151
|
Petrarca C, Lazzarin F, Lanuti P, Marchisio M, Miscia S, Rossi C, Braga M, Mistrello G, Di Gioacchino M. Lactobacillus paracasei Lp6 favors immune modulation induced by allergoid treatment in ragweed sensitized mice. Int J Immunopathol Pharmacol 2012; 24:881-93. [PMID: 22230395 DOI: 10.1177/039463201102400407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized that lactic acid bacteria (LAB) could be used as adjuvant for specific immunotherapy (SIT), as various studies conducted on humans and animals converge to define LAB as anti-Th2 modulators and Treg inducers. In the present study we evaluated the effects of LAB, in particular Lactobacillus paracasei Lp6 (Lp6), in a mouse model of ragweed (RW) allergy. Groups of Balb/c mice, experimentally sensitized towards ragweed, were treated by viable Lp6 or by RWallergoid with or without co-administration of Lp6. A control group was sham-sensitized with PBS and sham-treated with water and a group was sensitized with RW and treated with water. Serum IgE, RW-induced release of IFN-gamma, IL-4 and IL-10 from splenocytes and the frequency of CD4CD25 regulatory T cells (Tregs) expressing Foxp3 or IL-10 were evaluated in various groups. RW-allergoid treatment induced a reduction of serum IgE, with a decrease in RW-induced release of IL-4, and an increase in IL-10 and IFN-gamma, along with a significant change in the frequency of Tregs, both CD25+ and -. The joint RWallergoid+ Lp6 treatment induced the highest degree of suppression of allergen-driven IL-4, the greatest reduction of IL-4/IFN-gamma and IL-4/IL-10 ratios and the most significant increase of Foxp3 and IL-10 expressing Tregs. The study shows that Lp6 strengthens the immune modulation induced by allergoid-SIT in RW-sensitized mice, essentially characterized by a differential induction of Tregs associated to a reduction of IL-4; data converge to define a role of SIT adjuvant for Lp6.
Collapse
Affiliation(s)
- C Petrarca
- Center for Ageing Sciences, University of Chieti Foundation, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Berod L, Puttur F, Huehn J, Sparwasser T. Tregs in infection and vaccinology: heroes or traitors? Microb Biotechnol 2012; 5:260-9. [PMID: 21951341 PMCID: PMC3815786 DOI: 10.1111/j.1751-7915.2011.00299.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 12/30/2022] Open
Abstract
The development of effective vaccines against life-threatening pathogens in human diseases represents one of the biggest challenges in biomedical science. Vaccines traditionally make use of the body's own immune armoury to combat pathogens. Yet, while our immune system is mostly effective in eliminating or controlling a diverse range of microorganisms, its responses are incomplete or somewhat limited in several other cases. How immune responses are restrained during certain infections has been a matter of debate for many years. The discovery of regulatory T cells (Tregs), an immune cell type that plays a central role in maintaining immune homeostasis and controlling appropriate immune responses, has shed light into many questions. Indeed, it has been proposed that while Tregs might be beneficial in preventing excessive tissue damage during infection, they might also favour pathogen persistence by restraining effector immune responses. In addition, Tregs are believed to limit immune responses upon vaccination. Different strategies have been pursued to circumvent Treg activity during immunization, but the lack of specific tools for their study has led sometimes to controversial conclusions. With the advent of novel mouse models that allow specific depletion and/or tracking of Treg populations in vivo, novel aspects of Treg biology during infection have been unravelled. In this review, we describe the new advances in understanding Treg biology during infection and evaluate Treg depletion as a novel adjuvant strategy for vaccination.
Collapse
Affiliation(s)
- Luciana Berod
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Medical School Hanover-MHH-Helmholtz Centre for Infection Research-HZI, Hanover, Germany
| | | | | | | |
Collapse
|
153
|
Wykes MN. Are plasmacytoid dendritic cells the misguided sentinels of malarial immunity? Trends Parasitol 2012; 28:182-6. [PMID: 22365902 DOI: 10.1016/j.pt.2012.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), the sentinels of immunity, reside in almost every organ of the body. These cells are responsible for initiating immune responses against infectious agents. DCs are divided into different subsets based on their biological functions, with plasmacytoid DCs (pDCs) and conventional DCs (cDCs) being two major populations. The ability of DCs to protect against malaria infection was recently questioned when pDCs were reported to be a reservoir for rodent Plasmodium spp. in the spleen. This opinion article explores how the occupation of pDCs by the parasite may corrupt immunity against malaria.
Collapse
Affiliation(s)
- Michelle N Wykes
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
154
|
Hatam LJ, Devoti JA, Rosenthal DW, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD-1/PD-L1/L2 expression. Clin Cancer Res 2012; 18:1925-35. [PMID: 22322668 DOI: 10.1158/1078-0432.ccr-11-2941] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Respiratory papillomas, caused by human papillomaviruses types 6 and 11 (HPV6/11), are premalignant lesions with potential for malignant conversion. The cytokine and chemokine micromilieu of papillomas is T(H)2-like with a marked absence of IFN-γ expression. To illuminate why patients with recurrent respiratory papillomatosis (RRP) fail to effectively control their disease, we further investigated the suppressive cellular microenvironment in papillomas. EXPERIMENTAL DESIGN CD4(+)CD25(+)CD127(low/-)Foxp3(+) regulatory T cells (Treg) and CD4(+)CD25(-)CD127(low/-)Foxp3(-) T cells within papillomas were characterized and isolated. Their suppressor function was measured by inhibition of peripheral blood mononuclear cell (PBMC) proliferation. Expression of PD-1, CD69, and Helios was identified on these T cells. PD-L1, PD-L2, CCL17, and CCL22 mRNA was also identified in papillomas by quantitative PCR. RESULTS Functional Tregs were markedly enriched in papillomas and strongly inhibited anti-CD3 and anti-CD28 antibody activated PBMC proliferation. The natural Treg marker Helios was reduced on Tregs from papillomas, indicating that the majority of Tregs in papillomas are adaptive. The majority of the papilloma-derived CD4(+) T cells expressed the CD4(+)CD25(-)CD127(low/-)Foxp3(-)PD1(+)CD69(+) phenotype and failed to suppress PBMC proliferation, suggesting that they are chronically activated and exhausted. The Treg-attracting chemokine CCL22 was equally expressed by all laryngeal tissues examined. However, CCL17 was robustly expressed by papillomas compared with unaffected laryngeal tissues from RRP patients and individuals without RRP. PD-L1 was elevated in papillomas compared with control laryngeal tissues. CONCLUSIONS Papilloma CD4(+) T cells are enriched with functional Tregs, and the adaptive Helios(-) Treg fraction was increased within the T(H)2-like papilloma micromilieu. CD4(+)CD25(-)CD127(low/-)Foxp3(-) T-cells failed to suppress PBMC proliferation and may be exhausted. The PD-1/PDL-1 pathway may represent an additional immunosuppressive mechanism that contributes to defective HPV6/11 clearance in RRP.
Collapse
Affiliation(s)
- Lynda J Hatam
- The Feinstein Institute for Medical Research, 350 Community Drive, Room 1239, Manhasset, NY 11030, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Hafalla JCR, Claser C, Couper KN, Grau GE, Renia L, de Souza JB, Riley EM. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog 2012; 8:e1002504. [PMID: 22319445 PMCID: PMC3271068 DOI: 10.1371/journal.ppat.1002504] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022] Open
Abstract
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8+ T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8+ T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites. T cells are part of the body's defense system in response to infection. However, once the infection has been suitably controlled, these T cells must be switched off. Inhibitory pathways, such as CTLA-4 and PD-1, are known to send the ‘turn off’ signal to T cells during chronic infections. However, their roles in acute infections, such as malaria, are unclear. We compared the function of these inhibitory pathways in mice that are either susceptible or resistant to severe malarial disease (cerebral malaria). Strikingly, we found that receptors for CTLA-4 and PD-1 are more highly expressed in T cells from susceptible mice than from resistant mice. Therefore, cerebral malaria develops despite the high expression of these inhibitory receptors. Moreover, we demonstrated that blocking these inhibitory receptors in the resistant mice increased the function of T cells, which in turn led to the characteristic signs of cerebral malaria. Finally, reminiscent of what is known for the susceptible strain, we confirmed that certain T cells (CD8+) and molecules (IFN-γ) are crucial to the development of cerebral malaria in the otherwise resistant mice. Thus, the CTLA-4 and PD-1 inhibitory pathways have essential, independent and non-redundant roles in regulating the body's complex response to malaria.
Collapse
Affiliation(s)
- Julius Clemence R Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
156
|
Freitas do Rosário AP, Lamb T, Spence P, Stephens R, Lang A, Roers A, Muller W, O’Garra A, Langhorne J. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1178-90. [PMID: 22205023 PMCID: PMC3272378 DOI: 10.4049/jimmunol.1102755] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.
Collapse
Affiliation(s)
| | - Tracey Lamb
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Philip Spence
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Robin Stephens
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Agathe Lang
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | - Werner Muller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Anne O’Garra
- Immunoregulation, MRC National Institute for Medical Research, London, UK
| | - Jean Langhorne
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| |
Collapse
|
157
|
Sanou GS, Tiendrebeogo RW, Ouédraogo AL, Diarra A, Ouédraogo A, Yaro JB, Ouédraogo E, Verra F, Behr C, Troye-Blomberg M, Modiano D, Dolo A, Torcia MG, Traoré Y, Sirima SB, Nébié I. Haematological parameters, natural regulatory CD4 + CD25 + FOXP3+ T cells and γδ T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso. BMC Res Notes 2012; 5:76. [PMID: 22283984 PMCID: PMC3292809 DOI: 10.1186/1756-0500-5-76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/27/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period. RESULTS Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points.As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission). CONCLUSION Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their reported parasite inhibitory activities.
Collapse
Affiliation(s)
- Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Zago CA, Bortoluci KR, Sardinha LR, Pretel FD, Castillo-Méndez SI, Freitas do Rosário AP, Hiyane MI, Muxel SM, Rodriguez-Málaga SM, Abrahamsohn IA, Álvarez JM, D'Império Lima MR. Anti-IL-2 treatment impairs the expansion of T(reg) cell population during acute malaria and enhances the Th1 cell response at the chronic disease. PLoS One 2012; 7:e29894. [PMID: 22272258 PMCID: PMC3260167 DOI: 10.1371/journal.pone.0029894] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T(reg)) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T(reg) cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4(+) T cell activation and IFN-γ production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-α and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T(reg) cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.
Collapse
Affiliation(s)
- Cláudia A Zago
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Parra M, Derrick SC, Yang A, Tian J, Kolibab K, Oakley M, Perera LP, Jacobs WR, Kumar S, Morris SL. Malaria infections do not compromise vaccine-induced immunity against tuberculosis in mice. PLoS One 2011; 6:e28164. [PMID: 22205939 PMCID: PMC3242757 DOI: 10.1371/journal.pone.0028164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022] Open
Abstract
Background Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. Principal Findings Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. Conclusions Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the deployment of new TB vaccines in malaria endemic areas.
Collapse
Affiliation(s)
- Marcela Parra
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Steven C. Derrick
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Amy Yang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - JinHua Tian
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Kristopher Kolibab
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Miranda Oakley
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sanjai Kumar
- Office of Blood Research and Review, Center for Biologics Research and Review, USFDA, Bethesda, Maryland, United States of America
| | - Sheldon L. Morris
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Review, USFDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
160
|
Feng H, Zhu XT, Qi ZM, Wang QH, Wang GG, Pan YY, Li Y, Zheng L, Jiang YJ, Shang H, Cui L, Cao YM. Transient Attenuated Foxp3 Expression on CD4+ T cells Treated with 7D4 mAb Contributes to the Control of Parasite Burden in DBA / 2 Mice Infected with Lethal Plasmodium chabaudi chabaudi AS. Scand J Immunol 2011; 75:46-53. [DOI: 10.1111/j.1365-3083.2011.02622.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
161
|
Kang SA, Cho MK, Park MK, Kim DH, Hong YC, Lee YS, Cha HJ, Ock MS, Yu HS. Alteration of helper T-cell related cytokine production in splenocytes during Trichinella spiralis infection. Vet Parasitol 2011; 186:319-27. [PMID: 22222009 DOI: 10.1016/j.vetpar.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/19/2022]
Abstract
Infection by Trichinella spiralis takes place in two distinct phases: one is the intestinal phase and the other is the muscle phase. To evaluate alterations in cytokine production during a T. spiralis infection, we periodically assessed the cytokine production of splenocytes in mice after infection (AI). The levels of Th2-related cytokines immediately increased after the initiation of T. spiralis larval intestinal invasion (1 week AI). These early elevations in the Th2 response might be associated with the innate immune responses of intestine epithelial cells against T. spiralis larval invasion. IL-4 and IL-13 levels reached a peak prior to the initiation of nurse cell formation (2 weeks AI). Additionally, all Th17-related cytokines, except for IL-17, increased slightly until 2 weeks AI. However, expression levels for all of the Th2 and Th17-related cytokines began to decrease after the initiation of nurse cell formation and reached basal levels at 4 weeks AI, except for IL-5. At the same time, the CD4(+)CD25(+)Foxp3(+) T (regulatory T, T(reg)) cell population increased significantly in the spleen. Additionally, the number of cells in the peripheral lymph nodes increased. In conclusion, T. spiralis larva intestinal invasion induced the production of Th2 and Th17 cell-related cytokines, and the cytokines decreased with T(reg) cell-related cytokine.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Stephens R, Culleton RL, Lamb TJ. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 2011; 28:73-82. [PMID: 22100995 DOI: 10.1016/j.pt.2011.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
Abstract
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system.
Collapse
Affiliation(s)
- Robin Stephens
- University of Texas Medical Branch, Departments of Microbiology and Immunology and Internal Medicine, Division of Infectious Diseases, 301 University Boulevard, Galveston, TX 77555-0435, USA
| | | | | |
Collapse
|
163
|
Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol 2011; 2011:383962. [PMID: 22190849 PMCID: PMC3228686 DOI: 10.1155/2011/383962] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/23/2022] Open
Abstract
Interleukin- (IL-) 10, anti-inflammatory cytokine, is known to inhibit the protective immune responses against malaria parasites and to be involved in exacerbating parasitemia during Plasmodium infection. In contrast, IL-10 is regarded as necessary for suppressing severe pathology during Plasmodium infection. Here, we summarize the role of IL-10 during murine malaria infection, focusing especially on coinfection with lethal and nonlethal strains of malaria parasites. Recent studies have demonstrated that the major sources of IL-10 are subpopulations of CD4+ T cells in humans and mice infected with Plasmodium. We also discuss the influence of innate immunity on the induction of CD4+ T cells during murine malaria coinfection.
Collapse
|
164
|
Adalid-Peralta L, Fragoso G, Fleury A, Sciutto E. Mechanisms underlying the induction of regulatory T cells and its relevance in the adaptive immune response in parasitic infections. Int J Biol Sci 2011; 7:1412-26. [PMID: 22110392 PMCID: PMC3221948 DOI: 10.7150/ijbs.7.1412] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/22/2022] Open
Abstract
To fulfill its function, the immune system must detect and interpret a wide variety of signals and adjust the magnitude, duration, and specific traits of each response during the complex host-parasite relationships in parasitic infections. Inflammation must be tightly regulated since uncontrolled inflammation may be as destructive as the triggering stimulus and leads to immune-mediated tissue injury. During recent years, increasing evidence points to regulatory T cells (Tregs) as key anti-inflammatory cells, critically involved in limiting the inflammatory response. Herein, we review the published information on the induction of Tregs and summarize the most recent findings on Treg generation in parasitic diseases.
Collapse
|
165
|
Wilson MS, Cheever AW, White SD, Thompson RW, Wynn TA. IL-10 blocks the development of resistance to re-infection with Schistosoma mansoni. PLoS Pathog 2011; 7:e1002171. [PMID: 21829367 PMCID: PMC3150278 DOI: 10.1371/journal.ppat.1002171] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/03/2011] [Indexed: 01/26/2023] Open
Abstract
Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni. Schistosomes are zoonotic parasitic helminths that infect hundreds of millions of people worldwide. Despite effective chemotherapy, schistosomiasis- the disease caused by these parasites, still plagues tropical regions of the world. This is due, in part, to poor resistance to reinfection resulting in high re-infection rates following treatment. This lack of resistance is intriguing, as effective treatment relies upon drug-induced parasite damage combined with host immune mediated killing. Furthermore, it has been widely reported that post-treatment, individuals develop and retain elevated levels of anti-parasite immune responses. We therefore asked why resistance to re-infection is so poor, despite the development of significant anti-worm responses post-treatment. It is essential that immune responses are controlled by various immunosuppressive mechanisms to prevent immune-mediated pathologies. However, a robust immunoregulatory response may obstruct the development of protective immunity. Thus, a balanced immune response providing a non-pathogenic yet effective immune response may be required for the development of effective resistance to reinfection. Understanding the immunological mechanisms of resistance to re-infection and the role of effector and regulatory responses may aid in the development of more effective vaccines and treatment strategies for schistosomaisis. This study suggests that combining chemotherapy with drugs that block IL-10 might provide an improved strategy to elicit acquired immunity to this parasite.
Collapse
Affiliation(s)
- Mark S Wilson
- Immunopathogensis Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Marlyand, United States of America.
| | | | | | | | | |
Collapse
|
166
|
Rook GAW, Lowry CA, Raison CL. Lymphocytes in neuroprotection, cognition and emotion: is intolerance really the answer? Brain Behav Immun 2011; 25:591-601. [PMID: 21167931 DOI: 10.1016/j.bbi.2010.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 12/12/2022] Open
Abstract
Clinical, epidemiological and therapeutic studies indicate that some human depression is associated with proinflammatory cytokines, chronic inflammatory disorders, and inflammation-inducing lifestyle factors. Moreover depression can be induced by administration of proinflammatory cytokines, including IL-2 or IFN-α. However, recent studies in specific pathogen-free (SPF) rodents suggest a different--and potentially contradictory--relationship between immune processes and mental health. These studies suggest that effector T cells specific for central nervous system (CNS) antigens can assist recovery from an array of environmental insults ranging from nerve injury to psychological stress, while in contrast, regulatory T cells (Treg) oppose such recovery. Indeed, some reported effects of this so-called "protective autoimmunity" seem of direct relevance to depressive disorders. These findings pose a dilemma for those intending to manipulate inflammatory pathways as a treatment for depression. Should we administer anti-inflammatory treatments, or should we induce self-reactive T cells? We re-examine the rodent findings and outline immunological peculiarities of SPF rodents, the abnormal properties of their regulatory T cells, and the impact of gut microbiota. We find that "protective autoimmunity" is likely to be relevant only to very clean SPF animals that lack normal levels of activated T cells, CNS T cell traffic and mature Treg. The data indicate that even in SPF models the effectors of beneficial effects are not the proinflammatory autoimmune cells themselves, but rather unidentified regulatory cells. This reinterpretation of findings relevant to "protective autoimmunity" suggests that ongoing, and planned, clinical trials of anti-inflammatory strategies to treat depressive disorders are justified.
Collapse
Affiliation(s)
- Graham A W Rook
- Department of Infection, University College London (UCL), London W1T4JF, UK.
| | | | | |
Collapse
|
167
|
Metenou S, Dembele B, Konate S, Dolo H, Coulibaly YI, Diallo AA, Soumaoro L, Coulibaly ME, Coulibaly SY, Sanogo D, Doumbia SS, Traoré SF, Mahanty S, Klion A, Nutman TB. Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4725-33. [PMID: 21411732 PMCID: PMC3407819 DOI: 10.4049/jimmunol.1003778] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Berretta F, St-Pierre J, Piccirillo CA, Stevenson MM. IL-2 Contributes to Maintaining a Balance between CD4+Foxp3+ Regulatory T Cells and Effector CD4+ T Cells Required for Immune Control of Blood-Stage Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:4862-71. [DOI: 10.4049/jimmunol.1003777] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
169
|
Miu J, Saleh M, Stevenson MM. Caspase-12 deficiency enhances cytokine responses but does not protect against lethal Plasmodium yoelii 17XL infection. Parasite Immunol 2011; 32:773-8. [PMID: 21086719 DOI: 10.1111/j.1365-3024.2010.01250.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To investigate the effect of caspase-12 deficiency on IFN-γ- independent control of blood-stage malaria, we compared lethal Plasmodium yoelii 17XL infection in wild-type C57BL ⁄ 6J and caspase-12-/-mice. Infected caspase-12-/- mice exhibited higher parasitaemia than WT mice on days 8 and 9 post-inoculation, but all WT and caspase-12-/- mice succumbed by day 10. In addition, infected caspase-12-/-mice had significantly elevated levels of IFN-γ, TNF, IL-18,and IL-10 in sera compared to infected WT mice. At the terminal stage of disease, there were no differences in cytokine levels in the tissues of infected WT and caspase-12-/- mice. However, liver pathology was more severe in infected caspase-12-/- mice compared to infected WT mice. Together, these findings indicate that although caspase-12 deficiency results in enhanced pro-inflammatory and immunoregulatory cytokine levels in sera during P. yoelii 17XL infection, these responses are not essential for protection against lethal malaria infection.
Collapse
Affiliation(s)
- J Miu
- Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, Canada
| | | | | |
Collapse
|
170
|
Abstract
Infectious agents have intimately co-evolved with the host immune system, acquiring a portfolio of highly sophisticated mechanisms to modulate immunity. Among the common strategies developed by viruses, bacteria, protozoa, helminths, and fungi is the manipulation of the regulatory T cell network in order to favor pathogen survival and transmission. Treg activity also benefits the host in many circumstances by controlling immunopathogenic reactions to infection. Interestingly, some pathogens are able to directly induce the conversion of naive T cells into suppressive Foxp3-expressing Tregs, while others activate pre-existing natural Tregs, in both cases repressing pathogen-specific effector responses. However, Tregs can also act to promote immunity in certain settings, such as in initial stages of infection when effector cells must access the site of infection, and subsequently in ensuring generation of effector memory. Notably, there is little current information on whether infections selectively drive pathogen-specific Tregs, and if so whether these cells are also reactive to self-antigens. Further analysis of specificity, together with a clearer picture of the relative dynamics of Treg subsets over the course of disease, should lead to rational strategies for immune intervention to optimize immunity and eliminate infection.
Collapse
|
171
|
CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo. PLoS Pathog 2010; 6:e1001221. [PMID: 21170302 PMCID: PMC3000360 DOI: 10.1371/journal.ppat.1001221] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 11/04/2010] [Indexed: 01/22/2023] Open
Abstract
Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+) cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+) T and CD8(+) T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+) cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.
Collapse
|
172
|
The Th1 immune response to Plasmodium falciparum circumsporozoite protein is boosted by adenovirus vectors 35 and 26 with a homologous insert. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1687-94. [PMID: 20826614 DOI: 10.1128/cvi.00311-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The most advanced malaria vaccine, RTS,S, is comprised of a portion of the Plasmodium falciparum circumsporozoite (CS) protein, fused to and admixed with the hepatitis B virus surface antigen, and an adjuvant [corrected].This vaccine confers short-term protection against malaria infection, with an efficacy of about 50%, and induces particularly B-cell and CD4(+) T-cell responses.In the present study, we tested the hypothesis that the Th1 immune response to CS protein,in particular the CD8(+) T-cell response, which is needed for strong and lasting malaria immunity, is boosted to sustainable levels by adenovirus vectors 35 and 26 with a homologous insert (Ad35.CS/Ad26.CS) [corrected]. In this study, we evaluated immune responses induced with vaccination regimens based on an adjuvant-containing, yeast-produced complete CS protein followed by two recombinant low-seroprevalence adenoviruses expressing P. falciparum CS antigen, Ad35.CS (subgroup B) and Ad26.CS (subgroup D). Our results show that (i) the yeast (Hansenula polymorpha)produced, adjuvanted full-length CS protein is highly potent in inducing high CS-specific humoral responses in mice but produces poor T-cell responses, (ii) the Ad35.CS vector boosts the gamma interferon-positive (IFN-γ(+)) CD8(+) T-cell response induced by the CS protein immunization and shifts the immune response toward the Th1 type, and (iii) a three-component heterologous vaccination comprised of a CS protein prime followed by boosts with Ad35.CS and Ad26.CS elicits an even more robust and sustainable IFN-γ(+) CD8(+) T-cell response than one- or two-component regimens. The Ad35.CS/Ad26.CS combination boosted particularly the IFN-γ(+) and tumor necrosis factor alpha-positive (TNF-α(+)) T cells, confirming the shift of the immune response from the Th2 type to the Th1 type. These results support the notion of first immunizations of infants with an adjuvanted CS protein vaccine, followed by a booster Ad35.CS/Ad26.CS vaccine at a later age, to induce lasting protection against malaria for which the Th1 response and immune memory is required.
Collapse
|
173
|
Control of Schistosoma mansoni egg-induced inflammation by IL-4-responsive CD4+CD25−CD103+Foxp3− cells is IL-10-dependent. Eur J Immunol 2010; 40:2837-47. [DOI: 10.1002/eji.200940075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
174
|
Findlay EG, Greig R, Stumhofer JS, Hafalla JCR, de Souza JB, Saris CJ, Hunter CA, Riley EM, Couper KN. Essential role for IL-27 receptor signaling in prevention of Th1-mediated immunopathology during malaria infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:2482-92. [PMID: 20631310 DOI: 10.4049/jimmunol.0904019] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Successful resolution of malaria infection requires induction of proinflammatory immune responses that facilitate parasite clearance; however, failure to regulate this inflammation leads to immune-mediated pathology. The pathways that maintain this immunological balance during malaria infection remain poorly defined. In this study, we demonstrate that IL-27R-deficient (WSX-1(-/-)) mice are highly susceptible to Plasmodium berghei NK65 infection, developing exacerbated Th1-mediated immune responses, which, despite highly efficient parasite clearance, lead directly to severe liver pathology. Depletion of CD4(+) T cells---but not CD8(+) T cells---prevented liver pathology in infected WSX-1(-/-) mice. Although WSX-1 signaling was required for optimal IL-10 production by CD4(+) T cells, administration of rIL-10 failed to ameliorate liver damage in WSX-1(-/-) mice, indicating that additional, IL-10-independent, protective pathways are modulated by IL-27R signaling during malaria infection. These data are the first to demonstrate the essential role of IL-27R signaling in regulating effector T cell function during malaria infection and reveal a novel pathway that might be amenable to manipulation by drugs or vaccines.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Guilbride DL, Gawlinski P, Guilbride PDL. Why functional pre-erythrocytic and bloodstage malaria vaccines fail: a meta-analysis of fully protective immunizations and novel immunological model. PLoS One 2010; 5:e10685. [PMID: 20502667 PMCID: PMC2873430 DOI: 10.1371/journal.pone.0010685] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 04/16/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. METHODOLOGY/PRINCIPAL FINDINGS We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. CONCLUSIONS/SIGNIFICANCE We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications for accelerated local eliminations of malaria, and significantly increases potential for eradication.
Collapse
|
176
|
Van den Steen PE, Geurts N, Deroost K, Van Aelst I, Verhenne S, Heremans H, Van Damme J, Opdenakker G. Immunopathology and Dexamethasone Therapy in a New Model for Malaria-associated Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2010; 181:957-68. [DOI: 10.1164/rccm.200905-0786oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
177
|
Abstract
Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed.
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
178
|
Namazi MJ, Phillips RS. Immune responses of NIH mice infected with avirulent and virulent strains of Plasmodium chabaudi adami single and mixed infections. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 48:23-33. [PMID: 20333282 DOI: 10.3347/kjp.2010.48.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 02/11/2010] [Accepted: 02/20/2010] [Indexed: 11/23/2022]
Abstract
An understanding of the nature of the immune response to asexual erythrocytic stages of malaria parasites will facilitate vaccine development by identifying which responses the vaccine should preferentially induce. The present study examined and compared the immune responses of NIH mice in either single or mixed infections with avirulent (DK) or virulent (DS) strains of Plasmodium chabaudi adami using the ELISA test for detecting and measurement of cytokines and antibody production. In both single and mixed infections, the study showed that both cell- and antibody-mediated responses were activated. In all experiments, an early relatively high level of IFN-gamma and IgG2a during the acute phase of the infection, and later elevation of IL-4 and IgG1, suggested that there was a sequential Th1/Th2 response. However, in the avirulent DK strain infection a stronger Th1 response was observed compared to the virulent DS strain-infection or in mixed infections. In the virulent DS infection, there was a stronger Th2 response compared to that in the DK and mixed infections. The faster proliferation rate of the virulent DS strain compared to the DK strain was also evident.
Collapse
Affiliation(s)
- M J Namazi
- The University of Medical Sciences of Sabzevar, Khorasan Razavi Province, Iran.
| | | |
Collapse
|
179
|
Rivino L, Gruarin P, Häringer B, Steinfelder S, Lozza L, Steckel B, Weick A, Sugliano E, Jarrossay D, Kühl AA, Loddenkemper C, Abrignani S, Sallusto F, Lanzavecchia A, Geginat J. CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function. ACTA ACUST UNITED AC 2010; 207:565-77. [PMID: 20194631 PMCID: PMC2839148 DOI: 10.1084/jem.20091021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10–producing memory T cells. Human CD4+CCR6+ memory T cells contained comparable numbers of IL-17– and IL-10–producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)–β. In normal human spleens, the majority of CCR6+ memory T cells were in the close vicinity of CCR6+ myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6+ memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6+ T cells induced expression of IL-2, interferon-γ, CCL20, and CD40L, and autoreactive CCR6+ T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6+ T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions.
Collapse
Affiliation(s)
- Laura Rivino
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Thorborn G, Pomeroy L, Isohanni H, Perry M, Peters B, Vyakarnam A. Increased sensitivity of CD4+ T-effector cells to CD4+CD25+ Treg suppression compensates for reduced Treg number in asymptomatic HIV-1 infection. PLoS One 2010; 5:e9254. [PMID: 20174666 PMCID: PMC2822868 DOI: 10.1371/journal.pone.0009254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/25/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In HIV infection, uncontrolled immune activation and disease progression is attributed to declining CD4+CD25+FoxP3+ regulatory T-cell (Treg) numbers. However, qualitative aspects of Treg function in HIV infection, specifically the balance between Treg cell suppressive potency versus suppressibility of effector cells, remain poorly understood. This report addresses this issue. METHODOLOGY/PRINCIPAL FINDINGS A classic suppression assay to measure CD4+CD45RO+CD25hi Treg cells to suppress the proliferation of CD4+CD45RO+CD25- effectors cells (E) following CD3/CD28 polyclonal stimulation was employed to compare the suppressive ability of healthy volunteers (N = 27) and chronic, asymptomatic, treatment naïve, HIV-infected subjects (N = 14). HIV-infected subjects displayed significantly elevated Treg-mediated suppression compared to healthy volunteers (p = 0.0047). Cross-over studies comparing Treg cell potency from HIV-infected versus control subjects to suppress the proliferation of a given population of allogeneic effector cells demonstrated increased sensitivity of CD4+CD25- effector cells from HIV-infected subjects to be suppressed, associated with reduced production of the Treg counter-regulatory cytokine, IL-17, rather than an increase in the suppressive potential of their CD4+CD25+ Treg cells. However, compared to controls, HIV+ subjects had significantly fewer absolute numbers of circulating CD4+CD25+FoxP3+ Treg cells. In vitro studies highlighted that one mechanism for this loss could be the preferential infection of Treg cells by HIV. CONCLUSIONS/SIGNIFICANCE Together, novel data is provided to support the contention that elevated Treg-mediated suppression may be a natural host response to HIV infection.
Collapse
Affiliation(s)
- Georgina Thorborn
- Department of Infectious Diseases, King's College London, Guys' Hospital, London, England
| | - Laura Pomeroy
- Department of Infectious Diseases, King's College London, St Thomas' Hospital, London, England
| | - Heidi Isohanni
- Department of Infectious Diseases, King's College London, St Thomas' Hospital, London, England
| | - Melissa Perry
- Department of Infectious Diseases, King's College London, St Thomas' Hospital, London, England
| | - Barry Peters
- Department of Infectious Diseases, King's College London, St Thomas' Hospital, London, England
| | - Annapurna Vyakarnam
- Department of Infectious Diseases, King's College London, Guys' Hospital, London, England
| |
Collapse
|
181
|
Finney OC, Riley EM, Walther M. Regulatory T cells in malaria – friend or foe? Trends Immunol 2010; 31:63-70. [DOI: 10.1016/j.it.2009.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/06/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
|
182
|
Scholzen A, Minigo G, Plebanski M. Heroes or villains? T regulatory cells in malaria infection. Trends Parasitol 2010; 26:16-25. [DOI: 10.1016/j.pt.2009.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022]
|
183
|
Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 2009; 137:755-72. [PMID: 20028608 DOI: 10.1017/s0031182009991715] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral malaria is a life-threatening complication of malaria infection. The pathogenesis of cerebral malaria is poorly defined and progress in understanding the condition is severely hampered by the inability to study in detail, ante-mortem, the parasitological and immunological events within the brain that lead to the onset of clinical symptoms. Experimental murine models have been used to investigate the sequence of events that lead to cerebral malaria, but there is significant debate on the merits of these models and whether their study is relevant to human disease. Here we review the current understanding of the parasitological and immunological events leading to human and experimental cerebral malaria, and explain why we believe that studies with experimental models of CM are crucial to define the pathogenesis of the condition.
Collapse
|
184
|
Reduction of Foxp3+ cells by depletion with the PC61 mAb induces mortality in resistant BALB/c mice infected with Toxoplasma gondii. J Biomed Biotechnol 2009; 2010:786078. [PMID: 20037737 PMCID: PMC2796377 DOI: 10.1155/2010/786078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022] Open
Abstract
Regulatory T cells (Tregs) are CD4+Foxp3+ cells that modulate autoimmune responses. Tregs have been shown to be also involved during the immune response against infectious agents. The aim of this work is to study the role of Tregs during the infection with the intracellular protozoan Toxoplasma gondii. Resistant BALB/c mice were injected with 200 μg of anti-CD25 mAb (clone PC61) and 2 days later they were infected with 20 cysts of the ME49 strain of T. gondii. We observed that depleted mice showed 50–60% mortality during the acute infection. When FACS analysis was carried out, we observed that although injection of PC61 mAb eliminated 50% of Tregs, infected-depleted mice showed a similar percentage of CD25+Foxp3− (activated T cells, Tact) to those observed in infected nondepleted animals, demonstrating that in our depletion/infection system, injection of PC61 mAb did not hamper T cell activation while percentage of Tregs was reduced by 75% 10 days post infection. We concluded that Tregs are essential during protection in the acute phase of T. gondii infection.
Collapse
|
185
|
García-Hernández MH, Alvarado-Sánchez B, Calvo-Turrubiartes MZ, Salgado-Bustamante M, Rodríguez-Pinal CY, Gámez-López LR, González-Amaro R, Portales-Pérez DP. Regulatory T Cells in children with intestinal parasite infection. Parasite Immunol 2009; 31:597-603. [PMID: 19751471 DOI: 10.1111/j.1365-3024.2009.01149.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic intestinal parasite infection can induce both persistent immune activation and defective responsiveness of T cells. This study aimed to assess the number and function of T regulatory (Treg) cells in children with intestinal parasite infection. We have studied the peripheral blood from 93 children, 53 of them parasitized with protozoa, helminths, or both; the remainder were non parasitized, healthy controls. The number and function of CD4(+) CD25(high) and CD4(+) Foxp3(+) cells were similar in parasitized and control children. In contrast, there was a significant increase in the levels of CD3(+) CD69(+), CD4(+) CTLA-4(+), and CD8(+) CD28(-) T cells in helminth infected children. Moreover, some of these patients showed a diminished response to CD3/CD28 stimulation in comparison with the control children. Our data strongly suggest that whilst Treg cells are not affected by intestinal parasite infection, CD3(+) CD69(+), CD4(+) CTLA-4(+) and CD8(+) CD28(-) lymphocytes may play an important, but as yet undetermined role in the diminished immune competence observed in parasitized children.
Collapse
Affiliation(s)
- M H García-Hernández
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosi, SLP, México
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Finney OC, Riley EM, Walther M. Phenotypic analysis of human peripheral blood regulatory T cells (CD4+FOXP3+CD127lo/-) ex vivo and after in vitro restimulation with malaria antigens. Eur J Immunol 2009; 40:47-60. [DOI: 10.1002/eji.200939708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
187
|
Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E. IL-10 signaling blockade controls murine West Nile virus infection. PLoS Pathog 2009; 5:e1000610. [PMID: 19816558 PMCID: PMC2749443 DOI: 10.1371/journal.ppat.1000610] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 09/10/2009] [Indexed: 12/20/2022] Open
Abstract
West Nile virus (WNV), a mosquito-borne single-stranded RNA flavivirus, can cause significant human morbidity and mortality. Our data show that interleukin-10 (IL-10) is dramatically elevated both in vitro and in vivo following WNV infection. Consistent with an etiologic role of IL-10 in WNV pathogenesis, we find that WNV infection is markedly diminished in IL-10 deficient (IL-10−/−) mice, and pharmacologic blockade of IL-10 signaling by IL-10 neutralizing antibody increases survival of WNV-infected mice. Increased production of antiviral cytokines in IL-10−/− mice is associated with more efficient control of WNV infection. Moreover, CD4+ T cells produce copious amounts of IL-10, and may be an important cellular source of IL-10 during WNV infection in vivo. In conclusion, IL-10 signaling plays a negative role in immunity against WNV infection, and blockade of IL-10 signaling by genetic or pharmacologic means helps to control viral infection, suggesting a novel anti-WNV therapeutic strategy. West Nile virus (WNV), a mosquito-transmitted RNA virus, is a worldwide cause of severe human and animal infection. Mammalian host immune responses to WNV infection are not completely understood and a vaccine or specific therapy is unavailable for use in humans. In the present study, we investigated the putative regulatory role of interleukin-10 (IL-10) during WNV infection in mice. We found that IL-10 signaling facilitates WNV infection and suppresses antiviral cytokine production in response to viral infection. Interestingly, blockade of IL-10 signaling by IL-10 neutralizing antibody increases survival of WNV-infected mice, suggesting a potentially novel therapeutic strategy to combat WNV infection. In addition, we found that CD4+ T cells produce a significant amount of IL-10 during WNV infection, providing a more accurate cellular target for IL-10 signaling inhibition. IL-10 also plays a critical role in suppression of excessive inflammation and immunopathology caused by autoimmune diseases or host immune system responses to infections; therefore, safety and efficacy of IL-10 signaling blockade as a therapeutic strategy against WNV infection deserves consideration.
Collapse
Affiliation(s)
- Fengwei Bai
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- L2 Diagnostics, LLC, New Haven, Connecticut, United States of America
| | - Terrence Town
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Departments of Neurosurgery and Biomedical Sciences, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Feng Qian
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Masahito Kamanaka
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tarah M. Connolly
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David Gate
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Ruth R. Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- The Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- The Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
188
|
Abstract
Naturally acquired immunity to malaria requires repeat infections yet does not engender sterile immunity or long-lasting protective immunologic memory. This renders infants and young children the most susceptible to malaria-induced morbidity and mortality, and the ultimate target for a malaria vaccine. The prevailing paradigm is that infants initially garner protection due to transplacentally transferred anti-malarial antibodies and other intrinsic factors such as foetal haemoglobin. As these wane infants have an insufficient immune repertoire to prevent genetically diverse Plasmodium infections and an inability to control malaria-induced immunopathology. This Review discusses humoral, cell-mediated and innate immune responses to malaria and how each contributes to protection – focusing on how deficiencies in infant and paediatric immune responses might influence malaria vaccine efficacy in this population. In addition, burgeoning evidence suggests a role for inhibitory receptors that limit immunopathology and guide the development of long-lived immunity. Precisely how age or malaria infections influence the function of these regulators is unknown. Therefore the possibility that infants may not have the immune-dexterity to balance effective parasite clearance with timely immune-regulation leading to protective immunologic memory is considered. And thus, malaria vaccines tested in adults and older children may not be predictive for trials conducted in infants.
Collapse
Affiliation(s)
- A M Moormann
- Case Western Reserve University, Center for Global Health and Diseases, 2103 Cornell Road, WRB 4-130, Cleveland, OH 44106-7286, USA.
| |
Collapse
|
189
|
Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathog 2009; 5:e1000543. [PMID: 19680449 PMCID: PMC2718810 DOI: 10.1371/journal.ppat.1000543] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 07/16/2009] [Indexed: 11/19/2022] Open
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) regulate disease-associated immunity and excessive inflammatory responses, and numbers of CD4(+)CD25(+)Foxp3(+) Tregs are increased during malaria infection. The mechanisms governing their generation, however, remain to be elucidated. In this study we investigated the role of commonly accepted factors for Foxp3 induction, TCR stimulation and cytokines such as IL-2, TGFbeta and IL-10, in the generation of human CD4(+)CD25(+)Foxp3(+) T cells by the malaria parasite Plasmodium falciparum. Using a co-culture system of malaria-infected red blood cells (iRBCs) and peripheral blood mononuclear cells from healthy individuals, we found that two populations of Foxp3(hi) and Foxp3(int) CD4(+)CD25(hi) T cells with a typical Treg phenotype (CTLA-4(+), CD127(low), CD39(+), ICOS(+), TNFRII(+)) were induced. Pro-inflammatory cytokine production was confined to the Foxp3(int) subset (IFNgamma, IL-4 and IL-17) and inversely correlated with high relative levels of Foxp3(hi) cells, consistent with Foxp3(hi) CD4 T cell-mediated inhibition of parasite-induced effector cytokine T cell responses. Both Foxp3(hi) and Foxp3(int) cells were derived primarily from proliferating CD4(+)CD25(-) T cells with a further significant contribution from CD25(+)Foxp3(+) natural Treg cells to the generation of the Foxp3(hi) subset. Generation of Foxp3(hi), but not Foxp3(int), cells specifically required TGFbeta1 and IL-10. Add-back experiments showed that monocytes expressing increased levels of co-stimulatory molecules were sufficient for iRBC-mediated induction of Foxp3 in CD4 T cells. Foxp3 induction was driven by IL-2 from CD4 T cells stimulated in an MHC class II-dependent manner. However, transwell separation experiments showed that direct contact of monocytes with the cells that acquire Foxp3 expression was not required. This novel TCR-independent and therefore antigen-non specific mechanism for by-stander CD4(+)CD25(hi)Foxp3(+) cell induction is likely to reflect a process also occurring in vivo as a consequence of immune activation during malaria infection, and potentially a range of other infectious diseases.
Collapse
|
190
|
Were T, Davenport GC, Yamo EO, Hittner JB, Awandare GA, Otieno MF, Ouma C, Orago AS, Vulule JM, Ong'echa JM, Perkins DJ. Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes Infect 2009; 11:811-9. [PMID: 19427395 PMCID: PMC2745194 DOI: 10.1016/j.micinf.2009.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/11/2009] [Accepted: 04/24/2009] [Indexed: 01/08/2023]
Abstract
Regulated upon activation, normal T-cell expressed, and secreted (RANTES, CCL-5) is an important immunoregulatory mediator that is suppressed in children with malarial anemia (MA). Although pro-inflammatory (e.g., TNF-alpha, IL-1beta and IFN-gamma) and anti-inflammatory (e.g., IL-4, IL-10 and IL-13) cytokines regulate RANTES production, their effect on RANTES in children with MA has not been determined. Since intraleukocytic malarial pigment, hemozoin (Hz), causes dysregulation in chemokine and cytokine production, the impact of naturally acquired Hz (pfHz) on RANTES and RANTES-regulatory cytokines (TNF-alpha, IFN-gamma, IL-1beta, IL-4, IL-10, and IL-13) was examined. Circulating RANTES levels progressively declined with increasing levels of pigment-containing monocytes (PCM) (P=0.035). Additional experiments in cultured peripheral blood mononuclear cells (PBMC) showed that monocytic acquisition of pfHz (in vivo) was associated with suppression of RANTES under baseline (P=0.001) and stimulated conditions (P=0.072). Although high PCM levels were associated with decreased circulating IFN-gamma (P=0.003) and IL-10 (P=0.010), multivariate modeling revealed that only PCM (P=0.048, beta=-0.171) and IL-10 (P<0.0001, beta=-0.476) were independently associated with RANTES production. Subsequent in vitro experiments revealed that blockade of endogenous IL-10 significantly increased RANTES production (P=0.028) in PBMC from children with naturally acquired Hz. Results here demonstrate that monocytic acquisition of Hz suppresses RANTES production in children with MA through an IL-10-dependent mechanism.
Collapse
Affiliation(s)
- Tom Were
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
- Department of Pathology, School of Health Sciences, Kenyatta University, Nairobi, Kenya
| | - Gregory C. Davenport
- Global and Geographic Medicine Program, Division of Infectious Diseases, University of New Mexico School of Medicine, New Mexico, USA
| | - Emmanuel O. Yamo
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
| | - James B. Hittner
- Department of Psychology, College of Charleston, Charleston, SC, USA
| | - Gordon A. Awandare
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael F. Otieno
- Department of Pre-Clinical Sciences, School of Health Sciences, Kenyatta University, Nairobi, Kenya
| | - Collins Ouma
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
| | | | - John M. Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John M. Ong'echa
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
- Global and Geographic Medicine Program, Division of Infectious Diseases, University of New Mexico School of Medicine, New Mexico, USA
| | - Douglas J. Perkins
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
- Global and Geographic Medicine Program, Division of Infectious Diseases, University of New Mexico School of Medicine, New Mexico, USA
| |
Collapse
|
191
|
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development. Curr Opin Immunol 2009; 21:321-30. [DOI: 10.1016/j.coi.2009.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/26/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
192
|
Abstract
Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.
Collapse
Affiliation(s)
- Yasmine Belkaid
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
193
|
Häringer B, Lozza L, Steckel B, Geginat J. Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. ACTA ACUST UNITED AC 2009; 206:1009-17. [PMID: 19414553 PMCID: PMC2715038 DOI: 10.1084/jem.20082238] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two subsets of natural and adaptive regulatory T (T reg) cells have been described, but the identity of adaptive type 1 regulatory (Tr1)–like cells in humans is unclear. We analyzed a subset of human blood CD4+ T cells—CD45RA−CD25−interleukin (IL)-7 receptor (R)− cells—that rapidly secreted high levels of IL-10 together with interferon γ, but produced little IL-2. These IL-7R− T cells were rare, anergic, and largely Foxp3−. They expressed low levels of Bcl-2 but high levels of Ki-67 and ICOS, suggesting that they have been recently activated in vivo. Consistently, they responded selectively to persistent foreign and self-antigens under steady-state conditions. Unlike natural CD25+ T reg cells, IL-7R− cells suppressed naive and memory T cell proliferation in an IL-10–dependent fashion, and they required strong T cell receptor stimulation for suppression. To our knowledge, this is the first report that identifies Tr1-like cells in human blood. These IL-10–secreting cells have characteristics of chronically activated Th1 effector cells and are distinct from CD25+ T reg cells.
Collapse
Affiliation(s)
- Barbara Häringer
- Charité Research Centre for ImmunoSciences and German Rheumatism Research Center, Campus Charité Mitte, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
194
|
Finney OC, Nwakanma D, Conway DJ, Walther M, Riley EM. Homeostatic regulation of T effector to Treg ratios in an area of seasonal malaria transmission. Eur J Immunol 2009; 39:1288-300. [PMID: 19338000 DOI: 10.1002/eji.200839112] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An important aspect of clinical immunity to malaria is the ability to down-regulate inflammatory responses, once parasitaemia is under control, in order to avoid immune-mediated pathology. The role of classical (CD4(+)CD25(+)CD127(lo/-)FOXP3(+)) Treg in this process, however, remains controversial. Thus, we have characterized the frequency, phenotype and function of Treg populations, over time, in healthy individuals in The Gambia. We observed that both the percentage and the absolute number of CD4(+)FOXP3(+)CD127(lo/-) T cells were higher among individuals living in a rural village with highly seasonal malaria transmission than among individuals living in an urban area where malaria rarely occurs. These CD4(+)FOXP3(+)CD127(lo/-) T cells exhibited an effector memory and apoptosis-prone phenotype and suppressed cytokine production in response to malaria antigen. Cells from individuals exposed to malaria expressed significantly higher levels of mRNA for forkhead box P3 and T-box 21 (T-BET) at the end of the malaria transmission season than at the end of the non-transmission season. Importantly, the ratio of T-BET to forkhead box P3 was remarkably consistent between populations and over time, indicating that in healthy individuals, a transient increase in Th1 responses during the malaria transmission season is balanced by a commensurate Treg response, ensuring that immune homeostasis is maintained.
Collapse
Affiliation(s)
- Olivia C Finney
- Malaria Programme, MRC Laboratories, Fajara, Banjul, The Gambia
| | | | | | | | | |
Collapse
|
195
|
Couper KN, Lanthier PA, Perona-Wright G, Kummer LW, Chen W, Smiley ST, Mohrs M, Johnson LL. Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:3985-94. [PMID: 19299696 DOI: 10.4049/jimmunol.0803053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Natural regulatory T cells (Tregs) constitutively express the IL-2R alpha-chain (CD25) on their surface. Consequently, administration of anti-CD25 Abs is a commonly used technique to deplete Treg populations in vivo. However, activated effector T cells may also transiently express CD25, and are thus also potential targets for anti-CD25 Abs. In this study using Toxoplasma gondii as a model proinflammatory infection, we have examined the capacity of anti-CD25 Abs to target effector T cell populations during an inflammatory episode, to determine to what extent that this action may modulate the outcome of disease. Anti-CD25 Ab-treated C57BL/6 mice displayed significantly reduced CD4(+) T cell IFN-gamma production during acute T. gondii infection and exhibited reduced weight loss and liver pathology during early acute infection; aspects of infection previously associated with effector CD4(+) T cell responses. In agreement, anti-CD25 Ab administration impaired parasite control and caused mice to succumb to infection during late acute/early chronic stages of infection with elevated tissue parasite burdens. In contrast, anti-CD25 Ab treatment of mice with established chronic infections did not markedly affect brain parasite burdens, suggesting that protective T cell populations do not express CD25 during chronic stages of T. gondii infection. In summary, we have demonstrated that anti-CD25 Abs may directly abrogate effector T cell responses during an inflammatory episode, highlighting important limitations of the use of anti-CD25 Ab administration to examine Treg function during inflammatory settings.
Collapse
|
196
|
IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood 2009; 114:346-56. [PMID: 19365081 DOI: 10.1182/blood-2008-12-191296] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Murine models indicate that interleukin-10 (IL-10) can suppress viral clearance, and interventional blockade of IL-10 activity has been proposed to enhance immunity in chronic viral infections. Increased IL-10 levels have been observed during HIV infection and IL-10 blockade has been shown to enhance T-cell function in some HIV-infected subjects. However, the categories of individuals in whom the IL-10 pathway is up-regulated are poorly defined, and the cellular sources of IL-10 in these subjects remain to be determined. Here we report that blockade of the IL-10 pathway augmented in vitro proliferative capacity of HIV-specific CD4 and CD8 T cells in individuals with ongoing viral replication. IL-10 blockade also increased cytokine secretion by HIV-specific CD4 T cells. Spontaneous IL-10 expression, measured as either plasma IL-10 protein or IL-10 mRNA in peripheral blood mononuclear cells (PBMCs), correlated positively with viral load and diminished after successful antiretroviral therapy. IL-10 mRNA levels were up-regulated in multiple PBMC subsets in HIV-infected subjects compared with HIV-negative controls, particularly in T, B, and natural killer (NK) cells, whereas monocytes were a major source of IL-10 mRNA in HIV-infected and -uninfected individuals. These data indicate that multiple cell types contribute to IL-10-mediated immune suppression in the presence of uncontrolled HIV viremia.
Collapse
|
197
|
Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, Deininger S, Lawrence E, Ngwa-Amambua A, Jayasooriya S, Cheeseman IH, Gomez-Escobar N, Okebe J, Conway DJ, Riley EM. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 2009; 5:e1000364. [PMID: 19343213 PMCID: PMC2658808 DOI: 10.1371/journal.ppat.1000364] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/03/2009] [Indexed: 02/04/2023] Open
Abstract
Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to pathogenesis of severe malaria. To determine whether this balance is maintained by classical regulatory T cells (CD4(+) FOXP3(+) CD127(-/low); Tregs) we compared cellular responses between Gambian children (n = 124) with severe Plasmodium falciparum malaria or uncomplicated malaria infections. Although no significant differences in Treg numbers or function were observed between the groups, Treg activity during acute disease was inversely correlated with malaria-specific memory responses detectable 28 days later. Thus, while Tregs may not regulate acute malarial inflammation, they may limit memory responses to levels that subsequently facilitate parasite clearance without causing immunopathology. Importantly, we identified a population of FOXP3(-), CD45RO(+) CD4(+) T cells which coproduce IL-10 and IFN-gamma. These cells are more prevalent in children with uncomplicated malaria than in those with severe disease, suggesting that they may be the regulators of acute malarial inflammation.
Collapse
Affiliation(s)
- Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
199
|
Couper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:5771-7. [DOI: 10.4049/jimmunol.180.9.5771] [Citation(s) in RCA: 1489] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|