151
|
Koubek EJ, Santy LC. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation. Small GTPases 2016; 9:242-259. [PMID: 27562622 DOI: 10.1080/21541248.2016.1219186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.
Collapse
Affiliation(s)
- Emily J Koubek
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| | - Lorraine C Santy
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
152
|
da Silva SD, Marchi FA, Xu B, Bijian K, Alobaid F, Mlynarek A, Rogatto SR, Hier M, Kowalski LP, Alaoui-Jamali MA. Predominant Rab-GTPase amplicons contributing to oral squamous cell carcinoma progression to metastasis. Oncotarget 2016; 6:21950-63. [PMID: 26110570 PMCID: PMC4673138 DOI: 10.18632/oncotarget.4277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Metastatic oral squamous cell carcinoma (OSCC) is frequently associated with recurrent gene abnormalities at specific chromosomal loci. Here, we utilized array comparative genomic hybridization and genome-wide screening of metastatic and non-metastatic tongue tumors to investigate genes potentially contributing to OSCC progression to metastasis. We identified predominant amplifications of chromosomal regions that encompass the RAB5, RAB7 and RAB11 genes (3p24-p22, 3q21.3 and 8p11-12, respectively) in metastatic OSCC. The expression of these Rab GTPases was confirmed by immunohistochemistry in OSCC tissues from a cohort of patients with a follow-up of 10 years. A significant overexpression of Rab5, Rab7 and Rab11 was observed in advanced OSCC cases and co-overexpression of these Rabs was predictive of poor survival (log-rank test, P = 0.006). We generated a Rab interaction network and identified central Rab interactions of relevance to metastasis signaling, including focal adhesion proteins. In preclinical models, mRNA and protein expression levels of these Rab members were elevated in a panel of invasive OSCC cell lines, and their down-regulation prevented cell invasion at least in part via inhibition of focal adhesion disassembly. In summary, our results provide insights into the cooperative role of Rab gene amplifications in OSCC progression and support their potential utility as prognostic markers and therapeutic approach for advanced OSCC.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Canada.,Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Canada.,Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), Brazil
| | - Fabio Albuquerque Marchi
- NeoGene Laboratory, Department of Urology, Faculty of Medicine, UNESP, and International Research Center (CIPE), AC Camargo Cancer Center, Brazil.,Inter-Institutional Grad Program on Bioinformatics, University of São Paulo, Brazil
| | - Bin Xu
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Canada
| | - Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Canada
| | - Faisal Alobaid
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Canada
| | - Alex Mlynarek
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Canada
| | - Silvia Regina Rogatto
- NeoGene Laboratory, Department of Urology, Faculty of Medicine, UNESP, and International Research Center (CIPE), AC Camargo Cancer Center, Brazil
| | - Michael Hier
- Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Canada
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), Brazil
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Canada
| |
Collapse
|
153
|
Baksi S, Tripathi AK, Singh N. Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin-bound iron: Implications for visual manifestations of Parkinson's disease. Free Radic Biol Med 2016; 97:292-306. [PMID: 27343690 PMCID: PMC4996775 DOI: 10.1016/j.freeradbiomed.2016.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
Aggregation of α-synuclein (α-syn) in neurons of the substantia nigra is diagnostic of Parkinson's disease (PD), a neuro-motor disorder with prominent visual symptoms. Here, we demonstrate that α-syn, the principal protein involved in the pathogenesis of PD, is expressed widely in the neuroretina, and facilitates the uptake of transferrin-bound iron (Tf-Fe) by retinal pigment epithelial (RPE) cells that form the outer blood-retinal barrier. Absence of α-syn in knock-out mice (α-syn(-/-)) resulted in down-regulation of ferritin in the neuroretina, indicating depletion of cellular iron stores. A similar phenotype of iron deficiency was observed in the spleen, femur, and brain tissue of α-syn(-)(/-) mice, organs that utilize mainly Tf-Fe for their metabolic needs. The liver and kidney, organs that take up significant amounts of non-Tf-bound iron (NTBI), showed minimal change. Evaluation of the underlying mechanism in the human RPE47 cell line suggested a prominent role of α-syn in the uptake of Tf-Fe by modulating the endocytosis and recycling of transferrin (Tf)/transferrin-receptor (TfR) complex. Down-regulation of α-syn in RPE cells by RNAi resulted in the accumulation of Tf/TfR complex in common recycling endosomes (CREs), indicating disruption of recycling to the plasma membrane. Over-expression of exogenous α-syn in RPE cells, on the other hand, up-regulated ferritin and TfR expression. Interestingly, exposure to exogenous iron increased membrane association and co-localization of α-syn with TfR, supporting its role in iron uptake by the Tf/TfR complex. Together with our observations indicating basolateral expression of α-syn and TfR on RPE cells in vivo, this study reveals a novel function of α-syn in the uptake of Tf-Fe by the neuroretina. It is likely that retinal iron dyshomeostasis due to impaired or altered function of α-syn contributes to the visual symptoms associated with PD.
Collapse
Affiliation(s)
- Shounak Baksi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ajai K Tripathi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
154
|
Wilson JD, Shelby SA, Holowka D, Baird B. Rab11 Regulates the Mast Cell Exocytic Response. Traffic 2016; 17:1027-41. [PMID: 27288050 DOI: 10.1111/tra.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
Abstract
Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell-mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high-affinity receptor, FcϵRI, on the cell surface. Here we use the endosomal v-SNARE VAMP8, and the lysosomal hydrolase β-hexosaminidase (β-Hex), each C-terminally fused to super-ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin-tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated β-Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F-actin with jasplakinolide inhibits antigen-stimulated exocytosis but is not additive with S25N Rab11-mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Sarah A Shelby
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| |
Collapse
|
155
|
Liu J, Qi Y, Li S, Hsu SC, Saadat S, Hsu J, Rahimi SA, Lee LY, Yan C, Tian X, Han Y. CREG1 Interacts with Sec8 to Promote Cardiomyogenic Differentiation and Cell-Cell Adhesion. Stem Cells 2016; 34:2648-2660. [PMID: 27334848 DOI: 10.1002/stem.2434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/29/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023]
Abstract
Understanding the regulation of cell-cell interactions during the formation of compact myocardial structures is important for achieving true cardiac regeneration through enhancing the integration of stem cell-derived cardiomyocytes into the recipient myocardium. In this study, we found that cellular repressor of E1A-stimulated genes 1 (CREG1) is highly expressed in both embryonic and adult hearts. Gain- and loss-of-function analyses demonstrated that CREG1 is required for differentiation of mouse embryonic stem (ES) cell into cardiomyocytes and the formation of cohesive myocardium-like structures in a cell-autonomous fashion. Furthermore, CREG1 directly interacts with Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Site-directed mutagenesis and rescue of CREG1 knockout ES cells showed that CREG1 binding to Sec8 is required for cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8, and N-cadherin colocalize at intercalated discs in vivo and are enriched at cell-cell junctions in cultured cardiomyocytes. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis. Stem Cells 2016;34:2648-2660.
Collapse
Affiliation(s)
- Jie Liu
- Department of Surgery, Robert Wood Johnson Medical School
| | - Yanmei Qi
- Department of Surgery, Robert Wood Johnson Medical School
| | - Shaohua Li
- Department of Surgery, Robert Wood Johnson Medical School
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers-the State University of New Jersey, USA
| | - Siavash Saadat
- Department of Surgery, Robert Wood Johnson Medical School
| | - June Hsu
- Department of Surgery, Robert Wood Johnson Medical School
| | - Saum A Rahimi
- Department of Surgery, Robert Wood Johnson Medical School
| | - Leonard Y Lee
- Department of Surgery, Robert Wood Johnson Medical School
| | - Chenghui Yan
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Xiaoxiang Tian
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Yaling Han
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| |
Collapse
|
156
|
Regulation of the divalent metal ion transporter via membrane budding. Cell Discov 2016; 2:16011. [PMID: 27462458 PMCID: PMC4914834 DOI: 10.1038/celldisc.2016.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022] Open
Abstract
The release of extracellular vesicles (EVs) is important for both normal physiology and disease. However, a basic understanding of the targeting of EV cargoes, composition and mechanism of release is lacking. Here we present evidence that the divalent metal ion transporter (DMT1) is unexpectedly regulated through release in EVs. This process involves the Nedd4-2 ubiquitin ligase, and the adaptor proteins Arrdc1 and Arrdc4 via different budding mechanisms. We show that mouse gut explants release endogenous DMT1 in EVs. Although we observed no change in the relative amount of DMT1 released in EVs from gut explants in Arrdc1 or Arrdc4 deficient mice, the extent of EVs released was significantly reduced indicating an adaptor role in biogenesis. Furthermore, using Arrdc1 or Arrdc4 knockout mouse embryonic fibroblasts, we show that both Arrdc1 and Arrdc4 are non-redundant positive regulators of EV release. Our results suggest that DMT1 release from the plasma membrane into EVs may represent a novel mechanism for the maintenance of iron homeostasis, which may also be important for the regulation of other membrane proteins.
Collapse
|
157
|
Rauch L, Hennings K, Trasak C, Röder A, Schröder B, Koch-Nolte F, Rivera-Molina F, Toomre D, Aepfelbacher M. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells. J Cell Sci 2016; 129:2937-49. [PMID: 27311480 DOI: 10.1242/jcs.186213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Kirsten Hennings
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Claudia Trasak
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Anja Röder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Barbara Schröder
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute for Biological Imaging, Technical University of Munich, Arcisstrasse 21, Munich 80333, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|
158
|
Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, Nakayama K. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex. J Biol Chem 2016; 291:10962-75. [PMID: 26980730 PMCID: PMC4900248 DOI: 10.1074/jbc.m116.713883] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
Intraflagellar transport (IFT) is essential for assembly and maintenance of cilia and flagella as well as ciliary motility and signaling. IFT is mediated by multisubunit complexes, including IFT-A, IFT-B, and the BBSome, in concert with kinesin and dynein motors. Under high salt conditions, purified IFT-B complex dissociates into a core subcomplex composed of at least nine subunits and at least five peripherally associated proteins. Using the visible immunoprecipitation assay, which we recently developed as a convenient protein-protein interaction assay, we determined the overall architecture of the IFT-B complex, which can be divided into core and peripheral subcomplexes composed of 10 and 6 subunits, respectively. In particular, we identified TTC26/IFT56 and Cluap1/IFT38, neither of which was included with certainty in previous models of the IFT-B complex, as integral components of the core and peripheral subcomplexes, respectively. Consistent with this, a ciliogenesis defect of Cluap1-deficient mouse embryonic fibroblasts was rescued by exogenous expression of wild-type Cluap1 but not by mutant Cluap1 lacking the binding ability to other IFT-B components. The detailed interaction map as well as comparison of subcellular localization of IFT-B components between wild-type and Cluap1-deficient cells provides insights into the functional relevance of the architecture of the IFT-B complex.
Collapse
Affiliation(s)
- Yohei Katoh
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaya Terada
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Nishijima
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Takei
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Hamada
- the Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and the Center for Developmental Biology, RIKEN, Chuou-ku, Kobe 650-0047, Japan
| | - Kazuhisa Nakayama
- From the Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
159
|
Eno C, Solanki B, Pelegri F. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 2016; 143:1585-99. [PMID: 26965374 PMCID: PMC4986165 DOI: 10.1242/dev.130591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Bharti Solanki
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| |
Collapse
|
160
|
Clifford RJ, Maryon EB, Kaplan JH. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci 2016; 129:1711-21. [PMID: 26945057 DOI: 10.1242/jcs.173351] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Cu ion (Cu) entry into human cells is mediated by CTR1 (also known as SLC31A1), the high-affinity Cu transporter. When extracellular Cu is raised, the cell is protected against excess accumulation by rapid internalization of the transporter. When Cu is lowered, the transporter returns to the membrane. We show in HEK293 cells overexpressing CTR1 that expression of either the C-terminal domain of AP180 (also known as SNAP91), a clathrin-coat assembly protein that sequesters clathrin, or a dominant-negative mutant of dynamin, decreases Cu-induced endocytosis of CTR1, as does a dynamin inhibitor and clathrin knockdown using siRNA. Utilizing imaging, siRNA techniques and a new high-throughput assay for endocytosis employing CLIP-tag methodology, we show that internalized CTR1 accumulates in early sorting endosomes and recycling compartments (containing Rab5 and EEA1), but not in late endosomes or lysosomal pathways. Using live cell fluorescence, we find that upon extracellular Cu removal CTR1 recycles to the cell surface through the slower-recycling Rab11-mediated pathway. These processes enable cells to dynamically alter transporter levels at the plasma membrane and acutely modulate entry as a safeguard against excess cellular Cu.
Collapse
Affiliation(s)
- Rebecca J Clifford
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Edward B Maryon
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| |
Collapse
|
161
|
Ghosh D, Pinto S, Danglot L, Vandewauw I, Segal A, Van Ranst N, Benoit M, Janssens A, Vennekens R, Vanden Berghe P, Galli T, Vriens J, Voets T. VAMP7 regulates constitutive membrane incorporation of the cold-activated channel TRPM8. Nat Commun 2016; 7:10489. [PMID: 26843440 PMCID: PMC4742910 DOI: 10.1038/ncomms10489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The cation channel TRPM8 plays a central role in the somatosensory system, as a key sensor of innocuously cold temperatures and cooling agents. Although increased functional expression of TRPM8 has been implicated in various forms of pathological cold hypersensitivity, little is known about the cellular and molecular mechanisms that determine TRPM8 abundance at the plasma membrane. Here we demonstrate constitutive transport of TRPM8 towards the plasma membrane in atypical, non-acidic transport vesicles that contain lysosomal-associated membrane protein 1 (LAMP1), and provide evidence that vesicle-associated membrane protein 7 (VAMP7) mediates fusion of these vesicles with the plasma membrane. In line herewith, VAMP7-deficient mice exhibit reduced functional expression of TRPM8 in sensory neurons and concomitant deficits in cold avoidance and icilin-induced cold hypersensitivity. Our results uncover a cellular pathway that controls functional plasma membrane incorporation of a temperature-sensitive TRP channel, and thus regulates thermosensitivity in vivo.
Collapse
Affiliation(s)
- Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Silvia Pinto
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Lydia Danglot
- Institut Jacques Monod, CNRS UMR 7592, University of Paris Diderot, F-75013 Paris, France
- INSERM ERL U950, Membrane Traffic in Health & disease Group, F-75013 Paris, France
| | - Ine Vandewauw
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Melissa Benoit
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Annelies Janssens
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience, Department of Clinical and Experimental Medicine, University of Leuven, B-3000 Leuven, Belgium
- Translational Research Centre for Gastrointestinal Disorders, KU Leuven, Herestraat 49 box 701, B-3000 Leuven, Belgium
| | - Thierry Galli
- Institut Jacques Monod, CNRS UMR 7592, University of Paris Diderot, F-75013 Paris, France
- INSERM ERL U950, Membrane Traffic in Health & disease Group, F-75013 Paris, France
| | - Joris Vriens
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
- Laboratory of Experimental Gynaecology, Department of Development and Regeneration, University of Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Channel Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| |
Collapse
|
162
|
Kobayashi S, Suzuki T, Kawaguchi A, Phongphaew W, Yoshii K, Iwano T, Harada A, Kariwa H, Orba Y, Sawa H. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes. J Biol Chem 2016; 291:6559-68. [PMID: 26817838 DOI: 10.1074/jbc.m115.712760] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 01/09/2023] Open
Abstract
West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan, Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-Ku, Tokyo 162-8640, Japan
| | - Akira Kawaguchi
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Wallaya Phongphaew
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409-3898, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Orba
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- From the Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan, Global Institution for Collaborative Research and Education (GI-CoRE) and Global Virus Network (GVN), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
163
|
Ketel K, Krauss M, Nicot AS, Puchkov D, Wieffer M, Müller R, Subramanian D, Schultz C, Laporte J, Haucke V. A phosphoinositide conversion mechanism for exit from endosomes. Nature 2016; 529:408-12. [DOI: 10.1038/nature16516] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
|
164
|
Mani I, Garg R, Pandey KN. Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells. Am J Physiol Renal Physiol 2016; 310:F68-84. [PMID: 26377794 PMCID: PMC4675805 DOI: 10.1152/ajprenal.00205.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/09/2015] [Indexed: 01/24/2023] Open
Abstract
Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe(790), Gln(791), Gln(792), and Ile(793)) motif in the carboxyl-terminal region of NPRA. Mouse mesangial cells (MMCs) were transiently transfected with the enhanced green fluorescence protein (eGFP)-tagged wild-type (WT) and mutant constructs of eGFP-NPRA. The mutation FQQI/AAAA, in the eGFP-NPRA cDNA sequence, markedly attenuated the internalization of mutant receptors by almost 49% compared with the WT receptor. Interestingly, we show that the μ1B subunit of adaptor protein-1 binds directly to a phenylalanine-based FQQI motif in the cytoplasmic tail of the receptor. However, subcellular trafficking indicated that immunofluorescence colocalization of the mutated receptor with early endosome antigen-1 (EEA-1), lysosome-associated membrane protein-1 (LAMP-1), and Rab 11 marker was decreased by 57% in early endosomes, 48% in lysosomes, and 42% in recycling endosomes, respectively, compared with the WT receptor in MMCs. The receptor containing the mutated motif (FQQI/AAAA) also produced a significantly decreased level of intracellular cGMP during subcellular trafficking than the WT receptor. The coimmunoprecipitation assay confirmed a decreased level of colocalization of the mutant receptor with subcellular compartments during endocytic processes. The results suggest that the FQQI motif is essential for the internalization and subcellular trafficking of NPRA during the hormone signaling process in intact MMCs.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, Louisiana
| |
Collapse
|
165
|
Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, Catz SD. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane. J Biol Chem 2015; 291:3423-38. [PMID: 26637356 DOI: 10.1074/jbc.m115.705871] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.
Collapse
Affiliation(s)
| | - Jing He
- From the Department of Molecular and Experimental Medicine and
| | | | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California San Diego, La Jolla, California 92093
| | - William B Kiosses
- Light Microscopy Core Facility, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Department of Molecular and Experimental Medicine and
| | - Sergio D Catz
- From the Department of Molecular and Experimental Medicine and
| |
Collapse
|
166
|
Mani M, Lee UH, Yoon NA, Kim HJ, Ko MS, Seol W, Joe Y, Chung HT, Lee BJ, Moon CH, Cho WJ, Park JW. Developmentally regulated GTP-binding protein 2 coordinates Rab5 activity and transferrin recycling. Mol Biol Cell 2015; 27:334-48. [PMID: 26582392 PMCID: PMC4713135 DOI: 10.1091/mbc.e15-08-0558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
The small GTPase Rab5 regulates the early endocytic pathway of transferrin (Tfn), and Rab5 deactivation is required for Tfn recycling. Developmentally regulated GTP-binding protein 2 is required for interaction between Rab5 and RabGAP5 on endosomes and acts as a key regulator for Rab5 deactivation and Tfn recycling. The small GTPase Rab5 regulates the early endocytic pathway of transferrin (Tfn), and Rab5 deactivation is required for Tfn recycling. Rab5 deactivation is achieved by RabGAP5, a GTPase-activating protein, on the endosomes. Here we report that recruitment of RabGAP5 is insufficient to deactivate Rab5 and that developmentally regulated GTP-binding protein 2 (DRG2) is required for Rab5 deactivation and Tfn recycling. DRG2 was associated with phosphatidylinositol 3-phosphate–containing endosomes. It colocalized and interacted with EEA1 and Rab5 on endosomes in a phosphatidylinositol 3-kinase–dependent manner. DRG2 depletion did not affect Tfn uptake and recruitment of RabGAP5 and Rac1 to Rab5 endosomes. However, it resulted in impairment of interaction between Rab5 and RabGAP5, Rab5 deactivation on endosomes, and Tfn recycling. Ectopic expression of shRNA-resistant DRG2 rescued Tfn recycling in DRG2-depleted cells. Our results demonstrate that DRG2 is an endosomal protein and a key regulator of Rab5 deactivation and Tfn recycling.
Collapse
Affiliation(s)
- Muralidharan Mani
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Nal Ae Yoon
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hyo Jeong Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Myoung Seok Ko
- Department of Medical Science, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Wongi Seol
- Inam Institute for Brain Science, Wonkwang University Sanbon Hospital, Gunpo 435-040, Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Chang Hoon Moon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Korea
| | - Wha Ja Cho
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 682-060, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
167
|
Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett 2015; 589:3343-53. [PMID: 26450776 DOI: 10.1016/j.febslet.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
| |
Collapse
|
168
|
Affiliation(s)
- Carlo Breda
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Joern R. Steinert
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
169
|
Zheng H, Zheng W, Wu C, Yang J, Xi Y, Xie Q, Zhao X, Deng X, Lu G, Li G, Ebbole D, Zhou J, Wang Z. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum. Environ Microbiol 2015; 17:4580-99. [PMID: 26177389 DOI: 10.1111/1462-2920.12982] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
Rab GTPases represent the largest subfamily of Ras-related small GTPases and regulate membrane trafficking. Vesicular transport is a general mechanism that governs intracellular membrane trafficking along the endocytic and exocytic pathways in all eukaryotic cells. Fusarium graminearum is a filamentous fungus and causes the devastating and economically important head blight of wheat and related species. The mechanism of vesicular transport is not well understood, and little is known about Rab GTPases in F. graminearum. In this study, we systematically characterized all eleven FgRabs by live cell imaging and genetic analysis. We find that FgRab51 and FgRab52 are important for the endocytosis, FgRab7 localizes to the vacuolar membrane and regulates the fusion of vacuoles and autophagosomes, and FgRab8 and FgRab11 are important for polarized growth and/or exocytosis. Furthermore, both endocytic and exocytic FgRabs are required for vegetative growth, conidiogenesis, sexual reproduction, as well as pathogenesis and deoxynivalenol metabolism in F. graminearum. Thus, we conclude that Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congxian Wu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Yang
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Xi
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiurong Xie
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Deng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Ebbole
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
170
|
Anand P, O’Neil A, Lin E, Douglas T, Holford M. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep 2015; 5:12497. [PMID: 26234920 PMCID: PMC4522602 DOI: 10.1038/srep12497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.
Collapse
Affiliation(s)
- Prachi Anand
- Hunter College-CUNY, Belfer Research Building, 413 E, 69th Street, New York, NY-10021 (USA)
- The American Museum of Natural History, Central Park West 79th Street, New York, NY-10024 (USA)
| | - Alison O’Neil
- Indiana University, 800 E. Kirkwood Ave., Bloomington, IN-47405 (USA)
| | - Emily Lin
- Hunter College-CUNY, Belfer Research Building, 413 E, 69th Street, New York, NY-10021 (USA)
| | - Trevor Douglas
- Indiana University, 800 E. Kirkwood Ave., Bloomington, IN-47405 (USA)
| | - Mandë Holford
- Hunter College-CUNY, Belfer Research Building, 413 E, 69th Street, New York, NY-10021 (USA)
- The American Museum of Natural History, Central Park West 79th Street, New York, NY-10024 (USA)
| |
Collapse
|
171
|
Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, Winkler EA, Ramanathan A, Kanekiyo T, Bu G, Owens NC, Rege SV, Si G, Ahuja A, Zhu D, Miller CA, Schneider JA, Maeda M, Maeda T, Sugawara T, Ichida JK, Zlokovic BV. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18:978-87. [PMID: 26005850 PMCID: PMC4482781 DOI: 10.1038/nn.4025] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022]
Abstract
PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-β (Aβ) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aβ clearance across the murine blood-brain barrier (BBB) and accelerated Aβ pathology in a manner that was reversible by endothelial PICALM re-expression. Using human brain endothelial monolayers, we found that PICALM regulated PICALM/clathrin-dependent internalization of Aβ bound to the low density lipoprotein receptor related protein-1, a key Aβ clearance receptor, and guided Aβ trafficking to Rab5 and Rab11, leading to Aβ endothelial transcytosis and clearance. PICALM levels and Aβ clearance were reduced in AD-derived endothelial monolayers, which was reversible by adenoviral-mediated PICALM transfer. Inducible pluripotent stem cell-derived human endothelial cells carrying the rs3851179 protective allele exhibited higher PICALM levels and enhanced Aβ clearance. Thus, PICALM regulates Aβ BBB transcytosis and clearance, which has implications for Aβ brain homeostasis and clearance therapy.
Collapse
Affiliation(s)
- Zhen Zhao
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Abhay P. Sagare
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qingyi Ma
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew R. Halliday
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pan Kong
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kassandra Kisler
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ethan A. Winkler
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anita Ramanathan
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nelly Chuqui Owens
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sanket V. Rege
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gabriel Si
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ashim Ahuja
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Donghui Zhu
- Department of Chemical, Biological and Bio–Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Carol A. Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Julie A. Schneider
- Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Manami Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tohru Sugawara
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, 1425 San Pablo Street, BCC 307, Los Angeles, CA 90089, USA
| | - Justin K. Ichida
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, 1425 San Pablo Street, BCC 307, Los Angeles, CA 90089, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
172
|
Kubo K, Kobayashi M, Nozaki S, Yagi C, Hatsuzawa K, Katoh Y, Shin HW, Takahashi S, Nakayama K. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles. Biol Open 2015; 4:910-20. [PMID: 26092867 PMCID: PMC4571095 DOI: 10.1242/bio.012146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25.
Collapse
Affiliation(s)
- Keiji Kubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chikako Yagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, Tottori University School of Life Science, Yonago, Tottori 683-8503, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Senye Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
173
|
Katoh Y, Nozaki S, Hartanto D, Miyano R, Nakayama K. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J Cell Sci 2015; 128:2351-62. [PMID: 25964651 DOI: 10.1242/jcs.168740] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022] Open
Abstract
In this study, we elucidated the architectures of two multisubunit complexes, the BBSome and exocyst, through a novel application of fluorescent fusion proteins. By processing lysates from cells co-expressing GFP and RFP fusion proteins for immunoprecipitation with anti-GFP nanobody, protein-protein interactions could be reproducibly visualized by directly observing the immunoprecipitates under a microscope, and evaluated using a microplate reader, without requiring immunoblotting. Using this 'visible' immunoprecipitation (VIP) assay, we mapped binary subunit interactions of the BBSome complex, and determined the hierarchies of up to four subunit interactions. We also demonstrated the assembly sequence of the BBSome around the centrosome, and showed that BBS18 (also known as BBIP1 and BBIP10) serves as a linker between BBS4 and BBS8 (also known as TTC8). We also applied the VIP assay to mapping subunit interactions of the exocyst tethering complex. By individually subtracting the eight exocyst subunits from multisubunit interaction assays, we unequivocally demonstrated one-to-many subunit interactions (Exo70 with Sec10+Sec15, and Exo84 with Sec10+Sec15+Exo70). The simple, versatile VIP assay described here will pave the way to understanding the architectures and functions of multisubunit complexes involved in a variety of cellular processes.
Collapse
Affiliation(s)
- Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - David Hartanto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Rie Miyano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
174
|
Szakadáti G, Tóth AD, Oláh I, Erdélyi LS, Balla T, Várnai P, Hunyady L, Balla A. Investigation of the fate of type I angiotensin receptor after biased activation. Mol Pharmacol 2015; 87:972-81. [PMID: 25804845 PMCID: PMC4429721 DOI: 10.1124/mol.114.097030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/24/2015] [Indexed: 01/14/2023] Open
Abstract
Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.
Collapse
Affiliation(s)
- Gyöngyi Szakadáti
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - András D Tóth
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Ilona Oláh
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - László Sándor Erdélyi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Tamas Balla
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - Péter Várnai
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| | - András Balla
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
| |
Collapse
|
175
|
Finetti F, Patrussi L, Galgano D, Cassioli C, Perinetti G, Pazour GJ, Baldari CT. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse. J Cell Sci 2015; 128:2541-52. [PMID: 26034069 DOI: 10.1242/jcs.171652] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022] Open
Abstract
IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Donatella Galgano
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Giuseppe Perinetti
- Department of Medical, Surgical and Health Sciences, School of Dentistry, University of Trieste, Trieste 34129, Italy
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| |
Collapse
|
176
|
Bauereiss A, Welzel O, Jung J, Grosse-Holz S, Lelental N, Lewczuk P, Wenzel EM, Kornhuber J, Groemer TW. Surface Trafficking of APP and BACE in Live Cells. Traffic 2015; 16:655-75. [PMID: 25712587 PMCID: PMC6680167 DOI: 10.1111/tra.12270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.
Collapse
Affiliation(s)
- Anna Bauereiss
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Simon Grosse-Holz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Eva M Wenzel
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
177
|
Kelley M, Yochem J, Krieg M, Calixto A, Heiman MG, Kuzmanov A, Meli V, Chalfie M, Goodman MB, Shaham S, Frand A, Fay DS. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. eLife 2015; 4. [PMID: 25798732 PMCID: PMC4395870 DOI: 10.7554/elife.06565] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
During development, biomechanical forces contour the body and provide shape to internal organs. Using genetic and molecular approaches in combination with a FRET-based tension sensor, we characterized a pulling force exerted by the elongating pharynx (foregut) on the anterior epidermis during C. elegans embryogenesis. Resistance of the epidermis to this force and to actomyosin-based circumferential constricting forces is mediated by FBN-1, a ZP domain protein related to vertebrate fibrillins. fbn-1 was required specifically within the epidermis and FBN-1 was expressed in epidermal cells and secreted to the apical surface as a putative component of the embryonic sheath. Tiling array studies indicated that fbn-1 mRNA processing requires the conserved alternative splicing factor MEC-8/RBPMS. The conserved SYM-3/FAM102A and SYM-4/WDR44 proteins, which are linked to protein trafficking, function as additional components of this network. Our studies demonstrate the importance of the apical extracellular matrix in preventing mechanical deformation of the epidermis during development. DOI:http://dx.doi.org/10.7554/eLife.06565.001 For an animal embryo to develop, its cells must organize themselves into tissues and organs. For example, skin and the lining of internal organs—such as the lungs and gut—are made from cells called epithelial cells, which are tightly linked to form flat sheets. In a microscopic worm called Caenorhabditis elegans, the outermost layer of epithelial cells (called the epidermis) forms over the surface of the embryo early on in embryonic development. Shortly afterwards, the embryonic epidermis experiences powerful contractions along the surface of the embryo. The force generated by these contractions converts the embryo from an oval shape to a roughly cylindrical form. These contractions also squeeze the internal tissues and organs, which correspondingly elongate along with the epidermis. It has been known for decades that such ‘mechanical’ forces are important for the normal development of embryos. However, it remains poorly understood how these forces generate tissues and organs of the proper shape—partly because it is difficult to measure forces in living embryos. It is also not clear how the mechanical properties of specific tissues are controlled. Now, Kelley, Yochem, Krieg et al. have analyzed the development of C. elegans' embryos and discovered a novel mechanical interplay between the feeding organ (called the pharynx) and the worm's epidermis. The experiments involved studying several mutant worms that perturb epidermal contractions and disrupt the attachment of the pharynx to the epidermis. These studies suggested that the pharynx exerts a strong inward pulling force on the epidermis during development. Using recently developed methods, Kelley, Yochem, Krieg et al. then measured mechanical forces within intact worm embryos and demonstrated that greater forces were experienced in cells that were being pulled by the pharynx. Kelley, Yochem, Krieg et al. further analyzed how the epidermis normally resists this pulling force from the pharynx and implicated a protein called FBN-1. This worm protein is structurally related to a human protein that is affected in people with a disorder called Marfan Syndrome. Worm embryos without the FBN-1 protein become severely deformed because they are unable to withstand mechanical forces at the epidermis. FBN-1 is normally synthesized and then transported to the outside of the worm embryo by epidermal cells, where it is thought to assemble into a meshwork of long fibers. This provides a strong scaffold that attaches to the epidermis to prevent the epidermis from undergoing excessive deformation while it experiences mechanical forces. The work of Kelley, Yochem, Krieg et al. provides an opportunity to understand how FBN-1 and other fiber-forming proteins are produced and transported to the cell surface. Moreover, these findings may have implications for human diseases and birth defects that result from an inability of tissues to respond appropriately to mechanical forces. DOI:http://dx.doi.org/10.7554/eLife.06565.002
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - John Yochem
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Andrea Calixto
- Department of Biological Sciences, Columbia University, New York, United States
| | - Maxwell G Heiman
- Department of Genetics, Harvard Medical School, Boston Children's Hospital, Boston, United States
| | - Aleksandra Kuzmanov
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Vijaykumar Meli
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
| | - Alison Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - David S Fay
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| |
Collapse
|
178
|
Lant B, Yu B, Goudreault M, Holmyard D, Knight JDR, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 2015; 6:6449. [PMID: 25743393 DOI: 10.1038/ncomms7449] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/29/2015] [Indexed: 01/25/2023] Open
Abstract
The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients.
Collapse
Affiliation(s)
- Benjamin Lant
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Marilyn Goudreault
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Doug Holmyard
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - James D R Knight
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Peter Xu
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Linda Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Kelly Chin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Evan Wallace
- 1] Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Mei Zhen
- 1] Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Anne-Claude Gingras
- 1] Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - W Brent Derry
- 1] Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4 [2] Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
179
|
Tu K, Li J, Verma VK, Liu C, Billadeau DD, Lamprecht G, Xiang X, Guo L, Dhanasekaran R, Roberts LR, Shah VH, Kang N. Vasodilator-stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology 2015; 61:361-74. [PMID: 24917558 PMCID: PMC4262723 DOI: 10.1002/hep.27251] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Liver microenvironment is a critical determinant for development and progression of liver metastasis. Under transforming growth factor beta (TGF-β) stimulation, hepatic stellate cells (HSCs), which are liver-specific pericytes, transdifferentiate into tumor-associated myofibroblasts that promote tumor implantation (TI) and growth in the liver. However, the regulation of this HSC activation process remains poorly understood. In this study, we tested whether vasodilator-stimulated phosphoprotein (VASP) of HSCs regulated the TGF-β-mediated HSC activation process and tumor growth. In both an experimental liver metastasis mouse model and cancer patients, colorectal cancer cells reaching liver sinusoids induced up-regulation of VASP and alpha-smooth muscle actin (α-SMA) in adjacent HSCs. VASP knockdown in HSCs inhibited TGF-β-mediated myofibroblastic activation of HSCs, TI, and growth in mice. Mechanistically, VASP formed protein complexes with TGF-β receptor II (TβRII) and Rab11, a Ras-like small GTPase and key regulator of recycling endosomes. VASP knockdown impaired Rab11 activity and Rab11-dependent targeting of TβRII to the plasma membrane, thereby desensitizing HSCs to TGF-β1 stimulation. CONCLUSIONS Our study demonstrates a requirement of VASP for TGF-β-mediated HSC activation in the tumor microenvironment by regulating Rab11-dependent recycling of TβRII to the plasma membrane. VASP and its effector, Rab11, in the tumor microenvironment thus present therapeutic targets for reducing TI and metastatic growth in the liver.
Collapse
Affiliation(s)
- Kangsheng Tu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Hepatobillary Surgery, the 1 Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
| | - Jiachu Li
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Oncology, the 1 Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Vikas K Verma
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chunsheng Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, University of Rostock, Rostock, 18057, Germany
| | - Xiaoyu Xiang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Luyang Guo
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN, 55905, USA
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
180
|
McClory H, Williams D, Sapp E, Gatune LW, Wang P, DiFiglia M, Li X. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington's disease mice. Acta Neuropathol Commun 2014; 2:179. [PMID: 25526803 PMCID: PMC4297405 DOI: 10.1186/s40478-014-0178-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD140Q/140Q neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD140Q/140Q mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD140Q/140Q mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD140Q/140Q mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD.
Collapse
|
181
|
Bozza G, Capitani M, Montanari P, Benucci B, Biancucci M, Nardi-Dei V, Caproni E, Barrile R, Picciani B, Savino S, Aricò B, Rappuoli R, Pizza M, Luini A, Sallese M, Merola M. Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA) in human epithelial cells. PLoS One 2014; 9:e110047. [PMID: 25347845 PMCID: PMC4210143 DOI: 10.1371/journal.pone.0110047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2014] [Indexed: 01/02/2023] Open
Abstract
Neisseria meningitidisadhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.
Collapse
Affiliation(s)
| | - Mirco Capitani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | | | | | | | | | | | | | - Benedetta Picciani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | | | | | | | | | - Alberto Luini
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Michele Sallese
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- * E-mail: (MS); (MM)
| | - Marcello Merola
- Novartis Vaccines, Siena, Italy
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MS); (MM)
| |
Collapse
|
182
|
Rauch L, Hennings K, Aepfelbacher M. A role for exocyst in maturation and bactericidal function of staphylococci-containing endothelial cell phagosomes. Traffic 2014; 15:1083-98. [PMID: 25040264 DOI: 10.1111/tra.12189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/14/2023]
Abstract
Bacteria that invade human endothelial cells can be efficiently eliminated in phagolysosomes. We investigated the role of vesicle tethering exocyst complex in maturation and function of endothelial cell phagosomes harbouring staphylococci or latex beads. Exocyst complex proteins (Sec5, -8, -10, Exo70) together with recycling endosome marker Rab11 were detected in vesicles that dynamically interacted and seemingly fused with endothelial cell phagosomes. Knockdown of exocyst proteins Sec8 and Exo70 inhibited the accumulation of Rab11-positive vesicles at the phagosomes. Furthermore, knockdown of exocyst proteins and Rab11 greatly reduced acidification of phagosomes and significantly diminished the elimination of invaded staphylococci in endothelial cells. The inhibitory effect of Exo70 knockdown on bacterial elimination could be rescued by constitutively active Rab11-Q70L. Our data suggest that exocyst complex controls the interaction of recycling endocytic vesicles with phagosomes and this process is involved in maturation and functioning of the phagosomes in endothelial cells.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | | | | |
Collapse
|
183
|
Glotfelty LG, Zahs A, Iancu C, Shen L, Hecht GA. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. Am J Physiol Cell Physiol 2014; 307:C245-54. [PMID: 24920678 DOI: 10.1152/ajpcell.00336.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial tight junctions are critical for creating a barrier yet allowing paracellular transport. Although it is well established that the actin cytoskeleton is critical for preserving the dynamic organization of the tight junction and maintaining normal tight junction protein recycling, contributions of microtubules to tight junction organization and function remain undefined. The aim of this study is to determine the role of microtubules in tight junction homeostasis and restoration. Our data demonstrate that occludin traffics on microtubules and that microtubule disruption perturbs tight junction structure and function. Microtubules are also shown to be required for restoring barrier function following Ca(2+) chelation and repletion. These processes are mediated by proteins participating in microtubule minus-end-directed trafficking but not plus-end-directed trafficking. These studies show that microtubules participate in the preservation of epithelial tight junction structure and function and play a vital role in tight junction restoration, thus expanding our understanding of the regulation of tight junction physiology.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Anita Zahs
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Catalin Iancu
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Le Shen
- University of Chicago, Chicago, Illinois
| | - Gail A Hecht
- Departments of Medicine and Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois; Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
184
|
Croisé P, Estay-Ahumada C, Gasman S, Ory S. Rho GTPases, phosphoinositides, and actin: a tripartite framework for efficient vesicular trafficking. Small GTPases 2014; 5:e29469. [PMID: 24914539 DOI: 10.4161/sgtp.29469] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments.
Collapse
Affiliation(s)
- Pauline Croisé
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Catherine Estay-Ahumada
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Gasman
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| | - Stéphane Ory
- CNRS UPR 3212; Institut des Neurosciences Cellulaires et Intégratives; Université de Strasbourg; Strasbourg, France
| |
Collapse
|
185
|
Brignone MS, Lanciotti A, Visentin S, De Nuccio C, Molinari P, Camerini S, Diociaiuti M, Petrini S, Minnone G, Crescenzi M, Laudiero LB, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis. Neurobiol Dis 2014; 66:1-18. [PMID: 24561067 PMCID: PMC4003525 DOI: 10.1016/j.nbd.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Marco Diociaiuti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefania Petrini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Gaetana Minnone
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Bracci Laudiero
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso Cavaliere 100, 00133 Rome, Italy.
| | - Enrico Bertini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
186
|
The small GTPase RAB-11 directs polarized exocytosis of the intracellular pathogen N. parisii for fecal-oral transmission from C. elegans. Proc Natl Acad Sci U S A 2014; 111:8215-20. [PMID: 24843160 DOI: 10.1073/pnas.1400696111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pathogen exit is a key stage in the spread and propagation of infectious disease, with the fecal-oral route being a common mode of disease transmission. However, it is poorly understood which molecular pathways provide the major modes for intracellular pathogen exit and fecal-oral transmission in vivo. Here, we use the transparent nematode Caenorhabditis elegans to investigate intestinal cell exit and fecal-oral transmission by the natural intracellular pathogen Nematocida parisii, which is a recently identified species of microsporidia. We show that N. parisii exits from polarized host intestinal cells by co-opting the host vesicle trafficking system and escaping into the lumen. Using a genetic screen, we identified components of the host endocytic recycling pathway that are required for N. parisii spore exit via exocytosis. In particular, we show that the small GTPase RAB-11 localizes to apical spores, is required for spore-containing compartments to fuse with the apical plasma membrane, and is required for spore exit. In addition, we find that RAB-11-deficient animals exhibit impaired contagiousness, supporting an in vivo role for this host trafficking factor in microsporidia disease transmission. Altogether, these findings provide an in vivo example of the major mode of exit used by a natural pathogen for disease spread via fecal-oral transmission.
Collapse
|
187
|
Kinlock BL, Wang Y, Turner TM, Wang C, Liu B. Transcytosis of HIV-1 through vaginal epithelial cells is dependent on trafficking to the endocytic recycling pathway. PLoS One 2014; 9:e96760. [PMID: 24830293 PMCID: PMC4022679 DOI: 10.1371/journal.pone.0096760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission. Methodology/Principal Findings In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells. Conclusions/Significance Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.
Collapse
Affiliation(s)
- Ballington L. Kinlock
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Yudi Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Tiffany M. Turner
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Chenliang Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Institute of Gastroenterology and Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, Peoples of Republic of China
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
188
|
Gonzalez IM, Ackerman WE, Vandre DD, Robinson JM. Exocyst complex protein expression in the human placenta. Placenta 2014; 35:442-9. [PMID: 24856041 DOI: 10.1016/j.placenta.2014.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. OBJECTIVE While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. METHODS A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. RESULTS The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion. DISCUSSION/CONCLUSION Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst's regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion.
Collapse
Affiliation(s)
- I M Gonzalez
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA.
| | - W E Ackerman
- Department of Obstetrics and Gynecology, Ohio State University, Columbus, OH, USA.
| | - D D Vandre
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI, USA.
| | - J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
189
|
Takano T, Urushibara T, Yoshioka N, Saito T, Fukuda M, Tomomura M, Hisanaga SI. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Mol Biol Cell 2014; 25:1755-68. [PMID: 24672056 PMCID: PMC4038502 DOI: 10.1091/mbc.e14-01-0675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Tomoki Urushibara
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Nozomu Yoshioka
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mineko Tomomura
- Meikai Pharmaco-Medical Laboratory, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
190
|
Jones TA, Nikolova LS, Schjelderup A, Metzstein MM. Exocyst-mediated membrane trafficking is required for branch outgrowth in Drosophila tracheal terminal cells. Dev Biol 2014; 390:41-50. [PMID: 24607370 DOI: 10.1016/j.ydbio.2014.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022]
Abstract
Branching morphogenesis, the process by which cells or tissues generate tree-like networks that function to increase surface area or in contacting multiple targets, is a common developmental motif in multicellular organisms. We use Drosophila tracheal terminal cells, a component of the insect respiratory system, to investigate branching morphogenesis that occurs at the single cell level. Here, we show that the exocyst, a conserved protein complex that facilitates docking and tethering of vesicles at the plasma membrane, is required for terminal cell branch outgrowth. We find that exocyst-deficient terminal cells have highly truncated branches and show an accumulation of vesicles within their cytoplasm and are also defective in subcellular lumen formation. We also show that vesicle trafficking pathways mediated by the Rab GTPases Rab10 and Rab11 are redundantly required for branch outgrowth. In terminal cells, the PAR-polarity complex is required for branching, and we find that the PAR complex is required for proper membrane localization of the exocyst, thus identifying a molecular link between the branching and outgrowth programs. Together, our results suggest a model where exocyst mediated vesicle trafficking facilitates branch outgrowth, while de novo branching requires cooperation between the PAR and exocyst complexes.
Collapse
Affiliation(s)
- Tiffani A Jones
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Ani Schjelderup
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
191
|
Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, Nakamura T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 2013; 8:e79689. [PMID: 24223996 PMCID: PMC3817099 DOI: 10.1371/journal.pone.0079689] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022] Open
Abstract
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.
Collapse
Affiliation(s)
- Akane Fujita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Yasuda
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanism, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
192
|
Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 2013; 13:813-20. [PMID: 24108097 PMCID: PMC4011841 DOI: 10.1038/nrc3601] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell carcinogenesis involves the loss of cell polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation, and increased cell motility and invasion. Membrane vesicle trafficking underlies all of these processes. Specific membrane trafficking regulators, including RAB small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine the cell surface presentation of proteins and the overall function of both differentiated and neoplastic cells. Although mutations in vesicle trafficking proteins may not be direct drivers of transformation, components of the machinery of vesicle movement have crucial roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are essential mediators of the full range of cell physiologies that drive cancer cell biology, including initial loss of cell polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may permit the manipulation of cancer cell behaviour.
Collapse
Affiliation(s)
- James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and the Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; and the Nashville Veternas Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|
193
|
Keil R, Hatzfeld M. The armadillo protein p0071 is involved in Rab11-dependent recycling. J Cell Sci 2013; 127:60-71. [PMID: 24163434 DOI: 10.1242/jcs.132266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p0071 is an intercellular junction protein of the p120 catenin family. We have identified Rab11a as a novel interaction partner of p0071. p0071 interacted preferentially with active Rab11a. Knockdown experiments revealed an interdependent regulation of both proteins. On the one hand, p0071 depletion induced a perinuclear accumulation of Rab11, suggesting a role of p0071 in the anterograde transport of Rab11 from the pericentrosomal region to the plasma membrane but not in retrograde transport. p0071 as well as Rab11 depletion increased transferrin receptor recycling indicating that p0071-induced Rab11 mislocalization interfered with Rab11 function and shifted recycling from the slow Rab11-dependent pathway to the fast Rab4-dependent pathway. When p0071 or Rab11 depletion was combined with a Rab4 knockdown the effect was reversed. On the other hand, Rab11a depletion increased p0071 recycling to cell contacts thereby identifying p0071 as a Rab11 cargo protein. This correlated with increased intercellular adhesion. Thus, we propose that p0071 has a key role in regulating recycling through the Rab11-dependent perinuclear recycling compartment, and links the regulation of adherens junctions to recycling to allow dynamic modulation of intercellular adhesion.
Collapse
Affiliation(s)
- René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle, Hollystrasse 1, 06114 Halle, Germany
| | | |
Collapse
|
194
|
Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci U S A 2013; 110:E3955-64. [PMID: 24065831 DOI: 10.1073/pnas.1309896110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial myocytes are continuously exposed to mechanical forces including shear stress. However, in atrial myocytes, the effects of shear stress are poorly understood, particularly with respect to its effect on ion channel function. Here, we report that shear stress activated a large outward current from rat atrial myocytes, with a parallel decrease in action potential duration. The main ion channel underlying the increase in current was found to be Kv1.5, the recruitment of which could be directly observed by total internal reflection fluorescence microscopy, in response to shear stress. The effect was primarily attributable to recruitment of intracellular pools of Kv1.5 to the sarcolemma, as the response was prevented by the SNARE protein inhibitor N-ethylmaleimide and the calcium chelator BAPTA. The process required integrin signaling through focal adhesion kinase and relied on an intact microtubule system. Furthermore, in a rat model of chronic hemodynamic overload, myocytes showed an increase in basal current despite a decrease in Kv1.5 protein expression, with a reduced response to shear stress. Additionally, integrin beta1d expression and focal adhesion kinase activation were increased in this model. This data suggests that, under conditions of chronically increased mechanical stress, the integrin signaling pathway is overactivated, leading to increased functional Kv1.5 at the membrane and reducing the capacity of cells to further respond to mechanical challenge. Thus, pools of Kv1.5 may comprise an inducible reservoir that can facilitate the repolarization of the atrium under conditions of excessive mechanical stress.
Collapse
|
195
|
Petrini S, Minnone G, Coccetti M, Frank C, Aiello C, Cutarelli A, Ambrosini E, Lanciotti A, Brignone MS, D'Oria V, Strippoli R, De Benedetti F, Bertini E, Bracci-Laudiero L. Monocytes and macrophages as biomarkers for the diagnosis of megalencephalic leukoencephalopathy with subcortical cysts. Mol Cell Neurosci 2013; 56:307-21. [DOI: 10.1016/j.mcn.2013.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/05/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022] Open
|
196
|
Solis GP, Hülsbusch N, Radon Y, Katanaev VL, Plattner H, Stuermer CAO. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking. Mol Biol Cell 2013; 24:2689-702. [PMID: 23825023 PMCID: PMC3756921 DOI: 10.1091/mbc.e12-12-0854] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this study reggie-1/flotillin-2 is identified as a component of the tubulovesicular sorting and recycling compartment, where it interacts with and controls the activity of Rab11a and SNX4. Evidence is given that reggie-1 expression is necessary for the proper recycling of transferrin receptor and E-cadherin in HeLa and A431 cells, respectively. The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1–decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA–mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin–transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca2+ switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca2+ repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
197
|
Nakai W, Kondo Y, Saitoh A, Naito T, Nakayama K, Shin HW. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Mol Biol Cell 2013; 24:2570-81. [PMID: 23783033 PMCID: PMC3744953 DOI: 10.1091/mbc.e13-04-0197] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane. Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Waka Nakai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
198
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
199
|
Abstract
The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis.
Collapse
Affiliation(s)
- Sina Mohammadi
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
200
|
Takatsu H, Katoh Y, Ueda T, Waguri S, Murayama T, Takahashi S, Shin HW, Nakayama K. Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes. Cell Struct Funct 2013; 38:31-41. [PMID: 23328347 DOI: 10.1247/csf.12028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Upon cell division, not only cells themselves but also their organelles undergo drastic shape changes, although the behaviors of organelles other than the Golgi apparatus remain poorly understood. We followed the spatiotemporal changes in the localization of transferrin receptor (TfnR) and other proteins. In early mitotic phases, a population of proteins cycling through the endocytic recycling compartment (ERC) exhibits a distinct spatiotemporal change from that of Golgi proteins. In prophase/prometaphase, when the cell surface-to-volume ratio is reaching its minimum, the ERC proteins are transiently assembled around the centrated centrosome in a microtubule- and dynein-dependent manner, and soon separated polewards into two clusters concomitant with separation of duplicated centrosomes. Electron microscopic analysis revealed that endosomal vesicles containing endocytosed transferrin cluster tightly around centrosomes without fusing with one another. As cytokinesis proceeds, the clusters gradually collapse, and the ERC proteins reassemble around the furrowing equatorial region. FRAP (fluorescence recovery after photobleaching) analyses of EGFP-TfnR-expressing cells revealed minimal membrane exchange between the endosomal clusters and other cellular compartments until anaphase/telophase, when membrane traffic resumes. Our observations indicate that ERC clustering around centrosomes plays a fundamental role in restricting membrane delivery to the plasma membrane during early mitotic phases, when the cell surface-to-volume ratio reaches its minimum.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|