to understand how splicing machinery is controlled and integrated with other cellular processes, in particular transcription and signaling pathways. Moreover, the characterization of splicing deregulation in cancer will lead to a better comprehension of malignant transformation. Cancer-associated alternative splicing variants may be new tools for the diagnosis and classification of cancers and could be the targets for innovative therapeutical interventions based on highly selective splicing correction approaches.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207. 27100 Pavia, Italy
| | | | | |
Collapse
|
166
|
Neuvéglise C, Marck C, Gaillardin C. The intronome of budding yeasts. C R Biol 2011; 334:662-70. [PMID: 21819948 DOI: 10.1016/j.crvi.2011.05.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Whatever their abundance in genomes, spliceosomal introns are the signature of eukaryotic genes. The sequence of Saccharomyces cerevisiae, achieved fifteen years ago, revealed that this yeast has very few introns, but conserved intron boundaries typical for an intron definition mechanism. With the improvement and the development of new sequencing technologies, yeast genomes have been extensively sequenced during the last decade. We took advantage of this plethora of data to compile and assess the intron content of the protein-coding genes of 13 genomes representative of the evolution of hemiascomycetous yeasts. We first observed that intron paucity is a general rule and that the fastest evolving genomes tend to lose their introns more rapidly (e.g. S. cerevisiae versus Yarrowia lipolytica). Noticeable differences were also confirmed for 5' splice sites and branch point sites (BP) as well as for the relative position of the BP. These changes seemed to be correlated with the lineage specific evolution of splicing factors.
Collapse
Affiliation(s)
- Cécile Neuvéglise
- INRA, Micalis UMR 1319, Biologie Intégrative du Métabolisme Lipidique Microbien, Bâtiment CBAI, 78850 Thiverval-Grignon, France.
| | | | | |
Collapse
|
167
|
Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 2011; 32:1569-77. [PMID: 21715563 DOI: 10.1093/carcin/bgr124] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetics in tumor onset and progression has been extensively addressed. Discoveries in the last decade completely changed our view on RNA. We now realize that its diversity lies at the base of biological complexity. Adenosine-to-inosine (A-to-I) RNA editing emerges a central generator of transcriptome diversity and regulation in higher eukaryotes. It is the posttranscriptional deamination of adenosine to inosine in double-stranded RNA catalyzed by enzymes of the adenosine deaminase acting on RNA (ADAR) family. Thought at first to be restricted to coding regions of only a few genes, recent bioinformatic analyses fueled by high-throughput sequencing revealed that it is a widespread modification affecting mostly non-coding repetitive elements in thousands of genes. The rise in scope is accompanied by discovery of a growing repertoire of functions based on differential decoding of inosine by the various cellular machineries: when recognized as guanosine, it can lead to protein recoding, alternative splicing or altered microRNA specificity; when recognized by inosine-binding proteins, it can result in nuclear retention of the transcript or its degradation. An imbalance in expression of ADAR enzymes with consequent editing dysregulation is a characteristic of human cancers. These alterations may be responsible for activating proto-oncogenes or inactivating tumor suppressors. While unlikely to be an early initiating 'hit', editing dysregulation seems to contribute to tumor progression and thus should be considered a 'driver mutation'. In this review, we examine the contribution of A-to-I RNA editing to carcinogenesis.
Collapse
Affiliation(s)
- Dan Dominissini
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | | | | | |
Collapse
|
168
|
Andreoli V, Gehrau RC, Bocco JL. Biology of Krüppel-like factor 6 transcriptional regulator in cell life and death. IUBMB Life 2011; 62:896-905. [PMID: 21154818 DOI: 10.1002/iub.396] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An essential role for the Krüppel-like transcription factor family has been determined in the regulation of remarkable processes including cell proliferation, differentiation, signal transduction, oncogenesis, and cell death. A member of this group, Krüppel-like factor 6 (KLF6), identified on the basis of its ability to regulate a group of genes belonging to the carcinoembryonic antigen gene family, has been involved in human carcinogenesis. Early studies proposed a tumor suppressor function for KLF6 because of its ability to reduce cell proliferation through several biochemical mechanisms including regulation of cell cycle components, oncogene products, and apoptosis. Mutations within the klf6 gene, decreased expression and/or loss-of-heterozygosity were associated with the development of different human malignancies, and, hence, further supporting the tumor suppressor function of KLF6. This view has been challenged by other studies in distinct types of human cancers describing infrequent genetic alterations of klf6 gene or even enhanced expression in some tumors. The scenario about KLF6 function became still more complex as the description of oncogenic KLF6 splice variant 1 (SV1) with dominant negative activity against the wild type KLF6 (wtKLF6) protein. Additionally, increased evidence is suggesting that KLF6 is a bonafide target of several signaling cascades, which ultimate regulatory effect on this protein could drive decisions of cell life and death, facing the dilemma about how wtKLF6 could be involved in both processes. These apparently conflicting situations, emerged by apparently opposite effects mediated by wtKLF6, may be related, at least in part, to the biological cross-talk with the c-Jun oncoprotein. Depending on the stimulus received by the cell, wtKLF6 interaction with c-Jun determines different cell outcomes such as proliferation control or apoptosis. Thus, KLF6 responsiveness represents a kind of cell warning signal on receiving different stimuli, including oncogenic activation and microbial infections, orchestrating the implementation of proliferation and apoptotic programs.
Collapse
Affiliation(s)
- Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
169
|
Poly (A)+ transcriptome assessment of ERBB2-induced alterations in breast cell lines. PLoS One 2011; 6:e21022. [PMID: 21731642 PMCID: PMC3120832 DOI: 10.1371/journal.pone.0021022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/18/2011] [Indexed: 12/22/2022] Open
Abstract
We report the first quantitative and qualitative analysis of the poly (A)+ transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.
Collapse
|
170
|
Huen MSY, Sy SMH, Leung KM, Ching YP, Tipoe GL, Man C, Dong S, Chen J. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle 2011; 9:2679-85. [PMID: 20581448 DOI: 10.4161/cc.9.13.12151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division.
Collapse
Affiliation(s)
- Michael S Y Huen
- Genome Stability Research Laboratory, The University of Hong Kong, Hong Kong, SAR.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Chang JG, Yang DM, Chang WH, Chow LP, Chan WL, Lin HH, Huang HD, Chang YS, Hung CH, Yang WK. Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One 2011; 6:e18643. [PMID: 21694768 PMCID: PMC3111415 DOI: 10.1371/journal.pone.0018643] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/11/2011] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing involves differential exon selection of a gene transcript to generate mRNA and protein isoforms with structural and functional diversity. Abnormal alternative splicing has been shown to be associated with malignant phenotypes of cancer cells, such as chemo-resistance and invasive activity. Screening small molecules and drugs for modulating RNA splicing in human hepatocellular carcinoma cell line Huh-7, we discovered that amiloride, distinct from four pH-affecting amiloride analogues, could "normalize" the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts. Our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF, and decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, and increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulates kinases and up-regulates phosphatases in the signal pathways known to affect splicing factor protein phosphorylation. These amiloride effects of "normalized" oncogenic RNA splicing and splicing factor hypo-phosphorylation were both abrogated by pre-treatment with a PP1 inhibitor. Global exon array of amiloride-treated Huh-7 cells detected splicing pattern changes involving 584 exons in 551 gene transcripts, many of which encode proteins playing key roles in ion transport, cellular matrix formation, cytoskeleton remodeling, and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. Other human solid tumor and leukemic cells, but not a few normal cells, showed similar amiloride-altered RNA splicing with devitalized consequence. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of RNA splicing for cancer therapeutics.
Collapse
Affiliation(s)
- Jan-Gowth Chang
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (W-KY); (J-GC)
| | - Den-Mei Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Ling Chan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Hui-Hua Lin
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Ya-Sian Chang
- Department of Medical Research, University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hao Hung
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuang Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Departments of Biochemistry and Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (W-KY); (J-GC)
| |
Collapse
|
172
|
Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakàcs A, Coppola L, Karni R. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 2011; 71:4464-72. [PMID: 21586613 DOI: 10.1158/0008-5472.can-10-4410] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The process of alternative splicing is widely misregulated in cancer, but the contribution of splicing regulators to cancer development is largely unknown. In this study, we found that the splicing factor hnRNP A2/B1 is overexpressed in glioblastomas and is correlated with poor prognosis. Conversely, patients who harbor deletions of the HNRNPA2B1 gene show better prognosis than average. Knockdown of hnRNP A2/B1 in glioblastoma cells inhibited tumor formation in mice. In contrast, overexpression of hnRNP A2/B1 in immortal cells led to malignant transformation, suggesting that HNRNPA2B1 is a putative proto-oncogene. We then identified several tumor suppressors and oncogenes that are regulated by HNRNPA2B1, among them are c-FLIP, BIN1, and WWOX, and the proto-oncogene RON. Knockdown of RON inhibited hnRNP A2/B1 mediated transformation, which implied that RON is one of the mediators of HNRNPA2B1 oncogenic activity. Together, our results indicate that HNRNPA2B1 is a novel oncogene in glioblastoma and a potential new target for glioblastoma therapy.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
173
|
Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, Cheng C. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011; 121:1064-74. [PMID: 21393860 DOI: 10.1172/jci44540] [Citation(s) in RCA: 500] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/20/2010] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a tightly regulated process that is critical for embryogenesis but is abnormally activated during cancer metastasis and recurrence. Here we show that a switch in CD44 alternative splicing is required for EMT. Using both in vitro and in vivo systems, we have demonstrated a shift in CD44 expression from variant isoforms (CD44v) to the standard isoform (CD44s) during EMT. This isoform switch to CD44s was essential for cells to undergo EMT and was required for the formation of breast tumors that display EMT characteristics in mice. Mechanistically, the splicing factor epithelial splicing regulatory protein 1 (ESRP1) controlled the CD44 isoform switch and was critical for regulating the EMT phenotype. Additionally, the CD44s isoform activated Akt signaling, providing a mechanistic link to a key pathway that drives EMT. Finally, CD44s expression was upregulated in high-grade human breast tumors and was correlated with the level of the mesenchymal marker N-cadherin in these tumors. Together, our data suggest that regulation of CD44 alternative splicing causally contributes to EMT and breast cancer progression.
Collapse
Affiliation(s)
- Rhonda L Brown
- Department of Medicine, Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Full-length L1CAM and not its Δ2Δ27 splice variant promotes metastasis through induction of gelatinase expression. PLoS One 2011; 6:e18989. [PMID: 21541352 PMCID: PMC3081839 DOI: 10.1371/journal.pone.0018989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/24/2011] [Indexed: 01/09/2023] Open
Abstract
Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression.
Collapse
|
175
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
176
|
Whiley PJ, Guidugli L, Walker LC, Healey S, Thompson BA, Lakhani SR, Da Silva LM, Tavtigian SV, Goldgar DE, Brown MA, Couch FJ, Spurdle AB. Splicing and multifactorial analysis of intronic BRCA1 and BRCA2 sequence variants identifies clinically significant splicing aberrations up to 12 nucleotides from the intron/exon boundary. Hum Mutat 2011; 32:678-87. [PMID: 21394826 DOI: 10.1002/humu.21495] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Clinical management of breast cancer families is complicated by identification of BRCA1 and BRCA2 sequence alterations of unknown significance. Molecular assays evaluating the effect of intronic variants on native splicing can help determine their clinical relevance. Twenty-six intronic BRCA1/2 variants ranging from the consensus dinucleotides in the splice acceptor or donor to 53 nucleotides into the intron were identified in multiple-case families. The effect of the variants on splicing was assessed using HSF matrices, MaxEntScan and NNsplice, followed by analysis of mRNA from lymphoblastoid cell lines. A total of 12 variants were associated with splicing aberrations predicted to result in production of truncated proteins, including a variant located 12 nucleotides into the intron. The posterior probability of pathogenicity was estimated using a multifactorial likelihood approach, and provided a pathogenic or likely pathogenic classification for seven of the 12 spliceogenic variants. The apparent disparity between experimental evidence and the multifactorial predictions is likely due to several factors, including a paucity of likelihood information and a nonspecific prior probability applied for intronic variants outside the consensus dinucleotides. Development of prior probabilities of pathogenicity incorporating bioinformatic prediction of splicing aberrations should improve identification of functionally relevant variants and enhance multifactorial likelihood analysis of intronic variants.
Collapse
|
177
|
Abstract
Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs; also known as cancer stem cells), which constitute the minority of cells within the mass of a tumour? CD44 has been implicated as a CIC marker in several malignancies of haematopoietic and epithelial origin. Is this a fortuitous coincidence owing to the widespread expression of the molecule or is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial-mesenchymal transition and resistance to apoptosis?
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery and German Cancer Research Centre, D69120 Heidelberg, Germany.
| |
Collapse
|
178
|
Abstract
Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS, and PAS information, especially for isoforms whose expression levels are significantly high. The software is publicly available for free at http://www.cs.ucr.edu/∼jianxing/IsoInfer.html.
Collapse
Affiliation(s)
- Jianxing Feng
- School of Life Sciences and Technology, Tongji University, China.
| | | | | |
Collapse
|
179
|
Fuller-Pace FV, Moore HC. RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 2011; 7:239-51. [PMID: 21345143 DOI: 10.2217/fon.11.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DEAD box RNA helicases p68 (DDX5) and p72 (DDX17) play important roles in multiple cellular processes that are commonly dysregulated in cancers, including transcription, pre-mRNA processing/alternative splicing and miRNA processing. Although p68 and p72 appear to have some overlapping functions, they clearly also have distinct, nonredundant functions. Furthermore, their ability to interact with a variety of different factors and act as multifunctional proteins has the potential to impact on several different processes, and alterations in expression or function of p68 and/or p72 could have profound implications for cancer development. However, their roles are likely to be context-dependent and both proteins have been reported to have pro-proliferation or even oncogenic functions as well as antiproliferative or tumor cosuppressor roles. Therefore, eludicating the precise role of these proteins in cancer is likely to be complex and to depend on the cellular environment and interacting factors. In this article, we review the many functions that have been attributed to p68 and p72 and discuss their potential roles in cancer development.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Centre for Oncology & Molecular Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK.
| | | |
Collapse
|
180
|
Li Y, Hu X, Song Y, Lu Z, Ning T, Cai H, Ke Y. Identification of novel alternative splicing variants of interferon regulatory factor 3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:166-75. [PMID: 21281747 DOI: 10.1016/j.bbagrm.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/05/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Interferon regulatory factor 3 (IRF-3) plays a crucial role in host defense against viral and microbial infection as well as in cell growth regulation. IRF-3a is the only structurally and functionally characterized IRF-3 splicing variant and has been established to antagonize IRF-3 activity. Here, five novel splicing variants of IRF-3, referred to as IRF-3b, -3c, -3d, -3e, and -3f, were identified and shown to be generated by deletion of exons 2, 3, or 6 or some combination thereof. RT-PCR examination revealed that these novel splicing variants were more frequently expressed in human liver, esophagus, and cervical tumor tissues than in their normal counterparts. Additionally, electrophoretic mobility shift assay and subcellular localization showed only IRF-3 and IRF-3e were capable of binding the PRDI/III element of interferon-beta (IFNβ) promoter in vitro and underwent cytoplasm-to-nucleus translocation following Poly(I:C) stimulation. Coimmunoprecipitation assay revealed that only IRF-3c (3f) of novel splicing variants associated with IRF-3 in vivo. Further luciferase assay showed IRF-3c (3f) and IRF-3e failed to transactivate PRDI/III-containing promoter but appeared to inhibit transactivation potential of IRF-3 to varying degrees. Taken together, our findings suggest novel splicing variants may function as negative modulators of IRF-3 and may be correlated with pathogenesis of human tumors.
Collapse
Affiliation(s)
- Yong Li
- Key laboratory of Carcinogenesis and Translational Research, Department of Genesis, Peking University School of Oncology , Beijing Cancer Hospital & Institute, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
181
|
Dudas SP, Chatterjee M, Tainsky MA. Usage of cancer associated autoantibodies in the detection of disease. Cancer Biomark 2011; 6:257-70. [PMID: 20938086 DOI: 10.3233/cbm-2009-0138] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Efforts toward deciphering the complexity of the tumor specific proteome by profiling immune responses generated against tumor associated antigens (TAAs) holds great promise for predicting the presence of cancer long before the development of clinical symptoms. The immune system is capable of sensing aberrant expression of certain cellular components involved in tumorigenesis and the resultant autoantibody response provides insights to the targets that are responsible for eliciting immunogenicity to these cellular components. Analysis of the cancer-specific humoral immune response has led to panels of biomarkers that are specific and sensitive biomarkers of disease. Using multianalyte-based in vitro analytical discovery platforms which can be easily adapted into clinical diagnostic screening tests, body fluids such as serum, plasma saliva, or urine can be interrogated to detect autoantibodies against natural or recombinant antigens, which may possess etiologic significance to cancer. Non-invasive screening tests exhibiting high specificity and sensitivity to detect early stage cancer in the heterogeneous population of cancer patients potentially have the greatest impact in decreasing mortality rates. Overall, this review summarizes different experimental approaches in the development of diagnostic screening tests for the early detection of cancer and their implementation in the development of clinical multianalyte biomarker assays.
Collapse
Affiliation(s)
- Steven P Dudas
- Program in Molecular Biology and Genetics, Karmanos Cancer Institute, Wayne State University School of Medicine, Warren, Detroit, MI 48201-3917, USA
| | | | | |
Collapse
|
182
|
Kim DW, Kim JH, Park M, Yeom JH, Go H, Kim S, Han MS, Lee K, Bae J. Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials 2011; 32:2593-604. [PMID: 21251710 DOI: 10.1016/j.biomaterials.2010.11.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The development of a method that can efficiently deliver nucleic acids into the nucleus of living systems remains one of the key challenges for experimental and therapeutic use of nonbiological gene delivery agents. In the current study, we demonstrate a functionalized gold nanoparticle (AuNP) that can serve as a universal carrier for the delivery of DNA oligonucleotides (oligos) into the nucleus. We designed various types of DNA oligos to redirect alternative splicing of pre-mRNAs, such as MCL-1 and BCL-6, and to sequester transcriptional factors, including estrogen receptor α and p53. We successfully delivered the oligos into the nucleus, resulting in the targeted effects. In addition, injection of the antisense DNAs into a xenograft tumor in a mouse model system resulted in inhibited development of the tumor by redirecting the alternative splicing of the pre-mRNA. Our findings show that these nanoconjugates efficiently load and deliver antisense DNAs to redirect gene splicing or double-stranded DNAs to decoy gene transcription by transcriptional factors into mammalian cells and in vivo animals. Therefore, our lego-like AuNP gene delivery system can be used universally to control different biological processes by modulating nuclear gene expression events in living systems.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Department of Biomedical Science, College of Life Science, CHA University, 222 Yatap-Dong, Seongnam 463-836, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Martelli PL, D’Antonio M, Bonizzoni P, Castrignanò T, D’Erchia AM, D’Onorio De Meo P, Fariselli P, Finelli M, Licciulli F, Mangiulli M, Mignone F, Pavesi G, Picardi E, Rizzi R, Rossi I, Valletti A, Zauli A, Zambelli F, Casadio R, Pesole G. ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing. Nucleic Acids Res 2011; 39:D80-5. [PMID: 21051348 PMCID: PMC3013677 DOI: 10.1093/nar/gkq1073] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256,939 protein variants from 17,191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/.
Collapse
Affiliation(s)
- Pier L. Martelli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Mattia D’Antonio
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Paola Bonizzoni
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Tiziana Castrignanò
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Anna M. D’Erchia
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Paolo D’Onorio De Meo
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Piero Fariselli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Michele Finelli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Flavio Licciulli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Marina Mangiulli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Flavio Mignone
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Giulio Pavesi
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Ernesto Picardi
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Raffaella Rizzi
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Ivan Rossi
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Alessio Valletti
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Andrea Zauli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Federico Zambelli
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Rita Casadio
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| | - Graziano Pesole
- Biocomputing Group, University of Bologna, Bologna 40126, Consorzio Interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca (CASPUR), Rome 00185, DISCo, University of Milan-Bicocca, Milan, 20135, Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Bari 70126, BioDec srl, Casalecchio di Reno, Bologna 40033, Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari 70126, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, University of Milan, Dipartimento di Scienze Biomolecolari e Biotecnologie, University of Milan, Milan 20133 and Istituto Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari 70125, Italy
| |
Collapse
|
184
|
Kurokawa K, Kuwano Y, Tominaga K, Kawai T, Katsuura S, Yamagishi N, Satake Y, Kajita K, Tanahashi T, Rokutan K. Brief naturalistic stress induces an alternative splice variant of SMG-1 lacking exon 63 in peripheral leukocytes. Neurosci Lett 2010; 484:128-32. [DOI: 10.1016/j.neulet.2010.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022]
|
185
|
Zhu R, Heaney J, Nadeau JH, Ali S, Matin A. Deficiency of splicing factor 1 suppresses the occurrence of testicular germ cell tumors. Cancer Res 2010; 70:7264-72. [PMID: 20736371 PMCID: PMC2940986 DOI: 10.1158/0008-5472.can-10-0820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Testicular germ cell tumors (TGCT) originate from germ cells. The 129-Ter and M19 (129.MOLF-Chr19 consomic) mouse strains have extremely high incidences of TGCTs. We found that the expression levels of Sf1-encoded splicing factor 1 (SF1) can modulate the incidence of TGCTs. We generated mice with inactivated Sf1. Sf1 null mice (Sf1-/-) died before birth. Mice with one intact allele of Sf1 (Sf1+/-) were viable but expressed reduced levels of Sf1. When Sf1-deficient mice (Sf1+/-) were crossed to the 129-Ter and M19 strains, we observed decreased incidence of TGCTs in Sf1+/-;Ter and Sf1+/-;M19/+ mice compared with that in control cohorts. Therefore, Sf1 deficiency protects against TGCT development in both strains. Sf1 is expressed in the testes. We found that Sf1 levels vary significantly in the testes of inbred strains such as 129 and MOLF, and as such Sf1 is an oncogenic tumor-susceptibility factor from 129. Our results also highlight the complications involved in evaluating Sf1 levels and TGCT incidences. When a large number of tumor-promoting factors are present in a strain, the protective effect of lower Sf1 levels is masked. However, when the dosage of tumor-promoting factors is reduced, the protective effect of lower Sf1 levels becomes apparent. SF1 is involved in splicing of specific pre-mRNAs in cells. Alternate splicing generates the complex proteosome in eukaryotic cells. Our data indicate that Sf1 levels in mouse strains correlate with their incidences of TGCTs and implicate the importance of splicing mechanisms in germ cell tumorigenesis.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jason Heaney
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Joseph H. Nadeau
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Sara Ali
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Angabin Matin
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
186
|
Zaghloul EM, Viola JR, Zuber G, Smith CIE, Lundin KE. Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm 2010; 7:652-63. [PMID: 20128628 DOI: 10.1021/mp900220p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Splice-correcting phosphorothioate RNA antisense oligonucleotides with 2'-O-methyl modifications (ASO) are promising therapeutic agents for several disorders caused by aberrant splicing. However, their usefulness is hindered by the lack of efficient delivery. Unmodified 25 kDa polyethylenimine (PEI) has shown potential for plasmid delivery but seems to be less efficient for short nucleic acid sequences. Herein, we have evaluated several amino acid modified PEI molecules as carriers for ASO. By characterization of their properties, such as size, stability and transfection into mammalian cells, we have identified tyrosine-modified PEI (PEIY) as an efficient ASO delivery system. HeLa705 cells containing an aberrant luciferase gene, interrupted by a mutated beta-globin intron, were used to assess the splice correction effectiveness mediated by the various modified PEI/ASO polyplexes. PEIY has a self-assembly nature, as opposed to the highly cationic parent polymer, which is relevant for the stability of the PEIY/ASO complexes. As a result, at an optimal ratio of 20:1 (+/-), the complexes that formed significantly corrected the splicing on both the mRNA and the protein levels. ASO formulated with PEIY enhanced luciferase activity up to 450-fold. This increase was three times higher than that produced by the commercially available transfection agent Lipofectamine. PEIY/ASO polyplexes resulted in at least 80% correct splicing of the transcript. Moreover, extremely low doses of ASO (0.025 microM) showed significant splice correction represented by 150-fold increase of luciferase activity and 47% mRNA correction. Our findings suggest key parameters for formulating active complexes and reveal a new platform that can be further developed for ASO in vivo targeting.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institute, Sweden.
| | | | | | | | | |
Collapse
|
187
|
Berasain C, Goñi S, Castillo J, Latasa MU, Prieto J, Ávila MA. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J Gastroenterol 2010; 16:3091-102. [PMID: 20593494 PMCID: PMC2896746 DOI: 10.3748/wjg.v16.i25.3091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies.
Collapse
|
188
|
Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG. A G{alpha}i-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol Biol Cell 2010; 21:2338-54. [PMID: 20462955 PMCID: PMC2893996 DOI: 10.1091/mbc.e10-01-0028] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/31/2010] [Accepted: 04/29/2010] [Indexed: 01/22/2023] Open
Abstract
Cells respond to growth factors by either migrating or proliferating, but not both at the same time, a phenomenon termed migration-proliferation dichotomy. The underlying mechanism of this phenomenon has remained unknown. We demonstrate here that Galpha(i) protein and GIV, its nonreceptor guanine nucleotide exchange factor (GEF), program EGF receptor (EGFR) signaling and orchestrate this dichotomy. GIV directly interacts with EGFR, and when its GEF function is intact, a Galpha(i)-GIV-EGFR signaling complex assembles, EGFR autophosphorylation is enhanced, and the receptor's association with the plasma membrane (PM) is prolonged. Accordingly, PM-based motogenic signals (PI3-kinase-Akt and PLCgamma1) are amplified, and cell migration is triggered. In cells expressing a GEF-deficient mutant, the Galphai-GIV-EGFR signaling complex is not assembled, EGFR autophosphorylation is reduced, the receptor's association with endosomes is prolonged, mitogenic signals (ERK 1/2, Src, and STAT5) are amplified, and cell proliferation is triggered. In rapidly growing, poorly motile breast and colon cancer cells and in noninvasive colorectal carcinomas in situ in which EGFR signaling favors mitosis over motility, a GEF-deficient splice variant of GIV was identified. In slow growing, highly motile cancer cells and late invasive carcinomas, GIV is highly expressed and has an intact GEF motif. Thus, inclusion or exclusion of GIV's GEF motif, which activates Galphai, modulates EGFR signaling, generates migration-proliferation dichotomy, and most likely influences cancer progression.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Departments of *Cellular and Molecular Medicine and
- Medicine, School of Medicine, University of California–San Diego, La Jolla, CA 92093
| | | | | | | | | | | | - Jason Ear
- Medicine, School of Medicine, University of California–San Diego, La Jolla, CA 92093
| | - Barbara H. Jung
- Medicine, School of Medicine, University of California–San Diego, La Jolla, CA 92093
| | - Betty Cabrera
- Medicine, School of Medicine, University of California–San Diego, La Jolla, CA 92093
| | - John M. Carethers
- Medicine, School of Medicine, University of California–San Diego, La Jolla, CA 92093
| | | |
Collapse
|
189
|
Mekouar M, Blanc-Lenfle I, Ozanne C, Da Silva C, Cruaud C, Wincker P, Gaillardin C, Neuvéglise C. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 2010; 11:R65. [PMID: 20573210 PMCID: PMC2911113 DOI: 10.1186/gb-2010-11-6-r65] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background Hemiascomycetous yeasts have intron-poor genomes with very few cases of alternative splicing. Most of the reported examples result from intron retention in Saccharomyces cerevisiae and some have been shown to be functionally significant. Here we used transcriptome-wide approaches to evaluate the mechanisms underlying the generation of alternative transcripts in Yarrowia lipolytica, a yeast highly divergent from S. cerevisiae. Results Experimental investigation of Y. lipolytica gene models identified several cases of alternative splicing, mostly generated by intron retention, principally affecting the first intron of the gene. The retention of introns almost invariably creates a premature termination codon, as a direct consequence of the structure of intron boundaries. An analysis of Y. lipolytica introns revealed that introns of multiples of three nucleotides in length, particularly those without stop codons, were underrepresented. In other organisms, premature termination codon-containing transcripts are targeted for degradation by the nonsense-mediated mRNA decay (NMD) machinery. In Y. lipolytica, homologs of S. cerevisiae UPF1 and UPF2 genes were identified, but not UPF3. The inactivation of Y. lipolytica UPF1 and UPF2 resulted in the accumulation of unspliced transcripts of a test set of genes. Conclusions Y. lipolytica is the hemiascomycete with the most intron-rich genome sequenced to date, and it has several unusual genes with large introns or alternative transcription start sites, or introns in the 5' UTR. Our results suggest Y. lipolytica intron structure is subject to significant constraints, leading to the under-representation of stop-free introns. Consequently, intron-containing transcripts are degraded by a functional NMD pathway.
Collapse
Affiliation(s)
- Meryem Mekouar
- INRA UMR1319 Micalis - AgroParisTech, Biologie intégrative du métabolisme lipidique microbien, Bât, CBAI, 78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Ilie MI, Hofman V, Ortholan C, Ammadi RE, Bonnetaud C, Havet K, Venissac N, Mouroux J, Mazure NM, Pouysségur J, Hofman P. Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. Int J Cancer 2010; 128:1614-23. [PMID: 20521252 DOI: 10.1002/ijc.25491] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/27/2010] [Indexed: 01/14/2023]
Abstract
The pattern of protein expression in tumors is under the influence of nutrient stress, hypoxia and low pH, which determines the survival of neoplastic cells and the development of tumors. Carbonic anhydrase XII (CAXII) is a transmembrane enzyme that catalyzes the reversible hydration of cell-generated carbon dioxide into protons and bicarbonate. Hypoxic conditions activate its transcription and translation and enhanced expression is often present in several types of tumors. The aim of our study was to assess the prognostic significance of CAXII tumor tissues expression in patients with NSCLC. Five hundred fifty-five tumors were immunostained for CAXII on tissue microarrays (TMA) and the results were correlated with clinicopathological parameters and outcome of patients. CAXII overexpression was present in 105/555 (19%) cases and was associated with tumors of lower grade (p = 0.015) and histological type (p < 0.001), being significantly higher in squamous cell carcinoma. High CAXII expression correlated with better overall and disease-specific survival of patients with resectable NSCLC in univariate (p < 0.001) and multivariate survival analyses (p < 0.001). In conclusion, this is the first study demonstrating that a high CAXII tumor tissue expression evaluated on TMAs is related to a better outcome in a large series of patients with resectable NSCLC.
Collapse
Affiliation(s)
- Marius I Ilie
- Laboratory of Clinical and Experimental Pathology, Louis Pasteur Hospital, Nice, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Shimada MK, Hayakawa Y, Takeda JI, Gojobori T, Imanishi T. A comprehensive survey of human polymorphisms at conserved splice dinucleotides and its evolutionary relationship with alternative splicing. BMC Evol Biol 2010; 10:122. [PMID: 20433709 PMCID: PMC2882926 DOI: 10.1186/1471-2148-10-122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/30/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a key molecular process that endows biological functions with diversity and complexity. Generally, functional redundancy leads to the generation of new functions through relaxation of selective pressure in evolution, as exemplified by duplicated genes. It is also known that alternatively spliced exons (ASEs) are subject to relaxed selective pressure. Within consensus sequences at the splice junctions, the most conserved sites are dinucleotides at both ends of introns (splice dinucleotides). However, a small number of single nucleotide polymorphisms (SNPs) occur at splice dinucleotides. An intriguing question relating to the evolution of AS diversity is whether mutations at splice dinucleotides are maintained as polymorphisms and produce diversity in splice patterns within the human population. We therefore surveyed validated SNPs in the database dbSNP located at splice dinucleotides of all human genes that are defined by the H-Invitational Database. RESULTS We found 212 validated SNPs at splice dinucleotides (sdSNPs); these were confirmed to be consistent with the GT-AG rule at either allele. Moreover, 53 of them were observed to neighbor ASEs (AE dinucleotides). No significant differences were observed between sdSNPs at AE dinucleotides and those at constitutive exons (CE dinucleotides) in SNP properties including average heterozygosity, SNP density, ratio of predicted alleles consistent with the GT-AG rule, and scores of splice sites formed with the predicted allele. We also found that the proportion of non-conserved exons was higher for exons with sdSNPs than for other exons. CONCLUSIONS sdSNPs are found at CE dinucleotides in addition to those at AE dinucleotides, suggesting two possibilities. First, sdSNPs at CE dinucleotides may be robust against sdSNPs because of unknown mechanisms. Second, similar to sdSNPs at AE dinucleotides, those at CE dinucleotides cause differences in AS patterns because of the arbitrariness in the classification of exons into alternative and constitutive type that varies according to the dataset. Taking into account the absence of differences in sdSNP properties between those at AE and CE dinucleotides, the increased proportion of non-conserved exons found in exons flanked by sdSNPs suggests the hypothesis that sdSNPs are maintained at the splice dinucleotides of newly generated exons at which negative selection pressure is relaxed.
Collapse
Affiliation(s)
- Makoto K Shimada
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yosuke Hayakawa
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Hitachi Software Engineering Co., Ltd., 1-1-43 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-ichi Takeda
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Takashi Gojobori
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tadashi Imanishi
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi Koto-ku, Tokyo135-0064, Japan
| |
Collapse
|
192
|
Wu D, Matsushita K, Matsubara H, Nomura F, Tomonaga T. An alternative splicing isoform of eukaryotic initiation factor 4H promotes tumorigenesisin vivoand is a potential therapeutic target for human cancer. Int J Cancer 2010; 128:1018-30. [DOI: 10.1002/ijc.25419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
193
|
The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 2010; 35:497-504. [PMID: 20418102 DOI: 10.1016/j.tibs.2010.03.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 01/27/2023]
Abstract
Alternative splicing is controlled by cis-regulatory sequences present in the pre-mRNA and their cognate trans-acting factors, as well as by its coupling to RNA polymerase II (pol II) transcription. A unique feature of this polymerase is the presence of a highly repetitive carboxy terminal domain (CTD), which is subject to multiple regulatory post-translational modifications. CTD phosphorylation events affect the transcriptional properties of pol II and the outcome of co-transcriptional alternative splicing by mediating the effects of splicing factors and by modulating transcription elongation rates. Here, we discuss various examples of involvement of the CTD in alternative splicing regulation as well as the current methodological limitations in deciphering the detailed mechanisms of this process.
Collapse
|
194
|
Moniz S, Jordan P. Emerging roles for WNK kinases in cancer. Cell Mol Life Sci 2010; 67:1265-76. [PMID: 20094755 PMCID: PMC11115774 DOI: 10.1007/s00018-010-0261-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 12/17/2022]
Abstract
The subfamily of WNK protein kinases is composed of four human genes and is characterised by a typical sequence variation within the conserved catalytic domain. Although most research has focussed on the role of WNK1, WNK3 and WNK4 in regulating different ion transporters in both the kidney and extrarenal tissues, there is growing evidence for additional roles of WNK kinases in various signalling cascades related to cancer. Here, we review the connection between WNK kinases and tumorigenesis and describe existing experimental evidence as well as potential new links to major aspects of tumour biology. In particular, we discuss their role in G1/S cell cycle progression, metabolic tumour cell adaptation, evasion of apoptosis and metastasis.
Collapse
Affiliation(s)
- Sónia Moniz
- Departamento de Genética, Instituto Nacional de Saúde ‘Dr. Ricardo Jorge’, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Peter Jordan
- Departamento de Genética, Instituto Nacional de Saúde ‘Dr. Ricardo Jorge’, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
195
|
Selenius M, Rundlöf AK, Olm E, Fernandes AP, Björnstedt M. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid Redox Signal 2010; 12:867-80. [PMID: 19769465 DOI: 10.1089/ars.2009.2884] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established that selenium has cancer preventive effects, and several studies also have shown that it has strong anticancer effects with a selective cytotoxicity on malignant drug-resistant cells while only exerting marginal effects on normal and benign cells. This cancer-specific cytotoxicity is likely explained by high affinity selenium uptake dependent on proteins connected to multidrug resistance. One of the most studied selenoproteins in cancer is thioredoxin reductase (TrxR) that has important functions in neoplastic growth and is an important component of the resistant phenotype. Several reports have shown that TrxR is induced in tumor cells and pre-neoplastic cells, and several commonly used drugs interact with the protein. In this review, we summarize the current knowledge of selenium as a potent preventive and tumor selective anticancer drug, and we also discuss the potential of using the expression and modulation of the selenoprotein TrxR in the diagnostics and treatment of cancer.
Collapse
Affiliation(s)
- Markus Selenius
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
196
|
Talavera D, Taylor MS, Thornton JM. The (non)malignancy of cancerous amino acidic substitutions. Proteins 2010; 78:518-29. [PMID: 19787769 DOI: 10.1002/prot.22574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of natural selection acts both on individual organisms within a population and on individual cells within an organism as they develop into cancer. In this work, we have taken a first step toward understanding the differences in selection pressures exerted on the human genome under these disparate circumstances. Focusing on single amino acid substitutions, we have found that cancer-related mutations (CRMs) are frequent in evolutionarily conserved sites, whereas single amino acid polymorphisms (SAPs) tend to appear in sites having a more relaxed evolutionary pressure. Those CRMs classed as cancer driver mutations show greater enrichment for conserved sites than passenger mutations. Consistent with this, driver mutations are enriched for sites annotated as key functional residues and their neighbors, and are more likely to be located on the surface of proteins than expected by chance. Overall the pattern of CRM and polymorphism is remarkably similar, but we do see a clear signal indicative of diversifying selection for disruptive amino acid substitutions in the cancer driver mutations. The ultimate consequence of the appearance of those mutations must be advantageous for the tumor cell, leading to cell population-growth and migration events similar to those seen in natural ecosystems.
Collapse
Affiliation(s)
- David Talavera
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
197
|
Ohshiro K, Mudvari P, Meng QC, Rayala SK, Sahin AA, Fuqua SAW, Kumar R. Identification of a novel estrogen receptor-alpha variant and its upstream splicing regulator. Mol Endocrinol 2010; 24:914-22. [PMID: 20304996 DOI: 10.1210/me.2009-0413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing of precursor mRNA is a fundamental mechanism to generate multiple proteins from a single gene. Although constitutive and alternative mRNA splicing is temporally and spatially regulated, deregulation of mRNA splicing could cause development, progression, and metastasis of tumors. Through yeast two-hybrid screening of a human breast cDNA library using estrogen receptor-alpha (ERalpha) as bait, we identified a novel nuclear receptor box containing full-length protein, nuclear protein E3-3 (NPE3-3). Our results revealed that NPE3-3 associates with not only ERalpha but also with splicing factors, serine/arginine-rich protein (SRp)-30c, SRp40, and splicing factor SC-35, suggesting that NPE3-3 is likely to be involved in regulation of mRNA splicing. Accordingly, transient expression of NPE3-3 in cells resulted in expected splicing of the CD44 control minigene. We also discovered that NPE3-3-overexpressing clones produced a novel, previously unrecognized, alternatively spliced variant of ERalpha (termed ERalphaV), which had a molecular size of 37 kDa composed of only exons 1, 2, 7, and 8. ERalphaV was expressed and sequestered in the cytoplasm in MCF-7 cells stably overexpressing NPE3-3, suggesting its involvement in nongenomic hormone signaling. NPE3-3 clones exhibited up-regulation of ERK1/2 signaling, cyclin D1, and cathepsin D and enhanced tumor cell proliferation, migration, and tumorigenicity. Moreover, direct expression of the ERalphaV in breast cancer cells stimulated ERK1/2 up-regulation and cyclin D1 expression. We found that ERalphaV physically interacted with MAPK kinase (MEK)-1/2, and thus, an ERalphaV and MEK1/2 complex could lead to the activation of the ERK1/2 pathway. Interestingly, NPE3-3 was up-regulated in human breast tumors. These findings revealed a role for NPE3-3 in alternative splicing and suggest that ERalpha is a physiological target of NPE3-3, leading to a constitutive nongenomic signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Kazufumi Ohshiro
- Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, D.C. 20037, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Berge EO, Staalesen V, Straume AH, Lillehaug JR, Lønning PE. Chk2 splice variants express a dominant-negative effect on the wild-type Chk2 kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:386-95. [DOI: 10.1016/j.bbamcr.2010.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
|
199
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
200
|
Ligr M, Li Y, Zou X, Daniels G, Melamed J, Peng Y, Wang W, Wang J, Ostrer H, Pagano M, Wang Z, Garabedian MJ, Lee P. Tumor suppressor function of androgen receptor coactivator ARA70alpha in prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1891-900. [PMID: 20167864 DOI: 10.2353/ajpath.2010.090293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Androgen receptor (AR), a member of the steroid receptor family, is a transcription factor that has an important role in the regulation of both prostate cell proliferation and growth suppression. AR coactivators may influence the transition between cell growth and growth suppression. We have shown previously that the internally spliced ARA70 isoform, ARA70beta, promotes prostate cancer cell growth and invasion. Here we report that the full length ARA70alpha, in contrast, represses prostate cancer cell proliferation and anchorage-independent growth in vitro and inhibits tumor growth in nude mice xenograft experiments in vivo. Further, the growth inhibition by ARA70alpha is AR-dependent and mediated through induction of apoptosis rather than cell cycle arrest. Interestingly, AR with T877A mutation in LNCaP cells decreased its physical and functional interaction with ARA70alpha, facilitating the growth of LNCaP cells. The tumor suppressor function of ARA70alpha is consistent with our previous findings that ARA70alpha expression is decreased in prostate cancer cells compared with benign prostate. ARA70alpha also reduced the invasion ability of LNCaP cells. Although growth inhibition by ARA70alpha is AR-dependent, the inhibition of cell invasion is an androgen-independent process. These results strongly suggest that ARA70alpha functions as a tumor suppressor gene.
Collapse
Affiliation(s)
- Martin Ligr
- Department of Pathology and Urology, New York University School of Medicine, New York Harbor Healthcare System, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|