151
|
Prole DL, Taylor CW. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One 2011; 6:e26218. [PMID: 22022573 PMCID: PMC3194816 DOI: 10.1371/journal.pone.0026218] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/22/2011] [Indexed: 11/29/2022] Open
Abstract
Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
152
|
Affiliation(s)
- César G. Prucca
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Fernando D. Rivero
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Hugo D. Luján
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| |
Collapse
|
153
|
Jenikova G, Hruz P, Andersson MK, Tejman-Yarden N, Ferreira PCD, Andersen YS, Davids BJ, Gillin FD, Svärd SG, Curtiss R, Eckmann L. Α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model. Vaccine 2011; 29:9529-37. [PMID: 22001876 DOI: 10.1016/j.vaccine.2011.09.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 08/15/2011] [Accepted: 09/30/2011] [Indexed: 11/18/2022]
Abstract
Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine strains were constructed that stably expressed each antigen, maintained colonization capacity, and sustained total attenuation in the host. Oral administration of the vaccine strains induced antigen-specific serum IgG, particularly IgG(2A), and mucosal IgA for α1-giardin and α-enolase, but not for ornithine carbamoyl transferase. Immunization with the α1-giardin vaccine induced significant protection against subsequent G. lamblia challenge, which was further enhanced by boosting with cholera toxin or sublingual α1-giardin administration. The α-enolase vaccine afforded no protection. Analysis of α1-giardin from divergent assemblage A and B isolates of G. lamblia revealed >97% amino acid sequence conservation and immunological cross-reactivity, further supporting the potential utility of this antigen in vaccine development. Together. These results indicate that α1-giardin is a suitable candidate antigen for a vaccine against giardiasis.
Collapse
Affiliation(s)
- Gabriela Jenikova
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Hanevik K, Kristoffersen E, Svard S, Bruserud O, Ringqvist E, Sørnes S, Langeland N. Human cellular immune response against Giardia lamblia 5 years after acute giardiasis. J Infect Dis 2011; 204:1779-86. [PMID: 21990423 DOI: 10.1093/infdis/jir639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Clinical and epidemiological studies have suggested the development of acquired immunity in individuals previously infected with Giardia lamblia. However, there are no data on the long-term cellular immunity and genotype cross-reactivity. An outbreak of assemblage B giardiasis in a nonendemic area made it possible to evaluate the long-term cellular mediated immunity and its specificity toward the 2 Giardia assemblages known to infect humans. METHODS Peripheral blood mononuclear cells from 19 individuals infected with Giardia assemblage B 5 years previously and from 10 uninfected controls were cultured with antigens from assemblage A and B Giardia trophozoites for 6 days. Cell-mediated immunity was measured by a (3)H-thymidine proliferation assay and flow cytometric analysis of activation markers HLA-DR, CD45RO, CD25, and CD26 in T-cell subsets. RESULTS Proliferation responses were significantly elevated in the group previously exposed to Giardia for nearly all Giardia antigens tested. Individual responses toward Giardia trophozoite whole cell, cytosolic, and excretory-secretory antigens from both assemblages correlated well. Activation marker responses were mainly seen in CD4 T cells. CONCLUSIONS G. lamblia infection induces long-term, albeit variable, cellular immune responses that are not assemblage specific and that are largely driven by CD4 T-cell activation.
Collapse
Affiliation(s)
- Kurt Hanevik
- Institute of Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
155
|
Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 2011; 5:e1338. [PMID: 22028939 PMCID: PMC3196473 DOI: 10.1371/journal.pntd.0001338] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
156
|
Liu H, Fu Y, Li B, Yu X, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. BMC Evol Biol 2011; 11:276. [PMID: 21943216 PMCID: PMC3198968 DOI: 10.1186/1471-2148-11-276] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. RESULTS Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. CONCLUSIONS Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
- Current Address: Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, 712100, Shaanxi Province, P R China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Said A Ghabrial
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Xianhong Yi
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, P R China
| |
Collapse
|
157
|
Siripattanapipong S, Leelayoova S, Mungthin M, Thompson RCA, Boontanom P, Saksirisampant W, Tan-ariya P. Clonal diversity of the glutamate dehydrogenase gene in Giardia duodenalis from Thai isolates: evidence of genetic exchange or mixed infections? BMC Microbiol 2011; 11:206. [PMID: 21933419 PMCID: PMC3191338 DOI: 10.1186/1471-2180-11-206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glutamate dehydrogenase gene (gdh) is one of the most popular and useful genetic markers for the genotypic analysis of Giardia duodenalis (syn. G. lamblia, G. intestinalis), the protozoan that widely causes enteric disease in humans. To determine the distribution of genotypes of G. duodenalis in Thai populations and to investigate the extent of sequence variation at this locus, 42 fecal samples were collected from 3 regions of Thailand i.e., Central, Northern, and Eastern regions. All specimens were analyzed using PCR-based genotyping and recombinant subcloning methods. RESULTS The results showed that the prevalence of assemblages A and B among these populations was approximately equal, 20 (47.6%) and 22 (52.4%), respectively. Sequence analysis revealed that the nucleotide diversity of assemblage B was significantly greater than that in assemblage A. Among all assemblage B positive specimens, the allelic sequence divergence within isolates was detected. Nine isolates showed mixed alleles, ranged from three to nine distinct alleles per isolate. Statistical analysis demonstrated the occurrence of genetic recombination within subassemblages BIII and BIV was likely. CONCLUSION This study supports increasing evidence that G. duodenalis has the potential for genetic exchange.
Collapse
Affiliation(s)
- Suradej Siripattanapipong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Rajawithi Rd., Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Rajawithi Rd., Bangkok, 10400, Thailand
| | - RC Andrew Thompson
- WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Parima Boontanom
- Department of Parasitology, Phramongkutklao College of Medicine, Rajawithi Rd., Bangkok, 10400, Thailand
| | - Wilai Saksirisampant
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Bangkok, 10330, Thailand
| | - Peerapan Tan-ariya
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| |
Collapse
|
158
|
Variation in growth and drug susceptibility amongGiardia duodenalisassemblages A, B and E in axenicin vitroculture and in the gerbil model. Parasitology 2011; 138:1354-61. [DOI: 10.1017/s0031182011001223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThis study investigated the molecular and biological variation among differentGiardia duodenalisassemblages.In vitrogrowth and susceptibility to albendazole, fenbendazole, flubendazole, metronidazole, tinidazole and furazolidone was studied for laboratory (AI: WB, AII: G1 and B: GS/M-83-H7) and 6 field isolates of assemblage subtype AI, AII, B and EIII. Additionally, isolates of the 3 assemblages were evaluated in the gerbil upon 3-day oral treatment with albendazole (6 mg/kg), flubendazole (5 mg/kg) and metronidazole (20 mg/kg). Assemblage AIgrew significantly faster than all other assemblage subtypes, which showed comparable generation times. The assemblage A laboratory strains displayed alteredin vitrodrug susceptibilities compared to their matching AIor AIIfield isolate. No variation in drug susceptibility was observed between field isolates of assemblages A and E. However, assemblage A laboratory strains were more susceptible to the benzimidazoles and less susceptible to the nitro-imidazoles and furazolidone than the assemblage B laboratory strain. In the gerbil, no markedly different drug susceptibilities were observed. In conclusion, theGiardiaassemblage subtype can be associated with differences in growth characteristics rather than in drug susceptibility.
Collapse
|
159
|
Lebbad M, Petersson I, Karlsson L, Botero-Kleiven S, Andersson JO, Svenungsson B, Svärd SG. Multilocus genotyping of human Giardia isolates suggests limited zoonotic transmission and association between assemblage B and flatulence in children. PLoS Negl Trop Dis 2011; 5:e1262. [PMID: 21829745 PMCID: PMC3149019 DOI: 10.1371/journal.pntd.0001262] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A-H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. METHODOLOGY/PRINCIPAL FINDINGS Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. CONCLUSIONS/SIGNIFICANCE This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to help identify possible zoonotic transmission.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, Solna, Sweden
- Microbiology and Tumor Biology Centre, Karolinska Institutet, Stockholm, Sweden
| | - Ingvor Petersson
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
| | - Lillemor Karlsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Botero-Kleiven
- Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, Solna, Sweden
| | - Jan O. Andersson
- Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Bo Svenungsson
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
| | - Staffan G. Svärd
- Microbiology and Tumor Biology Centre, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
160
|
Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, Zhai Y, Svard S, Gillin FD. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol 2011; 12:R66. [PMID: 21787419 PMCID: PMC3218828 DOI: 10.1186/gb-2011-12-7-r66] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/04/2011] [Accepted: 07/25/2011] [Indexed: 01/23/2023] Open
Abstract
Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton.
Collapse
Affiliation(s)
- Gerard Manning
- Razavi Newman Center for Bioinformatics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Faghiri Z, Widmer G. A comparison of the Giardia lamblia trophozoite and cyst transcriptome using microarrays. BMC Microbiol 2011; 11:91. [PMID: 21542940 PMCID: PMC3096902 DOI: 10.1186/1471-2180-11-91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/04/2011] [Indexed: 11/21/2022] Open
Abstract
Background Compared with many protists, Giardia lamblia has a simple life cycle alternating between cyst and trophozoite. Most research on the molecular biology of Giardia parasites has focused on trophozoites and the processes of excystation and encystation, whereas cysts have attracted less interest. The striking morphological differences between the dormant cyst and the rapidly dividing and motile trophozoite implies profound changes in the metabolism as the parasite encysts in the host's intestine and excysts upon ingestion by a new host. Results To investigate the magnitude of the transcriptional changes occurring during the G. lamblia life cycle we compared the transcriptome of G. lamblia trophozoites and cysts using single-color oligonucleotide microarrays. Cysts were found to possess a much smaller transcriptome, both in terms of mRNA diversity and abundance. Genes encoding proteins related to ribosomal functions are highly over-represented. The comparison of the transcriptome of cysts generated in culture or extracted from feces revealed little overlap, raising the possibility of significant biological differences between the two types of cysts. Conclusions The comparison of the G. lamblia cyst and trophozoite transcriptome showed that transcripts of most genes are present at a lower level in cysts. This global view of the cyst and trophozoite transcriptome complements studies focused on the expression of selected genes during trophozoite multiplication, encystation and excystation.
Collapse
Affiliation(s)
- Zahra Faghiri
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, USA
| | | |
Collapse
|
162
|
Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011; 24:110-40. [PMID: 21233509 DOI: 10.1128/cmr.00033-10] [Citation(s) in RCA: 844] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
Collapse
|
163
|
Andersson JO. Evolution of patchily distributed proteins shared between eukaryotes and prokaryotes: Dictyostelium as a case study. J Mol Microbiol Biotechnol 2011; 20:83-95. [PMID: 21430389 DOI: 10.1159/000324505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein families are often patchily distributed in the tree of life; they are present in distantly related organisms, but absent in more closely related lineages. This could either be the result of lateral gene transfer between ancestors of organisms that encode them, or losses in the lineages that lack them. Here a novel approach is developed to study the evolution of patchily distributed proteins shared between prokaryotes and eukaryotes. Proteins encoded in the genome of cellular slime mold Dictyostelium discoideum and a restricted number of other lineages, including at least one prokaryote, were identified. Analyses of the phylogenetic distribution of 49 such patchily distributed protein families showed conflicts with organismal phylogenies; 25 are shared with the distantly related amoeboflagellate Naegleria (Excavata), whereas only two are present in the more closely related Entamoeba. Most protein families show unexpected topologies in phylogenetic analyses; eukaryotes are polyphyletic in 85% of the trees. These observations suggest that gene transfers have been an important mechanism for the distribution of patchily distributed proteins across all domains of life. Further studies of this exchangeable gene fraction are needed for a better understanding of the origin and evolution of eukaryotic genes and the diversification process of eukaryotes.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. jan.andersson @ ebc.uu.se
| |
Collapse
|
164
|
Franzén O, Ochaya S, Sherwood E, Lewis MD, Llewellyn MS, Miles MA, Andersson B. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl Trop Dis 2011; 5:e984. [PMID: 21408126 PMCID: PMC3050914 DOI: 10.1371/journal.pntd.0000984] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes. There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania. This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need for sequencing more strains to understand fully the genomic composition of this parasite. Chagas disease is a major health problem in Latin America and it is caused by the protozoan parasite Trypanosoma cruzi. The genome sequence of the T. cruzi strain CL Brener (TcVI) has revealed a genome with large repertoires of genes for surface antigens, among other features. In the present study, we sequenced the genome of a representative member of TcI, the predominant agent of Chagas disease North of the Amazon and performed comparative analyses with CL Brener. Genetic variation between strains can potentially explain differences in disease pathogenesis, host preferences and aid the identification of drug targets. Our analysis showed that the two genomes have very similar sets of genes, but contain large differences in the relative size of several important gene families. Moreover, an abundance of allelic sequence variation was found in a large fraction of genes, and an evolutionary analysis indicated that many genes have evolved at different rates.
Collapse
Affiliation(s)
- Oscar Franzén
- Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
165
|
Transcriptional changes in Giardia during host–parasite interactions. Int J Parasitol 2011; 41:277-85. [DOI: 10.1016/j.ijpara.2010.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022]
|
166
|
Jedelský PL, Doležal P, Rada P, Pyrih J, Šmíd O, Hrdý I, Šedinová M, Marcinčiková M, Voleman L, Perry AJ, Beltrán NC, Lithgow T, Tachezy J. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 2011; 6:e17285. [PMID: 21390322 PMCID: PMC3044749 DOI: 10.1371/journal.pone.0017285] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/26/2011] [Indexed: 11/18/2022] Open
Abstract
The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis.
Collapse
Affiliation(s)
- Petr L. Jedelský
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Laboratory of Mass Spectrometry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Šmíd
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Miroslava Šedinová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Marcinčiková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lubomír Voleman
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Andrew J. Perry
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne, Australia
| | - Neritza Campo Beltrán
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Trevor Lithgow
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne, Australia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
167
|
Samuelson J, Robbins P. A simple fibril and lectin model for cyst walls of Entamoeba and perhaps Giardia. Trends Parasitol 2011; 27:17-22. [PMID: 20934911 DOI: 10.1016/j.pt.2010.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/24/2023]
Abstract
Cyst walls of Entamoeba and Giardia protect them from environmental insults, stomach acids, and intestinal proteases. Each cyst wall contains a sugar homopolymer: chitin in Entamoeba and a unique N-acetylgalactosamine (GalNAc) homopolymer in Giardia. Entamoeba cyst wall proteins include Jacob lectins (carbohydrate-binding proteins) that crosslink chitin, chitinases that degrade chitin, and Jessie lectins that make walls impermeable. Giardia cyst wall proteins are also lectins that bind fibrils of the GalNAc homopolymer. Although many of the details remain to be determined for the cyst wall of Giardia, current data suggest a relatively simple fibril and lectin model for the Entamoeba cyst wall.
Collapse
Affiliation(s)
- John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
168
|
Split Introns in the Genome of Giardia intestinalis Are Excised by Spliceosome-Mediated trans-Splicing. Curr Biol 2011; 21:311-5. [DOI: 10.1016/j.cub.2011.01.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
|
169
|
Saunders NA. Application of nanomaterials to arrays for infectious disease diagnosis. Nanomedicine (Lond) 2011; 6:271-80. [DOI: 10.2217/nnm.10.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As our understanding of infectious agents increases it has become possible to identify the biological components of individual strains with greater accuracy. This ability is aiding clinical microbiologists to control both existing and emerging infectious disease problems. Microarray technologies are playing an increasingly important role in supplying relevant test data. Control of the nanoscale structures of the materials used in arrays, including the supports, reagents and analytes, is now essential. New techniques for the manufacture of nanostructured supports is now allowing rapid advances in the fields of multianalyte testing and high-volume DNA sequencing.
Collapse
Affiliation(s)
- Nicholas A Saunders
- Health Protection Agency, Centre for Infections, 61 Colindale Avenue, London NW9 5HT, UK
| |
Collapse
|
170
|
Skarin H, Ringqvist E, Hellman U, Svärd SG. Elongation factor 1-alpha is released into the culture medium during growth of Giardia intestinalis trophozoites. Exp Parasitol 2011; 127:804-10. [PMID: 21276445 DOI: 10.1016/j.exppara.2011.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
The molecular pathogenesis of the intestinal parasite Giardia intestinalis is still not fully understood but excretory-secretory products have been suggested to be important during host-parasite interactions. Here we used SDS-PAGE gels and MALDI-TOF analysis to identify proteins released by Giardia trophozoites during in vitro growth. Serum proteins (mainly bovine serum albumin) in the growth medium, bind to the parasite surface and they are continuously released, which interfere with parasite secretome characterization. However, we identified two released Giardia proteins: elongation factor-1 alpha (EF-1α) and a 58 kDa protein, identified as arginine deiminase (ADI). This is the first description of EF-1α as a released/secreted Giardia protein, whereas ADI has been identified in an earlier secretome study. Two genes encoding EF-1α were detected in the Giardia WB genome 35 kbp apart with almost identical coding sequences but with different promoter and 3' regions. Promoter luciferase-fusions showed that both genes are transcribed in trophozoites. The EF-1α protein localizes to the nuclear region in trophozoites but it relocalizes to the cytoplasm during host-cell interaction. Recombinant EF-1α is recognized by serum from giardiasis patients. Our results suggest that released EF-1α protein can be important during Giardia infections.
Collapse
Affiliation(s)
- Hanna Skarin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
171
|
Pinheiro IDO, de Castro MF, Mitterofhe A, Pires FAC, Abramo C, Ribeiro LC, Tibiriçá SHC, Coimbra ES. Prevalence and risk factors for giardiasis and soil-transmitted helminthiasis in three municipalities of Southeastern Minas Gerais State, Brazil: risk factors for giardiasis and soil-transmitted helminthiasis. Parasitol Res 2011; 108:1123-30. [PMID: 21243507 DOI: 10.1007/s00436-010-2154-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/03/2010] [Indexed: 11/26/2022]
Abstract
Giardiasis and soil-transmitted helminthiasis (STH) are parasitic diseases that are among the major health concerns observed in economically disadvantaged populations of developing countries, and have clear social and environmental bases. In Brazil, there is a lack of epidemiologic data concerning these infections in the study area, whose inhabitants have plenty of access to health care services, including good dwelling and adequate sanitary conditions. In this survey we investigated the risk factors for giardiasis and STH in three municipalities with good sanitation, situated in Minas Gerais state, Brazil. A cross-sectional survey was conducted in the municipalities of Piau, Coronel Pacheco and Goianá, in both urban and rural areas. The fieldwork consisted of a questionnaire and the examination of 2,367 stool samples using the Hoffmann, Pons and Janer method. Of all individuals from the population sample, 6.1% were found infected with the parasitic diseases included in this work. Hookworm infection was the most prevalent disease, followed by giardiasis, trichuriasis and ascariasis. Infection was more prevalent in males (8.1%, p < 0.001; odds ratio [OR] = 1.975) and in individuals living in rural areas (8.6%, p = 0.003; OR = 1.693). Multivariate analysis showed that variables such as inadequate sewage discharge (p < 0.001), drinking of unsafe water (p < 0.001), lack of sanitary infrastructure (p = 0.015), and host sex (p < 0.001) were the risk factors more strongly associated with infection status (95% confidence interval [CI]). In this study we demonstrate that giardiasis and STH still persist, infecting people who have good housing conditions and free access to public health care and education.
Collapse
|
172
|
Nageshan RK, Roy N, Hehl AB, Tatu U. Post-transcriptional repair of a split heat shock protein 90 gene by mRNA trans-splicing. J Biol Chem 2011; 286:7116-22. [PMID: 21209094 DOI: 10.1074/jbc.c110.208389] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 (glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the "intron" regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Collapse
Affiliation(s)
- Rishi Kumar Nageshan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
173
|
Wielinga C, Ryan U, Andrew Thompson RC, Monis P. Multi-locus analysis of Giardia duodenalis intra-Assemblage B substitution patterns in cloned culture isolates suggests sub-Assemblage B analyses will require multi-locus genotyping with conserved and variable genes. Int J Parasitol 2010; 41:495-503. [PMID: 21176781 DOI: 10.1016/j.ijpara.2010.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
Recent research concerning Giardia duodenalis has focused on resolving possible sub-assemblages within Assemblages A and B to better understand host-specific and zoonotic relationships. In the present study nine cloned, cultured, Assemblage B isolates were used to investigate the intra-Assemblage B substitution patterns of conserved (ssrDNA, ef, h2b, h4) and variable (tpi, gdh, bg) genes to assess their suitability for further application to sub-assemblage analyses. The resolution of each gene was found to be proportional to its substitution rate and for the genetically narrow sample set examined, the variable genes best represented the consensus phylogeny while the conserved genes only established fractions. However it was demonstrated that the spectra of conserved and variable genes were required to ensure accuracy of inferred phylogeny and it was therefore concluded that further research into sub-Assemblage B groups would require a mixture of conserved and variable genes for the multi-locus analyses of this genetically broad assemblage.
Collapse
Affiliation(s)
- Caroline Wielinga
- Division of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.
| | | | | | | |
Collapse
|
174
|
DNA double-strand break repair and the evolution of intron density. Trends Genet 2010; 27:1-6. [PMID: 21106271 PMCID: PMC3020277 DOI: 10.1016/j.tig.2010.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
Abstract
The density of introns is both an important feature of genome architecture and a highly variable trait across eukaryotes. This heterogeneity has posed an evolutionary puzzle for the last 30 years. Recent evidence is consistent with novel introns being the outcome of the error-prone repair of DNA double-stranded breaks (DSBs) via non-homologous end joining (NHEJ). Here we suggest that deletion of pre-existing introns could occur via the same pathway. We propose a novel framework in which species-specific differences in the activity of NHEJ and homologous recombination (HR) during the repair of DSBs underlie changes in intron density.
Collapse
|
175
|
High-throughput Giardia lamblia viability assay using bioluminescent ATP content measurements. Antimicrob Agents Chemother 2010; 55:667-75. [PMID: 21078930 DOI: 10.1128/aac.00618-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The human pathogen Giardia lamblia is an anaerobic protozoan parasite that causes giardiasis, one of the most common diarrheal diseases worldwide. Although several drugs are available for the treatment of giardiasis, drug resistance has been reported and is likely to increase, and recurrent infections are common. The search for new drugs that can overcome the drug-resistant strains of Giardia is an unmet medical need. New drug screen methods can facilitate the drug discovery process and aid with the identification of new drug targets. Using a bioluminescent ATP content assay, we have developed a phenotypic drug screen method to identify compounds that act against the actively growing trophozoite stage of the parasite. This assay is homogeneous, robust, and suitable for high-throughput screening of large compound collections. A screen of 4,096 pharmacologically active small molecules and approved drugs revealed 43 compounds with selective anti-Giardia properties, including 32 previously reported and 11 novel anti-Giardia agents. The most potent novel compound was fumagillin, which showed 50% inhibitory concentrations of 10 nM against the WB isolate and 2 nM against the GS isolate.
Collapse
|
176
|
Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD. An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 2010; 175:169-80. [PMID: 21075147 DOI: 10.1016/j.molbiopara.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/24/2023]
Abstract
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Cooper MA, Sterling CR, Gilman RH, Cama V, Ortega Y, Adam RD. Molecular analysis of household transmission of Giardia lamblia in a region of high endemicity in Peru. J Infect Dis 2010; 202:1713-21. [PMID: 20977340 DOI: 10.1086/657142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Giardia lamblia is ubiquitous in multiple communities of nonindustrialized nations. Genotypes A1, A2, and B (Nash groups 1, 2, and 3, respectively) are found in humans, whereas genotypes C and D are typically found in dogs. However, genotypes A and B have occasionally been identified in dogs. METHODS Fecal Giardia isolates from 22 families and their dogs, living in Pampas de San Juan, were collected over 7 weeks in 2002 and 6 weeks in 2003. Samples were genotyped, followed by sequencing and haplotyping of many of these isolates by using loci on chromosomes 3 and 5. RESULTS Human infections were all caused by isolates of genotypes A2 and B. Human coinfections with genotypes A2 and B were common, and the reassortment pattern of different subtypes of A2 isolates supports prior observations that suggested recombination among genotype A2 isolates. All dogs had genotypes C and/or D, with one exception of a dog with a mixed B/D genotype infection. CONCLUSIONS In a region of high endemicity where infected dogs and humans constantly commingle, different genotypes of Giardia are almost always found in dogs and humans, suggesting that zoonotic transmission is very uncommon.
Collapse
Affiliation(s)
- Margarethe A Cooper
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|
178
|
Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, Andersson JO, Svärd SG, Andersson B. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 2010; 11:543. [PMID: 20929575 PMCID: PMC3091692 DOI: 10.1186/1471-2164-11-543] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 10/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig. Results We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes. Conclusions Our results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.
Collapse
|
179
|
Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium parvum antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1695-707. [PMID: 20876825 DOI: 10.1128/cvi.00160-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Giardiasis and cryptosporidiosis are common enteric parasitic diseases that have similar routes of transmission. In this work, we have identified epitopes within the Giardia variant-specific surface protein (VSP) sequences that are recognized by IgG antibodies from 13 of 14 (93%) sera from patients with stool-confirmed giardiasis. The conserved epitopes are shared among VSPs from both of the assemblages that commonly infect humans, and they are likely to be structural, as both sodium dodecyl sulfate treatment and dithiothreitol reduction decrease antibody recognition. In a multiplex bead assay (MBA), we used three VSP fragments from an assemblage A Giardia strain, three VSP fragments from assemblage B strains, and the α-1 giardin structural antigen to detect IgG antibodies to Giardia and used the recombinant 17- and 27-kDa antigens to simultaneously detect IgG antibodies to Cryptosporidium. The MBA differentiated between sera from Giardia and Cryptosporidium outbreaks and also identified a giardiasis outbreak that may have included cryptosporidiosis cases. Approximately 40% of cryptosporidiosis outbreak samples had high MBA responses for both the 27- and 17-kDa antigens, while <10% of nonoutbreak and giardiasis outbreak samples had high responses. At least 60% of giardiasis outbreak samples were positive for antibodies to multiple Giardia antigens, while ≤12% of nonoutbreak samples and samples from U.S. and British Columbia cryptosporidiosis outbreaks met our definition for Giardia seropositivity. A MBA using multiple parasite antigens may prove useful in the epidemiologic analysis of future waterborne or food-borne outbreaks of diarrheal disease.
Collapse
|
180
|
Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int J Hyg Environ Health 2010; 213:321-33. [DOI: 10.1016/j.ijheh.2010.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
181
|
Upcroft JA, Krauer KG, Upcroft P. Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 2010; 26:484-91. [PMID: 20739222 DOI: 10.1016/j.pt.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Two genotypes, assemblages A and B, of the pathogenic gut protozoan parasite Giardia lamblia infect humans. Symptoms of infection range from asymptomatic to chronic diarrhea. Giardia chromosomes have long been characterized but not until the publication of the first Giardia genome sequence was chromosome mapping work, commenced nearly two decades ago, completed. Initial mapping studies identified and ordered Not I chromosome segments (summating to 1.8 Mb) of the estimated 2 Mb chromosome 3. The resulting map was confirmed with the release of the Giardia genome sequence and this revitalized mapping. The result is that 93% of the WB isolate genome sequence has now been assigned to one of five major chromosomes, and community access to these data has been made available through GiardiaDB, the database for Giardia genomes.
Collapse
|
182
|
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 2010; 6:e1001059. [PMID: 20808847 PMCID: PMC2924369 DOI: 10.1371/journal.ppat.1001059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Andrea Carpentieri
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Biophysics and Physiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
183
|
High-throughput screening in suboptimal growth conditions identifies agonists of Giardia lamblia proliferation. Parasitology 2010; 138:194-200. [PMID: 20696097 DOI: 10.1017/s0031182010001101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Giardia lamblia is one of the most prevalent parasites of mankind and is estimated to cause over 200 million infections per year. To screen chemical libraries for compounds that perturb trophozoite proliferation we adapted a conventional culture method to 384-well plates and identified numerous inhibitors. Here we used a modified assay to screen for compounds that promote trophozoite multiplication. Trophozoite growth was reduced by dilution of the culture medium and the growth period was extended to screen 2 compound libraries comprising 1500 compounds. A total of 4 agonists of trophozoite multiplication were identified. In the presence of one of these compounds, strychnine, enhanced growth was accompanied by unusual trophozoite morphology characterized by dividing trophozoites displaying more than the 2 nuclei per cell which are normally observed. The other agonists, although belonging to 2 distinct chemical groups, are known to affect isoprenylation, indicating a link between protein or lipid isoprenylation and growth in culture. Although inhibitors of isoprenylation are known to antagonize proliferation of mammalian cells, an agonistic effect of isoprenylation modulators has to our knowledge not been described previously. These observations illustrate the power of chemical genetics for identifying pathways controlling specific traits in G. lamblia.
Collapse
|
184
|
The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. EUKARYOTIC CELL 2010; 9:1566-76. [PMID: 20693303 DOI: 10.1128/ec.00100-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protozoan parasite Giardia lamblia undergoes stage differentiation in the small intestine of the host to an environmentally resistant and infectious cyst. Encystation involves the secretion of an extracellular matrix comprised of cyst wall proteins (CWPs) and a β(1-3)-GalNAc homopolymer. Upon the induction of encystation, genes coding for CWPs are switched on, and mRNAs coding for a Myb transcription factor and enzymes involved in cyst wall glycan synthesis are upregulated. Encystation in vitro is triggered by several protocols, which call for changes in bile concentrations or availability of lipids, and elevated pH. However, the conditions for induction are not standardized and we predicted significant protocol-specific side effects. This makes reliable identification of encystation factors difficult. Here, we exploited the possibility of inducing encystation with two different protocols, which we show to be equally effective, for a comparative mRNA profile analysis. The standard encystation protocol induced a bipartite transcriptional response with surprisingly minor involvement of stress genes. A comparative analysis revealed a core set of only 18 encystation genes and showed that a majority of genes was indeed upregulated as a side effect of inducing conditions. We also established a Myb binding sequence as a signature motif in encystation promoters, suggesting coordinated regulation of these factors.
Collapse
|
185
|
Adam RD, Nigam A, Seshadri V, Martens CA, Farneth GA, Morrison HG, Nash TE, Porcella SF, Patel R. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution. BMC Genomics 2010; 11:424. [PMID: 20618957 PMCID: PMC2996952 DOI: 10.1186/1471-2164-11-424] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022] Open
Abstract
Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP) genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled into 306 contigs as large as 870 kb in size. We have used this assembly to evaluate the genomic organization and evolution of the vsp repertoire. We have identified 228 complete and 75 partial vsp gene sequences for an estimated repertoire of 270 to 303, making up about 4% of the genome. The vsp gene diversity includes 30 genes containing tandem repeats, and 14 vsp pairs of identical genes present in either head to head or tail to tail configurations (designated as inverted pairs), where the two genes are separated by 2 to 4 kb of non-coding DNA. Interestingly, over half the total vsp repertoire is present in the form of linear gene arrays that can contain up to 10 vsp gene members. Lastly, evidence for recombination within and across minor clades of vsp genes is provided. Conclusions The data we present here is the first comprehensive analysis of the vsp gene family from the Genotype A1 WB isolate with an emphasis on vsp characterization, function, evolution and contributions to pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Rodney D Adam
- Departments of Medicine and Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Mitra S, Cui J, Robbins PW, Samuelson J. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities. Glycobiology 2010; 20:1233-40. [PMID: 20507884 DOI: 10.1093/glycob/cwq081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Giardia lamblia, which is an important parasitic cause of diarrhea, uses activated forms of glucose to make glycogen and activated forms of mannose to make glycophosphosphoinositol anchors. A necessary step for glucose activation is isomerization of glucose-6-phosphate to glucose-1-phosphate by a phosphoglucomutase (PGM). Similarly, a phosphomannomutase (PMM) converts mannose-6-phosphate to mannose-1-phosphate. While whole genome sequences of Giardia predict two PGM candidates, no PMM candidate is present. The hypothesis tested here is that at least one of the two Giardia PGM candidates has both PGM and PMM activity, as has been described for bacterial PGM orthologs. Nondenaturing gels showed that Giardia has two proteins with PGM activity, one of which also has PMM activity. Phylogenetic analyses showed that one of the two Giardia PGM candidates (Gl-PGM1) shares recent common ancestry with other eukaryotic PGMs, while the other Giardia PGM candidate (Gl-PGM2) is deeply divergent. Both Gl-PGM1 and Gl-PGM2 rescue a Saccharomyces cerevisiae pgm1Delta/pgm2Delta double deletion strain, while only Gl-PGM2 rescues a temperature-sensitive PMM mutant of S. cerevisiae (sec53-ts). Recombinant Gl-PGM1 has PGM activity only, whereas Gl-PGM2 has both PGM and PMM activities. We conclude that Gl-PGM1 behaves as a conventional eukaryotic PGM, while Gl-PGM2 is a novel eukaryotic PGM that also has PMM activity.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
187
|
Rivero FD, Saura A, Prucca CG, Carranza PG, Torri A, Lujan HD. Disruption of antigenic variation is crucial for effective parasite vaccine. Nat Med 2010; 16:551-7, 1p following 557. [DOI: 10.1038/nm.2141] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/18/2010] [Indexed: 12/24/2022]
|
188
|
Roxström-Lindquist K, Jerlström-Hultqvist J, Jørgensen A, Troell K, Svärd SG, Andersson JO. Large genomic differences between the morphologically indistinguishable diplomonads Spironucleus barkhanus and Spironucleus salmonicida. BMC Genomics 2010; 11:258. [PMID: 20409319 PMCID: PMC2874811 DOI: 10.1186/1471-2164-11-258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial eukaryotes show large variations in genome structure and content between lineages, indicating extensive flexibility over evolutionary timescales. Here we address the tempo and mode of such changes within diplomonads, flagellated protists with two nuclei found in oxygen-poor environments. Approximately 5,000 expressed sequence tag (EST) sequences were generated from the fish commensal Spironucleus barkhanus and compared to sequences from the morphologically indistinguishable fish parasite Spironucleus salmonicida, and other diplomonads. The ESTs were complemented with sequence variation studies in selected genes and genome size determinations. RESULTS Many genes detected in S. barkhanus and S. salmonicida are absent in the human parasite Giardia intestinalis, the most intensively studied diplomonad. For example, these fish diplomonads show an extended metabolic repertoire and are able to incorporate selenocysteine into proteins. The codon usage is altered in S. barkhanus compared to S. salmonicida. Sequence variations were found between individual S. barkhanus ESTs for many, but not all, protein coding genes. Conversely, no allelic variation was found in a previous genome survey of S. salmonicida. This difference was confirmed by sequencing of genomic DNA. Up to five alleles were identified for the cloned S. barkhanus genes, and at least nineteen highly expressed S. barkhanus genes are represented by more than four alleles in the EST dataset. This could be explained by the presence of a non-clonal S. barkhanus population in the culture, by a ploidy above four, or by duplications of parts of the genome. Indeed, genome size estimations using flow cytometry indicated similar haploid genome sizes in S. salmonicida and G. intestinalis (approximately 12 Mb), whereas the S. barkhanus genome is larger (approximately 18 Mb). CONCLUSIONS This study indicates extensive divergent genome evolution within diplomonads. Genomic traits such as codon usage, frequency of allelic sequence variation, and genome size have changed considerably between S. barkhanus and S. salmonicida. These observations suggest that large genomic differences may accumulate in morphologically indistinguishable eukaryotic microbes.
Collapse
|
189
|
Abstract
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
Collapse
|
190
|
Zhang C, Xing D. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chem Rev 2010; 110:4910-47. [DOI: 10.1021/cr900081z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
191
|
Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends Parasitol 2010; 26:180-9. [DOI: 10.1016/j.pt.2010.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 01/21/2010] [Accepted: 02/02/2010] [Indexed: 11/19/2022]
|
192
|
Grabińska KA, Cui J, Chatterjee A, Guan Z, Raetz CRH, Robbins PW, Samuelson J. Molecular characterization of the cis-prenyltransferase of Giardia lamblia. Glycobiology 2010; 20:824-32. [PMID: 20308470 DOI: 10.1093/glycob/cwq036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, the protist that causes diarrhea, makes an Asn-linked-glycan (N-glycan) precursor that contains just two sugars (GlcNAc(2)) attached by a pyrophosphate linkage to a polyprenol lipid. Because the candidate cis-prenyltransferase of Giardia appears to be more similar to bacterial enzymes than to those of most eukaryotes and because Giardia is missing a candidate dolichol kinase (ortholog to Saccharomyces cerevisiae SEC59 gene product), we wondered how Giardia synthesizes dolichol phosphate (Dol-P), which is used to make N-glycans and glycosylphosphatidylinositol (GPI) anchors. Here we show that cultured Giardia makes an unsaturated polyprenyl pyrophosphate (dehydrodolichol), which contains 11 and 12 isoprene units and is reduced to dolichol. The Giardia cis-prenyltransferase that we have named Gl-UPPS because the enzyme primarily synthesizes undecaprenol pyrophosphate is phylogenetically related to those of bacteria and Trypanosoma rather than to those of other protists, metazoans and fungi. In transformed Saccharomyces, the Giardia cis-prenyltransferase also makes a polyprenol containing 11 and 12 isoprene units and supports normal growth, N-glycosylation and GPI anchor synthesis of a rer2Delta, srt1Delta double-deletion mutant. Finally, despite the absence of an ortholog to SEC59, Giardia has cytidine triphosphate-dependent dolichol kinase activity. These results suggest that the synthetic pathway for Dol-P is conserved in Giardia, even if some of the important enzymes are different from those of higher eukaryotes or remain unidentified.
Collapse
Affiliation(s)
- Kariona A Grabińska
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Prevalence and clinical correlations of genetic subtypes of Giardia lamblia in an urban setting. Epidemiol Infect 2010; 138:1459-67. [PMID: 20144251 DOI: 10.1017/s0950268810000208] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clinical significance of different genetic subtypes or assemblages of Giardia lamblia is uncertain. Cases of giardiasis in south-west London between 1999 and 2005 were studied, comparing molecular-typing results with clinical and epidemiological findings from routine surveillance. We identified 819 cases, of whom 389 returned surveillance questionnaires. A subset of 267 faecal samples was submitted for typing by sequencing of the triose phosphate isomerase (tpi) and ribosomal RNA genes, and/or a separate duplex PCR of the tpi gene. Typing was successful in 199 (75%) samples by at least one of the molecular methods. Assemblage A accounted for 48 (24%) samples and Assemblage B for 145 (73%); six (3%) were mixed. Both assemblages had similar seasonality, age distribution and association with travel. Clinical features were available for 59 successfully typed cases: both assemblages caused similar illness, but Assemblage A was significantly more frequently associated with fever than Assemblage B.
Collapse
|
194
|
Sonda S, Morf L, Bottova I, Baetschmann H, Rehrauer H, Caflisch A, Hakimi MA, Hehl AB. Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol 2010; 76:48-67. [PMID: 20132448 DOI: 10.1111/j.1365-2958.2010.07062.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histone modification is an important mechanism regulating both gene expression and the establishment and maintenance of cellular phenotypes during development. Regulation of histone acetylation via histone acetylases and deacetylases (HDACs) appears to be particularly crucial in determining gene expression patterns. In this study we explored the effect of HDAC inhibition on the life cycle of the human pathogen Giardia lamblia, a highly reduced parasitic protozoan characterized by minimized cellular processes. We found that the HDAC inhibitor FR235222 increased the level of histone acetylation and induced transcriptional regulation of approximately 2% of genes in proliferating and encysting parasites. In addition, our analyses showed that the levels of histone acetylation decreased during differentiation into cysts, the infective stage of the parasite. Importantly, FR235222 treatment during encystation reversed this histone hypo-acetylation and potently blocked the formation of cysts. These results provide the first direct evidence for epigenetic regulation of gene expression in this simple eukaryote. This suggests that regulation of histone acetylation is involved in the control of Giardia stage differentiation, and identifies epigenetic mechanisms as a promising target to prevent Giardia transmission.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Genotyping of Giardia duodenalis cysts by new real-time PCR assays for detection of mixed infections in human samples. Appl Environ Microbiol 2010; 76:1895-901. [PMID: 20080999 DOI: 10.1128/aem.02305-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the seven genetic groups, or assemblages, currently recognized in the Giardia duodenalis species complex, only assemblages A and B are associated with human infection, but they also infect other mammals. Recent investigations have suggested the occurrence of genetic exchanges among isolates of G. duodenalis, and the application of assemblage-specific PCR has shown both assemblages A and B in a significant number of human infections. In this work, three real-time quantitative (qPCR) assays were developed to target the G. duodenalis triose phosphate isomerase, glutamate dehydrogenase, and open reading frame C4 sequences. Primers were designed to allow the specific amplification of the DNA of assemblage A or B and to generate products distinguishable by their melting curves or, after qPCR, by their sequences, sizes, or restriction patterns. The assays showed full specificity and detected DNA from a single trophozoite (4 to 8 target copies). We applied these assays, as well as a TaqMan assay that targets the beta-giardin gene, to genomic DNA extracted from 30 human stools and to Giardia cysts purified by immunomagnetic capture from the same samples. Simultaneous detection of both assemblages was observed in a large number of DNAs extracted from stools, and experiments on the cysts purified from the same samples showed that this was essentially attributable to mixed infections, as only one assemblage was detected when dilutions of cysts were tested. In a few cases, detection of both assemblages was observed even when single cysts were tested. This result, which suggests the presence of recombinants, needs to be confirmed using more accurate methods for cyst separation and enumeration. The assays described in this study can be used to detect Giardia cysts infectious to humans in samples from animals and in water and food.
Collapse
|
196
|
Xiao Y, Yin J, Jiang N, Xiang M, Hao L, Lu H, Sang H, Liu X, Xu H, Ankarklev J, Lindh J, Chen Q. Seroepidemiology of human Toxoplasma gondii infection in China. BMC Infect Dis 2010; 10:4. [PMID: 20055991 PMCID: PMC2818656 DOI: 10.1186/1471-2334-10-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 01/07/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxoplasmosis is an important zoonotic parasitic disease worldwide. In immune competent individuals, Toxoplasma gondii preferentially infects tissues of central nervous systems, which might be an adding factor of certain psychiatric disorders. Congenital transmission of T. gondii during pregnancy has been regarded as a risk factor for the health of newborn infants. While in immune-compromised individuals, the parasite can cause life-threatening infections. This study aims to investigate the prevalence of T. gondii infection among clinically healthy individuals and patients with psychiatric disorders in China and to identify the potential risk factors related to the vulnerability of infection in the population. METHODS Serum samples from 2634 healthy individuals and 547 patients with certain psychiatric disorders in Changchun and Daqing in the northeast, and in Shanghai in the south of China were examined respectively for the levels of anti-T. gondii IgG by indirect ELISA and a direct agglutination assay. Prevalence of T. gondii infection in the Chinese population in respect of gender, age, residence and health status was systematically analyzed. RESULTS The overall anti-T. gondii IgG prevalence in the study population was 12.3%. In the clinically healthy population 12.5% was sero-positive and in the group with psychiatric disorders 11.3% of these patients were positive with anti-T. gondii IgG. A significant difference (P = 0.004) was found between male and female in the healthy population, the seroprevalence was 10.5% in men versus 14.3% in women. Furthermore, the difference of T. gondii infection rate between male and female in the 20-19 year's group was more obvious, with 6.4% in male population and 14.6% in female population. CONCLUSION A significant higher prevalence of T. gondii infection was observed in female in the clinically healthy population. No correlation was found between T. gondii infection and psychiatric disorders in this study. Results suggest that women are more exposed to T. gondii infection than men in China. The data argue for deeper investigations for the potential risk factors that threat the female populations.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Mei Xiang
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Lili Hao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Hong Sang
- The Sixth Hospital of Changchun City, North Round Road 4596, Changchun 130040, PR China
| | - Xianying Liu
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Huiji Xu
- Changzheng Hospital, Shanghai, Fengyang Road 415, Shanghai 200003, PR China
| | - Johan Ankarklev
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Johan Lindh
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| |
Collapse
|
197
|
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia. Microbes Infect 2010; 12:71-80. [DOI: 10.1016/j.micinf.2009.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
198
|
Jerlström-Hultqvist J, Ankarklev J, Svärd SG. Is human giardiasis caused by two different Giardia species? Gut Microbes 2010; 1:379-82. [PMID: 21468219 PMCID: PMC3056102 DOI: 10.4161/gmic.1.6.13608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/08/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023] Open
Abstract
We have recently sequenced the genome of the human Giardia intestinalis assemblage B isolate GS.1 comparisons to the earlier sequenced genome of the human assemblage A isolate WB showed that the average amino acid identity in 4,300 orthologous proteins was only 78%. Here we discuss these results in the light of new genome sequencing data from the hoofed-animal assemblage E (isolate P15, isolated from a pig) and further characterization of assemblage A and B isolates from humans. There is a highly conserved set of core genes (4,557 genes, 91% of genome) common to all isolates. The largest genomic differences are found in variable, Giardia-specific gene families and a large number of chromosomal rearrangements were detected, even between different chromosomes. Surprisingly, the assemblage E and A isolates are more similar at the amino-acid level than the two human isolates are to each other. This strengthens our earlier data suggesting that humans are infected by two different species of Giardia.
Collapse
|
199
|
Lebbad M, Mattsson JG, Christensson B, Ljungström B, Backhans A, Andersson JO, Svärd SG. From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol 2009; 168:231-9. [PMID: 19969422 DOI: 10.1016/j.vetpar.2009.11.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/23/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
Abstract
Giardia intestinalis is a protozoan parasite that consists of seven genetically distinct assemblages (A to G). Assemblage A and B parasites have been detected in a wide range of animals including humans, while the other assemblages (C to G) appear to have a narrower host range. However, the knowledge about zoonotic transmission of G. intestinalis is limited. To address this question, 114 Giardia isolates from various animals in Sweden including pets, livestock, wildlife and captive non-human primates were investigated by a sequence-based analysis of three genes (beta-giardin, glutamate dehydrogenase and triose phosphate isomerase). Assemblage A infections were detected in nine ruminants, five cats and one dog, while three sheep were infected with both assemblages A and E. Multilocus genotypes (MLGs) were defined for assemblage A, and three of these MLGs have previously been detected in Giardia isolates from humans. The newly described sub-assemblage AIII, until now reported mainly in wild hoofed animals, was found in one cat isolate. Assemblage B occurred in three monkeys, one guinea pig and one rabbit. The rabbit isolate exhibited sequences at all three loci previously detected in human isolates. The non-zoonotic assemblages C, D, E, F or G were found in the remaining 83 G. intestinalis isolates, which were successfully amplified and genotyped, generating a wide variety of both novel and known sub-genotypes. Double peaks in chromatograms were seen in assemblage B, C, D and E isolates but were never observed in assemblage A, F and G isolates, which can reflect differences in allelic sequence divergence. No evidence of genetic exchange between assemblages was detected. The study shows that multilocus genotyping of G. intestinalis is a highly discriminatory and useful tool in the determination of zoonotic sub-groups within assemblage A, but less valuable for subtyping assemblages B, C, D and E due to the high frequency of double peaks in the chromatograms. The obtained data also suggest that zoonotic transmission of assemblages A and B might occur to a limited extent in Sweden.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | |
Collapse
|