151
|
Tang Y, Pan B, Zhou X, Xiong K, Gao Q, Huang L, Xia Y, Shen M, Yang S, Liu H, Tan T, Ma J, Xu X, Mu Y, Li K. Wip1-dependent modulation of macrophage migration and phagocytosis. Redox Biol 2017; 13:665-673. [PMID: 28822916 PMCID: PMC5562178 DOI: 10.1016/j.redox.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing or eliminating plaque formation in atherosclerosis.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Xin Zhou
- Cell Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Kai Xiong
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Qian Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xuehong Xu
- Cell Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
152
|
Giverso C, Arduino A, Preziosi L. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates. Bull Math Biol 2017; 80:1017-1045. [PMID: 28409417 DOI: 10.1007/s11538-017-0262-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
Abstract
In order to move in a three-dimensional extracellular matrix, the nucleus of a cell must squeeze through the narrow spacing among the fibers and, by adhering to them, the cell needs to exert sufficiently strong traction forces. If the nucleus is too stiff, the spacing too narrow, or traction forces too weak, the cell is not able to penetrate the network. In this article, we formulate a mathematical model based on an energetic approach, for cells entering cylindrical channels composed of extracellular matrix fibers. Treating the nucleus as an elastic body covered by an elastic membrane, the energetic balance leads to the definition of a necessary criterion for cells to pass through the regular network of fibers, depending on the traction forces exerted by the cells (or possibly passive stresses), the stretchability of the nuclear membrane, the stiffness of the nucleus, and the ratio of the pore size within the extracellular matrix with respect to the nucleus diameter. The results obtained highlight the importance of the interplay between mechanical properties of the cell and microscopic geometric characteristics of the extracellular matrix and give an estimate for a critical value of the pore size that represents the physical limit of migration and can be used in tumor growth models to predict their invasive potential in thick regions of ECM.
Collapse
Affiliation(s)
- Chiara Giverso
- Istituto Nazionale di Alta Matematica "F. Severi", Città Universitaria, P.le Aldo Moro 5, 00185, Rome, Italy.
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Alessandro Arduino
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Turin, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
153
|
Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration. Nat Commun 2017; 8:14905. [PMID: 28374738 PMCID: PMC5382290 DOI: 10.1038/ncomms14905] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/10/2017] [Indexed: 11/08/2022] Open
Abstract
Understanding the mechanisms of collective cell migration is crucial for cancer metastasis, wound healing and many developmental processes. Imaging a migrating cluster in vivo is feasible, but the quantification of individual cell behaviours remains challenging. We have developed an image analysis toolkit, CCMToolKit, to quantify the Drosophila border cell system. In addition to chaotic motion, previous studies reported that the migrating cells are able to migrate in a highly coordinated pattern. We quantify the rotating and running migration modes in 3D while also observing a range of intermediate behaviours. Running mode is driven by cluster external protrusions. Rotating mode is associated with cluster internal cell extensions that could not be easily characterized. Although the cluster moves slower while rotating, individual cells retain their mobility and are in fact slightly more active than in running mode. We also show that individual cells may exchange positions during migration.
Collapse
|
154
|
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J Virol 2017; 91:JVI.02255-16. [PMID: 28100610 PMCID: PMC5355598 DOI: 10.1128/jvi.02255-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Collapse
|
155
|
Cheng JY, Brown TC, Murtha TD, Stenman A, Juhlin CC, Larsson C, Healy JM, Prasad ML, Knoefel WT, Krieg A, Scholl UI, Korah R, Carling T. A novel FOXO1-mediated dedifferentiation blocking role for DKK3 in adrenocortical carcinogenesis. BMC Cancer 2017; 17:164. [PMID: 28249601 PMCID: PMC5333434 DOI: 10.1186/s12885-017-3152-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 02/22/2017] [Indexed: 11/17/2022] Open
Abstract
Background Dysregulated WNT signaling dominates adrenocortical malignancies. This study investigates whether silencing of the WNT negative regulator DKK3 (Dickkopf-related protein 3), an implicated adrenocortical differentiation marker and an established tumor suppressor in multiple cancers, allows dedifferentiation of the adrenal cortex. Methods We analyzed the expression and regulation of DKK3 in human adrenocortical carcinoma (ACC) by qRT-PCR, immunofluorescence, promoter methylation assay, and copy number analysis. We also conducted functional studies on ACC cell lines, NCI-H295R and SW-13, using siRNAs and enforced DKK3 expression to test DKK3’s role in blocking dedifferentiation of adrenal cortex. Results While robust expression was observed in normal adrenal cortex, DKK3 was down-regulated in the majority (>75%) of adrenocortical carcinomas (ACC) tested. Both genetic (gene copy loss) and epigenetic (promoter methylation) events were found to play significant roles in DKK3 down-regulation in ACCs. While NCI-H295R cells harboring β-catenin activating mutations failed to respond to DKK3 silencing, SW-13 cells showed increased motility and reduced clonal growth. Conversely, exogenously added DKK3 also increased motility of SW-13 cells without influencing their growth. Enforced over-expression of DKK3 in SW-13 cells resulted in slower cell growth by an extension of G1 phase, promoted survival of microcolonies, and resulted in significant impairment of migratory and invasive behaviors, largely attributable to modified cell adhesions and adhesion kinetics. DKK3-over-expressing cells also showed increased expression of Forkhead Box Protein O1 (FOXO1) transcription factor, RNAi silencing of which partially restored the migratory proficiency of cells without interfering with their viability. Conclusions DKK3 suppression observed in ACCs and the effects of manipulation of DKK3 expression in ACC cell lines suggest a FOXO1-mediated differentiation-promoting role for DKK3 in the adrenal cortex, silencing of which may allow adrenocortical dedifferentiation and malignancy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce Y Cheng
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor C Brown
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy D Murtha
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - James M Healy
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfram T Knoefel
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Reju Korah
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Carling
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA. .,Department of Surgery, Yale University School of Medicine, 333 Cedar Street, FMB130A, New Haven, CT, 06520, USA.
| |
Collapse
|
156
|
Tao J, Li Y, Vig DK, Sun SX. Cell mechanics: a dialogue. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036601. [PMID: 28129208 PMCID: PMC5518794 DOI: 10.1088/1361-6633/aa5282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.
Collapse
Affiliation(s)
- Jiaxiang Tao
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore MD, United States of America
| | - Yizeng Li
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| | - Dhruv K Vig
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| | - Sean X Sun
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| |
Collapse
|
157
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
158
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
159
|
Anguiano M, Castilla C, Maška M, Ederra C, Peláez R, Morales X, Muñoz-Arrieta G, Mujika M, Kozubek M, Muñoz-Barrutia A, Rouzaut A, Arana S, Garcia-Aznar JM, Ortiz-de-Solorzano C. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. PLoS One 2017; 12:e0171417. [PMID: 28166248 PMCID: PMC5293277 DOI: 10.1371/journal.pone.0171417] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
Collapse
Affiliation(s)
- María Anguiano
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| | - Carlos Castilla
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| | - Martin Maška
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Cristina Ederra
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| | - Rafael Peláez
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| | - Xabier Morales
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| | - Gorka Muñoz-Arrieta
- Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia – San Sebastián, Gipuzkoa, SPAIN
| | - Maite Mujika
- Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia – San Sebastián, Gipuzkoa, SPAIN
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid
- Biomedical Engineering Division, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Rouzaut
- Department of Biochemistry and Genetics, Faculty of Sciences, University of Navarra, Pamplona, Navarra, Spain
- Department of Immunology and Inmunotherapy, CIMA, Pamplona, Navarra, Spain
| | - Sergio Arana
- Biodevices and MEMS group, Water and Health Division, CEIT and TECNUN University of Navarra, Donostia – San Sebastián, Gipuzkoa, SPAIN
| | - José Manuel Garcia-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Carlos Ortiz-de-Solorzano
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research and CIBERONC, Pamplona, Navarra, Spain
| |
Collapse
|
160
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
161
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
162
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
163
|
Petrie RJ, Harlin HM, Korsak LIT, Yamada KM. Activating the nuclear piston mechanism of 3D migration in tumor cells. J Cell Biol 2016; 216:93-100. [PMID: 27998990 PMCID: PMC5223602 DOI: 10.1083/jcb.201605097] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 02/05/2023] Open
Abstract
Petrie et al. show that inhibiting matrix metalloproteinases during 3D tumor cell migration activates the fibroblast-associated nuclear piston mechanism of intracellular pressure generation to slow tumor cell movement. Primary human fibroblasts have the remarkable ability to use their nucleus like a piston, switching from low- to high-pressure protrusions in response to the surrounding three-dimensional (3D) matrix. Although migrating tumor cells can also change how they migrate in response to the 3D matrix, it is not clear if they can switch between high- and low-pressure protrusions like primary fibroblasts. We report that unlike primary fibroblasts, the nuclear piston is not active in fibrosarcoma cells. Protease inhibition rescued the nuclear piston mechanism in polarized HT1080 and SW684 cells and generated compartmentalized pressure. Achieving compartmentalized pressure required the nucleoskeleton–cytoskeleton linker protein nesprin 3, actomyosin contractility, and integrin-mediated adhesion, consistent with lobopodia-based fibroblast migration. In addition, this activation of the nuclear piston mechanism slowed the 3D movement of HT1080 cells. Together, these data indicate that inhibiting protease activity during polarized tumor cell 3D migration is sufficient to restore the nuclear piston migration mechanism with compartmentalized pressure characteristic of nonmalignant cells.
Collapse
Affiliation(s)
- Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Heather M Harlin
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Lulu I T Korsak
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
164
|
Ogawa Y, Kim MH, Kino-oka M. Migration-driven aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface direct differentiation toward a cardiomyogenic fate commitment. J Biosci Bioeng 2016; 122:627-632. [DOI: 10.1016/j.jbiosc.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 01/19/2023]
|
165
|
Hara A, Hashimura M, Tsutsumi K, Akiya M, Inukai M, Ohta Y, Saegusa M. The role of FilGAP, a Rac-specific Rho-GTPase-activating protein, in tumor progression and behavior of astrocytomas. Cancer Med 2016; 5:3412-3425. [PMID: 27790861 PMCID: PMC5224849 DOI: 10.1002/cam4.937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023] Open
Abstract
FilGAP, a Rac‐specific Rho‐GTPase‐activating protein (GAP), acts as a mediator of Rho/ROCK‐dependent amoeboid movement, and its knockdown results in Rac‐driven mesenchymal morphology. Herein, we focused on the possible roles of FilGAP expression in astrocytomas. In clinical samples, FilGAP expression was significantly increased in grade (G) II astrocytomas as compared to normal astrocytes, but its expression strongly decreased in a grade‐dependent manner, and was positively associated with isocitrate dehydrogenase 1 (IDH1) mutations and inversely to cytoplasmic Rac1. Patients with astrocytoma showing a high FilGAP score had favorable overall survival as compared to the low score patients. Multivariate Cox regression analysis also showed that a high FilGAP score was a significant and independent favorable prognostic factor. Moreover, patients with high FilGAP score and IDH1 mutant‐type astrocytomas had significantly the best Overall survival (OS) and Progression‐free survival (PFS), in contrast to the patients with low FilGAP score and wild‐type IDH1 tumors who had the worst prognosis. In GIV tumors (GBM: glioblastomas), elongated tumor cells with low FilGAP expression were frequently observed in tumor core lesions, whereas the rounded cells with abundant expression were found in the peripheral areas adjacent to non‐neoplastic brain tissues. In an astrocytoma cell line, suppression of endogenous FilGAP expression by siRNAs caused an increased proportion of mesenchymal elongated cells, probably through increased Rac1 activity. These findings suggest that FilGAP, as well as IDH1 status, may be useful for predicting the behavior of astrocytomas. In addition, the FilGAP/Rac1 axis may serve as an important regulator of tumor progression in GBMs, probably through alteration of cell morphology.
Collapse
Affiliation(s)
- Atsuko Hara
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
166
|
Three-dimensional cell culture models for investigating human viruses. Virol Sin 2016; 31:363-379. [PMID: 27822716 PMCID: PMC7090760 DOI: 10.1007/s12250-016-3889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Collapse
|
167
|
Zhu J, Mogilner A. Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study. Interface Focus 2016; 6:20160040. [PMID: 27708764 DOI: 10.1098/rsfs.2016.0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration on a two-dimensional flat surface has been extensively studied and is generally characterized by a front-protrusion-rear-contraction process. In a three-dimensional (3D) environment, on the other hand, cells adopt multiple migration strategies depending on the cell type and the properties of the extracellular matrix (ECM). By using computer simulations, we find that these migration strategies can be classified by various spatial-temporal dynamics of actin protrusion, actin-myosin contraction and actin-ECM adhesion. We demonstrate that if we include or exclude proteolysis of ECM, and vary adhesion dynamics and spatial distributions of protrusion, contraction and adhesion, our model can reproduce six experimentally observed motility modes: mesenchymal, chimneying, amoeboid, blebbing, finger-like protrusion and rear-squeezing cell locomotory behaviours. We further find that the mode of the cell motility evolves in response to the ECM density and adhesion detachment rate. The model makes non-trivial predictions about cell speed as a function of the adhesion strength, and ECM elasticity and mesh size.
Collapse
Affiliation(s)
- Jie Zhu
- Nanobiology Institute and Department of Cell Biology , Yale University , New Haven, CT, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology , New York University , New York, NY, USA
| |
Collapse
|
168
|
Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover. Sci Rep 2016; 6:33653. [PMID: 27659488 PMCID: PMC5034239 DOI: 10.1038/srep33653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
Liprin-α1 and ERC1 are interacting scaffold proteins regulating the motility of normal and tumor cells. They act as part of plasma membrane-associated platforms at the edge of motile cells to promote protrusion by largely unknown mechanisms. Here we identify an amino-terminal region of the liprin-α1 protein (liprin-N) that is sufficient and necessary for the interaction with other liprin-α1 molecules. Similar to liprin-α1 or ERC1 silencing, expression of the liprin-N negatively affects tumor cell motility and extracellular matrix invasion, acting as a dominant negative by interacting with endogenous liprin-α1 and causing the displacement of the endogenous ERC1 protein from the cell edge. Interfering with the localization of ERC1 at the cell edge inhibits the disassembly of focal adhesions, impairing protrusion. Liprin-α1 and ERC1 proteins colocalize with active integrin β1 clusters distinct from those colocalizing with cytoplasmic focal adhesion proteins, and influence the localization of peripheral Rab7-positive endosomes. We propose that liprin-α1 and ERC1 promote protrusion by displacing cytoplasmic adhesion components to favour active integrin internalization into Rab7-positive endosomes.
Collapse
|
169
|
Péladeau C, Heibein A, Maltez MT, Copeland SJ, Copeland JW. A specific FMNL2 isoform is up-regulated in invasive cells. BMC Cell Biol 2016; 17:32. [PMID: 27578625 PMCID: PMC5006604 DOI: 10.1186/s12860-016-0110-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Formins are a highly conserved family of cytoskeletal remodeling proteins. A growing body of evidence suggests that formins play key roles in the progression and spread of a variety of cancers. There are 15 human formin proteins and of these the Diaphanous-Related Formins (DRFs) are the best characterized. Included in the DRFs are the Formin-Like proteins, FMNL1, 2 & 3, each of which have been strongly implicated in driving tumorigenesis and metastasis of specific tumors. In particular, increased FMNL2 expression correlates with increased invasiveness of colorectal cancer (CRC) in vivo and for a variety of CRC cell-lines in vitro. FMNL2 expression is also required for invasive cell motility in other cancer cell-lines. There are multiple alternatively spliced isoforms of FMNL2 and it is predicted that the encoded proteins will differ in their regulation, subcellular localization and in their ability to regulate cytoskeletal dynamics. RESULTS Using RT-PCR we identified four FMNL2 isoforms expressed in CRC and melanoma cell-lines. We find that a previously uncharacterized FMNL2 isoform is predominantly expressed in a variety of melanoma and CRC cell lines; this isoform is also more effective in driving 3D motility. Building on previous reports, we also show that FMNL2 is required for invasion in A375 and WM266.4 melanoma cells. CONCLUSIONS Taken together, these results suggest that FMNL2 is likely to be generally required in melanoma cells for invasion, that a specific isoform of FMNL2 is up-regulated in invasive CRC and melanoma cells and this isoform is the most effective at facilitating invasion.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Allan Heibein
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Melissa T Maltez
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
170
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
171
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|
172
|
Braun A, Caesar NM, Dang K, Myers KA. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells. J Vis Exp 2016. [PMID: 27584860 PMCID: PMC5091855 DOI: 10.3791/54265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Nicole M Caesar
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia;
| |
Collapse
|
173
|
The motility of Entamoeba histolytica: finding ways to understand intestinal amoebiasis. Curr Opin Microbiol 2016; 34:24-30. [PMID: 27497052 DOI: 10.1016/j.mib.2016.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is able to migrate within various compartments of the human body. The present article reviews progress in understanding the mechanisms of cell motility in E. histolytica during human intestinal invasion and, in particular, how the three-dimensional characteristics of the environment regulate the parasite's behaviour. The amoeboid mode of migration that applies to E. histolytica's displacements on two-dimensional surfaces is also expected to apply to the three-dimensional environment in the human intestine although several unknown, distinct modalities may be involved. Recent advances in the field of tissue engineering have provided clues on how the construction of a human colon model could help us to understand the host's intestinal physiology and its changes following amoebic infection.
Collapse
|
174
|
Nakamura Y, Nagaya T, Sato K, Harada T, Okuyama S, Choyke PL, Yamauchi T, Kobayashi H. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:2738-48. [PMID: 27446702 PMCID: PMC4948626 DOI: 10.1364/boe.7.002738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 06/12/2016] [Indexed: 05/03/2023]
Abstract
Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT.
Collapse
Affiliation(s)
- Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Toshiko Harada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| | - Toyohiko Yamauchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Dr. Bethesda,MD 20892, USA
| |
Collapse
|
175
|
Kim J, Jones CAR, Groves NS, Sun B. Three-Dimensional Reflectance Traction Microscopy. PLoS One 2016; 11:e0156797. [PMID: 27304456 PMCID: PMC4909212 DOI: 10.1371/journal.pone.0156797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/19/2016] [Indexed: 01/18/2023] Open
Abstract
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix.
Collapse
Affiliation(s)
- Jihan Kim
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Nicholas Scott Groves
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
176
|
Gandalovičová A, Vomastek T, Rosel D, Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 2016; 7:25022-49. [PMID: 26872368 PMCID: PMC5041887 DOI: 10.18632/oncotarget.7214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology, Academy of Sciences of The Czech Republic, Videňská, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| |
Collapse
|
177
|
Iida T, Saito K, Katagiri K, Kinashi T, Ohta Y. The RacGAP protein FilGAP is a negative regulator of chemokine-promoted lymphocyte migration. FEBS Lett 2016; 590:1395-408. [PMID: 27130700 DOI: 10.1002/1873-3468.12189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/09/2022]
Abstract
Rho family small GTPases regulate lymphocyte migration induced by chemokines. However, how lymphocyte migration is regulated by Rho GTPases remains to be elucidated. Here, we identified FilGAP, a Rac-specific GAP, as a negative regulator of lymphocyte polarization and migration. Depletion of FilGAP in mouse pro-B BAF cells increased cellular elongation and membrane protrusion after stimulation of the cells with SDF-1α, which caused increased migration speed. Although FilGAP is detectable both at the front and rear of polarized cells, FilGAP appears to be concentrated at the tip of retracting lamellae of moving lymphocytes. Moreover, depletion of FilGAP increased activation of Rac at the front of polarized cells. Thus, FilGAP may inhibit lamellae extension at the front of moving lymphocytes.
Collapse
Affiliation(s)
- Toru Iida
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Koko Katagiri
- Division of Immunology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
178
|
Real-time two- and three-dimensional imaging of monocyte motility and navigation on planar surfaces and in collagen matrices: roles of Rho. Sci Rep 2016; 6:25016. [PMID: 27122054 PMCID: PMC4848558 DOI: 10.1038/srep25016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
We recently found that macrophages from RhoA/RhoB double knockout mice had increased motility of the cell body, but severely impaired retraction of the tail and membrane extensions, whereas RhoA- or RhoB-deficient cells exhibited mild phenotypes. Here we extended this work and investigated the roles of Rho signaling in primary human blood monocytes migrating in chemotactic gradients and in various settings. Monocyte velocity, but not chemotactic navigation, was modestly dependent on Rho-ROCK-myosin II signaling on a 2D substrate or in a loose collagen type I matrix. Viewed by time-lapse epi-fluorescence microscopy, monocytes appeared to flutter rather than crawl, such that the 3D surface topology of individual cells was difficult to predict. Spinning disk confocal microscopy and 3D reconstruction revealed that cells move on planar surfaces and in a loose collagen matrix using prominent, curved planar protrusions, which are rapidly remodeled and reoriented, as well as resorbed. In a dense collagen type I matrix, there is insufficient space for this mode and cells adopt a highly Rho-dependent, lobular mode of motility. Thus, in addition to its role in tail retraction on 2D surfaces, Rho is critical for movement in confined spaces, but is largely redundant for motility and chemotaxis in loose matrices.
Collapse
|
179
|
Cross AM, Wilson AL, Guerrero MS, Thomas KS, Bachir AI, Kubow KE, Horwitz AR, Bouton AH. Breast cancer antiestrogen resistance 3-p130 Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 2016; 35:5850-5859. [PMID: 27109104 PMCID: PMC5079856 DOI: 10.1038/onc.2016.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Adhesion turnover is critical for cell motility and invasion. We previously demonstrated that the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) promotes adhesion disassembly and breast tumor cell invasion. One of two established binding partners of BCAR3 is the adaptor molecule, p130Cas. In this study, we sought to determine whether signaling through the BCAR3/Cas complex was responsible for the cellular functions of BCAR3. We show that the entire pool of BCAR3 is in complex with Cas in invasive breast tumor cells and that these proteins co-localize in dynamic cellular adhesions. While accumulation of BCAR3 in adhesions did not require Cas binding, a direct interaction between BCAR3 and Cas was necessary for efficient dissociation of BCAR3 from adhesions. The dissociation rates of Cas and two other adhesion molecules, α-actinin and talin, were also significantly slower in the presence of a Cas-binding mutant of BCAR3, suggesting that turnover of the entire adhesion complex was delayed under these conditions. As was the case for adhesion turnover, BCAR3-Cas interactions were found to be important for BCAR3-mediated breast tumor cell chemotaxis toward serum and invasion in Matrigel. Previous work demonstrated that BCAR3 is a potent activator of Rac1, which in turn is an important regulator of adhesion dynamics and invasion. However, in contrast to wildtype BCAR3, ectopic expression of the Cas-binding mutant of BCAR3 failed to induce Rac1 activity in breast cancer cells. Together, these data show that the ability of BCAR3 to promote adhesion disassembly, tumor cell migration and invasion, and Rac1 activity is dependent on its ability to bind to Cas. The activity of BCAR3-Cas complexes as a functional unit in breast cancer is further supported by the co-expression of these molecules in multiple subtypes of human breast tumors.
Collapse
Affiliation(s)
- A M Cross
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A L Wilson
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M S Guerrero
- Fujifilm Diosynth Biotechnologies, USA, Inc., Cary, NC, USA
| | - K S Thomas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A I Bachir
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - K E Kubow
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - A R Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - A H Bouton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
180
|
Bender BF, Aijian AP, Garrell RL. Digital microfluidics for spheroid-based invasion assays. LAB ON A CHIP 2016; 16:1505-1513. [PMID: 27020962 DOI: 10.1039/c5lc01569c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell invasion is a key process in tissue growth, wound healing, and tumor progression. Most invasion assays examine cells cultured in adherent monolayers, which fail to recapitulate the three-dimensional nuances of the tissue microenvironment. Multicellular cell spheroids have a three-dimensional (3D) morphology and mimic the intercellular interactions found in tissues in vivo, thus providing a more physiologically relevant model for studying the tissue microenvironment and processes such as cell invasion. Spheroid-based invasion assays often require tedious, manually intensive handling protocols or the use of robotic liquid handling systems, which can be expensive to acquire, operate, and maintain. Here we describe a digital microfluidic (DμF) platform that enables formation of spheroids by the hanging drop method, encapsulation of the spheroids in collagen, and the exposure of spheroids to migration-modulating agents. Collagen sol-gel solutions up to 4 mg mL(-1), which form gels with elastic moduli up to ∼50 kPa, can be manipulated on the device. In situ spheroid migration assays show that cells from human fibroblast spheroids exhibit invasion into collagen gels, which can be either enhanced or inhibited by the delivery of exogenous migration modulating agents. Exposing fibroblast spheroids to spheroid secretions from colon cancer spheroids resulted in a >100% increase in fibroblast invasion into the collagen gel, consistent with the cancer-associated fibroblast phenotype. These data show that DμF can be used to automate the liquid handling protocols for spheroid-based invasion assays and create a cell invasion model that mimics the tissue microenvironment more closely than two-dimensional culturing techniques do. A DμF platform that facilitates the creation and assaying of 3D in vitro tissue models has the potential to make automated 3D cell-based assays more accessible to researchers in the life sciences.
Collapse
Affiliation(s)
- Brian F Bender
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA.
| | - Andrew P Aijian
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA.
| | - Robin L Garrell
- Bioengineering Department, University of California, Los Angeles, CA 90095-1600, USA. and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA and California NanoSystems Institute, UCLA Box 722710, Los Angeles, CA, USA 90095
| |
Collapse
|
181
|
Multiple mechanisms of 3D migration: the origins of plasticity. Curr Opin Cell Biol 2016; 42:7-12. [PMID: 27082869 DOI: 10.1016/j.ceb.2016.03.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
Cells migrate through 3D environments using a surprisingly wide variety of molecular mechanisms. These distinct modes of migration often rely on the same intracellular components, which are used in different ways to achieve cell motility. Recent work reveals that how a cell moves can be dictated by the relative amounts of cell-matrix adhesion and actomyosin contractility. A current concept is that the level of difficulty in squeezing the nucleus through a confining 3D environment determines the amounts of adhesion and contractility required for cell motility. Ultimately, determining how the nucleus controls the mode of cell migration will be essential for understanding both physiological and pathological processes dependent on cell migration in the body.
Collapse
|
182
|
Kai F, Laklai H, Weaver VM. Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends Cell Biol 2016; 26:486-497. [PMID: 27056543 DOI: 10.1016/j.tcb.2016.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression.
Collapse
Affiliation(s)
- FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hanane Laklai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
183
|
Guetta-Terrier C, Monzo P, Zhu J, Long H, Venkatraman L, Zhou Y, Wang P, Chew SY, Mogilner A, Ladoux B, Gauthier NC. Protrusive waves guide 3D cell migration along nanofibers. J Cell Biol 2016; 211:683-701. [PMID: 26553933 PMCID: PMC4639865 DOI: 10.1083/jcb.201501106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Reductionist approaches based on 3D fibers reveal that single-cell migration along fibers is driven by lateral actin-based waves for various cell types. In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions.
Collapse
Affiliation(s)
| | - Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jie Zhu
- Cellular and Molecular Physiology, Yale University, New Haven, CT 06520
| | - Hongyan Long
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Lakshmi Venkatraman
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Yue Zhou
- Cardiovascular Research Institute, National University Health System, Singapore 119228 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - PeiPei Wang
- Cardiovascular Research Institute, National University Health System, Singapore 119228 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Alexander Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Institut Jacques Monod, Centre National de la Recherche Scientifique UMR 7592 and Université Paris Diderot, 75013 Paris, France
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| |
Collapse
|
184
|
Heris HK, Daoud J, Sheibani S, Vali H, Tabrizian M, Mongeau L. Investigation of the Viability, Adhesion, and Migration of Human Fibroblasts in a Hyaluronic Acid/Gelatin Microgel-Reinforced Composite Hydrogel for Vocal Fold Tissue Regeneration. Adv Healthc Mater 2016; 5:255-65. [PMID: 26501384 PMCID: PMC4885111 DOI: 10.1002/adhm.201500370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Indexed: 12/13/2022]
Abstract
The potential use of a novel scaffold biomaterial consisting of cross-linked hyaluronic acid (HA)-gelatin (Ge) composite microgels is investigated for use in treating vocal fold injury and scarring. Cell adhesion integrins and kinematics of cell motion are investigated in 2D and 3D culture conditions, respectively. Human vocal fold fibroblast (hVFF) cells are seeded on HA-Ge microgels attached to a HA hydrogel thin film. The results show that hVFF cells establish effective adhesion to HA-Ge microgels through the ubiquitous expression of β1 integrin in the cell membrane. The microgels are then encapsulated in a 3D HA hydrogel for the study of cell migration. The cells within the HA-Ge microgel-reinforced composite hydrogel (MRCH) scaffold have an average motility speed of 0.24 ± 0.08 μm min(-1) . The recorded microscopic images reveal features that are presumably associated with lobopodial and lamellipodial cell migration modes within the MRCH scaffold. Average cell speed during lobopodial migration is greater than that during lamellipodial migration. The cells move faster in the MRCH than in the HA-Ge gel without microgels. These findings support the hypothesis that HA-Ge MRCH promotes cell adhesion and migration; thereby they constitute a promising biomaterial for vocal fold repair.
Collapse
Affiliation(s)
- Hossein K. Heris
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal (QC)
| | - Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal (QC)
| | - Sara Sheibani
- Biological Threat Defence Section, Defence R&D Canada-Suffield, Medicine Hat, (AB)
| | | | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal (QC)
- Faculty of Dentistry, McGill University, Montreal (QC)
| | - Luc Mongeau
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montreal (QC)
| |
Collapse
|
185
|
Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10. PLoS One 2016; 11:e0146593. [PMID: 26751795 PMCID: PMC4709192 DOI: 10.1371/journal.pone.0146593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023] Open
Abstract
FilGAP is a Rac-specific GTPase-activating protein (GAP) that suppresses lamellae formation. In this study, we have identified RBM10 (RNA Binding Motif domain protein 10) as a FilGAP-interacting protein. Although RBM10 is mostly localized in the nuclei in human melanoma A7 cells, forced expression of Src family tyrosine kinase Fyn induced translocation of RBM10 from nucleus into cell peripheries where RBM10 and FilGAP are co-localized. The translocation of RBM10 from nucleus appears to require catalytic activity of Fyn since kinase-negative Fyn mutant failed to induce translocation of RBM10 in A7 cells. When human breast carcinoma MDA-MB-231 cells are spreading on collagen-coated coverslips, endogenous FilGAP and RBM10 were localized at the cell periphery with tyrosine-phosphorylated proteins. RBM10 appears to be responsible for targeting FilGAP at the cell periphery because depletion of RBM10 by siRNA abrogated peripheral localization of FilGAP during cell spreading. Association of RBM10 with FilGAP may stimulate RacGAP activity of FilGAP. First, forced expression of RBM10 suppressed FilGAP-mediated cell spreading on collagen. Conversely, depletion of endogenous RBM10 by siRNA abolished FilGAP-mediated suppression of cell spreading on collagen. Second, FilGAP suppressed formation of membrane ruffles induced by Fyn and instead produced spiky cell protrusions at the cell periphery. This protrusive structure was also induced by depletion of Rac, suggesting that the formation of protrusions may be due to suppression of Rac by FilGAP. We found that depletion of RBM10 markedly reduced the formation of protrusions in cells transfected with Fyn and FilGAP. Finally, depletion of RBM10 blocked FilGAP-mediated suppression of ruffle formation induced by EGF. Taken together, these results suggest that Src family tyrosine kinase signaling may regulate FilGAP through association with RBM10.
Collapse
|
186
|
Lehtimäki J, Hakala M, Lappalainen P. Actin Filament Structures in Migrating Cells. Handb Exp Pharmacol 2016; 235:123-152. [PMID: 27469496 DOI: 10.1007/164_2016_28] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell migration is necessary for several developmental processes in multicellular organisms. Furthermore, many physiological processes such as wound healing and immunological events in adult animals are dependent on cell migration. Consequently, defects in cell migration are linked to various diseases including immunological disorders as well as cancer progression and metastasis formation. Cell migration is driven by specific protrusive and contractile actin filament structures, but the types and relative contributions of these actin filament arrays vary depending on the cell type and the environment of the cell. In this chapter, we introduce the most important actin filament structures that contribute to mesenchymal and amoeboid cell migration modes and discuss the mechanisms by which the assembly and turnover of these structures are controlled by various actin-binding proteins.
Collapse
Affiliation(s)
- Jaakko Lehtimäki
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Markku Hakala
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland.
| |
Collapse
|
187
|
Herraiz C, Calvo F, Pandya P, Cantelli G, Rodriguez-Hernandez I, Orgaz JL, Kang N, Chu T, Sahai E, Sanz-Moreno V. Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination. J Natl Cancer Inst 2016; 108:djv289. [PMID: 26464464 PMCID: PMC4712681 DOI: 10.1093/jnci/djv289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/22/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Abnormal cell migration and invasion underlie metastasis, and actomyosin contractility is a key regulator of tumor invasion. The links between cancer migratory behavior and DNA damage are poorly understood. METHODS Using 3D collagen systems to recapitulate melanoma extracellular matrix, we analyzed the relationship between the actomyosin cytoskeleton of migrating cells and DNA damage. We used multiple melanoma cell lines and microarray analysis to study changes in gene expression and in vivo intravital imaging (n = 7 mice per condition) to understand how DNA damage impacts invasive behavior. We used Protein Tissue Microarrays (n = 164 melanomas) and patient databases (n = 354 melanoma samples) to investigate the associations between markers of DNA damage and actomyosin cytoskeletal features. Data were analyzed with Student's and multiple t tests, Mann-Whitney's test, one-way analysis of variance, and Pearson correlation. All statistical tests were two-sided. RESULTS Melanoma cells with low levels of Rho-ROCK-driven actomyosin are subjected to oxidative stress-dependent DNA damage and ATM-mediated p53 protein stabilization. This results in a specific transcriptional signature enriched in DNA damage/oxidative stress responsive genes, including Tumor Protein p53 Inducible Protein 3 (TP53I3 or PIG3). PIG3, which functions in DNA damage repair, uses an unexpected catalytic mechanism to suppress Rho-ROCK activity and impair tumor invasion in vivo. This regulation was suppressed by antioxidants. Furthermore, PIG3 levels decreased while ROCK1/2 levels increased in human metastatic melanomas (ROCK1 vs PIG3; r = -0.2261, P < .0001; ROCK2 vs PIG3: r = -0.1381, P = .0093). CONCLUSIONS The results suggest using Rho-kinase inhibitors to reactivate the p53-PIG3 axis as a novel therapeutic strategy; we suggest that the use of antioxidants in melanoma should be very carefully evaluated.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Fernando Calvo
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Pahini Pandya
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Gaia Cantelli
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Irene Rodriguez-Hernandez
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Jose L Orgaz
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - NaRa Kang
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Tinghine Chu
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Erik Sahai
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Victoria Sanz-Moreno
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH).
| |
Collapse
|
188
|
Kutys ML, Yamada KM. Rho GEFs and GAPs: emerging integrators of extracellular matrix signaling. Small GTPases 2015; 6:16-9. [PMID: 25862162 DOI: 10.4161/21541248.2014.989792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigating cell migration in 3D settings has revealed that specific extracellular matrix environments require differential activities of the Rho GTPases for efficient migration. However, it is largely unknown how the activities of specific Rho GTPases are modulated to direct cell migration in response to different extracellular matrix cues. We have recently reported that extracellular matrix-dependent regulation of a specific Rho GEF is a fundamental mechanism governing cell migration in different microenvironments, providing a direct mechanism for extracellular matrix-specific regulation of Rho GTPase activity directing cell motility. We discovered that the Rho GEF βPix has a unique function during cell migration in fibrillar collagen environments by restraining RhoA signaling through a conserved signaling axis involving Cdc42 and the Rho GAP srGAP1. In this Commentary, we expand upon this new pathway and discuss potential mechanotransductive and therapeutic applications. Additionally, we speculate on a generalized role for Rho GEFs and GAPs in providing localized, context-dependent responses to the cellular microenvironment during cell migration and other cellular processes.
Collapse
Affiliation(s)
- Matthew L Kutys
- a Laboratory of Cell and Developmental Biology; National Institute of Dental and Craniofacial Research; National Institutes of Health
| | | |
Collapse
|
189
|
Peela N, Sam FS, Christenson W, Truong D, Watson AW, Mouneimne G, Ros R, Nikkhah M. A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 2015; 81:72-83. [PMID: 26724455 DOI: 10.1016/j.biomaterials.2015.11.039] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 12/14/2022]
Abstract
Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness.
Collapse
Affiliation(s)
- Nitish Peela
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Feba S Sam
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Wayne Christenson
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Danh Truong
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Adam W Watson
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, Tucson, AZ 85724, USA
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Department of Cellular and Molecular Medicine, Tucson, AZ 85724, USA
| | - Robert Ros
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
190
|
Davidson PM, Sliz J, Isermann P, Denais C, Lammerding J. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr Biol (Camb) 2015; 7:1534-46. [PMID: 26549481 DOI: 10.1039/c5ib00200a] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of cells to migrate through tissues and interstitial spaces is an essential factor during development and tissue homeostasis, immune cell mobility, and in various human diseases. Deformation of the nucleus and its associated lamina during 3-D migration is gathering increasing interest in the context of cancer metastasis, with the underlying hypothesis that a softer nucleus, resulting from reduced levels of lamin A/C, may aid tumour spreading. However, current methods to study the migration of cells in confining three dimensional (3-D) environments are limited by their imprecise control over the confinement, physiological relevance, and/or compatibility with high resolution imaging techniques. We describe the design of a polydimethylsiloxane (PDMS) microfluidic device composed of channels with precisely-defined constrictions mimicking physiological environments that enable high resolution imaging of live and fixed cells. The device promotes easy cell loading and rapid, yet long-lasting (>24 hours) chemotactic gradient formation without the need for continuous perfusion. Using this device, we obtained detailed, quantitative measurements of dynamic nuclear deformation as cells migrate through tight spaces, revealing distinct phases of nuclear translocation through the constriction, buckling of the nuclear lamina, and severe intranuclear strain. Furthermore, we found that lamin A/C-deficient cells exhibited increased and more plastic nuclear deformations compared to wild-type cells but only minimal changes in nuclear volume, implying that low lamin A/C levels facilitate migration through constrictions by increasing nuclear deformability rather than compressibility. The integration of our migration devices with high resolution time-lapse imaging provides a powerful new approach to study intracellular mechanics and dynamics in a variety of physiologically-relevant applications, ranging from cancer cell invasion to immune cell recruitment.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
191
|
Araki K, Ebata T, Guo AK, Tobiume K, Wolf SJ, Kawauchi K. p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell Mol Life Sci 2015; 72:4077-94. [PMID: 26206378 PMCID: PMC11114009 DOI: 10.1007/s00018-015-1989-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Keigo Araki
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Takahiro Ebata
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Kei Tobiume
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Steven John Wolf
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan.
| |
Collapse
|
192
|
Ummadi JG, Joshi VS, Gupta PR, Indra AK, Koley D. Single-Cell Migration as Studied by Scanning Electrochemical Microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:8826-8831. [PMID: 26528375 PMCID: PMC4627705 DOI: 10.1039/c5ay01944c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Scanning electrochemical microscopy (SECM) was used to study the migration of single live head and neck cancer cells (SCC25). The newly developed graphite paste ultramicroelectrode (UME) showed significantly less fouling in comparison to a 10 μm Pt-UME and thus could be used to monitor and track the migration pattern of a single cell. We also used SECM probe scan curves to measure the morphology (height and diameter) of a single live cancer cell during cellular migration and determined these dimensions to be 11 ± 4 μm and 40 ± 10 μm, respectively. The migration study revealed that cells within the same cell line had a heterogeneous migration pattern (migration and stationary) with an estimated migration speed of 8 ± 3 μm/h. However, serum-starved synchronized cells of the same line were found to have a non-heterogeneous cellular migration pattern with a speed of 9 ± 3 μm/h. Thus, this non-invasive SECM-based technique could potentially be expanded to other cell lines to study cellular biomechanics for improved understanding of the structure-function relationship at the level of a single cell.
Collapse
Affiliation(s)
- J. Ganesh Ummadi
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Vrushali S. Joshi
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Priya R Gupta
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Molecular and Cell Biology Program, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
193
|
Dufour AC, Olivo-Marin JC, Guillen N. Amoeboid movement in protozoan pathogens. Semin Cell Dev Biol 2015; 46:128-34. [PMID: 26459974 DOI: 10.1016/j.semcdb.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, is a protozoan parasite characterised by its amoeboid motility, which is essential to its survival and invasion of the human host. Elucidating the molecular mechanisms leading to invasion of human tissues by E. histolytica requires a quantitative understanding of how its cytoskeleton deforms and tailors its mode of migration to the local microenvironment. Here we review the wide range of methods available to extract biophysical information from amoeboid cells, from interventional techniques to computational modelling approaches, and discuss how recent developments in bioimaging and bioimage informatics can complement our understanding of cellular morphodynamics at the intracellular level.
Collapse
Affiliation(s)
- Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, Department of Cell Biology & Infection, Paris, France; INSERM U786, Paris, France.
| |
Collapse
|
194
|
Jean L, Yang L, Majumdar D, Gao Y, Shi M, Brewer BM, Li D, Webb DJ. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh Migr 2015; 8:460-7. [PMID: 25517435 DOI: 10.4161/19336918.2014.983778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Collagen I, type I collagen
- DMEM, Dulbecco's Modified Eagle Medium
- ECM, extracellular matrix
- GEF, guanine nucleotide exchange factor
- MyoII, non-muscle myosin II
- PAK, p21-activated kinase
- PBD, p21-binding domain
- PBS, phosphate buffer saline
- PDMS, polydimethylsiloxane
- Rac
- Rho family GTPases
- UV, ultra-violet
- guanine nucleotide exchange factor
- microfluidics
- myosin II
- type I collagen
Collapse
Affiliation(s)
- Léolène Jean
- a Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development ; Vanderbilt University ; Nashville , TN USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Petrie RJ, Yamada KM. Fibroblasts Lead the Way: A Unified View of 3D Cell Motility. Trends Cell Biol 2015; 25:666-674. [PMID: 26437597 DOI: 10.1016/j.tcb.2015.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022]
Abstract
Primary human fibroblasts are remarkably adaptable, able to migrate in differing types of physiological 3D tissue and on rigid 2D tissue culture surfaces. The crawling behavior of these and other vertebrate cells has been studied intensively, which has helped generate the concept of the cell motility cycle as a comprehensive model of 2D cell migration. However, this model fails to explain how cells force their large nuclei through the confines of a 3D matrix environment and why primary fibroblasts can use more than one mechanism to move in 3D. Recent work shows that the intracellular localization of myosin II activity is governed by cell-matrix interactions to both force the nucleus through the extracellular matrix (ECM) and dictate the type of protrusions used to migrate in 3D.
Collapse
Affiliation(s)
- Ryan J Petrie
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
196
|
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol 2015; 36:103-12. [PMID: 26363959 PMCID: PMC4728192 DOI: 10.1016/j.ceb.2015.08.005] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
197
|
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
198
|
Morishita Y, Tsutsumi K, Ohta Y. Phosphorylation of Serine 402 Regulates RacGAP Protein Activity of FilGAP Protein. J Biol Chem 2015; 290:26328-38. [PMID: 26359494 DOI: 10.1074/jbc.m115.666875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
FilGAP is a Rho GTPase-activating protein (GAP) that specifically regulates Rac. FilGAP is phosphorylated by ROCK, and this phosphorylation stimulates its RacGAP activity. However, it is unclear how phosphorylation regulates cellular functions and localization of FilGAP. We found that non-phosphorylatable FilGAP (ST/A) mutant is predominantly localized to the cytoskeleton along actin filaments and partially co-localized with vinculin around cell periphery, whereas phosphomimetic FilGAP (ST/D) mutant is diffusely cytoplasmic. Moreover, phosphorylated FilGAP detected by Phos-tag is also mainly localized in the cytoplasm. Of the six potential phosphorylation sites in FilGAP tested, only mutation of serine 402 to alanine (S402A) resulted in decreased cell spreading on fibronectin. FilGAP phosphorylated at Ser-402 is localized to the cytoplasm but not at the cytoskeleton. Although Ser-402 is highly phosphorylated in serum-starved quiescent cells, dephosphorylation of Ser-402 is accompanied with the cell spreading on fibronectin. Treatment of the cells expressing wild-type FilGAP with calyculin A, a Ser/Thr phosphatase inhibitor, suppressed cell spreading on fibronectin, whereas cells transfected with FilGAP S402A mutant were not affected by calyculin A. Expression of constitutively activate Arf6 Q67L mutant stimulated membrane blebbing activity of both non-phosphorylatable (ST/A) and phosphomimetic (ST/D) FilGAP mutants. Conversely, depletion of endogenous Arf6 suppressed membrane blebbing induced by FilGAP (ST/A) and (ST/D) mutants. Our study suggests that Arf6 and phosphorylation of FilGAP may regulate FilGAP, and phosphorylation of Ser-402 may play a role in the regulation of cell spreading on fibronectin.
Collapse
Affiliation(s)
- Yuji Morishita
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Koji Tsutsumi
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Yasutaka Ohta
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| |
Collapse
|
199
|
Hughes SK, Oudin MJ, Tadros J, Neil J, Del Rosario A, Joughin BA, Ritsma L, Wyckoff J, Vasile E, Eddy R, Philippar U, Lussiez A, Condeelis JS, van Rheenen J, White F, Lauffenburger DA, Gertler FB. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol Biol Cell 2015; 26:3867-78. [PMID: 26337385 PMCID: PMC4626070 DOI: 10.1091/mbc.e15-06-0442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The actin-binding protein Mena regulates RTK signaling after growth factor stimulation in tumor cells by a novel mechanism. The alternatively spliced MenaINV isoform disrupts this attenuation to drive sensitivity to growth factors, resistance to targeted inhibitors, and ultimately tumor invasion and metastasis. During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.
Collapse
Affiliation(s)
- Shannon K Hughes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jason Neil
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amanda Del Rosario
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laila Ritsma
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Jeff Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Ulrike Philippar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alisha Lussiez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Forest White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
200
|
Abstract
Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings.
Collapse
|