151
|
Rumisha SF, Shayo EH, Mboera LEG. Spatio-temporal prevalence of malaria and anaemia in relation to agro-ecosystems in Mvomero district, Tanzania. Malar J 2019; 18:228. [PMID: 31288840 PMCID: PMC6617584 DOI: 10.1186/s12936-019-2859-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Agro-ecological systems have been associated with increased malaria intensity. This study determined association between different agro-ecological systems, prevalence of malaria parasitaemia and anaemia in Mvomero district, Tanzania. METHODS The study was carried out in three agro-ecosystems namely, savannah, rice-irrigation, and sugarcane. Malaria and anaemia prevalence were measured in four seasons of a year. Villages were categorized according to environmental characteristics, proportion of water-shaded areas and agro-ecosystems. Mixed-effects logistic regression analysis was used to determine factors associated with malaria infection. RESULTS A total of 7888 individuals were involved with the overall malaria prevalence of 34.4%. Plasmodium falciparum was the dominant (99.52%) malaria species. Malaria prevalence was highest (42.9%) in children of 10-15 years of age, and significantly low during dry and hot season. Of the infected individuals, 78.1% were from rice-irrigation, 18.7% savannah and 3.2% sugarcane ecosystem. Individuals living in villages with high levels of water-shaded areas had highest malaria risk. Over three-quarters (78.9%) of the individuals slept under a mosquito net, with the highest (88.5%) coverage among individuals in sugarcane ecosystem. On average 47.1% of the children were anaemic. Anaemia was more prevalent (60.5%) among individuals in the savannah than in the rice-irrigation (48.2%) or sugarcane communities (23%). Analysis indicated that ecosystems and levels of water-shaded area were highly correlated, and altered levels of malaria infection. Gender, age, mosquito net-use, and season were other significant determinants of P. falciparum infection. Males had higher odds than females (OR = 1.16, 95% CI 1.05, 1.29). The risk for children 6-9 years and older children (10-15 years) was over 50% and 24%, respectively, higher compared to young ones (0-5 years). Use of mosquito net reduced malaria risk by 26%. The risk of infection was higher during dry and cool season (OR = 1.92, 95 %CI 1.66, 2.23) compared to other seasons. Living in villages with high level of water-shaded areas increased the chances of getting malaria up to 15 times than living in drier areas. Similarly, infection odds increased when living in savannah and rice-irrigation ecosystems than in the sugarcane ecosystem. CONCLUSIONS Findings show significant variations in malaria prevalence between communities living in different agro-ecosystems within the same district. Local malaria control strategies should consider these variations and liaise with agricultural experts while designing interventions to maximize effectiveness.
Collapse
Affiliation(s)
- Susan F Rumisha
- National Institute for Medical Research, 3 Barack Obama Drive, P.O. Box 9653, Dar es Salaam, Tanzania.
| | - Elizabeth H Shayo
- National Institute for Medical Research, 3 Barack Obama Drive, P.O. Box 9653, Dar es Salaam, Tanzania
| | - Leonard E G Mboera
- National Institute for Medical Research, 3 Barack Obama Drive, P.O. Box 9653, Dar es Salaam, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
152
|
Boerlijst SP, Trimbos KB, Van der Beek JG, Dijkstra KDB, Van der Hoorn BB, Schrama M. Field Evaluation of DNA Based Biodiversity Monitoring of Caribbean Mosquitoes. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
153
|
Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, Hudson PJ, Jouanard N, Nguyen KH, Ostfeld RS, Remais JV, Riveau G, Sokolow SH, Tilman D. Emerging human infectious diseases and the links to global food production. NATURE SUSTAINABILITY 2019; 2:445-456. [PMID: 32219187 PMCID: PMC7091874 DOI: 10.1038/s41893-019-0293-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/17/2019] [Indexed: 05/07/2023]
Abstract
Infectious diseases are emerging globally at an unprecedented rate while global food demand is projected to increase sharply by 2100. Here, we synthesize the pathways by which projected agricultural expansion and intensification will influence human infectious diseases and how human infectious diseases might likewise affect food production and distribution. Feeding 11 billion people will require substantial increases in crop and animal production that will expand agricultural use of antibiotics, water, pesticides and fertilizer, and contact rates between humans and both wild and domestic animals, all with consequences for the emergence and spread of infectious agents. Indeed, our synthesis of the literature suggests that, since 1940, agricultural drivers were associated with >25% of all - and >50% of zoonotic - infectious diseases that emerged in humans, proportions that will likely increase as agriculture expands and intensifies. We identify agricultural and disease management and policy actions, and additional research, needed to address the public health challenge posed by feeding 11 billion people.
Collapse
Affiliation(s)
- Jason R. Rohr
- Department of Biological Sciences, Eck Institute for Global Health, and Environmental Change Initiative, University of Notre Dame, Notre Dame, IN USA
- Department of Integrative Biology, University of South Florida, Tampa, FL USA
| | | | | | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN USA
| | - Bryan Delius
- Department of Integrative Biology, University of South Florida, Tampa, FL USA
| | - Giulio A. DeLeo
- Department of Biology and Woods Institute for the Environment, Hopkins Marine Station, Stanford University, Pacific Grove, CA USA
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, College Station, PA USA
| | - Nicolas Jouanard
- Laboratoire de Recherches Biomédicales, Espoir pour la Santé, Saint-Louis, Senegal
| | - Karena H. Nguyen
- Department of Integrative Biology, University of South Florida, Tampa, FL USA
| | | | - Justin V. Remais
- Division of Environmental Health Sciences, University of California, Berkeley, Berkeley, CA USA
| | - Gilles Riveau
- Laboratoire de Recherches Biomédicales, Espoir pour la Santé, Saint-Louis, Senegal
| | - Susanne H. Sokolow
- Department of Biology and Woods Institute for the Environment, Hopkins Marine Station, Stanford University, Pacific Grove, CA USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA USA
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN USA
| |
Collapse
|
154
|
VanAcker MC, Lambert MR, Schmitz OJ, Skelly DK. Suburbanization Increases Echinostome Infection in Green Frogs and Snails. ECOHEALTH 2019; 16:235-247. [PMID: 31346852 DOI: 10.1007/s10393-019-01427-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
An important contribution to infectious disease emergence in wildlife is environmental degradation driven by pollution, habitat fragmentation, and eutrophication. Amphibians are a wildlife group that is particularly sensitive to land use change, infectious diseases, and their interactions. Residential suburban land use is now a dominant, and increasing, form of land cover in the USA and globally, contributing to increased pollutant and nutrient loading in freshwater systems. We examined how suburbanization affects the infection of green frog (Rana clamitans) tadpoles and metamorphs by parasitic flatworms (Echinostoma spp.) through the alteration of landscapes surrounding ponds and concomitant changes in water quality. Using sixteen small ponds along a forest-suburban land use gradient, we assessed how the extent of suburban land use surrounding ponds influenced echinostome infection in both primary snail and secondary frog hosts. Our results show that the degree of suburbanization and concurrent chemical loading are positively associated with the presence and burden of echinostome infection in both host populations. This work contributes to a broader understanding of how land use mediates wildlife parasitism and shows how human activities at the household scale can have similar consequences for wildlife health as seemingly more intensive land uses like agriculture or urbanization.
Collapse
Affiliation(s)
- Meredith C VanAcker
- Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA.
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA.
| | - Max R Lambert
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Oswald J Schmitz
- Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - David K Skelly
- Yale School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| |
Collapse
|
155
|
Water and health: From environmental pressures to integrated responses. Acta Trop 2019; 193:217-226. [PMID: 30857860 DOI: 10.1016/j.actatropica.2019.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
The water-related exposome is a significant determinant of human health. The disease burden through water results from water-associated communicable and non-communicable diseases and is influenced by water pollution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper analyses a range of water practitioner-driven health issues, including infectious diseases and chemical intoxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), complemented with a selective literature review. Pressures in the environment result in changes in the State of the water body: chemical pollution, microbiological contamination and the presence of vectors. These and other health hazards affect the State of human health. The resulting Impacts in an exposed population or affected ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution, microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities. Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of several health issues at the same time. Systematic and integrated planning and management of water resources, with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing the health benefits.
Collapse
|
156
|
Craig PS, Giraudoux P, Wang ZH, Wang Q. Echinococcosis transmission on the Tibetan Plateau. ADVANCES IN PARASITOLOGY 2019; 104:165-246. [PMID: 31030769 DOI: 10.1016/bs.apar.2019.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the mid-1990s detailed studies and field investigations on the Tibetan Plateau have revealed human echinococcosis to be an under-reported major public health problem, particularly in the dominant pastoral communities in the eastern and central regions. Human prevalence surveys showed that cystic echinococcosis (CE, caused by Echinococcus granulosus) and alveolar echinococcosis (AE, caused by Echinococcus multilocularis) are co-endemic with higher burdens of each disease than other endemic world regions. Epidemiological investigations identified some major risk factors for human CE and AE including dog ownership, husbandry practices and landscape features. Dogs appear to be the major zoonotic reservoir for both E. granulosus and E. multilocularis, but the latter is also transmitted in complex wildlife cycles. Small mammal assemblages especially of vole and pika species thrive on the Plateau and contribute to patterns of E. multilocularis transmission which are influenced by landscape characteristics and anthropogenic factors. Tibetan foxes are a principal definitive host for both E. multilocularis and E. shiquicus. In 2006 a national echinococcosis control programme was initiated in Tibetan communities in northwest Sichuan Province and rolled out to all of western China by 2010, and included improved surveillance (and treatment access) of human disease and regular deworming of dogs with annual copro-testing. Control of echinococcosis in Tibetan pastoral communities poses a difficult challenge for delivery and sustainability.
Collapse
Affiliation(s)
- Phil S Craig
- School of Environment and Life Sciences, University of Salford, Greater Manchester, United Kingdom.
| | - Patrick Giraudoux
- Department of Chrono-Environment, UMR UFC/CNRS, Université de Franche-Comté, Besancon, France; Laboratory of Wildlife Management and Ecosystem Health, Yunnan University of Finance and Economics, Kunming, China.
| | - Zheng Huan Wang
- School of Life Sciences, and Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai, China; Joint Translational Science and Technology Research Institute, Shanghai, China
| | - Qian Wang
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
157
|
Titcomb GC, Jerde CL, Young HS. High-Throughput Sequencing for Understanding the Ecology of Emerging Infectious Diseases at the Wildlife-Human Interface. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
158
|
Johnson J, Degeling C. Does One Health require a novel ethical framework? JOURNAL OF MEDICAL ETHICS 2019; 45:239-243. [PMID: 30772841 DOI: 10.1136/medethics-2018-105043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 05/24/2023]
Abstract
Emerging infectious diseases (EIDs) remain a significant and dynamic threat to the health of individuals and the well-being of communities across the globe. Over the last decade, in response to these threats, increasing scientific consensus has mobilised in support of a One Health (OH) approach so that OH is now widely regarded as the most effective way of addressing EID outbreaks and risks. Given the scientific focus on OH, there is growing interest in the philosophical and ethical dimensions of this approach, and a nascent OH literature is developing in the humanities. One of the key issues raised in this literature concerns ethical frameworks and whether OH merits the development of its very own ethical framework. In this paper, we argue that although the OH approach does not demand a new ethical framework (and that advocates of OH can coherently adhere to this approach while deploying existing ethical frameworks), an OH approach does furnish the theoretical resources to support a novel ethical framework, and there are benefits to developing one that may be lost in its absence. We begin by briefly explaining what an OH approach to the threats posed by EIDs entails before outlining two different ways of construing ethical frameworks. We then show that although on one account of ethical frameworks there is no need for OH to generate its own, there may be advantages for its advocates in doing so.
Collapse
Affiliation(s)
- Jane Johnson
- Westmead Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Philosophy, Macquarie University, NSW, Australia
| | - Chris Degeling
- Australian Centre for Health Engagement, Evidence and Values, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
159
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J 2019; 18:66. [PMID: 30849978 PMCID: PMC6408765 DOI: 10.1186/s12936-019-2693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia. .,School of Population and Global Health, University of Western Australia, Perth, Australia.
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Stirling Terrace, Albany, WA, 6330, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
160
|
Diallo D, Diagne CT, Buenemann M, Ba Y, Dia I, Faye O, Sall AA, Faye O, Watts DM, Weaver SC, Hanley KA, Diallo M. Biodiversity Pattern of Mosquitoes in Southeastern Senegal, Epidemiological Implication in Arbovirus and Malaria Transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:453-463. [PMID: 30428055 PMCID: PMC6941392 DOI: 10.1093/jme/tjy204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 06/01/2023]
Abstract
The composition, density, diversity, and temporal distribution of mosquito species and the influence of temperature, relative humidity, and rainfall on these data were investigated in 50 sites across five land cover classes (forest, savannah, barren, village, and agriculture) in southeastern Senegal. Mosquitoes were collected monthly in each site between June 2009 and March 2011, with three people collecting mosquitoes landing on their legs for one to four consecutive days. In total, 81,219 specimens, belonging to 60 species and 7 genera, were collected. The most abundant species were Aedes furcifer (Edwards) (Diptera: Culicidae) (20.7%), Ae. vittatus (Bigot) (19.5%), Ae. dalzieli (Theobald) (14.7%), and Ae. luteocephalus (Newstead) (13.7%). Ae. dalzieli, Ae. furcifer, Ae. vittatus, Ae. luteocephalus, Ae. taylori Edwards, Ae. africanus (Theobald), Ae. minutus (Theobald), Anopheles coustani Laveran, Culex quinquefasciatus Say, and Mansonia uniformis (Theobald) comprised ≥10% of the total collection, in at least one land cover. The lowest species richness and Brillouin diversity index (HB = 1.55) were observed in the forest-canopy. The urban-indoor fauna showed the highest dissimilarity with other land covers and was most similar to the urban-outdoor fauna following Jaccard and Morisita index. Mosquito abundance peaked in June and October 2009 and July and October 2010. The highest species density was recorded in October. The maximum temperature was correlated positively with mean temperature and negatively with rainfall and relative humidity. Rainfall showed a positive correlation with mosquito abundance and species density. These data will be useful for understanding the transmission of arboviruses and human malaria in the region.
Collapse
Affiliation(s)
- Diawo Diallo
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh T Diagne
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Yamar Ba
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Oumar Faye
- Pole virologie, Institut Pasteur de Dakar, Sénégal
| | | | - Ousmane Faye
- Pole virologie, Institut Pasteur de Dakar, Sénégal
| | - Douglas M Watts
- Office of Research and Sponsored Projects, University of Texas at El Paso, El Paso, TX
| | - Scott C Weaver
- Institute for Human Infections and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Mawlouth Diallo
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
161
|
Julião GR, Novo SPC, Ríos-Velásquez CM, Desmoulière SJM, Luz SLB, Pessoa FAC. Sand Fly Fauna Associated With Dwellings and Forest Habitats Along the BR-319 Highway, Amazonas, Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:540-546. [PMID: 30304536 DOI: 10.1093/jme/tjy179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Roads and highways can affect the spread of insect-borne diseases by limiting or amplifying the spatiotemporal distribution of vectors, pathogens, and hosts, which can, in turn, lead to the creation of a nidus of infection. The aim of this study was to compare the diversity (richness and abundance) of phlebotomine sand flies in household and forest edge environments found along two different segments of an Amazonian highway. Sampling was conducted along the northern and southern portions of highway BR-319, in Amazonas State, Brazil. At each sampling point, Hoover Pugedo traps were set in indoor and outdoor habitats, and at forests edges, and captures were made between 06:00 pm and 06:00 am. A total of 1,189 sand flies were captured and 48 species were identified. As expected, a greater number of species and individuals were captured in forest edge environments. Permutational Multivariate Analyses of Variance (PERMANOVA) and Permutational Analyses of Multivariate Dispersions (PERMDISP) analyses showed that sand fly fauna differed significantly among habitats, but no variance in species composition was observed between the two road segments. Some of the captured species were species that have been implicated as vectors of Leishmania spp. Ross, 1903 (Kinetoplastida: Trypanosomatidae).
Collapse
Affiliation(s)
- Genimar R Julião
- Laboratório de Entomologia, Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Shênia P C Novo
- Laboratório de Paleoparasitologia, Fundação Oswaldo Cruz, ENSP, Rio de Janeiro, RJ, Brazil
| | - Claudia M Ríos-Velásquez
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Fiocruz Amazônia, Manaus, AM, Brazil
| | - Sylvain J M Desmoulière
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Fiocruz Amazônia, Manaus, AM, Brazil
| | - Sérgio L B Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Fiocruz Amazônia, Manaus, AM, Brazil
| | - Felipe A C Pessoa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Fiocruz Amazônia, Manaus, AM, Brazil
| |
Collapse
|
162
|
Tian H, Stenseth NC. The ecological dynamics of hantavirus diseases: From environmental variability to disease prevention largely based on data from China. PLoS Negl Trop Dis 2019; 13:e0006901. [PMID: 30789905 PMCID: PMC6383869 DOI: 10.1371/journal.pntd.0006901] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome (HPS) in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. In recent decades, repeated outbreaks of hantavirus disease have led to public concern and have created a global public health burden. Hantavirus spillover from natural hosts into human populations could be considered an ecological process, in which environmental forces, behavioral determinants of exposure, and dynamics at the human–animal interface affect human susceptibility and the epidemiology of the disease. In this review, we summarize the progress made in understanding hantavirus epidemiology and rodent reservoir population biology. We mainly focus on three species of rodent hosts with longitudinal studies of sufficient scale: the striped field mouse (Apodemus agrarius, the main reservoir host for Hantaan virus [HTNV], which causes HFRS) in Asia, the deer mouse (Peromyscus maniculatus, the main reservoir host for Sin Nombre virus [SNV], which causes HPS) in North America, and the bank vole (Myodes glareolus, the main reservoir host for Puumala virus [PUUV], which causes HFRS) in Europe. Moreover, we discuss the influence of ecological factors on human hantavirus disease outbreaks and provide an overview of research perspectives.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- * E-mail: (HT); (NCS)
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
- Department of Earth System Science, Tsinghua University, Beijing, China
- * E-mail: (HT); (NCS)
| |
Collapse
|
163
|
Kosai S, Yamasue E. Global warming potential and total material requirement in metal production: Identification of changes in environmental impact through metal substitution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1764-1775. [PMID: 30316094 DOI: 10.1016/j.scitotenv.2018.10.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 05/26/2023]
Abstract
In view of the increasing demand for metal use, it is of significant importance to evaluate the environmental impact of metal production. The global warming potential (GWP) in the process of metal production has often been focused upon as a major indicator for evaluating the burden on the environment. Moreover, the environmental impact and mineral exploitation arising from metal ore mining activities, which generate unavoidable mine wastes and have an impact on the ecological biodiversity, cannot be ignored. The major factors for determining the intensity of resource exploitation being the ore grades and strip ratio, the existing indicators for land use employed in the life cycle assessment (LCA) may not fully cover the criteria of the impact of metal mining on the environmental system. Therefore, this study employs the method of total material requirement (TMR) assessment, involving not only the direct and indirect material inputs but also the hidden flows, which are particularly associated with mine wastes. Firstly, the methodology of computing the TMR in the process of metal production is developed. Next, the relation between the GWP and TMR for 58 metals is assessed and finally, the environmental impact through metal substitutes is evaluated from the perspectives of the GWP and TMR. This analysis could identify some of the aspects overlooked in the previous environmental criteria that were concentrating on greenhouse gas emissions and global warming. The developed algorithm may be useful in identifying appropriate metal substitutes, considering the environmental impact.
Collapse
Affiliation(s)
- Shoki Kosai
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga, Japan.
| | - Eiji Yamasue
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
164
|
Triguero-Ocaña R, Barasona JA, Carro F, Soriguer RC, Vicente J, Acevedo P. Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain. PLoS One 2019; 14:e0211216. [PMID: 30682123 PMCID: PMC6347242 DOI: 10.1371/journal.pone.0211216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
Controlling infections shared by wildlife and livestock requires the understanding and quantification of interspecific interactions between the species involved. This is particularly important in extensive multi-host systems, in which controlled domestic animals interact with uncontrolled, abundant and expanding wild species, such as wild ungulates. We have, therefore, quantified the interspecific interactions between wild boar (Sus scrofa) and free-ranging cattle in Mediterranean Spain, along with their spatio-temporal variability. GPS-GSM-collars were used to monitor 12 cows and 14 wild boar in the Doñana National Park between 2011 and 2013. Interactions were defined as encounters between cattle and wild boar within a spatio-temporal window of 52 m and 1 hour. On average, each wild boar interacted with one cow 1.5 ± (SE) 0.5 times per day, while each cow interacted with one wild boar 1.3 ± 0.4 times per day. The frequency of interaction was significantly higher during crepuscular hours owing to the overlap of both species’ activity, and also during spring and autumn, probably owing to a higher individual aggregation around shared resources. Finally, the frequency of interaction was higher near the most significant shared resources (e.g. water points) but was lower in areas with dense vegetation. The results presented here show the usefulness of GPS monitoring as regards quantifying interactions and helping to clarify the process of pathogen transmission at the wildlife-livestock interface in Mediterranean Spain, along with the main spatio-temporal risk factors. In a changing scenario in which European populations of wild ungulates are increasing, more efficient measures with which to control interactions are required to meet the demands of farmers and managers. Our results, therefore, provide directional hypotheses that could be used to design disease control programmes.
Collapse
Affiliation(s)
- Roxana Triguero-Ocaña
- Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
- * E-mail:
| | - José A. Barasona
- VISAVET Centre, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | | | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, Ciudad Real, Spain
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, Ciudad Real, Spain
| |
Collapse
|
165
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
166
|
Hertig E. Distribution of Anopheles vectors and potential malaria transmission stability in Europe and the Mediterranean area under future climate change. Parasit Vectors 2019; 12:18. [PMID: 30621785 PMCID: PMC6325871 DOI: 10.1186/s13071-018-3278-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
Background In the scope of climate change the possible recurrence and/or expansion of vector-borne diseases poses a major concern. The occurrence of vector competent Anopheles species as well as favorable climatic conditions may lead to the re-emergence of autochthonous malaria in Europe and the Mediterranean area. However, high-resolution assessments of possible changes of Anopheles vector distributions and of potential malaria transmission stability in the European-Mediterranean area under changing climatic conditions during the course of the 21st century are not available yet. Methods Boosted Regression Trees are applied to relate climate variables and land cover classes to vector occurrences. Changes in future vector distributions and potential malaria transmission stability due to climate change are assessed using state-of-the art regional climate model simulations. Results Distinct changes in the distributions of the dominant vectors of human malaria are to be expected under climate change. In general, temperature and precipitation changes will lead to a northward spread of the occurrences of Anopheles vectors. Yet, for some Mediterranean areas, occurrence probabilities may decline. Conclusions Potential malaria transmission stability is increased in areas where the climatic changes favor vector occurrences as well as significantly impact the vectorial capacity. As a result, vector stability shows the highest increases between historical and future periods for the southern and south-eastern European areas. Anopheles atroparvus, the dominant vector in large parts of Europe, might play an important role with respect to changes of the potential transmission stability. Electronic supplementary material The online version of this article (10.1186/s13071-018-3278-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Hertig
- Institute of Geography, University of Augsburg, Alter Postweg 118, 86135, Augsburg, Germany.
| |
Collapse
|
167
|
Saijuntha W, Sithithaworn P, Kiatsopit N, Andrews RH, Petney TN. Liver Flukes: Clonorchis and Opisthorchis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:139-180. [PMID: 31297762 DOI: 10.1007/978-3-030-18616-6_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics, and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts, are important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that a transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes, and hence contribute to reduction of cholangiocarcinoma in endemic areas.
Collapse
Affiliation(s)
- Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ross H Andrews
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, St Mary's Campus, Imperial College London, London, UK
| | - Trevor N Petney
- CASCAP, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Paleontology and Evolution, State Museum of Natural History, Karlsruhe, Germany
| |
Collapse
|
168
|
Carr AN, Milleson MP, Hernández FA, Merrill HR, Avery ML, Wisely SM. Wildlife Management Practices Associated with Pathogen Exposure in Non-Native Wild Pigs in Florida, U.S. Viruses 2018; 11:E14. [PMID: 30587789 PMCID: PMC6356989 DOI: 10.3390/v11010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Land use influences disease emergence by changing the ecological dynamics of humans, wildlife, domestic animals, and pathogens. This is a central tenet of One Health, and one that is gaining momentum in wildlife management decision-making in the United States. Using almost 2000 serological samples collected from non-native wild pigs (Sus scrofa) throughout Florida (U.S.), we compared the prevalence and exposure risk of two directly transmitted pathogens, pseudorabies virus (PrV) and Brucella spp., to test the hypothesis that disease emergence would be positively correlated with one of the most basic wildlife management operations: Hunting. The seroprevalence of PrV-Brucella spp. coinfection or PrV alone was higher for wild pigs in land management areas that allowed hunting with dogs than in areas that culled animals using other harvest methods. This pattern did not hold for Brucella alone. The likelihood of exposure to PrV, but not Brucella spp., was also significantly higher among wild pigs at hunted sites than at sites where animals were culled. By failing to consider the impact of dog hunting on the emergence of non-native pathogens, current animal management practices have the potential to affect public health, the commercial livestock industry, and wildlife conservation.
Collapse
Affiliation(s)
- Amanda N Carr
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
- Present Address: Biology Department, Western Washington University, Bellingham, WA 98225, USA.
| | - Michael P Milleson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Gainesville, FL 32641, USA.
| | - Felipe A Hernández
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32601, USA.
| | - Hunter R Merrill
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32603, USA.
| | - Michael L Avery
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Gainesville, FL 32641, USA.
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
169
|
Decision Making within the Built Environment as a Strategy for Mitigating the Risk of Malaria and Other Vector-Borne Diseases. BUILDINGS 2018. [DOI: 10.3390/buildings9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although significant efforts have been made to combat the spread of vector-borne diseases (VBDs), they still account for more than 17% of all infectious diseases. According to the World Health Organization (WHO), there were 216 million estimated cases in 2016. The efforts that resulted in these positive outcomes lack long-term financial sustainability because of the significant amount of funding involved. There is, therefore, a need for more cost-effective intervention. The authors contend that design decisions in the built environment can have a positive impact on the efforts directed at mitigating the risk of malaria in a more cost-effective manner. It is known that the built environment, through features such as openings, can propagate the spread of malaria. There have been some significant efforts directed at addressing this risk. This notwithstanding, an extensive review of closely related work established that built environment professionals have limited access to information on specific ways through which their design decisions can contribute to mitigating the risk of malaria. The validity of this hypothesis was tested through evaluating the opportunities for synergies in selected parts of East Africa. Secondary data derived from relevant urban health journals as well as repositories curated by leading health agencies such as WHO were synthesized and analyzed using a web of causation approach. The outcome of the analysis is a schema of primary and secondary source (risk) factors. The use of the web of causation approach revealed the existing factor-to-factor interactions that could have a reinforcing effect. This information was used to identify the critical linkages and interdependencies across different factors. The outcome of the analysis was mapped against risk factors that can be linked to decisions made during the six primary phases of the construction life cycle: Preliminary phase, conceptual design, detailed design, construction, facilities management, and end of life/disuse. A conceptual architecture for a decision support framework has been proposed and will be developed into a prototype in subsequent efforts.
Collapse
|
170
|
Li Y, Jiang L, Lv W, Cui S, Zhang L, Wang Q, Meng F, Li B, Liu P, Suonan J, Renzeng W, Li X, Luo C, Zhang Z, Dorji T, Wang Y, Wang S. Fungal pathogens pose a potential threat to animal and plant health in desertified and pika-burrowed alpine meadows on the Tibetan Plateau. Can J Microbiol 2018; 65:365-376. [PMID: 30566369 DOI: 10.1139/cjm-2018-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intact Tibetan meadows provide significant defense against soil-borne pathogen dispersal. However, dramatic meadow degradation has been observed due to climate change and pika damage, but their impacts on soil-borne pathogens are still unclear. With approximately 40% of the world's population living in Tibetan Plateau and its downstream watersheds, this lack of knowledge should be of great concern. Here, we used Illumina amplicon sequencing to characterize the changes in potential human, domestic animal, plant, and zoonotic bacterial and fungal pathogens in nondegraded, desertified, and pika-burrowed meadows. The relative abundance of bacterial domestic animal pathogens and zoonotic pathogens were significantly increased by desertification. Pika burrowing significantly increased the relative abundance of bacterial human pathogens and zoonotic pathogens. The species richness and relative abundance of fungal pathogens was significantly increased by desertification and pika burrowing. Accordingly, fungal plant and animal pathogens categorized by FUNGuid significantly increased in desertified and pika-burrowed meadows. Soil chemical and plant properties explained 38% and 64% of the bacterial and fungal pathogen community variance, respectively. Therefore, our study indicates for the first time that both alpine meadow desertification and pika burrowing could potentially increase infectious disease risks in the alpine ecosystem, especially for fungal diseases.
Collapse
Affiliation(s)
- Yaoming Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lili Jiang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wangwang Lv
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shujuan Cui
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lirong Zhang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Qi Wang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fandong Meng
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Bowen Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Peipei Liu
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ji Suonan
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wangmu Renzeng
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xine Li
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Caiyun Luo
- c Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, P.R. China
| | - Zhenhua Zhang
- c Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, P.R. China
| | - Tsechoe Dorji
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,d CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, P.R. China.,e Naqu Integrated Observation and Research Station of Ecology and Environment, Tibet University and Institute of Tibetan Plateau Research of the Chinese Academy of Sciences, Lasa 850012, P.R. China
| | - Yanfen Wang
- b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shiping Wang
- a Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P.R. China.,d CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, P.R. China.,e Naqu Integrated Observation and Research Station of Ecology and Environment, Tibet University and Institute of Tibetan Plateau Research of the Chinese Academy of Sciences, Lasa 850012, P.R. China
| |
Collapse
|
171
|
Nava A, Shimabukuro JS, Chmura AA, Luz SLB. The Impact of Global Environmental Changes on Infectious Disease Emergence with a Focus on Risks for Brazil. ILAR J 2018; 58:393-400. [PMID: 29253158 DOI: 10.1093/ilar/ilx034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Environmental changes have a huge impact on the emergence and reemergence of certain infectious diseases, mostly in countries with high biodiversity and serious unresolved environmental, social, and economic issues. This article summarizes the most important findings with special attention to Brazil and diseases of present public health importance in the country such as Chikungunya, dengue fever, yellow fever, Zika, hantavirus pulmonary syndrome, leptospirosis, leishmaniasis, and Chagas disease. An extensive literature review revealed a relationship between infectious diseases outbreaks and climate change events (El Niño, La Niña, heatwaves, droughts, floods, increased temperature, higher rainfall, and others) or environmental changes (habitat fragmentation, deforestation, urbanization, bushmeat consumption, and others). To avoid or control outbreaks, integrated surveillance systems and effective outreach programs are essential. Due to strong global and local influence on emergence of infectious diseases, a more holistic approach is necessary to mitigate or control them in low-income nations.
Collapse
Affiliation(s)
- Alessandra Nava
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Juliana Suieko Shimabukuro
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Aleksei A Chmura
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| | - Sérgio Luiz Bessa Luz
- Alessandra Nava, PhD, is a researcher at FIOCRUZ ILMD in Manaus, Brazil. Dr. Nava is part of Cnpq Research Group Ecology of Transmissible Diseases in Amazon, serves on the executive board of the International Association for Ecology and Health, and IUCN Peccaries specialist group. Juliana Suieko Shimabukuro, MSc, is a PhD student at University of São Paulo in São Paulo, Brazil. Aleksei A. Chmura, BSc, is a program coordinator at EcoHealth Alliance in New York, NY, USA and a PhD student at Kingston University in London, United Kingdom. Sérgio Luiz Bessa Luz, PhD, is Director at Instituto Lêonidas e Maria Deane FIOCRUZ Amazônia in Amazonas, Brazil
| |
Collapse
|
172
|
Aguirre AA. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization. ILAR J 2018; 58:315-318. [PMID: 29253148 DOI: 10.1093/ilar/ilx035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.
Collapse
Affiliation(s)
- A Alonso Aguirre
- A. Alonso Aguirre is Department Chair of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030
| |
Collapse
|
173
|
Wilkinson DA, Marshall JC, French NP, Hayman DTS. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface 2018; 15:rsif.2018.0403. [PMID: 30518565 DOI: 10.1098/rsif.2018.0403] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 01/02/2023] Open
Abstract
The number of microbes on Earth may be 1030, exceeding all other diversity. A small number of these can infect people and cause disease. The diversity of parasitic organisms likely correlates with the hosts they live in and the number mammal hosts for zoonotic infections increases with species richness among mammalian orders. Thus, while habitat loss and fragmentation may reduce species diversity, the habitat encroachment by people into species-rich areas may increase the exposure of people to novel infectious agents from wildlife. Here, we present a theoretical framework that exploits the species-area relationship to link the exposure of people to novel infections with habitat biodiversity. We model changes in human exposure to microbes through defined classes of habitat fragmentation and predict that increased habitat division intrinsically increases the hazard from microbes for all modelled biological systems. We apply our model to African tropical forests as an example. Our results suggest that it is possible to identify high-risk areas for the mitigation and surveillance of novel disease emergence and that mitigation measures may reduce this risk while conserving biodiversity.
Collapse
Affiliation(s)
- David A Wilkinson
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand .,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Jonathan C Marshall
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Nigel P French
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
174
|
Jones RT, Tusting LS, Smith HMP, Segbaya S, Macdonald MB, Bangs MJ, Logan JG. The impact of industrial activities on vector-borne disease transmission. Acta Trop 2018; 188:142-151. [PMID: 30165072 DOI: 10.1016/j.actatropica.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Industrial activities have produced profound changes in the natural environment, including the mass removal of trees, fragmentation of habitats, and creation of larval mosquito breeding sites, that have allowed the vectors of disease pathogens to thrive. We conducted a review of the literature to assess the impact of industrial activities on vector-borne disease transmission. Our study shows that industrial activities may be coupled with significant changes to human demographics that can potentially increase contact between pathogens, vectors and hosts, and produce a shift of parasites and susceptible populations between low and high disease endemic areas. Indeed, where vector-borne diseases and industrial activities intersect, large numbers of potentially immunologically naïve people may be exposed to infection and lack the knowledge and means to protect themselves from infection. Such areas are typically associated with inadequate access to quality health care, thus allowing industrial development and production sites to become important foci of transmission. The altered local vector ecologies, and the changes in disease dynamics that changes affect, create challenges for under-resourced health care and vector-control systems.
Collapse
Affiliation(s)
- Robert T Jones
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Lucy S Tusting
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hugh M P Smith
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Michael J Bangs
- International SOS, Ltd., Papua Province, Indonesia; International SOS, Ltd., Lualaba Province, Democratic Republic of Congo
| | - James G Logan
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Disease Control, London School of Hygiene & Tropical Medicine, United Kingdom
| |
Collapse
|
175
|
Ocaña-Mayorga S, Lobos SE, Crespo-Pérez V, Villacís AG, Pinto CM, Grijalva MJ. Influence of ecological factors on the presence of a triatomine species associated with the arboreal habitat of a host of Trypanosoma cruzi. Parasit Vectors 2018; 11:567. [PMID: 30373640 PMCID: PMC6206927 DOI: 10.1186/s13071-018-3138-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The white-naped squirrel, Simosciurus nebouxii (previously known as Sciurus stramineus), has recently been identified as an important natural host for Trypanosoma cruzi in Ecuador. The nests of this species have been reported as having high infestation rates with the triatomine vector Rhodnius ecuadoriensis. The present study aims to determine the levels of nest infestation with R. ecuadoriensis, the ecological variables that are influencing the nest site selection, and the relationship between R. ecuadoriensis infestation and trypanosome infection. RESULTS The study was carried out in transects in forest patches near two rural communities in southern Ecuador. We recorded ecological information of the trees that harbored squirrel nests and the trees within a 10 m radius. Manual examinations of each nest determined infestation with triatomines. We recorded 498 trees (n = 52 with nests and n = 446 without nests). Rhodnius ecuadoriensis was present in 59.5% of the nests and 60% presented infestation with nymphs (colonization). Moreover, we detected T. cruzi in 46% of the triatomines analyzed. CONCLUSIONS We observed that tree height influences nest site selection, which is consistent with previous observations of squirrel species. Factors such as the diameter at breast height and the interaction between tree height and tree species were not sufficient to explain squirrel nest presence or absence. However, the nest occupancy and tree richness around the nest were significant predictors of the abundance of triatomines. Nevertheless, the variables of colonization and infection were not significant, and the data observed could be expected because of chance alone (under the null hypothesis). This study ratifies the hypothesis that the ecological features of the forest patches around rural communities in southern Ecuador favor the presence of nesting areas for S. nebouxii and an increase of the chances of having triatomines that maintain T. cruzi populations circulating in areas near human dwellings. Additionally, these results highlight the importance of including ecological studies to understand the dynamics of T. cruzi transmission due to the existence of similar ecological and land use features along the distribution of the dry forest of southern Ecuador and northern Peru, which implies similar challenges for Chagas disease control.
Collapse
Affiliation(s)
- Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro y Pamba Hacienda, 170530 Nayón, Ecuador
| | - Simón E. Lobos
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro y Pamba Hacienda, 170530 Nayón, Ecuador
- Museo de Zoología, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, 170525 Quito, Ecuador
| | - Verónica Crespo-Pérez
- Laboratorio de Entomología, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, 170525 Quito, Ecuador
| | - Anita G. Villacís
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro y Pamba Hacienda, 170530 Nayón, Ecuador
| | - C. Miguel Pinto
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro y Pamba Hacienda, 170530 Nayón, Ecuador
- Instituto de Ciencias Biológicas, Escuela Politécnica Nacional, Ladrón de Guevara E11-254, 170517 Quito, Ecuador
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro y Pamba Hacienda, 170530 Nayón, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
176
|
Murray KA, Olivero J, Roche B, Tiedt S, Guégan J. Pathogeography: leveraging the biogeography of human infectious diseases for global health management. ECOGRAPHY 2018; 41:1411-1427. [PMID: 32313369 PMCID: PMC7163494 DOI: 10.1111/ecog.03625] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Biogeography is an implicit and fundamental component of almost every dimension of modern biology, from natural selection and speciation to invasive species and biodiversity management. However, biogeography has rarely been integrated into human or veterinary medicine nor routinely leveraged for global health management. Here we review the theory and application of biogeography to the research and management of human infectious diseases, an integration we refer to as 'pathogeography'. Pathogeography represents a promising framework for understanding and decomposing the spatial distributions, diversity patterns and emergence risks of human infectious diseases into interpretable components of dynamic socio-ecological systems. Analytical tools from biogeography are already helping to improve our understanding of individual infectious disease distributions and the processes that shape them in space and time. At higher levels of organization, biogeographical studies of diseases are rarer but increasing, improving our ability to describe and explain patterns that emerge at the level of disease communities (e.g. co-occurrence, diversity patterns, biogeographic regionalisation). Even in a highly globalized world most human infectious diseases remain constrained in their geographic distributions by ecological barriers to the dispersal or establishment of their causal pathogens, reservoir hosts and/or vectors. These same processes underpin the spatial arrangement of other taxa, such as mammalian biodiversity, providing a strong empirical 'prior' with which to assess the potential distributions of infectious diseases when data on their occurrence is unavailable or limited. In the absence of quality data, generalized biogeographic patterns could provide the earliest (and in some cases the only) insights into the potential distributions of many poorly known or emerging, or as-yet-unknown, infectious disease risks. Encouraging more community ecologists and biogeographers to collaborate with health professionals (and vice versa) has the potential to improve our understanding of infectious disease systems and identify novel management strategies to improve local, global and planetary health.
Collapse
Affiliation(s)
- Kris A. Murray
- Grantham Inst. – Climate Change and the Environment and Dept of Infectious Disease EpidemiologyImperial College LondonUK
| | | | - Benjamin Roche
- Inst. de Recherche pour le DéveloppementUMI IRD/UPMC 209 UMMISCOBondyFrance
- Depto de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y ZootecniaUniv. Nacional Autónoma de MéxicoMéxico
- Inst. de Recherche pour le DéveloppementHealth and Societies Dept, UMR MIVEGEC IRD‐CNRS‐Montpellier Univ.France
| | - Sonia Tiedt
- School of Public HealthImperial College LondonUK
| | - Jean‐Francois Guégan
- Inst. de Recherche pour le DéveloppementHealth and Societies Dept, UMR MIVEGEC IRD‐CNRS‐Montpellier Univ.France
| |
Collapse
|
177
|
Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RPP. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:181-202. [PMID: 29889627 DOI: 10.1146/annurev-phyto-080417-045849] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
- Biologie et Génétique des Interactions Plant-Parasite, UMR 0385, Centre de Coopération Internationale en Recherche Agronomique pour le Développement-Institut National de la Recherche Agronomique-Montpellier SupAgro, Campus International de Baillarguet, 34398 Montpellier CEDEX 05, France
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Mathieu Vanhove
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Tyler E Schartel
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Dylan J Beal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
178
|
Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sánchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 2018; 1429:78-99. [PMID: 30138535 DOI: 10.1111/nyas.13910] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
Collapse
Affiliation(s)
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Nathan V Justice
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Tamika Lunn
- The Griffith School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Daniel E Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Devin N Jones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Peggy Eby
- The School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia A Sánchez
- The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,The Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Raina K Plowright
- Department of Ecology, Montana State University, Bozeman, Montana.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
179
|
MacDonald AJ. Abiotic and habitat drivers of tick vector abundance, diversity, phenology and human encounter risk in southern California. PLoS One 2018; 13:e0201665. [PMID: 30063752 PMCID: PMC6067749 DOI: 10.1371/journal.pone.0201665] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022] Open
Abstract
The distribution, abundance and seasonal activity of vector species, such as ticks and mosquitoes, are key determinants of vector-borne disease risk, and are strongly influenced by abiotic and habitat conditions. Despite the numerous species of tick vectors in the heavily populated North American West Coast, all but Ixodes pacificus, the primary vector of the Lyme disease spirochete, is poorly characterized with regard to seasonal activity patterns and fine scale drivers of distribution and abundance, particularly in heavily populated regions of southern California. This lack of knowledge inhibits both scientific understanding and public health efforts to minimize vector exposure and risk of pathogen transmission to humans. Here we address this gap by characterizing the abiotic and habitat drivers of the distribution, abundance, and diversity of the vector tick community using fine scale temporal surveys over two seasons (2014 and 2015) across coastal and inland regions of Santa Barbara County, CA. We also characterize patterns of seasonal activity of the more common vector species to understand seasonality in risk of vector exposure, and specifically focus on human encounter risk using standardized tick drags as our method of collection. Leveraging plot-level habitat and abiotic variables in partial least squares regression analysis, we find the seven different vector species collected in this study have divergent drivers of activity and abundance. For example, I. pacificus is strongly associated with dense forest habitats and cool and moist microclimates, while Dermacentor occidentalis and Dermacentor variabilis, competent vectors of Rocky Mountain Spotted Fever, were found to be more tolerant of higher average temperatures and more open habitats. These results suggest that I. pacificus may be expected to experience reductions in geographic distribution and seasonal activity under projected land cover and climate change in coastal southern California, while D. occidentalis may experience more limited effects. We discuss implications for changing tick-borne disease risk associated with pathogens transmitted by Ixodes as well as Dermacentor species ticks in the western US, and contrast these predictions with eastern North America.
Collapse
Affiliation(s)
- Andrew J. MacDonald
- Department of Biology, Stanford University, Stanford, California, United States of America
- Earth Research Institute, University of California, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
180
|
Roome A, Spathis R, Hill L, Darcy JM, Garruto RM. Lyme Disease Transmission Risk: Seasonal Variation in the Built Environment. Healthcare (Basel) 2018; 6:healthcare6030084. [PMID: 30029458 PMCID: PMC6163686 DOI: 10.3390/healthcare6030084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Seasonal variation in spatial distribution and pathogen prevalence of Borrelia burgdorferi in blacklegged ticks (Ixodes scapularis) influences human population risk of Lyme disease in peri-urban built environments. Parks, gardens, playgrounds, school campuses and neighborhoods represent a significant risk for Lyme disease transmission. From June 2012 through May 2014, ticks were collected using 1 m2 corduroy cloths dragged over low-lying vegetation parallel to walkways with high human foot traffic. DNA was extracted from ticks, purified and presence of B. burgdorferi assessed by polymerase chain reaction amplification. Summer is reported as the time of highest risk for Lyme disease transmission in the United States and our results indicate a higher tick density of 26.0/1000 m2 in summer vs. 0.2/1000 m2 to 10.5/1000 m2 in spring and fall. However, our findings suggest that tick infection rate is proportionally higher during the fall and spring than summer (30.0–54.7% in fall and 36.8–65.6% in spring vs. 20.0–28.2% in summer). Seasonal variation in infected tick density has significant implications for Lyme disease transmission as people are less likely to be aware of ticks in built environments, and unaware of increased infection in ticks in spring and fall. These factors may lead to more tick bites resulting in Lyme infection.
Collapse
Affiliation(s)
- Amanda Roome
- Department of Anthropology, Binghamton University, Binghamton, NY 13902, USA.
| | - Rita Spathis
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA.
| | - Leah Hill
- Quality Control, Regeneron Pharmaceuticals, Albany, NY 12144, USA.
| | - John M Darcy
- US Clinical Development & Medical Affairs in the Division of Immunology, Hepatology and Dermatology, Novartis, East Hanover, NJ 07936, USA.
| | - Ralph M Garruto
- Department of Anthropology, Binghamton University, Binghamton, NY 13902, USA.
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
181
|
Occurrence of Traditional and Alternative Fecal Indicators in Tropical Urban Environments under Different Land Use Patterns. Appl Environ Microbiol 2018; 84:AEM.00287-18. [PMID: 29776926 DOI: 10.1128/aem.00287-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the geospatial distribution of fecal indicator bacteria (FIB) (i.e., Escherichia coli, Enterococcus spp.) and the alternative fecal indicator pepper mild mottle virus (PMMoV) in tropical freshwater environments under different land use patterns. Results show that the occurrence and concentration of microbial fecal indicators were higher for urban than for parkland-dominated areas, consistent with land use weightage. Significant positive correlations with traditional FIB indicate that PMMoV is a suitable indicator of fecal contamination in tropical catchments waters (0.549 ≤ rho ≤ 0.612; P < 0.01). PMMoV exhibited a strong significant correlation with land use weightage (rho = 0.728; P < 0.01) compared to traditional FIB (rho = 0.583; P < 0.01). In addition, chemical tracers were also added to evaluate the potential relationships with microbial fecal indicators. The relationships between diverse variables (e.g., environmental parameters, land use coverage, and chemical tracers) and the occurrence of FIB and PMMoV were evaluated. By using stepwise multiple linear regression (MLR), the empirical experimental models substantiate the impact of land use patterns and anthropogenic activities on microbial water quality, and the output results of the empirical models may be able to predict the sources and transportation of human fecal pollution or sewage contamination. In addition, the high correlation between PMMoV data obtained from quantitative real-time PCR (qPCR) and viral metagenomics data supports the possibility of using viral metagenomics to relatively quantify specific microbial indicators for monitoring microbial water quality (0.588 ≤ rho ≤ 0.879; P < 0.05).IMPORTANCE The results of this study may support the hypothesis of using PMMoV as an alternative indicator of human fecal contamination in tropical surface waters from the perspective of land use patterns. The predictive result of the occurrence of human fecal indicators with high accuracy may reflect the source and transportation of human fecal pollution, which are directly related to the risk to human health, and thereafter, steps can be taken to mitigate these risks.
Collapse
|
182
|
Uvais NA, Moideen S. Psychiatric Morbidity among Patients Admitted with Dengue Fever. ANKARA MEDICAL JOURNAL 2018. [DOI: 10.17098/amj.435269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
183
|
Paul P, Kangalawe RYM, Mboera LEG. Land-use patterns and their implication on malaria transmission in Kilosa District, Tanzania. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2018; 4:6. [PMID: 29951210 PMCID: PMC6011254 DOI: 10.1186/s40794-018-0066-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2018] [Indexed: 11/10/2022]
Abstract
Background Understanding of the land use and malaria transmission among farming communities in Tanzania is of great significance. Water resource development projects, deforestation, wetland cultivation, and land use changes for agricultural purposes all expand habitats for malaria-carrying mosquitoes. The main objective of this study was to assess land use patterns and their implication on malaria transmission in two villages in Kilosa District, Tanzania. Methods Multiple research methods were used for data collection, including household interviews using a structured questionnaire; key informant interviews; transect walks and direct field observations. A larval search was conducted using the dipper standard method whereby mosquito larvae and pupae were identified to genus level. Data analysis was undertaken using the Stata software version 10 and descriptive statistics were used. Results A total of 211 diverse mosquito breeding habitats were surveyed during this study. The mosquito breeding sites ranged from small areas such as hoof prints and coconut shells to large ones such as swamps created through anthropogenic activities. The relationships between land use patterns and malaria transmission were statistically insignificant, indicating that malaria transmission in Kilosa could possibly be due to other human activities, including seasonal movement to distant farms during farming seasons. Communities were knowledgeable about malaria preventive measures such as the use of mosquito nets. While knowledge that links mosquitoes and malaria was relatively high among respondents, knowledge related to mosquito ecology and breeding sites was generally low. Conclusion Although analysis of land use patterns did not show statistical significance in the study area, agricultural activities, brick making and settlement seem to be highly linked to malaria transmission. The association of land use patterns and malaria transmission is well observed in habitats created that harbour mosquitoes, and evidenced by presence of immature Anopheles mosquito larvae. Lack of knowledge of the epidemiology of transmission by the inhabitants is a major issue. Although it might be difficult to change land use patterns, as they are driven by economic necessity, future reduction of spread, through better education, is something that could be modified. In addition, more detailed studies are recommended to further confirm the linkages between land use/cover changes and malaria transmission in the study area.
Collapse
Affiliation(s)
- Phillipo Paul
- 1Institute of Resource Assessment, University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Richard Y M Kangalawe
- 1Institute of Resource Assessment, University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Leonard E G Mboera
- 2National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania
| |
Collapse
|
184
|
Gu X, Tay QXM, Te SH, Saeidi N, Goh SG, Kushmaro A, Thompson JR, Gin KYH. Geospatial distribution of viromes in tropical freshwater ecosystems. WATER RESEARCH 2018; 137:220-232. [PMID: 29550725 PMCID: PMC7112100 DOI: 10.1016/j.watres.2018.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
This study seeks to understand the general distribution of virome abundance and diversity in tropical freshwater ecosystems in Singapore and the geospatial distribution of the virome under different landuse patterns. Correlations between diversity, environmental parameters and land use patterns were analyzed and significant correlations were highlighted. Overall, the majority (65.5%) of the annotated virome belonged to bacteriophages. The percentage of Caudovirales was higher in reservoirs whereas the percentages of Dicistroviridae, Microviridae and Circoviridae were higher in tributaries. Reservoirs showed a higher Shannon-index virome diversity compared to upstream tributaries. Land use (urbanized, agriculture and parkland areas) influenced the characteristics of the virome distribution pattern. Dicistroviridae and Microviridae were enriched in urbanized tributaries while Mimiviridae, Phycodnaviridae, Siphoviridae and Podoviridae were enriched in parkland reservoirs. Several sequences closely related to the emerging zoonotic virus, cyclovirus, and the human-related virus (human picobirnavirus), were also detected. In addition, the relative abundance of PMMoV (pepper mild mottle virus) sequences was significantly correlated with RT-qPCR measurements (0.588 < r < 0.879, p < 0.05). This study shows that spatial factors (e.g., reservoirs/tributaries, land use) are the main drivers of the viral community structure in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | | | - Shu Harn Te
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Ariel Kushmaro
- School of Material Science and Engineering, Nanyang Technological University, 637819, Singapore
| | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore.
| |
Collapse
|
185
|
Brown R, Hing CT, Fornace K, Ferguson HM. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasit Vectors 2018; 11:346. [PMID: 29898780 PMCID: PMC6000972 DOI: 10.1186/s13071-018-2926-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). Results Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. Conclusions RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home. Electronic supplementary material The online version of this article (10.1186/s13071-018-2926-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Brown
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Chua Tock Hing
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
186
|
Mastel M, Bussalleu A, Paz-Soldán VA, Salmón-Mulanovich G, Valdés-Velásquez A, Hartinger SM. Critical linkages between land use change and human health in the Amazon region: A scoping review. PLoS One 2018; 13:e0196414. [PMID: 29894479 PMCID: PMC5997329 DOI: 10.1371/journal.pone.0196414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/02/2022] Open
Abstract
Land use change (LUC) is a main cause of global environmental change, and is an important activity to be studied. Our research aims to examine the current state of evidence on the link between LUC and human health in the Amazon region. We conducted a scoping review of literature in two research databases, resulting in 14 papers for analysis. Our analysis demonstrated a lack of clear definitions for LUC, a wide variety of negative health effects from LUC, the lack of qualitative articles, a lack of studies exploring the potential positive health effects of LUC, and the predominance of studies coming from the Brazilian Amazon. Our study validated the prevailing idea that LUC can lead to negative health consequences, if not managed properly.
Collapse
Affiliation(s)
- Molly Mastel
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandra Bussalleu
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Valerie A. Paz-Soldán
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Gabriela Salmón-Mulanovich
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America
| | - Armando Valdés-Velásquez
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stella M. Hartinger
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
187
|
Yeh HY, Chen KH, Chen KT. Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061183. [PMID: 29882753 PMCID: PMC6025375 DOI: 10.3390/ijerph15061183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Hui-Yi Yeh
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan 736, Taiwan.
| | - Kou-Huang Chen
- School of Mechanical & Electronic Engineering, Sanming University, Sanming City 365004, China.
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan 701, Taiwan.
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
188
|
Tsang SM, Wiantoro S, Veluz MJ, Simmons NB, Lohman DJ. Low Levels of Population Structure among Geographically Distant Populations of Pteropus vampyrus (Chiroptera: Pteropodidae). ACTA CHIROPTEROLOGICA 2018. [DOI: 10.3161/15081109acc2018.20.1.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Susan M. Tsang
- Department of Biology, City College and the Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor, Km. 46, Cibinong, 16911, Indonesia
| | - Maria Josefa Veluz
- Zoology Division, National Museum of the Philippines, Padres Burgos Ave, Ermita, Manila, 1000 Metro Manila, Philippines
| | - Nancy B. Simmons
- Department of Mammalogy, American Museum of Natural History, Central Park West and 79th Street, New York, NY, 10024, USA
| | - David J. Lohman
- Department of Biology, City College and the Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
189
|
Zimmermann NP, Aguirre ADAR, Rodrigues VDS, Garcia MV, Medeiros JF, Blecha IMZ, Duarte PO, Cruz BC, Cunha RC, Martins TF, Andreotti R. Wildlife species, Ixodid fauna and new host records for ticks in an Amazon forest area, Rondônia, Brazil. ACTA ACUST UNITED AC 2018; 27:177-182. [PMID: 29846452 DOI: 10.1590/s1984-296120180022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
The objective of this work was to evaluate the diversity of ticks associated with free-living animals and to investigate new host records for ticks. Ticks were collected from animals rescued during the flood of the Jamari River in the municipality of Ariquemes, state of Rondônia, North Region of Brazil. A total of 39 animals were captured, out of which 10 were amphibians, 19 were reptiles and 10 were mammals. A total of 127 ticks of the Amblyomma genus were collected from these animals, distributed among seven species: Amblyomma dissimile, Amblyomma geayi, Amblyomma humerale , Amblyomma longirostre, Amblyomma nodosum , Amblyomma rotundatum and Amblyomma varium. In addition, one specimen of Rhipicephalus (Boophilus) microplus was collected. Among these specimens, 85 were adults and 42 were nymphs, with A. rotundatum being the most prevalent species. An Amblyomma spp. larvae was also collected from a lizard (Uranoscodon superciliosus), and one Amblyomma calcaratum and one Amblyomma dubitatum were recovered from the environment, thus totaling 130 ticks. Among the Ixodidae collected from different hosts, we provide the first report for the species A. rotundatum parasitizing Rhinella major, U. superciliosus, Leptophis ahaetulla, Chironius multiventris, and Mastigodryas boddaerti, as well as of A. humerale parasitizing U. superciliosus, A. geayi parasitizing Choloepus didactylus, and Rhipicephalus (B.) microplus parasitizing Alouatta puruensis.
Collapse
Affiliation(s)
- Namor Pinheiro Zimmermann
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Centro Universitário da Grande Dourados, Dourados, MS, Brasil
| | - André de Abreu Rangel Aguirre
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil.,Laboratório de Entomologia Médica, Fundação Oswaldo Cruz - FIOCRUZ, Porto Velho, RO, Brasil
| | - Vinicius da Silva Rodrigues
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Marcos Valério Garcia
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Desenvolvimento Científico Regional - DCR, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia - FUNDECT, Governo do Estado de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | - Isabella Maiumi Zaidan Blecha
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Pamella Oliveira Duarte
- Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil.,Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, MS, Brasil
| | - Breno Cayeiro Cruz
- Programa de Pós-Graduação em Patologia Animal, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rodrigo Casquero Cunha
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico - CDTec, Universidade Federal de Pelotas - UFPEL, Pelotas, RS, Brasil
| | - Thiago Fernandes Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Renato Andreotti
- Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA, Campo Grande, MS, Brasil
| |
Collapse
|
190
|
Shah V, Shah A, Joshi V. Predicting the origins of next forest-based emerging infectious disease. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:337. [PMID: 29744690 DOI: 10.1007/s10661-018-6711-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Land use change near dense forests is the single major cause of emergence of forest-based emerging infectious diseases (EIDs) among humans. In an attempt to predict where the next EID would originate from, we are hypothesizing that future EIDs would originate from a region having high population density, excessive poverty, and is located near dense vegetation. Using ArcGIS, we identified forest regions in ten countries across the globe that meet all the three conditions identified in the hypothesis. We further narrowed down the locations using Global Forest Watch data, which eliminates locations next to protected forests and fragmented forests. Our results indicate that there is high likelihood of next infectious disease originating from the southern and eastern forests around Freetown in Sierra Leone, the forest region around Douala in Cameroon, or the southern forest region in Nigeria. Concerted efforts need to be made to identify any new disease in the areas as soon as it emerges in the human population and contain the spread within the population.
Collapse
Affiliation(s)
- Vishal Shah
- College of the Sciences and Mathematics, West Chester University of Pennsylvania, West Chester, PA, USA.
| | - Anand Shah
- Chadds Ford Elementary School, Chadds Ford, PA, USA
| | - Varoon Joshi
- Chadds Ford Elementary School, Chadds Ford, PA, USA
| |
Collapse
|
191
|
Paleopathological Considerations on Malaria Infection in Korea before the 20th Century. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8516785. [PMID: 29854798 PMCID: PMC5966694 DOI: 10.1155/2018/8516785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
Malaria, one of the deadliest diseases in human history, still infects many people worldwide. Among the species of the genus Plasmodium, P. vivax is commonly found in temperate-zone countries including South Korea. In this article, we first review the history of malarial infection in Korea by means of studies on Joseon documents and the related scientific data on the evolutionary history of P. vivax in Asia. According to the historical records, malarial infection was not unusual in pre-20th-century Korean society. We also found that certain behaviors of the Joseon people might have affected the host-vector-pathogen relationship, which could explain why malarial infection prevalence was so high in Korea at that time. In our review of genetic studies on P. vivax, we identified substantial geographic differentiation among continents and even between neighboring countries. Based on these, we were able to formulate a strategy for future analysis of ancient Plasmodium strains in Korea.
Collapse
|
192
|
Rahman M, Islam S, Masuduzzaman M, Alam M, Chawdhury MNU, Ferdous J, Islam MN, Hassan MM, Hossain MA, Islam A. Prevalence and diversity of gastrointestinal helminths in free-ranging Asian house shrew ( Suncus murinus) in Bangladesh. Vet World 2018; 11:549-556. [PMID: 29805224 PMCID: PMC5960798 DOI: 10.14202/vetworld.2018.549-556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/26/2018] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Asian house shrew (Suncus murinus), a widely distributed small mammal in the South Asian region, can carry helminths of zoonotic importance. The aim of the study was to know the prevalence and diversity of gastrointestinal (GI) helminths in free-ranging Asian house shrew (S. murinus) in Bangladesh. Materials and Methods A total of 86 Asian house shrews were captured from forest areas and other habitats of Bangladesh in 2015. Gross examination of the whole GI tract was performed for gross helminth detection, and coproscopy was done for identification of specific eggs or larvae. Results The overall prevalence of GI helminth was 77.9% (67/86), with six species including nematodes (3), cestodes (2), and trematodes (1). Of the detected helminths, the dominant parasitic group was from the genus Hymenolepis spp.(59%), followed by Strongyloides spp.(17%), Capillaria spp. (10%), Physaloptera spp. (3%), and Echinostoma spp.(3%). Conclusion The finding shows that the presence of potential zoonotic parasites (Hymenolepis spp. and Capillaria spp.) in Asian house shrew is ubiquitous in all types of habitat (forest land, cropland and dwelling) in Bangladesh. Therefore, further investigation is crucial to examine their role in the transmission of human helminthiasis.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong-4225, Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Bangladesh
| | - Md Masuduzzaman
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong-4225, Bangladesh
| | - Mahabub Alam
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong-4225, Bangladesh
| | | | - Jinnat Ferdous
- EcoHealth Alliance, New York, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Bangladesh
| | - Md Nurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Mohammad Alamgir Hossain
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong-4225, Bangladesh
| | | |
Collapse
|
193
|
Abstract
Urbanization reduces exposure risk to many wildlife parasites and in general, improves overall health. However, our study importantly shows the complicated relationship between the diffusion of zoonotic pathogens and urbanization. Here, we reveal an unexpected relationship between hemorrhagic fever with renal syndrome incidence caused by a severe rodent-borne zoonotic pathogen worldwide and the process of urbanization in developing China. Our findings show that the number of urban immigrants is highly correlated with human incidence over time and also explain how the endemic turning points are associated with economic growth during the urbanization process. Our study shows that urbanizing regions of the developing world should focus their attention on zoonotic diseases. Urbanization and rural–urban migration are two factors driving global patterns of disease and mortality. There is significant concern about their potential impact on disease burden and the effectiveness of current control approaches. Few attempts have been made to increase our understanding of the relationship between urbanization and disease dynamics, although it is generally believed that urban living has contributed to reductions in communicable disease burden in industrialized countries. To investigate this relationship, we carried out spatiotemporal analyses using a 48-year-long dataset of hemorrhagic fever with renal syndrome incidence (HFRS; mainly caused by two serotypes of hantavirus in China: Hantaan virus and Seoul virus) and population movements in an important endemic area of south China during the period 1963–2010. Our findings indicate that epidemics coincide with urbanization, geographic expansion, and migrant movement over time. We found a biphasic inverted U-shaped relationship between HFRS incidence and urbanization, with various endemic turning points associated with economic growth rates in cities. Our results revealed the interrelatedness of urbanization, migration, and hantavirus epidemiology, potentially explaining why urbanizing cities with high economic growth exhibit extended epidemics. Our results also highlight contrasting effects of urbanization on zoonotic disease outbreaks during periods of economic development in China.
Collapse
|
194
|
Brobey B, Kucknoor A, Armacost J. Prevalence of Trichomonas, Salmonella, and Listeria in Wild Birds from Southeast Texas. Avian Dis 2018; 61:347-352. [PMID: 28957011 DOI: 10.1637/11607-020617-regr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious diseases can be a major threat to wildlife populations, especially in human-modified habitats, but infection rates in populations of wild animals are often poorly studied. Trichomonas, Salmonella, and Listeria are all pathogens known to infect birds, but their infection rates in wild bird populations are not well documented. This study documents infection rates of the three pathogens in wild bird populations inhabiting a suburban to rural gradient in Southeast Texas. Various species of wild birds were sampled at five sites in Southeastern Texas representing rural (<1 house per ha), exurban (approximately 1 house per ha), and suburban (approximately 10 houses per ha) habitat types. Birds were captured in mist nets and samples were taken from the oral cavity, crop, and vent to detect the presence of pathogens. Samples were screened for Trichomonas by examining wet mounts under a light microscope, whereas samples were screened for Salmonella and Listeria by examining colonies grown on agar plates. Pathogens detected during the initial screening were further confirmed by PCR and DNA sequencing. Infection rates for Trichomonas, Salmonella, and Listeria were 9%, 17%, and 5%, respectively. The distributions of infection rates across habitats (i.e., rural, exurban, rural) did not differ significantly from the expected null distributions for any of the three pathogens; however, the data suggested some interesting patterns that should be confirmed with a larger dataset. Infection rates for Trichomonas and Salmonella were highest at the suburban sites, whereas the infection rate for Listeria was highest at the rural site. Feeder birds were more likely to be infected by all three pathogens than non-feeder birds. Small sample sizes prevent definitive conclusions regarding variation in infection rates along the suburban to rural gradient, but the results suggest that pathogens followed the predicted patterns. For many of the bird species sampled, this study presents the first report of infection rates by these three pathogens in wild populations.
Collapse
Affiliation(s)
- Britni Brobey
- A Department of Biology, Lamar University, Beaumont, TX 77710
| | | | - Jim Armacost
- A Department of Biology, Lamar University, Beaumont, TX 77710
| |
Collapse
|
195
|
Hartman BD, Cleveland DA. The socioeconomic factors that facilitate or constrain restoration management: Watershed rehabilitation and wet meadow (bofedal) restoration in the Bolivian Andes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 209:93-104. [PMID: 29287178 DOI: 10.1016/j.jenvman.2017.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Restoration ecology holds promise for addressing land degradation in impoverished rural environments, provided the approach is adapted to rural development settings. While there is a need for increased integration of social dynamics in land restoration, few systematic studies exist. We explored the socioeconomic factors that influence restoration management, including local motives and perceived benefits, incentives, land tenancy, institutional factors, conflict resolution, accessibility, off-farm labor, and outmigration. The study area is a successful watershed rehabilitation and wet meadow restoration project in the Bolivian Andes that began in 1992. We used household survey methods (n = 237) to compare the communities that had conducted the most restoration management with those that had conducted the least. Results suggest that several factors facilitate investments in land restoration, including aligning restoration objectives with local motives and perceived benefits, ensuring incentives are in place to stimulate long-term investments, conflict resolution, private land tenancy, and accessibility. However, higher levels of organization and active leadership can facilitate land restoration on communal lands. Increased livelihood benefits from land restoration helped slow the rate of rural to urban migration, with 24.5% outmigration in the highest restoration management communities compared to 62.1% in the lowest restoration management communities. Results suggest that land restoration projects that integrate community development into project planning and implementation will achieve greater success.
Collapse
Affiliation(s)
- Brett D Hartman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| | - David A Cleveland
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, United States; Environmental Studies Program, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
196
|
Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, Dobson AP, Plowright RK. Pathogen spillover during land conversion. Ecol Lett 2018; 21:471-483. [DOI: 10.1111/ele.12904] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christina L. Faust
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
- Institute of Biodiversity, Animal Health and Comparative Medicine; Universtiy of Glasgow; Glasgow UK
| | - Hamish I. McCallum
- Environmental Futures Research Institute and Griffith School of Environment; Griffith University; Griffith Qld. Australia
| | - Laura S. P. Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources; Stanford University; Stanford CA USA
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology; College of Veterinary Medicine; University of Georgia; Athens GA USA
| | - Thomas R. Gillespie
- Department of Environmental Sciences; Department of Environmental Health; Rollins School of Public Health; Program In Population; Biology, Ecology and Evolution; Emory University; Athens GA USA
| | - Colin J. Torney
- School of Mathematics and Statistics; University of Glasgow; Glasgow UK
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology; Montana State University; Montana MT USA
| |
Collapse
|
197
|
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, Fritsch C, Giraudoux P, Le Roux F, Morand S, Paillard C, Pontier D, Sueur C, Voituron Y. The One Health Concept: 10 Years Old and a Long Road Ahead. Front Vet Sci 2018; 5:14. [PMID: 29484301 PMCID: PMC5816263 DOI: 10.3389/fvets.2018.00014] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human-animal-ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the "One Health" concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the "One Health" concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Université de Perpignan Via Domitia, Université de Montpellier, Ifremer, Montpellier, France
| | - Patrick Mavingui
- Université de La Reunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne, France
| | - Gilles Boetsch
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Frédéric Darriet
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Priscilla Duboz
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
| | - Patrick Giraudoux
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
- Institut Universitaire de France, Paris, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, Plouzané, France
| | - Serge Morand
- Institut des Sciences de l’Évolution (ISEM), UMR 5554, CNRS, Université de Montpellier, CIRAD, IRD, EPHE, Montpellier, France
- UPR ASTRE, CIRAD, Montpellier, France
| | - Christine Paillard
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539, CNRS, UBO, IRD, Ifremer, Plouzané, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- LabEx Ecofect, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, Lyon, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Yann Voituron
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université Claude Bernard Lyon1, Université de Lyon, Villeurbanne, France
| |
Collapse
|
198
|
Wang C, Zhang Z, Zhou M, Wang P, Yin P, Ye W, Zhang L. Different response of human mortality to extreme temperatures (MoET) between rural and urban areas: A multi-scale study across China. Health Place 2018; 50:119-129. [PMID: 29432981 DOI: 10.1016/j.healthplace.2018.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND The environmental variation in mortality due to extreme temperatures has been well-documented by many studies. Mortality to extreme temperatures (MoET) was recognized to vary geographically, either by countries within a region or by areas within a country. However, so far, little attention has been paid to rural residents, with even lesser attention on the potential rural-urban differences. The aim of our study was to offer a quite comprehensive analysis on the differences in temperature-mortality relationship between rural and urban areas across China. METHOD A distributed lag nonlinear model was built to describe the temperature-mortality relationship, based on the mortality data and meteorological variable of 75 communities in China from 2007 to 2012. Subsequently, a meta-analysis was applied to compare the differences in the temperature-mortality relationship between rural and urban areas at various levels. RESULTS Distinct responses regarding MoET between rural and urban areas were observed at different spatial scales. At regional level, more U-shaped curves were observed for temperature-mortality relationships in urban areas, while more J-shaped curves were observed in rural areas. At national scale, we found that the cold effect was stronger in rural areas (RR: rural 1.69 vs. urban 1.51), while heat effect was stronger in urban areas (RR: rural 1.01 vs. urban 1.12). Moreover, the modifying influence of air pollution on temperature-mortality relationship was found to be very limited. CONCLUSION The difference in response of MoET between rural and urban areas was noticeable, cold effect is more significant in China both in rural and urban areas. Additionally, urban areas in southern China and rural areas in northern China suffered more from extreme temperature events. Our findings suggest that differences in rural-urban responses to MoET should be taken seriously when intervention measures for reducing the risks to residents' health were adopted.
Collapse
Affiliation(s)
- Chenzhi Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Zhao Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China.
| | - Pin Wang
- Institute of Remote Sensing and Earth Sciences, Hangzhou Normal University, No.1378, Wenyi West Street, Hangzhou 311121, China.
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China.
| | - Wan Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Lingyan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
199
|
Titcomb G, Allan BF, Ainsworth T, Henson L, Hedlund T, Pringle RM, Palmer TM, Njoroge L, Campana MG, Fleischer RC, Mantas JN, Young HS. Interacting effects of wildlife loss and climate on ticks and tick-borne disease. Proc Biol Sci 2018; 284:rspb.2017.0475. [PMID: 28878055 DOI: 10.1098/rspb.2017.0475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023] Open
Abstract
Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens (Coxiella burnetii and Rickettsia spp.) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics.
Collapse
Affiliation(s)
- Georgia Titcomb
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA .,Mpala Research Centre, Box 555, Nanyuki, Kenya
| | - Brian F Allan
- Mpala Research Centre, Box 555, Nanyuki, Kenya.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler Ainsworth
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Lauren Henson
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Tyler Hedlund
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert M Pringle
- Mpala Research Centre, Box 555, Nanyuki, Kenya.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Todd M Palmer
- Mpala Research Centre, Box 555, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Laban Njoroge
- Invertebrate Zoology Section, National Museums of Kenya, Nairobi, Kenya
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | | | - Hillary S Young
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.,Mpala Research Centre, Box 555, Nanyuki, Kenya
| |
Collapse
|
200
|
Weterings R, Umponstira C, Buckley HL. Landscape variation influences trophic cascades in dengue vector food webs. SCIENCE ADVANCES 2018; 4:eaap9534. [PMID: 29507879 PMCID: PMC5833996 DOI: 10.1126/sciadv.aap9534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/19/2018] [Indexed: 06/01/2023]
Abstract
The epidemiology of vector-borne diseases is governed by a structured array of correlative and causative factors, including landscape (for example, rural versus urban), abiotic (for example, weather), and biotic (for example, food web) factors. Studies of mosquito-borne diseases rarely address these multiple factors at large spatial scales, which limits insights into how human alterations of landscapes and food webs alter mosquito abundance. We used structural equation modeling to identify the relative magnitude and direction of landscape, abiotic, and food web factors on Aedes larvae and adults across 70 sites in northern Thailand. Food web factors were modeled as mosquito-predator trophic cascades. Landscape context affected mosquito-predator communities in aquatic and terrestrial environments via cascading food web interactions. Several mosquito predators within these food webs showed potential as biocontrol agents in mosquito population control, but their potentials for control were landscape-dependent. In terrestrial food webs, the habitat-sensitive tokay gecko structured mosquito-predator communities, indicating that a conservation approach to vector control could be a useful addition to existing control efforts.
Collapse
Affiliation(s)
- Robbie Weterings
- Cat Drop Foundation, Boorn 45, 9204 AZ Drachten, Netherlands
- Department of Natural Resources and Environment, Naresuan University, 99 Moo 9 Phitsanulok-Nakhonsawan Road, Tambon Tapho, Muang Phitsanulok 65000, Thailand
| | - Chanin Umponstira
- Department of Natural Resources and Environment, Naresuan University, 99 Moo 9 Phitsanulok-Nakhonsawan Road, Tambon Tapho, Muang Phitsanulok 65000, Thailand
| | - Hannah L. Buckley
- School of Science, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|