151
|
Adib AA, Sheikhi A, Shahhosseini M, Simeunović A, Wu S, Castro CE, Zhao R, Khademhosseini A, Hoelzle DJ. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication 2020; 12:045006. [PMID: 32464607 DOI: 10.1088/1758-5090/ab97a1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We develop and characterize a biomaterial formulation and robotic methods tailored for intracorporeal tissue engineering (TE) via direct-write (DW) 3D printing. Intracorporeal TE is defined as the biofabrication of 3D TE scaffolds inside of a living patient, in a minimally invasive manner. A biomaterial for intracorporeal TE requires to be 3D printable and crosslinkable via mechanisms that are safe to native tissues and feasible at physiological temperature (37 °C). The cell-laden biomaterial (bioink) preparation and bioprinting methods must support cell viability. Additionally, the biomaterial and bioprinting method must enable the spatially accurate intracorporeal 3D delivery of the biomaterial, and the biomaterial must adhere to or integrate into the native tissue. Current biomaterial formulations do not meet all the presumed intracorporeal DW TE requirements. We demonstrate that a specific formulation of gelatin methacryloyl (GelMA)/Laponite®/methylcellulose (GLM) biomaterial system can be 3D printed at physiological temperature and crosslinked using visible light to construct 3D TE scaffolds with clinically relevant dimensions and consistent structures. Cell viability of 71%-77% and consistent mechanical properties over 21 d are reported. Rheological modifiers, Laponite® and methylcellulose, extend the degradation time of the scaffolds. The DW modality enables the piercing of the soft tissue and over-extrusion of the biomaterial into the tissue, creating a novel interlocking mechanism with soft, hydrated native tissue mimics and animal muscle with a 3.5-4 fold increase in the biomaterial/tissue adhesion strength compared to printing on top of the tissue. The developed GLM biomaterial and robotic interlocking mechanism pave the way towards intracorporeal TE.
Collapse
Affiliation(s)
- A Asghari Adib
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
James BD, Montoya N, Allen J. MechanoBioTester: A Decoupled Multistimulus Cell Culture Device for Studying Complex Microenvironments In Vitro. ACS Biomater Sci Eng 2020; 6:3673-3689. [PMID: 32704528 PMCID: PMC7377433 DOI: 10.1021/acsbiomaterials.0c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasingly being recognized is the role of the complex microenvironment to regulate cell phenotype; however, the cell culture systems used to study these effects in vitro are lagging. The complex microenvironment is host to a combination of biological interactions, chemical factors, and mechanical stimuli. Many devices have been designed to probe the effects of one mechanical stimulus, but few are capable of systematically interrogating all combinations of mechanical stimuli with independent control. To address this gap, we have developed the MechanoBioTester platform, a decoupled, multi-stimulus cell culture model for studying the cellular response to complex microenvironments in vitro. The system uses an engineered elastomeric chamber with a specially defined region for incorporating different target materials to act as the cell culture substrate. We have tested the system with several target materials including: polydimethylsiloxane elastomer, polyacrylamide gel, poly(1,8-octanediol citrate) elastomer, and type I collagen gel for both 2D and 3D co-culture. Additionally, when the chamber is connected to a flow circuit and our stretching device, stimuli in the form of fluid flow, cyclic stretch, and hydrostatic pressure are able to be imparted with independent control. We validated the device using experimental and computational methods to define a range of capabilities relevant to physiological microenvironments. The MechanoBioTester platform promises to function as a model system for mechanobiology, biomaterial design, and drug discovery applications that focus on probing the impact of a complex microenvironment in an in vitro setting. The protocol described within provides the details characterizing the MechanoBioTester system, the steps for fabricating the MechanoBioTester chamber, and the procedure for operating the MechanoBioTester system to stimulate cells.
Collapse
Affiliation(s)
- Bryan D. James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States
- Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Nicolas Montoya
- Department of Electrical & Computer Engineering, University of Florida, 216 Larsen Hall, Gainesville, Florida 32611, United States
| | - Josephine Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States
| |
Collapse
|
153
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
154
|
Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J Cell Sci 2020; 133:jcs228031. [PMID: 32179593 PMCID: PMC7097224 DOI: 10.1242/jcs.228031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells and tissues sense, respond to and translate mechanical forces into biochemical signals through mechanotransduction, which governs individual cell responses that drive gene expression, metabolic pathways and cell motility, and determines how cells work together in tissues. Mechanotransduction often depends on cytoskeletal networks and their attachment sites that physically couple cells to each other and to the extracellular matrix. One way that cells associate with each other is through Ca2+-dependent adhesion molecules called cadherins, which mediate cell-cell interactions through adherens junctions, thereby anchoring and organizing the cortical actin cytoskeleton. This actin-based network confers dynamic properties to cell sheets and developing organisms. However, these contractile networks do not work alone but in concert with other cytoarchitectural elements, including a diverse network of intermediate filaments. This Review takes a close look at the intermediate filament network and its associated intercellular junctions, desmosomes. We provide evidence that this system not only ensures tissue integrity, but also cooperates with other networks to create more complex tissues with emerging properties in sensing and responding to increasingly stressful environments. We will also draw attention to how defects in intermediate filament and desmosome networks result in both chronic and acquired diseases.
Collapse
Affiliation(s)
- Joshua A Broussard
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Avinash Jaiganesh
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hoda Zarkoob
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen J Green
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
155
|
Nakazawa N, Kengaku M. Mechanical Regulation of Nuclear Translocation in Migratory Neurons. Front Cell Dev Biol 2020; 8:150. [PMID: 32226788 PMCID: PMC7080992 DOI: 10.3389/fcell.2020.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal migration is a critical step during the formation of functional neural circuits in the brain. Newborn neurons need to move across long distances from the germinal zone to their individual sites of function; during their migration, they must often squeeze their large, stiff nuclei, against strong mechanical stresses, through narrow spaces in developing brain tissue. Recent studies have clarified how actomyosin and microtubule motors generate mechanical forces in specific subcellular compartments and synergistically drive nuclear translocation in neurons. On the other hand, the mechanical properties of the surrounding tissues also contribute to their function as an adhesive support for cytoskeletal force transmission, while they also serve as a physical barrier to nuclear translocation. In this review, we discuss recent studies on nuclear migration in developing neurons, from both cell and mechanobiological viewpoints.
Collapse
Affiliation(s)
- Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
156
|
Nasrin SR, Afrin T, Kabir AMR, Inoue D, Torisawa T, Oiwa K, Sada K, Kakugo A. Regulation of Biomolecular-Motor-Driven Cargo Transport by Microtubules under Mechanical Stress. ACS APPLIED BIO MATERIALS 2020; 3:1875-1883. [DOI: 10.1021/acsabm.9b01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Tanjina Afrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Hyogo, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
157
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
158
|
Towards microstructure-informed material models for human brain tissue. Acta Biomater 2020; 104:53-65. [PMID: 31887455 DOI: 10.1016/j.actbio.2019.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that the mechanical behavior of the brain plays a critical role in development, disease, and aging. Recent studies have begun to characterize the mechanical behavior of gray and white matter tissue and to identify sets of material models that best reproduce the stress-strain behavior of different brain regions. Yet, these models are mainly phenomenological in nature, their parameters often lack clear physical interpretation, and they fail to correlate the mechanical behavior to the underlying microstructural composition. Here we make a first attempt towards identifying general relations between microstructure and mechanics with the ultimate goal to develop microstructurally motivated constitutive equations for human brain tissue. Using histological staining, we analyze the microstructure of brain specimens from different anatomical regions, the cortex, basal ganglia, corona radiata, and corpus callosum, and identify the regional stiffness and viscosity under multiple loading conditions, simple shear, compression, and tension. Strikingly, our study reveals a negative correlation between cell count and stiffness, a positive correlation between myelin content and stiffness, and a negative correlation between proteoglycan content and stiffness. Additionally, our analysis shows a positive correlation between lipid and proteoglycan content and viscosity. We demonstrate how understanding the microstructural origin of the macroscopic behavior of the brain can help us design microstructure-informed material models for human brain tissue that inherently capture regional heterogeneities. This study represents an important step towards using brain tissue stiffness and viscosity as early diagnostic markers for clinical conditions including chronic traumatic encephalopathy, Alzheimer's and Parkinson's disease, or multiple sclerosis. STATEMENT OF SIGNIFICANCE: The complex and heterogeneous mechanical properties of brain tissue play a critical role for brain function. To understand and predict how brain tissue properties vary in space and time, it will be key to link the mechanical behavior to the underlying microstructural composition. Here we use histological staining to quantify area fractions of microstructural components of mechanically tested specimens and evaluate their individual contributions to the nonlinear macroscopic mechanical response. We further propose a microstructure-informed material model for human brain tissue that inherently captures regional heterogeneities. The current work provides unprecedented insights into the biomechanics of human brain tissue, which are highly relevant to develop refined computational models for brain tissue behavior or to advance neural tissue engineering.
Collapse
|
159
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
160
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
161
|
Lucas de Lima E, Fittipaldi Vasconcelos N, da Silva Maciel J, Karine Andrade F, Silveira Vieira R, Andrade Feitosa JP. Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:5. [PMID: 31832856 DOI: 10.1007/s10856-019-6343-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Regenerative medicine proposes to regenerate or even replace human damaged tissues to return to normal functions. Hence, biomaterials have been used to provide appropriate environment for cell development. Among the groups of biodegradable biomaterials, hydrogels, which are characterized by three-dimensional and cross-linked networks of water-soluble polymers, have been highlighted as suitable matrices for such applications. An injectable hydrogel based on oxidized galactomannan (OxGM) from Delonix regia and N-succinyl chitosan (NSC) was developed and characterized according to its physicochemical and biocompatible properties. The hydrogel was formed by Schiff base (-CH = N-) cross-linking between aldehyde groups from OxGM and NH2 groups from NSC, in few minutes (9.7 min) without any external stimulus. A hydrogel with macroporous structure, interconnected pores, and porosity of 69% was obtained. The biomaterial exhibited excellent injectability. No change in volume or integrity was observed in the hydrogel after its swelling in phosphate buffered saline (PBS) medium. This is an important property because when the hydrogel is injected into the site of interest and it fills the environment, it will not have additional space to occupy. Biocompatibility studies were conducted in vitro, which revealed the non-cytotoxic nature of the material and demonstrated the potential of the hydrogel based on dialdehyde galactomannan and N-succinyl chitosan for cell culture and soft tissue engineering.
Collapse
Affiliation(s)
- Everton Lucas de Lima
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, Bloco 933, Fortaleza, 60440-900, Brazil
| | - Niédja Fittipaldi Vasconcelos
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, Bloco 933, Fortaleza, 60440-900, Brazil
| | - Jeanny da Silva Maciel
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, Bloco 933, Fortaleza, 60440-900, Brazil
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Federal University of Ceará, Bloco 709, Fortaleza, 60455-760, Brazil
| | - Rodrigo Silveira Vieira
- Department of Chemical Engineering, Federal University of Ceará, Bloco 709, Fortaleza, 60455-760, Brazil.
| | - Judith Pessoa Andrade Feitosa
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, Bloco 933, Fortaleza, 60440-900, Brazil
| |
Collapse
|
162
|
A Facile Method to Fabricate Anisotropic Extracellular Matrix with 3D Printing Topological Microfibers. MATERIALS 2019; 12:ma12233944. [PMID: 31795170 PMCID: PMC6926675 DOI: 10.3390/ma12233944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Natural tissues and organs have different requirements regarding the mechanical characteristics of response. It is still a challenge to achieve biomaterials with anisotropic mechanical properties using an extracellular matrix with biological activity. We have improved the ductility and modulus of the gelatin matrix using 3D printed gelatin microfibers with different concentrations and topologies and, at the same, time achieved anisotropic mechanical properties. We successfully printed flat microfibers using partially cross-linked gelatin. We modified the 10% (w/v) gelatin matrix with microfibers consisting of a gelatin concentration of 14% (w/v), increasing the modulus to about three times and the elongation at break by 39% in parallel with the fiber direction. At the same time, it is found that the microfiber topology can effectively change the matrix ductility, and changing the modulus of the gelatin used in the microfiber can effectively change the matrix modulus. These findings provide a simple method for obtaining active biological materials that are closer to a physiological environment.
Collapse
|
163
|
Carvalho R, Paredes J, Ribeiro AS. Impact of breast cancer cells´ secretome on the brain metastatic niche remodeling. Semin Cancer Biol 2019; 60:294-301. [PMID: 31711993 DOI: 10.1016/j.semcancer.2019.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Brain metastases occur in approximately 10-20% of patients with metastatic breast cancer showing a very poor overall survival. Curiously, different molecular subtypes (that show specific gene expression signatures and differential prognostic significance) are associated with different risks for brain metastases development, suggesting that cancer cells harbor specific molecular programs that award them intrinsic advantages to survive in this specific foreign tissue. Emerging data has been revealing that biophysical and/or mechanical properties of the brain extracellular matrix (ECM), along with those of the brain resident cells, play a crucial role in creating the best conditions for survival, colonization and outgrowth of breast cancer cells in this distinct microenvironment. Although several reports show that cancer cells modulate metastatic niches way before they reach the target organ, few data exist for the brain metastatic niche. Indeed, little is known concerning how factors secreted by cancer cells activate brain resident cells and/or modify brain ECM biomechanical properties and how these modifications impact cells´ ability to metastasize the brain. The brain is a particular organ, protected by the blood brain barrier (BBB), and containing exclusive functional units and very special cell types. Additionally, it is the organ with the most singular ECM and biomechanical properties. Thus, this cancer cell-brain metastatic niche interaction must present distinct properties. Consequently, the search for putative molecular markers that modulate the brain pre-metastatic niche, thus promoting the successful metastatic homing of cancer cells, is urgently needed. In this review, we will discuss key aspects regarding breast cancer cells and the brain pre-metastatic niche paracrine communication that is crucial to initiate the metastatic cascade. We will focus on cancer cell`s secretome influence into the brain microenvironment, specifically on its impact on tissue mechanics and on brain resident cells as regulators of the pre-metastatic niche formation, ultimately promoting metastatic colonization.
Collapse
Affiliation(s)
| | - J Paredes
- i3S/IPATIMUP, 4200-135, Porto, Portugal
| | | |
Collapse
|
164
|
Leartprapun N, Iyer RR, Mackey CD, Adie SG. Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5877-5904. [PMID: 31799053 PMCID: PMC6865116 DOI: 10.1364/boe.10.005877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 05/05/2023]
Abstract
The notion that a spatially confined mechanical excitation would produce an elastogram with high spatial resolution has motivated the development of various elastography techniques with localized mechanical excitation. However, a quantitative investigation of the effects of spatial localization of mechanical excitation on the spatial resolution of elastograms is still lacking in optical coherence elastography (OCE). Here, we experimentally investigated the effect of spatial localization of acoustic radiation force (ARF) excitation on spatial resolution, contrast, and contrast-to-noise ratio (CNR) of dynamic uniaxial strain elastograms in dynamic ARF-OCE, based on a framework for analyzing the factors that influence the quality of the elastogram at different stages of the elastography workflow. Our results show that localized ARF excitation with a smaller acoustic focal spot size produced a strain elastogram with superior spatial resolution, contrast, and CNR. Our results also suggest that the spatial extent spanned by the displacement response in the sample may connect between the spatial localization of the mechanical excitation and the resulting elastogram quality. The elastography framework and experimental approach presented here may provide a basis for the quantitative analysis of elastogram quality in OCE that can be adapted and applied to different OCE systems and applications.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Rishyashring R. Iyer
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
- Present address: University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | - Colin D. Mackey
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| |
Collapse
|
165
|
Marrese M, Lonardoni D, Boi F, van Hoorn H, Maccione A, Zordan S, Iannuzzi D, Berdondini L. Investigating the Effects of Mechanical Stimulation on Retinal Ganglion Cell Spontaneous Spiking Activity. Front Neurosci 2019; 13:1023. [PMID: 31611765 PMCID: PMC6776634 DOI: 10.3389/fnins.2019.01023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces are increasingly recognized as major regulators of several physiological processes at both the molecular and cellular level; therefore, a deep understanding of the sensing of these forces and their conversion into electrical signals are essential for studying the mechanosensitive properties of soft biological tissues. To contribute to this field, we present a dual-purpose device able to mechanically stimulate retinal tissue and to record the spiking activity of retinal ganglion cells (RGCs). This new instrument relies on combining ferrule-top micro-indentation, which provides local measurements of viscoelasticity, with high-density multi-electrode array (HD-MEAs) to simultaneously record the spontaneous activity of the retina. In this paper, we introduce this instrument, describe its technical characteristics, and present a proof-of-concept experiment that shows how RGC spiking activity of explanted mice retinas respond to mechanical micro-stimulations of their photoreceptor layer. The data suggest that, under specific conditions of indentation, the retina perceive the mechanical stimulation as modulation of the visual input, besides the longer time-scale of activation, and the increase in spiking activity is not only localized under the indentation probe, but it propagates across the retinal tissue.
Collapse
Affiliation(s)
- Marica Marrese
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Lonardoni
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Boi
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Hedde van Hoorn
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alessandro Maccione
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Zordan
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Iannuzzi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Luca Berdondini
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
166
|
Methods of Delivering Mechanical Stimuli to Organ-on-a-Chip. MICROMACHINES 2019; 10:mi10100700. [PMID: 31615136 PMCID: PMC6843435 DOI: 10.3390/mi10100700] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Recent advances in integrating microengineering and tissue engineering have enabled the creation of promising microengineered physiological models, known as organ-on-a-chip (OOC), for experimental medicine and pharmaceutical research. OOCs have been used to recapitulate the physiologically critical features of specific human tissues and organs and their interactions. Application of chemical and mechanical stimuli is critical for tissue development and behavior, and they were also applied to OOC systems. Mechanical stimuli applied to tissues and organs are quite complex in vivo, which have not adequately recapitulated in OOCs. Due to the recent advancement of microengineering, more complicated and physiologically relevant mechanical stimuli are being introduced to OOC systems, and this is the right time to assess the published literature on this topic, especially focusing on the technical details of device design and equipment used. We first discuss the different types of mechanical stimuli applied to OOC systems: shear flow, compression, and stretch/strain. This is followed by the examples of mechanical stimuli-incorporated OOC systems. Finally, we discuss the potential OOC systems where various types of mechanical stimuli can be applied to a single OOC device, as a better, physiologically relevant recapitulation model, towards studying and evaluating experimental medicine, human disease modeling, drug development, and toxicology.
Collapse
|
167
|
Brif A, Laity P, Claeyssens F, Holland C. Dynamic Photo-cross-linking of Native Silk Enables Macroscale Patterning at a Microscale Resolution. ACS Biomater Sci Eng 2019; 6:705-714. [DOI: 10.1021/acsbiomaterials.9b00993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anastasia Brif
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Peter Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ, U.K
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| |
Collapse
|
168
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
169
|
Ahn S, Ardoña HAM, Campbell PH, Gonzalez GM, Parker KK. Alfalfa Nanofibers for Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33535-33547. [PMID: 31369233 DOI: 10.1021/acsami.9b07626] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Engineering bioscaffolds for improved cutaneous tissue regeneration remains a healthcare challenge because of the increasing number of patients suffering from acute and chronic wounds. To help address this problem, we propose to utilize alfalfa, an ancient medicinal plant that contains antibacterial/oxygenating chlorophylls and bioactive phytoestrogens, as a building block for regenerative wound dressings. Alfalfa carries genistein, which is a major phytoestrogen known to accelerate skin repair. The scaffolds presented herein were built from composite alfalfa and polycaprolactone (PCL) nanofibers with hydrophilic surface and mechanical stiffness that recapitulate the physiological microenvironments of skin. This composite scaffold was engineered to have aligned nanofibrous architecture to accelerate directional cell migration. As a result, alfalfa-based composite nanofibers were found to enhance the cellular proliferation of dermal fibroblasts and epidermal keratinocytes in vitro. Finally, these nanofibers exhibited reproducible regenerative functionality by promoting re-epithelialization and granulation tissue formation in both mouse and human skin, without requiring additional proteins, growth factors, or cells. Overall, these findings demonstrate the potential of alfalfa-based nanofibers as a regenerative platform toward accelerating cutaneous tissue repair.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
170
|
d'Angelo M, Benedetti E, Tupone MG, Catanesi M, Castelli V, Antonosante A, Cimini A. The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration. Cells 2019; 8:E1036. [PMID: 31491966 PMCID: PMC6770247 DOI: 10.3390/cells8091036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
The mechanotransduction is the process by which cells sense mechanical stimuli such as elasticity, viscosity, and nanotopography of extracellular matrix and translate them into biochemical signals. The mechanotransduction regulates several aspects of the cell behavior, including migration, proliferation, and differentiation in a time-dependent manner. Several reports have indicated that cell behavior and fate are not transmitted by a single signal, but rather by an intricate network of many signals operating on different length and timescales that determine cell fate. Since cell biology and biomaterial technology are fundamentals in cell-based regenerative therapies, comprehending the interaction between cells and biomaterials may allow the design of new biomaterials for clinical therapeutic applications in tissue regeneration. In this work, we present the most relevant mechanism by which the biomechanical properties of extracellular matrix (ECM) influence cell reprogramming, with particular attention on the new technologies and materials engineering, in which are taken into account not only the biochemical and biophysical signals patterns but also the factor time.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
171
|
Topographical cues control the morphology and dynamics of migrating cortical interneurons. Biomaterials 2019; 214:119194. [DOI: 10.1016/j.biomaterials.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022]
|
172
|
Pranda MA, Gray KM, DeCastro AJL, Dawson GM, Jung JW, Stroka KM. Tumor Cell Mechanosensing During Incorporation into the Brain Microvascular Endothelium. Cell Mol Bioeng 2019; 12:455-480. [PMID: 31719927 DOI: 10.1007/s12195-019-00591-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Tumor metastasis to the brain occurs in approximately 20% of all cancer cases and often occurs due to tumor cells crossing the blood-brain barrier (BBB). The brain microenvironment is comprised of a soft hyaluronic acid (HA)-rich extracellular matrix with an elastic modulus of 0.1-1 kPa, whose crosslinking is often altered in disease states. Methods To explore the effects of HA crosslinking on breast tumor cell migration, we developed a biomimetic model of the human brain endothelium, consisting of brain microvascular endothelial cell (HBMEC) monolayers on HA and gelatin (HA/gelatin) films with different degrees of crosslinking, as established by varying the concentration of the crosslinker Extralink. Results and Discussion Metastatic breast tumor cell migration speed, diffusion coefficient, spreading area, and aspect ratio increased with decreasing HA crosslinking, a mechanosensing trend that correlated with tumor cell actin organization but not CD44 expression. Meanwhile, breast tumor cell incorporation into endothelial monolayers was independent of HA crosslinking density, suggesting that alterations in HA crosslinking density affect tumor cells only after they exit the vasculature. Tumor cells appeared to exploit both the paracellular and transcellular routes of trans-endothelial migration. Quantitative phenotyping of HBMEC junctions via a novel Python software revealed a VEGF-dependent decrease in punctate VE-cadherin junctions and an increase in continuous and perpendicular junctions when HBMECs were treated with tumor cell-secreted factors. Conclusions Overall, our quantitative results suggest that a combination of biochemical and physical factors promote tumor cell migration through the BBB.
Collapse
Affiliation(s)
- Marina A Pranda
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Ariana Joy L DeCastro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Gregory M Dawson
- Department of Biology, University of Maryland, College Park, College Park, MD 20742 USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA.,Biophysics Program, University of Maryland, College Park, College Park, MD 20742 USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Fischell Department of Bioengineering, University of Maryland, College Park, 3110 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742 USA
| |
Collapse
|
173
|
Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 2019; 18:869-884. [PMID: 31462748 DOI: 10.1038/s41573-019-0039-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) - one of the five main families in the GPCR superfamily - have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.
Collapse
|
174
|
Closer to Nature Through Dynamic Culture Systems. Cells 2019; 8:cells8090942. [PMID: 31438519 PMCID: PMC6769584 DOI: 10.3390/cells8090942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanics in the human body are required for normal cell function at a molecular level. It is now clear that mechanical stimulations play significant roles in cell growth, differentiation, and migration in normal and diseased cells. Recent studies have led to the discovery that normal and cancer cells have different mechanosensing properties. Here, we discuss the application and the physiological and pathological meaning of mechanical stimulations. To reveal the optimal conditions for mimicking an in vivo microenvironment, we must, therefore, discern the mechanotransduction occurring in cells.
Collapse
|
175
|
Paul CD, Bishop K, Devine A, Paine EL, Staunton JR, Thomas SM, Thomas JR, Doyle AD, Miller Jenkins LM, Morgan NY, Sood R, Tanner K. Tissue Architectural Cues Drive Organ Targeting of Tumor Cells in Zebrafish. Cell Syst 2019; 9:187-206.e16. [PMID: 31445892 DOI: 10.1016/j.cels.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/28/2019] [Accepted: 06/27/2019] [Indexed: 01/03/2023]
Abstract
Tumor cells encounter a myriad of physical cues upon arrest and extravasation in capillary beds. Here, we examined the role of physical factors in non-random organ colonization using a zebrafish xenograft model. We observed a two-step process by which mammalian mammary tumor cells showed non-random organ colonization. Initial homing was driven by vessel architecture, where greater numbers of cells became arrested in the topographically disordered blood vessels of the caudal vascular plexus (CVP) than in the linear vessels in the brain. Following arrest, bone-marrow- and brain-tropic clones exhibited organ-specific patterns of extravasation. Extravasation was mediated by β1 integrin, where knockdown of β1 integrin reduced extravasation in the CVP but did not affect extravasation of a brain-tropic clone in the brain. In contrast, silencing myosin 1B redirected early colonization from the brain to the CVP. Our results suggest that organ selectivity is driven by both vessel topography and cell-type-dependent extravasation.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elliott L Paine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah M Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D Doyle
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
176
|
Mahajan G, Lee MY, Kothapalli C. Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity. Arch Toxicol 2019; 93:2979-2992. [PMID: 31428840 DOI: 10.1007/s00204-019-02549-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Conventional in vitro toxicity studies have focused on identifying IC50 and the underlying mechanisms, but how toxicants influence biophysical and biomechanical changes in human cells, especially during developmental stages, remain understudied. Here, using an atomic force microscope, we characterized changes in biophysical (cell area, actin organization) and biomechanical (Young's modulus, force of adhesion, tether force, membrane tension, tether radius) aspects of human fetal brain-derived neural progenitor cells (NPCs) induced by four classes of widely used toxic compounds, including rotenone, digoxin, N-arachidonoylethanolamide (AEA), and chlorpyrifos, under exposure up to 36 h. The sub-cellular mechanisms (apoptosis, mitochondria membrane potential, DNA damage, glutathione levels) by which these toxicants induced biochemical changes in NPCs were assessed. Results suggest a significant compromise in cell viability with increasing toxicant concentration (p < 0.01), and biophysical and biomechanical characteristics with increasing exposure time (p < 0.01) as well as toxicant concentration (p < 0.01). Impairment of mitochondrial membrane potential appears to be the most sensitive mechanism of neurotoxicity for rotenone, AEA and chlorpyrifos exposure, but compromise in plasma membrane integrity for digoxin exposure. The surviving NPCs remarkably retained stemness (SOX2 expression) even at high toxicant concentrations. A negative linear correlation (R2 = 0.92) exists between the elastic modulus of surviving cells and the number of living cells in that environment. We propose that even subtle compromise in cell mechanics could serve as a crucial marker of developmental neurotoxicity (mechanotoxicology) and therefore should be included as part of toxicology assessment repertoire to characterize as well as predict developmental outcomes.
Collapse
Affiliation(s)
- Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA
| | - Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Ave, FH 460, Cleveland, OH, 44115, USA.
| |
Collapse
|
177
|
Rauti R, Renous N, Maoz BM. Mimicking the Brain Extracellular Matrix
in Vitro
: A Review of Current Methodologies and Challenges. Isr J Chem 2019. [DOI: 10.1002/ijch.201900052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Noa Renous
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
178
|
Siddiqui S, Chandrasekaran A, Lin N, Tufenkji N, Moraes C. Microfluidic Shear Assay to Distinguish between Bacterial Adhesion and Attachment Strength on Stiffness-Tunable Silicone Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8840-8849. [PMID: 31177781 DOI: 10.1021/acs.langmuir.9b00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tuning surface composition and stiffness is now an established strategy to improve the integration of medical implants. Recent evidence suggests that matrix stiffness affects bacterial adhesion, but contradictory findings have been reported in the literature. Distinguishing between the effects of bacterial adhesion and attachment strength on these surfaces may help interpret these findings. Here, we develop a precision microfluidic shear assay to quantify bacterial adhesion strength on stiffness-tunable and biomolecule-coated silicone materials. We demonstrate that bacteria are more strongly attached to soft silicones, compared to stiff silicones; as determined by retention against increasing shear flows. Interestingly, this effect is reduced when the surface is coated with matrix biomolecules. These results demonstrate that bacteria do sense and respond to stiffness of the surrounding environment and that precisely defined assays are needed to understand the interplay among surface mechanics, composition, and bacterial binding.
Collapse
|
179
|
Ayad NME, Kaushik S, Weaver VM. Tissue mechanics, an important regulator of development and disease. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180215. [PMID: 31431174 DOI: 10.1098/rstb.2018.0215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A growing body of work describes how physical forces in and around cells affect their growth, proliferation, migration, function and differentiation into specialized types. How cells receive and respond biochemically to mechanical signals is a process termed mechanotransduction. Disease may arise if a disruption occurs within this mechanism of sensing and interpreting mechanics. Cancer, cardiovascular diseases and developmental defects, such as during the process of neural tube formation, are linked to changes in cell and tissue mechanics. A breakdown in normal tissue and cellular forces activates mechanosignalling pathways that affect their function and can promote disease progression. The recent advent of high-resolution techniques enables quantitative measurements of mechanical properties of the cell and its extracellular matrix, providing insight into how mechanotransduction is regulated. In this review, we will address the standard methods and new technologies available to properly measure mechanical properties, highlighting the challenges and limitations of probing different length-scales. We will focus on the unique environment present throughout the development and maintenance of the central nervous system and discuss cases where disease, such as brain cancer, arises in response to changes in the mechanical properties of the microenvironment that disrupt homeostasis. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Shelly Kaushik
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
180
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
181
|
Sorba F, Poulin A, Ischer R, Shea H, Martin-Olmos C. Integrated elastomer-based device for measuring the mechanics of adherent cell monolayers. LAB ON A CHIP 2019; 19:2138-2146. [PMID: 31115420 DOI: 10.1039/c9lc00075e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cells in the body collectively sustain mechanical deformations in almost all physiological functions. From the morphogenesis stage, cells' ability to sustain stress is essential for the body's well-being. Several pathologies have been associated with abnormal mechanical properties, thus suggesting the Young's modulus as a biomarker to diagnose diseases and determine their progression. Advancements in the field are quite slow because current techniques for measuring cell and tissue mechanics rely on complex and bulky measurement platforms that have low repeatability rates and limited measurement time-scales. We present the first miniaturized system that allows accurate quantification of the Young's modulus of adherent cell monolayers over a longer time (1-2 days). Our approach is based on tensile testing and optical read-out. Thanks to a thoughtful design and material choice, we are able to miniaturize tensile testing platforms into a 1 cm × 2 cm device. We provide highly repeatable Young's modulus measurements in the relevant range between 3 kPa and 300 kPa, over time and under physiological conditions, thus representing an interesting alternative to existing measurement platforms. Furthermore, the compatibility with standard biological equipment, continuous optical imaging and measurements on all types of adherent cells make this device highly versatile. Measurements on human sarcoma osteogenic (SaOS2) and Madin-Darby canine kidney cells (MDCK) are reported. The demonstrated capability to measure real-time changes in mechanical properties, such as after chemical treatment, opens the door for investigating the effects of drugs on cell mechanics.
Collapse
Affiliation(s)
- Francesca Sorba
- Swiss Center for Electronics and Microtechnology, CSEM SA, Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
182
|
Abraham JA, Linnartz C, Dreissen G, Springer R, Blaschke S, Rueger MA, Fink GR, Hoffmann B, Merkel R. Directing Neuronal Outgrowth and Network Formation of Rat Cortical Neurons by Cyclic Substrate Stretch. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7423-7431. [PMID: 30110535 DOI: 10.1021/acs.langmuir.8b02003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuronal mechanobiology plays a vital function in brain development and homeostasis with an essential role in neuronal maturation, pathfinding, and differentiation but is also crucial for understanding brain pathology. In this study, we constructed an in vitro system to assess neuronal responses to cyclic strain as a mechanical signal. The selected strain amplitudes mimicked physiological as well as pathological conditions. By subjecting embryonic neuronal cells to cyclic uniaxial strain we could steer the direction of neuronal outgrowth perpendicular to strain direction for all applied amplitudes. A long-term analysis proved maintained growth direction. Moreover, stretched neurons showed an enhanced length, growth, and formation of nascent side branches with most elevated growth rates subsequent to physiological straining. Application of cyclic strain to already formed neurites identified retraction bulbs with destabilized microtubule structures as spontaneous responses. Importantly, neurons were able to adapt to the mechanical signals without induction of cell death and showed a triggered growth behavior when compared to unstretched neurons. The data suggest that cyclic strain plays a critical role in neuronal development.
Collapse
Affiliation(s)
- Jella-Andrea Abraham
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| | - Christina Linnartz
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| | - Georg Dreissen
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| | - Ronald Springer
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| | - Stefan Blaschke
- Department of Neurology , University Hospital of Cologne , Cologne 50937 , Germany
- Institute of Neuroscience and Medicine (INM-3): Cognitive Neuroscience , Research Centre Jülich , Jülich 52425 , Germany
| | - Maria A Rueger
- Department of Neurology , University Hospital of Cologne , Cologne 50937 , Germany
- Institute of Neuroscience and Medicine (INM-3): Cognitive Neuroscience , Research Centre Jülich , Jülich 52425 , Germany
| | - Gereon R Fink
- Department of Neurology , University Hospital of Cologne , Cologne 50937 , Germany
- Institute of Neuroscience and Medicine (INM-3): Cognitive Neuroscience , Research Centre Jülich , Jülich 52425 , Germany
| | - Bernd Hoffmann
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| | - Rudolf Merkel
- Institute of Complex Systems (ICS-7): Biomechanics , Research Centre Jülich , Jülich 52425 , Germany
| |
Collapse
|
183
|
Valente KP, Thind SS, Akbari M, Suleman A, Brolo AG. Collagen Type I-Gelatin Methacryloyl Composites: Mimicking the Tumor Microenvironment. ACS Biomater Sci Eng 2019; 5:2887-2898. [PMID: 33405592 DOI: 10.1021/acsbiomaterials.9b00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic drugs can penetrate tissues by diffusion and advection. In a healthy tissue, the interstitial fluid is composed of an influx of nutrients and oxygen from blood vessels. In the case of cancerous tissue, the interstitial fluid is poorly drained because of the lack of lymphatic vasculature, resulting in an increase in interstitial pressure. Furthermore, cancer cells invade healthy tissue by pressing and pushing the surrounding environment, creating an increase in pressure inside the tumor area. This results in a large differential pressure between the tumor and the healthy tissue, leading to an increase in extracellular matrix (ECM) stiffness. Because of high interstitial pressure in addition to matrix stiffening, penetration and distribution of systemic therapies are limited to diffusion, decreasing the efficacy of cancer treatment. This work reports on the development of a microfluidic system that mimics in vitro healthy and cancerous microenvironments using collagen I and gelatin methacryloyl (GelMA) composite hydrogels. The microfluidic device developed here contains a simplistic design with a central chamber and two lateral channels. In the central chamber, hydrogel composites were used to mimic the ECM, whereas lateral channels simulated capillary vessels. The transport of fluorescein sodium salt and fluorescently labeled gold nanoparticles from capillary-mimicking channels through the ECM-mimicking hydrogel was explored by tracking fluorescence. By tuning the hydrogel composition and concentration, the impact of the tumor microenvironment properties on the transport of those species was evaluated. In addition, breast cancer MCF-7 cells were embedded in the hydrogel composites, displaying the formation of 3D clusters with high viability and, consequently, the development of an in vitro tumor model.
Collapse
|
184
|
Yu W, Sun W, Fan Q, Xue B, Li Y, Qin M, Li Y, Chen B, Wang W, Cao Y. Tuning of the dynamics of metal ion crosslinked hydrogels by network structures. SOFT MATTER 2019; 15:4423-4427. [PMID: 31106324 DOI: 10.1039/c9sm00768g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dynamic mechanical response of hydrogels is correlated with the intrinsic dynamics of the crosslinkers. Our experiments and theory show that polymer network structures can also affect the dynamic response of hydrogels by transducing swelling forces to the crosslinkers. Our results suggest a novel route to engineer complex time-dependent mechanical properties of soft materials for biomedical applications.
Collapse
Affiliation(s)
- Wenting Yu
- School of Physics, Nanjing University, 210093, Nanjing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Boudou T, Andersen T, Balland M. On the spatiotemporal regulation of cell tensional state. Exp Cell Res 2019; 378:113-117. [DOI: 10.1016/j.yexcr.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
|
186
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
187
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. Reduced Extracellular Matrix Stiffness Prompts SH-SY5Y Cell Softening and Actin Turnover To Selectively Increase Aβ(1-42) Endocytosis. ACS Chem Neurosci 2019; 10:1284-1293. [PMID: 30499651 DOI: 10.1021/acschemneuro.8b00366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aβ) peptide. All previous endocytosis studies assess Aβ uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased β1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aβ(1-42) compared to Aβ(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aβ has significant implications for understanding age-related neurodegeneration and the mechanism behind Aβ uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
188
|
Kim HN, Choi N. Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3101-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
189
|
Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells. Cell Death Dis 2019; 10:151. [PMID: 30770783 PMCID: PMC6377646 DOI: 10.1038/s41419-019-1309-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
Colon cancer stem cells (CSCs) have been shown to be responsible for the recurrence and metastasis of colorectal cancer (CRC). As a crucial microenvironmental factor, extracellular matrix (ECM) stiffness is known to affect the stemness of CSCs. Recently, fibrin deposition in the stroma of CRC was demonstrated to be responsible for tumor development. In this study, we used salmon fibrin gel to provide a 3D ECM for colon cancer cells and investigated its effects on cell growth as well as the underlying mechanisms. Compared with stiff 420 Pascal (Pa) and 1 050 Pa gels, 90 Pa soft fibrin gel was most efficient at isolating and enriching tumor colonies. The size and number of colony formation negatively correlated with gel stiffness. Specifically, these tumor colonies exhibited efficient tumorigenicity, upregulated stem cell markers, and had anti-chemotherapeutic properties and were thus named tumor-repopulating cells (TRCs). More importantly, the self-renewal molecule Nanog was sharply induced in 3D-cultured colon TRCs; further, Nanog siRNA significantly inhibited colony formation, suggesting the indispensable role of Nanog in TRC growth. A subsequent mechanistic study illustrated that Nanog expression could be modulated through fibrin gel stiffness-induced DAB2IP/PI3K/FOXA1 signaling in colon TRCs.
Collapse
|
190
|
Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019; 20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.
Collapse
|
191
|
Wang H, Morales RTT, Cui X, Huang J, Qian W, Tong J, Chen W. A Photoresponsive Hyaluronan Hydrogel Nanocomposite for Dynamic Macrophage Immunomodulation. Adv Healthc Mater 2019; 8:e1801234. [PMID: 30537061 PMCID: PMC6392032 DOI: 10.1002/adhm.201801234] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 12/22/2022]
Abstract
Macrophages are a predominant immune cell population that drive inflammatory responses and exhibit transitions in phenotype and function during tissue remodeling in disease and repair. Thus, engineering an immunomodulatory biomaterial has significant implications for resolving inflammation. Here, a biomimetic and photoresponsive hyaluronan (HA) hydrogel nanocomposite with tunable 3D extracellular matrix (ECM) adhesion sites for dynamic macrophage immunomodulation is engineered. Photodegradative alkoxylphenacyl-based polycarbonate (APP) nanocomposites are exploited to permit user-controlled Arg-Gly-Asp (RGD) adhesive peptide release and conjugation to a HA-based ECM for real-time integrin activation of macrophages encapsulated in 3D HA-APP nanocomposite hydrogels. It is demonstrated that photocontrolled 3D ECM-RGD peptide conjugation can activate αvβ3 integrin of macrophages, and periodic αvβ3 integrin activation can enhance anti-inflammatory M2 macrophage polarization. Altogether, an emerging use of biomimetic, photoresponsive, and bioactive HA-APP nanocomposite hydrogel is highlighted to command 3D cell-ECM interactions for modulating macrophage polarization, which may shed light on cell-ECM interactions in innate immunity and inspire new biomaterial-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Renee-Tyler Tan Morales
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Xin Cui
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Jiongxian Huang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
- Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
192
|
Long KR, Huttner WB. How the extracellular matrix shapes neural development. Open Biol 2019; 9:180216. [PMID: 30958121 PMCID: PMC6367132 DOI: 10.1098/rsob.180216] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
During development, both cells and tissues must acquire the correct shape to allow their proper function. This is especially relevant in the nervous system, where the shape of individual cell processes, such as the axons and dendrites, and the shape of entire tissues, such as the folding of the neocortex, are highly specialized. While many aspects of neural development have been uncovered, there are still several open questions concerning the mechanisms governing cell and tissue shape. In this review, we discuss the role of the extracellular matrix (ECM) in these processes. In particular, we consider how the ECM regulates cell shape, proliferation, differentiation and migration, and more recent work highlighting a key role of ECM in the morphogenesis of neural tissues.
Collapse
Affiliation(s)
- Katherine R. Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
193
|
Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds. Appl Biochem Biotechnol 2019; 188:750-768. [DOI: 10.1007/s12010-019-02958-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
194
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
195
|
Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2018; 54:364-373. [PMID: 30597545 DOI: 10.1111/jre.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The periodontal ligament (PDL) has important roles in maintaining homeostasis, wound healing, and regeneration of periodontal tissues by supplying stem/progenitor cells. Periodontal ligament stem cells (PDLSCs) have mesenchymal stem cell (MSC)-like characteristics and can be isolated from periodontal tissues. The aim of this study was to examine the effect of three-dimensional spheroid culture on the characteristics of PDLSCs. MATERIAL AND METHODS Periodontal ligament stem cells were isolated and cultured from healthy teeth, and PDLSC spheroids were formed by pellet culture in polypropylene tubes. The proliferation of PDLSCs in spheroids and conventional two-dimensional (2D) cultures were examined by immunostaining for Ki67. Cell death and cell size were analyzed using flow cytometry. Gene expression changes were investigated by quantitative real time PCR. RESULTS Periodontal ligament stem cells spontaneously formed spheroid masses in pellet culture. The size of PDLSC spheroids was inversely proportional to the culture period. Fewer Ki67-positive cells were detected in PDLSC spheroids compared to those in 2D culture. Flow cytometry revealed an increase in dead cells and a decrease in cell size in PDLSC spheroids. The expression levels of genes related to anti-inflammation (TSG6, COX2, MnSOD) and angiogenesis (VEGF, bFGF, HGF) were drastically increased by spheroid culture compared to 2D culture. TSG6 gene expression was inhibited in PDLSC spheroids in the presence of the apoptosis signal inhibitor, Z-VAD-FMK. Additionally, PDLSC spheroid transplantation into rat periodontal defects did not induce the regeneration of periodontal tissues. CONCLUSIONS We found that spheroid culture of PDLSCs affected several characteristics of PDLSCs, including the expression of genes related to anti-inflammation and angiogenesis; apoptosis signaling may be involved in these changes. Our results revealed the characteristics of PDLSCs in spheroid culture and have provided new information to the field of stem cell research.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka, Japan.,Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Biochemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
196
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
197
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
198
|
Wei WC, Bianchi F, Wang YK, Tang MJ, Ye H, Glitsch MD. Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Curr Biol 2018; 28:3815-3823.e4. [PMID: 30471999 DOI: 10.1016/j.cub.2018.10.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
The physical environment critically affects cell shape, proliferation, differentiation, and survival by exerting mechanical forces on cells. These forces are sensed and transduced into intracellular signals and responses by cells. A number of different membrane and cytoplasmic proteins have been implicated in sensing mechanical forces, but the picture is far from complete, and the exact transduction pathways remain largely elusive. Furthermore, mechanosensation takes place alongside chemosensation, and cells need to integrate physical and chemical signals to respond appropriately and ensure normal tissue and organ development and function. Here, we report that ovarian cancer G protein coupled receptor 1 (OGR1) (aka GPR68) acts as coincidence detector of membrane stretch and its physiological ligand, extracellular H+. Using fluorescence imaging, substrates of different stiffness, microcontact printing methods, and cell-stretching techniques, we show that OGR1 only responds to extracellular acidification under conditions of membrane stretch and vice versa. The level of OGR1 activity mirrors the extent of membrane stretch and degree of extracellular acidification. Furthermore, actin polymerization in response to membrane stretch is critical for OGR1 activity, and its depolymerization limits how long OGR1 remains responsive following a stretch event, thus providing a "memory" for past stretch. Cells experience changes in membrane stretch and extracellular pH throughout their lifetime. Because OGR1 is a widely expressed receptor, it represents a unique yet widespread mechanism that enables cells to respond dynamically to mechanical and pH changes in their microenvironment by integrating these chemical and physical stimuli at the receptor level.
Collapse
Affiliation(s)
- Wei-Chun Wei
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Fabio Bianchi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Maike D Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
199
|
Abstract
Mechanical cues regulate neuronal function and reactivity of glial cells, the origin of gliomas. In this issue of Neuron, Chen et al. (2018) uncover a feedforward loop mediated by the mechanosensitive ion channel Piezo1 and tissue stiffness that drives glioma aggression.
Collapse
Affiliation(s)
- Shelly Kaushik
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anders I Persson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
200
|
Vining KH, Stafford A, Mooney DJ. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 2018; 188:187-197. [PMID: 30366219 DOI: 10.1016/j.biomaterials.2018.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/13/2023]
Abstract
Materials that can mimic the fibrillar architecture of native extracellular matrix (ECM) while allowing for independent regulation of viscoelastic properties may serve as ideal, artificial ECM (aECM) to regulate cell functions. Here we describe an interpenetrating network of click-functionalized alginate, crosslinked with a combination of ionic and covalent crosslinking, and fibrillar collagen type I. Varying the mode and magnitude of crosslinking enables tunable stiffness and viscoelasticity, while altering neither the hydrogel's microscale architecture nor diffusional transport of molecules with molecular weight relevant to typical nutrients. Further, appropriately timing sequential ionic and covalent crosslinking permits self-assembly of collagen into fibrillar structures within the network. Culture of human mesenchymal stem cells (MSCs) in this mechanically-tunable ECM system revealed that MSC expression of immunomodulatory markers is differentially impacted by the viscoelasticity and stiffness of the matrix. Together, these results describe and validate a novel material system for investigating how viscoelastic mechanical properties of ECM regulate cellular behavior.
Collapse
Affiliation(s)
- Kyle H Vining
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|