151
|
Guerra L, Favia M, Castellani S, Barbuti G, Montemurro P, Diana A, Santostasi T, Polizzi AM, Mariggiò MA, Reshkin SJ, Manca A, Casavola V, Conese M. Antibiotic therapy affects functional behaviour in cystic fibrosis blood mononuclear cells. Eur Respir J 2015; 46:558-61. [PMID: 26065564 DOI: 10.1183/09031936.00230214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors contributed equally to this work
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors contributed equally to this work
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanna Barbuti
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Pasqualina Montemurro
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Anna Diana
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Teresa Santostasi
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Angela M Polizzi
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Maria A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonio Manca
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors share senior authorship
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy These authors share senior authorship
| |
Collapse
|
152
|
Liu Q, Chen XW, Che CJ, Ding D, Kang CJ. Syntenin is involved in the bacteria clearance response of kuruma shrimp (Marsupenaeus japonicus). FISH & SHELLFISH IMMUNOLOGY 2015; 44:453-461. [PMID: 25731918 PMCID: PMC7111636 DOI: 10.1016/j.fsi.2015.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Syntenin is a multifunctional cytosolic adaptor protein that contributes to cell migration, proliferation, attachment, and apoptosis, as well as immune response to virus, in vertebrates. However, the functions of syntenin in the antibacterial response of invertebrates remain unclear. In this study, we identified a syntenin-like gene (MjSyn) from the kuruma shrimp (Marsupenaeus japonicus) and detected its function in the antibacterial immunity of shrimp. The full-length MjSyn was 1223 bp with a 963 bp open reading frame that encodes 320 amino acids. The deduced MjSyn proteins contained two atypical PDZ domains (sequence repeat that was first reported in the postsynaptic density protein or PSD-95, DlgA, and ZO-1 protein), an N-terminal domain, and a C-terminal domain. Reverse transcription (RT)-PCR results showed that MjSyn was expressed in all tested tissues. Quantitative real-time PCR analysis revealed that MjSyn transcripts in the hemocyte, gill, and intestine were significantly induced at various time points after infection with Staphylococcus aureus and Vibrio anguillarum. The knockdown of the expression of MjSyn by RNA interference resulted in a significant decrease in the phagocytic ability and increased bacteria number in vivo of shrimp. Moreover, the expression of MjCnx, a cytoplasma and membrane location lectin chaperone protein, was inhibited in the MjSyn-knocked down shrimp, which indicated a possible calnexin-related way. Thus, the MjSyn participates in the bacterial clearance response of kuruma shrimp, thereby providing new insight into the function of this kind of important adaptor protein.
Collapse
Affiliation(s)
- Qian Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Xiao-wei Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Chun-jing Che
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Ding Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Cui-jie Kang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China.
| |
Collapse
|
153
|
Blöchliger N, Xu M, Caflisch A. Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges. Biophys J 2015; 108:2362-70. [PMID: 25954893 PMCID: PMC4423040 DOI: 10.1016/j.bpj.2015.03.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
We have captured the binding of a peptide to a PDZ domain by unbiased molecular dynamics simulations. Analysis of the trajectories reveals on-pathway encounter complex formation, which is driven by electrostatic interactions between negatively charged carboxylate groups in the peptide and positively charged side chains surrounding the binding site. In contrast, the final stereospecific complex, which matches the crystal structure, features completely different interactions, namely the burial of the hydrophobic side chain of the peptide C-terminal residue and backbone hydrogen bonds. The simulations show that nonnative salt bridges stabilize kinetically the encounter complex during binding. Unbinding follows the inverse sequence of events with the same nonnative salt bridges in the encounter complex. Thus, in contrast to protein folding, which is driven by native interactions, the binding of charged peptides can be steered by nonnative interactions, which might be a general mechanism, e.g., in the recognition of histone tails by bromodomains.
Collapse
Affiliation(s)
| | - Min Xu
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
154
|
Interdomain interface-mediated target recognition by the Scribble PDZ34 supramodule. Biochem J 2015; 468:133-44. [DOI: 10.1042/bj20141473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The structure of the Scribble PDZ34 supramodule in complex with the C-terminal peptide reveals the interdomain interface-mediated specific recognition, which may represent a novel mode of target recognition for PDZ supramodules.
Collapse
|
155
|
Daqrouq K, Alhmouz R, Balamesh A, Memic A. Application of wavelet transform for PDZ domain classification. PLoS One 2015; 10:e0122873. [PMID: 25860375 PMCID: PMC4393179 DOI: 10.1371/journal.pone.0122873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification.
Collapse
Affiliation(s)
- Khaled Daqrouq
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rami Alhmouz
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed Balamesh
- Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- * E-mail:
| |
Collapse
|
156
|
Campos-Sandoval JA, Martín-Rufián M, Cardona C, Lobo C, Peñalver A, Márquez J. Glutaminases in brain: Multiple isoforms for many purposes. Neurochem Int 2015; 88:1-5. [PMID: 25837287 DOI: 10.1016/j.neuint.2015.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states. Moreover, the discovery of protein interacting partners and novel subcellular localizations, for example nucleocytoplasmic in neurons and astrocytes, strongly suggest non-neurotransmission roles for Gls2 isoforms associated with transcriptional regulation and cellular differentiation. Of note, Gls isoforms have been considered as an important trophic factor for neuronal differentiation and postnatal development of brain regions. On the other hand, glutaminases are taking center stage in tumor biology as new therapeutic targets to inhibit metabolic reprogramming of cancer cells. Interestingly, glutaminase isoenzymes play seemingly opposing roles in cancer cell growth and proliferation; this issue will be also succinctly discussed with special emphasis on brain tumors.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | - Carolina Cardona
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Carolina Lobo
- Proteomics Lab, Central Facility Core, Universidad de Málaga, 29071 Málaga, Spain
| | - Ana Peñalver
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
157
|
Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism. Nat Commun 2015; 6:6488. [DOI: 10.1038/ncomms7488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/02/2015] [Indexed: 01/22/2023] Open
|
158
|
Ivanova ME, Fletcher GC, O’Reilly N, Purkiss AG, Thompson BJ, McDonald NQ. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:555-64. [PMID: 25760605 PMCID: PMC4356366 DOI: 10.1107/s139900471402776x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein-protein interaction.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Georgina C. Fletcher
- Epithelial Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Nicola O’Reilly
- Peptide Chemistry Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Andrew G. Purkiss
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Barry J. Thompson
- Epithelial Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
| | - Neil Q. McDonald
- Structural Biology Laboratories, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, England
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England
| |
Collapse
|
159
|
Leite F, Way M. The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 2015; 209:87-99. [PMID: 25681743 DOI: 10.1016/j.virusres.2015.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Viruses are obligate intracellular parasites that are critically dependent on their hosts to replicate and generate new progeny. To achieve this goal, viruses have evolved numerous elegant strategies to subvert and utilise the different cellular machineries and processes of their unwilling hosts. Moreover, they often accomplish this feat with a surprisingly limited number of proteins. Among the different systems of the cell, the cytoskeleton is often one of the first to be hijacked as it provides a convenient transport system for viruses to reach their site of replication with relative ease. At the latter stages of their replication cycle, the cytoskeleton also provides an efficient means for newly assembled viral progeny to reach the plasma membrane and leave the infected cell. In this review we discuss how Vaccinia virus takes advantage of the microtubule and actin cytoskeletons of its host to promote the spread of infection into neighboring cells. In particular, we highlight how analysis of actin-based motility of Vaccinia has provided unprecedented insights into how a phosphotyrosine-based signalling network is assembled and functions to stimulate Arp2/3 complex-dependent actin polymerization. We also suggest that the formin FHOD1 promotes actin-based motility of the virus by capping the fast growing ends of actin filaments rather than directly promoting filament assembly. We have come a long way since 1976, when electron micrographs of vaccinia-infected cells implicated the actin cytoskeleton in promoting viral spread. Nevertheless, there are still many unanswered questions concerning the role of signalling and the host cytoskeleton in promoting viral spread and pathogenesis.
Collapse
Affiliation(s)
- Flavia Leite
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| |
Collapse
|
160
|
|
161
|
Buchenberg S, Knecht V, Walser R, Hamm P, Stock G. Long-range conformational transition of a photoswitchable allosteric protein: molecular dynamics simulation study. J Phys Chem B 2014; 118:13468-76. [PMID: 25365469 DOI: 10.1021/jp506873y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A local perturbation of a protein may lead to functional changes at some distal site. An example is the PDZ2 domain of human tyrosine phosphatase 1E, which shows an allosteric transition upon binding to a peptide ligand. Recently Buchli et al. presented a time-resolved study of this transition by covalently linking an azobenzene photoswitch across the binding groove and using a femtosecond laser pulse that triggers the cis-trans photoisomerization of azobenzene. To aid the interpretation of these experiments, in this work seven microsecond runs of all-atom molecular dynamics simulations each for the wild-type PDZ2 in the ligand-bound and -free state, as well as the photoswitchable protein (PDZ2S) in the cis and trans states of the photoswitch, in explicit water were conducted. First the theoretical model is validated by recalculating the available NMR data from the simulations. By comparing the results for PDZ2 and PDZ2S, it is analyzed to what extent the photoswitch indeed mimics the free-bound transition. A detailed description of the conformational rearrangement following the cis-trans photoisomerization of PDZ2S reveals a series of photoinduced structural changes that propagate from the anchor residues of the photoswitch via intermediate secondary structure segments to the C-terminus of PDZ2S. The changes of the conformational distribution of the C-terminal region is considered as the distal response of the isolated allosteric protein.
Collapse
Affiliation(s)
- Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg , 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
162
|
Abstract
To design and build living systems, synthetic biologists have at their disposal an increasingly large library of naturally derived and synthetic parts. These parts must be combined together in particular orders, orientations, and spacings to achieve desired functionalities. These structural constraints can be viewed as grammatical rules describing how to assemble parts together into larger functional units. Here, we develop a grammar for the design of synthetic transcription factors (sTFs) in eukaryotic cells and implement it within GenoCAD, a Computer-Aided Design (CAD) software for synthetic biology. Knowledge derived from experimental evidence was captured in this grammar to guide the user to create designer transcription factors that should operate as intended. The grammar can be easily updated and refined as our experience with using sTFs in different contexts increases. In combination with grammars that define other synthetic systems, we anticipate that this work will enable the more reliable, efficient, and automated design of synthetic cells with rich functionalities.
Collapse
Affiliation(s)
- Oliver Purcell
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Jean Peccoud
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Timothy K. Lu
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
163
|
Abstract
Members of the ezrin-radixin-moesin (ERM) family of proteins are involved in multiple aspects of cell migration by acting both as crosslinkers between the membrane, receptors and the actin cytoskeleton, and as regulators of signalling molecules that are implicated in cell adhesion, cell polarity and migration. Increasing evidence suggests that the regulation of cell signalling and the cytoskeleton by ERM proteins is crucial during cancer progression. Thus, both their expression levels and subcellular localisation would affect tumour progression. High expression of ERM proteins has been shown in a variety of cancers. Mislocalisation of ERM proteins reduces the ability of cells to form cell-cell contacts and, therefore, promotes an invasive phenotype. Similarly, mislocalisation of ERM proteins impairs the formation of receptor complexes and alters the transmission of signals in response to growth factors, thereby facilitating tumour progression. In this Commentary, we address the structure, function and regulation of ERM proteins under normal physiological conditions as well as in cancer progression, with particular emphasis on cancers of epithelial origin, such as those from breast, lung and prostate. We also discuss any recent developments that have added to the understanding of the underlying molecular mechanisms and signalling pathways these proteins are involved in during cancer progression.
Collapse
Affiliation(s)
- Jarama Clucas
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
164
|
Baliova M, Juhasova A, Jursky F. Using a collection of MUPP1 domains to investigate the similarities of neurotransmitter transporters C-terminal PDZ motifs. Biochem Biophys Res Commun 2014; 454:25-9. [PMID: 25305483 DOI: 10.1016/j.bbrc.2014.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/24/2022]
Abstract
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into transporter's PDZ motif similarities, we compared their interactions with the natural collection of all 13 PDZ domains of the largest PDZ binding protein MUPP1. The GABA, glycine and serotonin transporters showed unique binding preferences scattered over one or several MUPP1 domains. On the contrary, the dopamine and norepinephrine transporter PDZ motifs did not show any significant affinity to MUPP1 domains. Interestingly, despite their terminal sequence diversity all three GABA transporter PDZ motifs interacted with MUPP1 domain 7. These results indicate that similarities in binding schemes of individual transporter groups might exist. Results also suggest the existence of variable PDZ binding modes, allowing several transporters to interact with identical PDZ domains and potentially share interaction partners in vivo.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Anna Juhasova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
165
|
A Structural Portrait of the PDZ Domain Family. J Mol Biol 2014; 426:3509-19. [DOI: 10.1016/j.jmb.2014.08.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022]
|
166
|
Maisonneuve P, Caillet-Saguy C, Raynal B, Gilquin B, Chaffotte A, Pérez J, Zinn-Justin S, Delepierre M, Buc H, Cordier F, Wolff N. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. FEBS J 2014; 281:4852-65. [PMID: 25158884 DOI: 10.1111/febs.13024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/02/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Abstract
The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cells death. Targeting its PDZ domain abrogates this protection and triggers apoptosis. We demonstrate here that the PDZ domain inhibits the phosphatase activity of PTPN4. The mere binding of a PDZ ligand is sufficient to release the catalytic inhibition. We combined analytical ultracentrifugation, small angle X-ray scattering and NMR to understand how the PDZ domain controls PTPN4 activity. We show that the physiologically active PTPN4 two-domain, encompassing the PDZ and the phosphatase domains, adopts a predominant compact conformation in solution. The PDZ ligand binding restores the catalytic competence of PTPN4 disrupting the transient interdomain communication. This study strengthens the emerging notion that PDZ domains can act as regulators of enzyme activity and therefore are active players in the dynamic regulation of signaling pathways.
Collapse
Affiliation(s)
- Pierre Maisonneuve
- Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, Institut Pasteur, Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Hybrid and rogue kinases encoded in the genomes of model eukaryotes. PLoS One 2014; 9:e107956. [PMID: 25255313 PMCID: PMC4177888 DOI: 10.1371/journal.pone.0107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions.
Collapse
|
168
|
Courtney MJ, Li LL, Lai YY. Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling. Front Cell Neurosci 2014; 8:252. [PMID: 25221472 PMCID: PMC4145862 DOI: 10.3389/fncel.2014.00252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022] Open
Abstract
NMDA receptors (NMDAR) are glutamate-gated calcium channels that play pivotal roles in fundamental aspects of neuronal function. Dysregulated receptor function contributes to many disorders. Recruitment by NMDARs of calcium-dependent enzyme nNOS via PSD95 is seen as a key contributor to neuronal dysfunction. nNOS adaptor protein (NOS1AP), originally described as a competitor of PSD95:nNOS interaction, is regarded an inhibitor of NMDAR-driven nNOS function. In conditions of NMDAR hyperactivity such as excitotoxicity, one expects NOS1AP to be neuroprotective. Conditions of NMDAR hypoactivity, as thought to occur in schizophrenia, might be exacerbated by NOS1AP. Indeed GWAS have implicated NOS1AP and nNOS in schizophrenia. Several studies now indicate NOS1AP can mediate rather than inhibit NMDAR/nNOS-dependent responses, including excitotoxic signaling. Yet the concept of NOS1AP as an inhibitor of nNOS predominates in studies of human disease genetics. Here we review the experimental evidence to evaluate this apparent controversy, consider whether the known functions of NOS1AP might defend neurons against NMDAR dysregulation and highlight specific areas for future investigation to shed light on the functions of this adaptor protein.
Collapse
Affiliation(s)
- Michael J Courtney
- Molecular Signalling Laboratory, Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland Kuopio, Finland ; Turku Centre for Biotechnology, Abo Akademi University and University of Turku Turku, Finland
| | - Li-Li Li
- Molecular Signalling Laboratory, Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland Kuopio, Finland
| | - Yvonne Y Lai
- Jack Gill Center for Biomolecular Science, Department Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| |
Collapse
|
169
|
Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Enjuanes L. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 2014; 10:e1004320. [PMID: 25122212 PMCID: PMC4133396 DOI: 10.1371/journal.ppat.1004320] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/08/2014] [Indexed: 01/24/2023] Open
Abstract
A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. SARS-CoV caused a worldwide epidemic infecting 8000 people with a mortality of about 10%. A recombinant SARS-CoV lacking the E protein was attenuated in vivo. The E protein contains a PDZ-binding motif (PBM), a domain potentially involved in the interaction with more than 400 cellular proteins, which highlights its relevance in modulating host-cell behavior. To analyze the contributions of this motif to virulence, recombinant viruses with or without E protein PBM were generated. Recombinant SARS-CoVs lacking E protein PBM caused minimal lung damage and were attenuated, in contrast to viruses containing this motif, indicating that E protein PBM is a virulence determinant. E protein PBM induces the deleterious exacerbated immune response triggered during SARS-CoV infection, and interacts with the cellular protein syntenin, as demonstrated using proteomic analyses. Interestingly, syntenin redistributed from nucleus to cytoplasm during SARS-CoV infection, activating p38 MAPK and triggering the overexpression of inflammatory cytokines. Furthermore, silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation. In addition, administration of a p38 MAPK inhibitor led to an increase in mice survival after SARS-CoV infection. These results indicate that syntenin and p38 MAPK are potential therapeutic targets to reduce the exacerbated immune response during SARS-CoV infection.
Collapse
Affiliation(s)
- Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
170
|
Zhang C, Li S, Sun Y, Dong W, Piao F, Piao Y, liu S, Guan H, Yu S. Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression. Toxicol Lett 2014; 228:260-9. [DOI: 10.1016/j.toxlet.2014.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 01/25/2023]
|
171
|
PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiol Dis 2014; 68:104-11. [DOI: 10.1016/j.nbd.2014.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
|
172
|
Silver DM, Kötting O, Moorhead GBG. Phosphoglucan phosphatase function sheds light on starch degradation. TRENDS IN PLANT SCIENCE 2014; 19:471-8. [PMID: 24534096 DOI: 10.1016/j.tplants.2014.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 05/07/2023]
Abstract
Phosphoglucan phosphatases are novel enzymes that remove phosphates from complex carbohydrates. In plants, these proteins are vital components in the remobilization of leaf starch at night. Breakdown of starch is initiated through reversible glucan phosphorylation to disrupt the semi-crystalline starch structure at the granule surface. The phosphoglucan phosphatases starch excess 4 (SEX4) and like-SEX4 2 (LSF2) dephosphorylate glucans to provide access for amylases that release maltose and glucose from starch. Another phosphatase, LSF1, is a putative inactive scaffold protein that may act as regulator of starch degradative enzymes at the granule surface. Absence of these phosphatases disrupts starch breakdown, resulting in plants accumulating excess starch. Here, we describe recent advances in understanding the biochemical and structural properties of each of these starch phosphatases.
Collapse
Affiliation(s)
- Dylan M Silver
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Oliver Kötting
- Institute for Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
173
|
Wang H, Zhu X. De novo mutations discovered in 8 Mexican American families through whole genome sequencing. BMC Proc 2014; 8:S24. [PMID: 25519376 PMCID: PMC4143763 DOI: 10.1186/1753-6561-8-s1-s24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
De novo mutations enrich the sequence diversity and carry the clue of evolutional selection. Recent studies suggest the de novo mutations could be one of the risk factors for complex diseases. We conducted a survey of de novo mutations using the whole genome sequence data but only available on the odd autosomes of Mexican American families provided by Genetic Analysis Workshop 18. We extracted 8 three-generation families who have sequencing data available from 20 large pedigrees. By comparing the known single nucleotide variants (SNVs) in dbSNP129 and the de novo variants transmitted in the Mexican American families, we were able to estimate a de novo mutation rate of 1.64(±0.42) × 10(-8) per position per haploid genome. This result is consistent with the estimates in literature that required many extensive validation efforts, such as genotyping and further resequencing. Our analysis suggests the importance of using family samples for studying rare variants.
Collapse
Affiliation(s)
- Heming Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4945, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4945, USA
| |
Collapse
|
174
|
Holcomb J, Jiang Y, Guan X, Trescott L, Lu G, Hou Y, Wang S, Brunzelle J, Sirinupong N, Li C, Yang Z. Crystal structure of the NHERF1 PDZ2 domain in complex with the chemokine receptor CXCR2 reveals probable modes of PDZ2 dimerization. Biochem Biophys Res Commun 2014; 448:169-174. [PMID: 24768637 DOI: 10.1016/j.bbrc.2014.04.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 01/19/2023]
Abstract
The formation of CXCR2-NHERF1-PLCβ2 macromolecular complex in neutrophils regulates CXCR2 signaling and plays a key role in neutrophil chemotaxis and transepithelial neutrophilic migration. However, NHERF1 by itself, with only two PDZ domains, has a limited capacity in scaffolding the multiprotein-complex formation. Here we report the crystal structure of the NHERF1 PDZ2 domain in complex with the C-terminal CXCR2 sequence. The structure reveals that the PDZ2-CXCR2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four CXCR2 residues contributing to specific interactions. The structure also reveals two probable modes of PDZ2 dimerization where the two canonical ligand-binding pockets are well separated and orientated in a unique parallel fashion. This study provides not only the structural basis for the PDZ-mediated NHERF1-CXCR2 interaction, but also an additional example of how PDZ domains may dimerize, which both could prove valuable in understanding NHERF1 complex-scaffolding function in neutrophils.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guorong Lu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
175
|
Lee S, Griep AE. Loss of Dlg-1 in the mouse lens impairs fibroblast growth factor receptor signaling. PLoS One 2014; 9:e97470. [PMID: 24824078 PMCID: PMC4019587 DOI: 10.1371/journal.pone.0097470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/20/2014] [Indexed: 01/21/2023] Open
Abstract
Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP), Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr) signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP.
Collapse
Affiliation(s)
- SungKyoung Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne E. Griep
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
176
|
Meneses-Morales I, Tecalco-Cruz AC, Barrios-García T, Gómez-Romero V, Trujillo-González I, Reyes-Carmona S, García-Zepeda E, Méndez-Enríquez E, Cervantes-Roldán R, Pérez-Sánchez V, Recillas-Targa F, Mohar-Betancourt A, León-Del-Río A. SIP1/NHERF2 enhances estrogen receptor alpha transactivation in breast cancer cells. Nucleic Acids Res 2014; 42:6885-900. [PMID: 24771346 PMCID: PMC4066751 DOI: 10.1093/nar/gku311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors.
Collapse
Affiliation(s)
- Ivan Meneses-Morales
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Tonatiuh Barrios-García
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Vania Gómez-Romero
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Isis Trujillo-González
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Sandra Reyes-Carmona
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Eduardo García-Zepeda
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Erika Méndez-Enríquez
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Víctor Pérez-Sánchez
- Unidad de investigación biomédica en cáncer, Instituto Nacional de Cancerología and Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, San Fernando No. 22, Col. Sección XVI Delegación Tlalpan, C.P. 14080 México, D.F., Mexico
| | - Félix Recillas-Targa
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Instituto de Fisiología Celular Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - Alejandro Mohar-Betancourt
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Unidad de investigación biomédica en cáncer, Instituto Nacional de Cancerología and Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, San Fernando No. 22, Col. Sección XVI Delegación Tlalpan, C.P. 14080 México, D.F., Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| |
Collapse
|
177
|
Jiang Y, Wang S, Holcomb J, Trescott L, Guan X, Hou Y, Brunzelle J, Sirinupong N, Li C, Yang Z. Crystallographic analysis of NHERF1-PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer. Biochem Biophys Res Commun 2014; 446:638-643. [PMID: 24642259 DOI: 10.1016/j.bbrc.2014.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/25/2023]
Abstract
The formation of CXCR2-NHERF1-PLCβ3 macromolecular complex in pancreatic cancer cells regulates CXCR2 signaling activity and plays an important role in tumor proliferation and invasion. We previously have shown that disruption of the NHERF1-mediated CXCR2-PLCβ3 interaction abolishes the CXCR2 signaling cascade and inhibits pancreatic tumor growth in vitro and in vivo. Here we report the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal PLCβ3 sequence. The structure reveals that the PDZ1-PLCβ3 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four PLCβ3 residues contributing to specific interactions. We also show that PLCβ3 can bind both NHERF1 PDZ1 and PDZ2 in pancreatic cancer cells, consistent with the observation that the peptide binding pockets of these PDZ domains are highly structurally conserved. This study provides an understanding of the structural basis for the PDZ-mediated NHERF1-PLCβ3 interaction that could prove valuable in selective drug design against CXCR2-related cancers.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
178
|
Holcomb J, Jiang Y, Lu G, Trescott L, Brunzelle J, Sirinupong N, Li C, Naren AP, Yang Z. Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation. Biochem Biophys Res Commun 2014; 446:399-403. [PMID: 24613836 PMCID: PMC4041278 DOI: 10.1016/j.bbrc.2014.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The formation of CFTR-NHERF2-LPA2 macromolecular complex in airway epithelia regulates CFTR channel function and plays an important role in compartmentalized cAMP signaling. We previously have shown that disruption of the PDZ-mediated NHERF2-LPA2 interaction abolishes the LPA inhibitory effect and augments CFTR Cl(-) channel activity in vitro and in vivo. Here we report the first crystal structure of the NHERF2 PDZ1 domain in complex with the C-terminal LPA2 sequence. The structure reveals that the PDZ1-LPA2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four LPA2 residues contributing to specific interactions. Comparison of the PDZ1-LPA2 structure to the structure of PDZ1 in complex with a different peptide provides insights into the diverse nature of PDZ1 substrate recognition and suggests that the conformational flexibility in the ligand binding pocket is involved in determining the broad substrate specificity of PDZ1. In addition, the structure reveals a small surface pocket adjacent to the ligand-binding site, which may have therapeutic implications. This study provides an understanding of the structural basis for the PDZ-mediated NHERF2-LPA2 interaction that could prove valuable in selective drug design against CFTR-related human diseases.
Collapse
Affiliation(s)
- Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guorong Lu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anjaparavanda P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
179
|
Vargas C, Radziwill G, Krause G, Diehl A, Keller S, Kamdem N, Czekelius C, Kreuchwig A, Schmieder P, Doyle D, Moelling K, Hagen V, Schade M, Oschkinat H. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions. ChemMedChem 2014; 9:1458-62. [PMID: 24668962 DOI: 10.1002/cmdc.201300553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Indexed: 10/25/2022]
Abstract
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Collapse
Affiliation(s)
- Carolyn Vargas
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Current address: Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Chai Q, Ferrell B, Zhong M, Zhang X, Ye C, Wei Y. Diverse sequences are functional at the C-terminus of the E. coli periplasmic chaperone SurA. Protein Eng Des Sel 2014; 27:111-6. [PMID: 24586054 DOI: 10.1093/protein/gzu003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SurA is a major periplasmic molecular chaperone in Escherichia coli and has been shown to assist the biogenesis of several outer membrane proteins. The C-terminal fragment of SurA folds into a short β-strand, which forms a small three-stranded anti-parallel β-sheet module with the N-terminal β-hairpin. We found that the length of the C-terminal fragment, rather than its exact amino acid composition, had a big impact on SurA function. To investigate the determinant factor of the C-terminal sequence, we created a library of SurA constructs randomized in the last 10 residues. We screened the library and randomly analyzed 19 constructs that displayed SurA activity. The C-termini of these constructs shared little sequence similarity, except that β-strand-forming residues were preferentially enriched. Three SurA constructs were expressed and purified for structural characterization. Circular dichroism and fluorescence spectroscopy analyses revealed that their structures were similar to the structure of the wild-type SurA. Our results suggest that for scaffolding purpose proteins may tolerate various sequences provided certain general requirements such as hydrophobicity and secondary structure propensity are satisfied. Furthermore, the sequence tolerance of SurA at the C-terminus indicates that this area is not likely to be involved in substrate binding.
Collapse
Affiliation(s)
- Qian Chai
- Department of Chemistry, University of Kentucky, 305 Chemistry-Physics Building, Lexington, KY 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
181
|
Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 2014; 111:2542-7. [PMID: 24550280 DOI: 10.1073/pnas.1312296111] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Collapse
|
182
|
Xue K, Wang Y, Hou Y, Wang Y, Zhong T, Li L, Zhang H, Wang L. Molecular characterization and expression patterns of the actinin-associated LIM protein (ALP) subfamily genes in porcine skeletal muscle. Gene 2014; 539:111-6. [PMID: 24462755 DOI: 10.1016/j.gene.2014.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
The actinin-associated LIM protein (ALP) subfamily has important functions in cell signal transduction, cell proliferation, and integration of cytoskeletal architecture. To detect their functions in pig skeletal muscle, we cloned and characterized the pig ALP subfamily genes, drew their genomic structure maps, and detected their tissue expression patterns. We identified a new spliced variant of PDLIM3 in pig skeletal muscle and named it as PDLIM3-4, which was only expressed in the heart and skeletal muscle. Our results showed that PDLIM3-4 was expressed in adult pig skeletal muscle with the highest expression level, and both PDLIM3-4 isoform and PDLIM4 had different expression profiles during the prenatal and postnatal stages of skeletal muscle development among the three pig breeds. These studies provide useful information for further research on the functions of pig ALP subfamily genes in skeletal muscle development.
Collapse
Affiliation(s)
- Ke Xue
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuguo Hou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hongping Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
183
|
Yu CG, Tonikian R, Felsensteiner C, Jhingree JR, Desveaux D, Sidhu SS, Harris TJC. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3). PLoS One 2014; 9:e86412. [PMID: 24466078 PMCID: PMC3899232 DOI: 10.1371/journal.pone.0086412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022] Open
Abstract
The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.
Collapse
Affiliation(s)
- Cao Guo Yu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raffi Tonikian
- Terrence Donnelly Centre for Cellular and Biomolecular Research, and Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinna Felsensteiner
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Jacquelyn R. Jhingree
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, and Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
184
|
Hizukuri Y, Oda T, Tabata S, Tamura-Kawakami K, Oi R, Sato M, Takagi J, Akiyama Y, Nogi T. A structure-based model of substrate discrimination by a noncanonical PDZ tandem in the intramembrane-cleaving protease RseP. Structure 2014; 22:326-36. [PMID: 24389025 DOI: 10.1016/j.str.2013.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 11/25/2022]
Abstract
During the extracytoplasmic stress response in Escherichia coli, the intramembrane protease RseP cleaves the anti-σ(E) protein RseA only after the membrane-anchored protease DegS truncates the periplasmic part of RseA that suppresses the action of RseP. Here we analyzed the three-dimensional structure of the two tandemly arranged PSD-95/Dlg/ZO-1 (PDZ) domains (PDZ tandem) present in the periplasmic region of RseP and revealed that the two putative ligand-binding grooves constitute a single pocket-like structure that would lie just above the active center sequestrated within the membrane. Complete removal of the PDZ tandem from RseP led to the intramembrane cleavage of RseA without prior truncation by DegS. Furthermore, mutations expected to destabilize the tertiary structure of the PDZ tandem also caused the deregulation of the sequential cleavage. These observations suggest that the PDZ tandem serves as a size-exclusion filter to accommodate the truncated form of RseA into the active center.
Collapse
Affiliation(s)
- Yohei Hizukuri
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Sanae Tabata
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Rika Oi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan; RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
185
|
Busi MV, Gomez-Casati DF, Martín M, Barchiesi J, Grisolía MJ, Hedín N, Carrillo JB. Starch Metabolism in Green Plants. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_78-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
186
|
Kuo JC. Focal adhesions function as a mechanosensor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:55-73. [PMID: 25081614 DOI: 10.1016/b978-0-12-394624-9.00003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that engage with the surrounding extracellular matrix (ECM) via integrin receptors and physically connect with the actin cytoskeleton through the recruitment of numerous FA-associated proteins. FAs undergo a maturation process, which is known to be induced by biochemical or physical cues, to grow and change composition. Varying FA size, distribution, dynamics, and compositions during maturation process is required for transducing the specific signaling networks that reflect the requirements of a cell to sense, adapt, and response to a variety of the environments. While advances have been demonstrated in understanding how important FAs are in mediating various biological processes, less is known about how FA composition is regulated and coordinately transduces the specific signals in mediating the distinct biological outcomes, especially cell migration.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
187
|
Jiang Y, Lu G, Trescott LR, Hou Y, Guan X, Wang S, Stamenkovich A, Brunzelle J, Sirinupong N, Li C, Yang Z. New conformational state of NHERF1-CXCR2 signaling complex captured by crystal lattice trapping. PLoS One 2013; 8:e81904. [PMID: 24339979 PMCID: PMC3858284 DOI: 10.1371/journal.pone.0081904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022] Open
Abstract
NHERF1 is a PDZ adaptor protein that scaffolds the assembly of diverse signaling complexes and has been implicated in many cancers. However, little is known about the mechanism responsible for its scaffolding promiscuity or its ability to bind to multiple targets. Computational studies have indicated that PDZ promiscuity may be attributed to its conformational dynamics, but experimental evidence for this relationship remains very limited. Here we examine the conformational flexibility of the NHERF1 PDZ1 domain using crystal lattice trapping via solving PDZ1 structure of a new crystal form. The structure, together with prior PDZ1 structures of a different space group, reveals that 4 of 11 ligand-interacting residues undergo significant crystal packing-induced structural changes. Most of these residues correspond to the residues involved in allosteric transition when a peptide ligand binds. In addition, a subtle difference in ligand conformations causes the same peptide to bind in slightly different modes in different crystal forms. These findings indicate that substantial structural flexibility is present in the PDZ1 peptide-binding pocket, and the structural substate trapped in the present crystal form can be utilized to represent the conformational space accessible to the protein. Such knowledge will be critical for drug design against the NHERF1 PDZ1 domain, highlighting the continued need for experimentally determined PDZ1-ligand complexes.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Guorong Lu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Laura R. Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Angelique Stamenkovich
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Joseph Brunzelle
- Advance Photon Source, Argonne National Lab, Argonne, Illinois, United States of America
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
188
|
Site-2 protease substrate specificity and coupling in trans by a PDZ-substrate adapter protein. Proc Natl Acad Sci U S A 2013; 110:19543-8. [PMID: 24218594 DOI: 10.1073/pnas.1305934110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-2 proteases (S2Ps) are intramembrane metalloproteases that cleave transmembrane substrates in all domains of life. Many S2Ps, including human S2P and Mycobacterium tuberculosis Rip1, have multiple substrates in vivo, which are often transcriptional regulators. However, S2Ps will also cleave transmembrane sequences of nonsubstrate proteins, suggesting additional specificity determinants. Many S2Ps also contain a PDZ domain, the function of which is poorly understood. Here, we identify an M. tuberculosis protein, PDZ-interacting protease regulator 1 (Ppr1), which bridges between the Rip1 PDZ domain and anti-sigma factor M (Anti-SigM), a Rip1 substrate, but not Anti-SigK or Anti-SigL, also Rip1 substrates. In vivo analyses of Ppr1 function indicate that it prevents nonspecific activation of the Rip1 pathway while coupling Rip1 cleavage of Anti-SigM, but not Anti-SigL, to site-1 proteolysis. Our results support a model of S2P substrate specificity in which a substrate-specific adapter protein tethers the S2P to its substrate while holding the protease inactive through its PDZ domain.
Collapse
|
189
|
Amacher JF, Cushing PR, Brooks L, Boisguerin P, Madden DR. Stereochemical preferences modulate affinity and selectivity among five PDZ domains that bind CFTR: comparative structural and sequence analyses. Structure 2013; 22:82-93. [PMID: 24210758 DOI: 10.1016/j.str.2013.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
PDZ domain interactions are involved in signaling and trafficking pathways that coordinate crucial cellular processes. Alignment-based PDZ binding motifs identify the few most favorable residues at certain positions along the peptide backbone. However, sequences that bind the CAL (CFTR-associated ligand) PDZ domain reveal only a degenerate motif that overpredicts the true number of high-affinity interactors. Here, we combine extended peptide-array motif analysis with biochemical techniques to show that non-motif "modulator" residues influence CAL binding. The crystallographic structures of 13 CAL:peptide complexes reveal defined, but accommodating stereochemical environments at non-motif positions, which are reflected in modulator preferences uncovered by multisequence substitutional arrays. These preferences facilitate the identification of high-affinity CAL binding sequences and differentially affect CAL and NHERF PDZ binding. As a result, they also help determine the specificity of a PDZ domain network that regulates the trafficking of CFTR at the apical membrane.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Patrick R Cushing
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Lionel Brooks
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Prisca Boisguerin
- Institute of Medical Immunology, Charité, 10115 Berlin, Germany; Centre de Recherches de Biochimie Macromoleculaire, CRBM-CNRS, UMR-5237, UM1-UM2, University of Montpellier, Department of Molecular Biophysics and Therapeutics, 34293 Montpellier, France
| | - Dean R Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
190
|
Rocca DL, Amici M, Antoniou A, Blanco Suarez E, Halemani N, Murk K, McGarvey J, Jaafari N, Mellor JR, Collingridge GL, Hanley JG. The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity. Neuron 2013; 79:293-307. [PMID: 23889934 PMCID: PMC3725416 DOI: 10.1016/j.neuron.2013.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2013] [Indexed: 11/17/2022]
Abstract
Inhibition of Arp2/3-mediated actin polymerization by PICK1 is a central mechanism to AMPA receptor (AMPAR) internalization and long-term depression (LTD), although the signaling pathways that modulate this process in response to NMDA receptor (NMDAR) activation are unknown. Here, we define a function for the GTPase Arf1 in this process. We show that Arf1-GTP binds PICK1 to limit PICK1-mediated inhibition of Arp2/3 activity. Expression of mutant Arf1 that does not bind PICK1 leads to reduced surface levels of GluA2-containing AMPARs and smaller spines in hippocampal neurons, which occludes subsequent NMDA-induced AMPAR internalization and spine shrinkage. In organotypic slices, NMDAR-dependent LTD of AMPAR excitatory postsynaptic currents is abolished in neurons expressing mutant Arf1. Furthermore, NMDAR stimulation downregulates Arf1 activation and binding to PICK1 via the Arf-GAP GIT1. This study defines Arf1 as a critical regulator of actin dynamics and synaptic function via modulation of PICK1. The Arf1-PICK1-Arp2/3 pathway regulates actin polymerization NMDAR activation activates the Arf-GAP GIT1 to deactivate Arf1 Arf1 controls NMDAR-dependent, PICK1-mediated AMPAR trafficking and LTD A noncanonical role is described for Arf1 in vesicle traffic, distinct from COPI regulation
Collapse
Affiliation(s)
- Daniel L Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building and Dorothy Hodgkin Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Lu G, Wu Y, Jiang Y, Wang S, Hou Y, Guan X, Brunzelle J, Sirinupong N, Sheng S, Li C, Yang Z. Structural insights into neutrophilic migration revealed by the crystal structure of the chemokine receptor CXCR2 in complex with the first PDZ domain of NHERF1. PLoS One 2013; 8:e76219. [PMID: 24098448 PMCID: PMC3788737 DOI: 10.1371/journal.pone.0076219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022] Open
Abstract
Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic transepithelial migration. To uncover the structural basis of the complex formation, we report here the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal sequence of CXCR2 at 1.16 Å resolution. The structure reveals that the CXCR2 peptide binds to PDZ1 in an extended conformation with the last four residues making specific side chain interactions. Remarkably, comparison of the structure to previously studied PDZ1 domains has allowed the identification of PDZ1 ligand-specific interactions and the mechanisms that govern PDZ1 target selection diversities. In addition, we show that CXCR2 can bind both NHERF1 PDZ1 and PDZ2 in pulldown experiments, consistent with the observation that the peptide binding pockets of these two PDZ domains are highly structurally conserved. The results of this study therefore provide structural basis for the CXCR2-mediated neutrophilic migration and could have important clinical applications in the prevention and treatment of numerous neutrophil-dependent inflammatory disorders.
Collapse
Affiliation(s)
- Guorong Lu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yanning Wu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yuanyuan Jiang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Joseph Brunzelle
- Advance Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
192
|
Yamben IF, Rachel RA, Shatadal S, Copeland NG, Jenkins NA, Warming S, Griep AE. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse. Dev Biol 2013; 384:41-52. [PMID: 24095903 DOI: 10.1016/j.ydbio.2013.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.
Collapse
Affiliation(s)
- Idella F Yamben
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | | | | | | | | | | |
Collapse
|
193
|
Mereniuk TR, El Gendy MAM, Mendes-Pereira AM, Lord CJ, Ghosh S, Foley E, Ashworth A, Weinfeld M. Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase. Mol Cancer Ther 2013; 12:2135-44. [PMID: 23883586 PMCID: PMC3793902 DOI: 10.1158/1535-7163.mct-12-1093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A recent screen of 6,961 siRNAs to discover possible synthetic lethal partners of the DNA repair protein polynucleotide kinase/phosphatase (PNKP) led to the identification of the potent tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Here, we have confirmed the PNKP/PTEN synthetic lethal partnership in a variety of different cell lines including the PC3 prostate cancer cell line, which is naturally deficient in PTEN. We provide evidence that codepletion of PTEN and PNKP induces apoptosis. In HCT116 colon cancer cells, the loss of PTEN is accompanied by an increased background level of DNA double-strand breaks, which accumulate in the presence of an inhibitor of PNKP DNA 3'-phosphatase activity. Complementation of PC3 cells with several well-characterized mutated PTEN cDNAs indicated that the critical function of PTEN required to prevent toxicity induced by an inhibitor of PNKP is most likely associated with its cytoplasmic lipid phosphatase activity. Finally, we show that modest inhibition of PNKP in a PTEN knockout background enhances cellular radiosensitivity, suggesting that such a "synthetic sickness" approach involving the combination of PNKP inhibition with radiotherapy may be applicable to PTEN-deficient tumors.
Collapse
Affiliation(s)
- Todd R Mereniuk
- Corresponding Author: Michael Weinfeld, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB, Canada, T6G 1Z2.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J 2013; 455:1-14. [DOI: 10.1042/bj20130783] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PDZ domains are highly abundant protein–protein interaction modules and are often found in multidomain scaffold proteins. PDZ-domain-containing scaffold proteins regulate multiple biological processes, including trafficking and clustering receptors and ion channels at defined membrane regions, organizing and targeting signalling complexes at specific cellular compartments, interfacing cytoskeletal structures with membranes, and maintaining various cellular structures. PDZ domains, each with ~90-amino-acid residues folding into a highly similar structure, are best known to bind to short C-terminal tail peptides of their target proteins. A series of recent studies have revealed that, in addition to the canonical target-binding mode, many PDZ–target interactions involve amino acid residues beyond the regular PDZ domain fold, which we refer to as extensions. Such extension sequences often form an integral structural and functional unit with the attached PDZ domain, which is defined as a PDZ supramodule. Correspondingly, PDZ-domain-binding sequences from target proteins are frequently found to require extension sequences beyond canonical short C-terminal tail peptides. Formation of PDZ supramodules not only affords necessary binding specificities and affinities demanded by physiological functions of PDZ domain targets, but also provides regulatory switches to be built in the PDZ–target interactions. At the 20th anniversary of the discovery of PDZ domain proteins, we try to summarize structural features and target-binding properties of such PDZ supramodules emerging from studies in recent years.
Collapse
|
195
|
Accidental interaction between PDZ domains and diclofenac revealed by NMR-assisted virtual screening. Molecules 2013; 18:9567-81. [PMID: 23966078 PMCID: PMC6270271 DOI: 10.3390/molecules18089567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
In silico approaches have become indispensable for drug discovery as well as drug repositioning and adverse effect prediction. We have developed the eF-seek program to predict protein–ligand interactions based on the surface structure of proteins using a clique search algorithm. We have also developed a special protein structure prediction pipeline and accumulated predicted 3D models in the Structural Atlas of the Human Genome (SAHG) database. Using this database, genome-wide prediction of non-peptide ligands for proteins in the human genome was performed, and a subset of predicted interactions including 14 PDZ domains was then confirmed by NMR titration. Surprisingly, diclofenac, a non-steroidal anti-inflammatory drug, was found to be a non-peptide PDZ domain ligand, which bound to 5 of 15 tested PDZ domains. The critical residues for the PDZ–diclofenac interaction were also determined. Pharmacological implications of the accidental PDZ–diclofenac interaction are further discussed.
Collapse
|
196
|
HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood 2013; 122:715-25. [DOI: 10.1182/blood-2013-03-493718] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Interaction of HTLV-1 Tax with USP10 reduces arsenic-induced stress granule formation and enhances ROS production. USP10 controls sensitivities of leukemia cell lines to arsenic-induced apoptosis.
Collapse
|
197
|
Abstract
By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.
Collapse
|
198
|
Belotti E, Polanowska J, Daulat AM, Audebert S, Thomé V, Lissitzky JC, Lembo F, Blibek K, Omi S, Lenfant N, Gangar A, Montcouquiol M, Santoni MJ, Sebbagh M, Aurrand-Lions M, Angers S, Kodjabachian L, Reboul J, Borg JP. The human PDZome: a gateway to PSD95-Disc large-zonula occludens (PDZ)-mediated functions. Mol Cell Proteomics 2013; 12:2587-603. [PMID: 23722234 PMCID: PMC3769332 DOI: 10.1074/mcp.o112.021022] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein–protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRβ, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.
Collapse
Affiliation(s)
- Edwige Belotti
- CRCM, Equipe labellisée Ligue Contre le Cancer, Inserm, U1068, CRCM, Marseille, F-13009, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Magnetochrome: a c-type cytochrome domain specific to magnetotatic bacteria. Biochem Soc Trans 2013; 40:1319-23. [PMID: 23176475 DOI: 10.1042/bst20120104] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetotactic bacteria consist of a group of taxonomically, physiologically and morphologically diverse prokaryotes, with the singular ability to align with geomagnetic field lines, a phenomenon referred to as magnetotaxis. This magnetotactic property is due to the presence of iron-rich crystals embedded in lipidic vesicles forming an organelle called the magnetosome. Magnetosomes are composed of single-magnetic-domain nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) embedded in biological membranes, thereby forming a prokaryotic organelle. Four specific steps are described in this organelle formation: (i) membrane specialization, (ii) iron acquisition, (iii) magnetite (or greigite) biocrystallization, and (iv) magnetosome alignment. The formation of these magnetic crystals is a genetically controlled process, which is governed by enzyme-catalysed processes. On the basis of protein sequence analysis of genes known to be involved in magnetosome formation in Magnetospirillum magneticum AMB-1, we have identified a subset of three membrane-associated or periplasmic proteins containing a double cytochrome c signature motif CXXCH: MamE, MamP and MamT. The presence of these proteins suggests the existence of an electron-transport chain inside the magnetosome, contributing to the process of biocrystallization. We have performed heterologous expression in E. coli of the cytochrome c motif-containing domains of MamE, MamP and MamT. Initial biophysical characterization has confirmed that MamE, MamP and MamT are indeed c-type cytochromes. Furthermore, determination of redox potentials for this new family of c-type cytochromes reveals midpoint potentials of -76 and -32 mV for MamP and MamE respectively.
Collapse
|
200
|
Ligand-induced dynamic changes in extended PDZ domains from NHERF1. J Mol Biol 2013; 425:2509-28. [PMID: 23583913 DOI: 10.1016/j.jmb.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
The multi-domain scaffolding protein NHERF1 modulates the assembly and intracellular trafficking of various transmembrane receptors and ion-transport proteins. The two PDZ (postsynaptic density 95/disk large/zonula occluden 1) domains of NHERF1 possess very different ligand-binding capabilities: PDZ1 recognizes a variety of membrane proteins with high affinity, while PDZ2 only binds limited number of target proteins. Here using NMR, we have determined the structural and dynamic mechanisms that differentiate the binding affinities of the two PDZ domains, for the type 1 PDZ-binding motif (QDTRL) in the carboxyl terminus of cystic fibrosis transmembrane regulator. Similar to PDZ2, we have identified a helix-loop-helix subdomain coupled to the canonical PDZ1 domain. The extended PDZ1 domain is highly flexible with correlated backbone motions on fast and slow timescales, while the extended PDZ2 domain is relatively rigid. The malleability of the extended PDZ1 structure facilitates the transmission of conformational changes at the ligand-binding site to the remote helix-loop-helix extension. By contrast, ligand binding has only modest effects on the conformation and dynamics of the extended PDZ2 domain. The study shows that ligand-induced structural and dynamic changes coupled with sequence variation at the putative PDZ binding site dictate ligand selectivity and binding affinity of the two PDZ domains of NHERF1.
Collapse
|