151
|
Ali RA, Wuescher LM, Dona KR, Worth RG. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities. THE JOURNAL OF IMMUNOLOGY 2016; 198:344-351. [PMID: 27895175 DOI: 10.4049/jimmunol.1601178] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection.
Collapse
Affiliation(s)
- Ramadan A Ali
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Keith R Dona
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| |
Collapse
|
152
|
Abstract
Publisher's Note: This article has a companion Point by Brass et al. Publisher's Note: Join in the discussion of these articles at Blood Advances Community Conversations.
Collapse
|
153
|
Gaertner F, Massberg S. Blood coagulation in immunothrombosis-At the frontline of intravascular immunity. Semin Immunol 2016; 28:561-569. [PMID: 27866916 DOI: 10.1016/j.smim.2016.10.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
While hemostasis is the physiological process that prevents blood loss after vessel injury, thrombosis is often portrayed as a pathologic event involving blood coagulation and platelet aggregation eventually leading to vascular occlusion and tissue damage. However, recent work suggests that thrombosis can also be a physiological process, termed immunothrombosis, initiated by the innate immune system providing a first line of defense to locally control infection. Fibrin forms the structural basis of immunothrombotic clots and its assembly involves the concerted action of coagulation factors, platelets and leukocytes. Here, we summarize the cellular and molecular events that initiate fibrin formation during the innate immune response and discuss how aberrant activation of these pathways fosters pathologies associated with thrombosis, including disseminated intravascular coagulation and atherothrombosis.
Collapse
Affiliation(s)
- Florian Gaertner
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany.
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany.
| |
Collapse
|
154
|
Kazzaz NM, Sule G, Knight JS. Intercellular Interactions as Regulators of NETosis. Front Immunol 2016; 7:453. [PMID: 27895638 PMCID: PMC5107827 DOI: 10.3389/fimmu.2016.00453] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are chromatin-derived webs extruded from neutrophils in response to either infection or sterile stimulation with chemicals, cytokines, or microbial products. The vast majority of studies have characterized NET release (also called NETosis) in pure neutrophil cultures in vitro. The situation is surely more complex in vivo as neutrophils constantly sample not only pathogens and soluble mediators but also signals from cellular partners, including platelets and endothelial cells. This complexity is beginning to be explored by studies utilizing in vitro co-culture, as well as animal models of sepsis, infective endocarditis, lung injury, and thrombosis. Indeed, various selectins, integrins, and surface glycoproteins have been implicated in platelet–neutrophil interactions that promote NETosis, albeit with disparate results across studies. NETosis can also clearly be regulated by soluble mediators derived from platelets, such as eicosanoids, chemokines, and alarmins. Beyond platelets, the role of the endothelium in modulating NETosis is being increasingly revealed, with adhesive interactions likely priming neutrophils toward NETosis. The fact that the same selectins and surface glycoproteins may be expressed by both platelets and endothelial cells complicates the interpretation of in vivo data. In summary, we suggest in this review that the engagement of neutrophils with activated cellular partners provides an important in vivo signal or “hit” toward NETosis. Studies should, therefore, increasingly consider the triumvirate of neutrophils, platelets, and the endothelium when exploring NETosis, especially in disease states.
Collapse
Affiliation(s)
- Nayef M Kazzaz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Gautam Sule
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| | - Jason S Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
155
|
Zeller Meidell K, Robinson R, Vieira-de-Abreu A, Gormley AJ, Ghandehari H, W Grainger D, A Campbell R. RGDfK-functionalized gold nanorods bind only to activated platelets. J Biomed Mater Res A 2016; 105:209-217. [PMID: 27648522 DOI: 10.1002/jbm.a.35902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Integrin-targeting peptide RGDfK-labeled gold nanorods (GNR) seek to improve hyperthermia targeted to solid tumors by exploiting the known up-regulation of integrin αvβ3 cell membrane proteins on solid tumor vasculature surfaces. Tumor binding specificity might be expected since surrounding tissues and endothelial cells have limited numbers of these receptors. However, RGD peptide binding to many proteins is promiscuous, with known affinity to several families of cell integrin receptors, and also possible binding to platelets after intravenous infusion via a different integrin receptor, αIIbβ3, on platelets. Binding of RGDfK-targeted GNR could considerably impact platelet function, ultimately leading to increased risk of bleeding or thrombosis depending on the degree of interaction. We sought to determine if RGDfK-labeled GNR could interact with platelets and alter platelet function. Targeted and untargeted nanorods exhibited little interaction with resting platelets in platelet rich plasma (PRP) preparations. However, upon platelet activation, peptide-targeted nanorods bound actively to platelets. Addition of RGDfK-GNR to unactivated platelets had little effect on markers of platelet activation, indicating that RGDfK-nanorods were incapable of inducing platelet activation. We next tested whether activated platelet function was altered in the presence of peptide-targeted nanorods. Platelet aggregation in whole blood and PRP in the presence of targeted nanorods had no significant effect on platelet aggregation. These data suggest that RGDfK-GNR alone have little impact on platelet function in plasma. However, nonspecific nanorod binding may occur in vascular beds where activated platelets are normally cleared, such as the spleen and liver, producing a possible toxicity risk for these nanomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 209-217, 2017.
Collapse
Affiliation(s)
- Krystin Zeller Meidell
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112
| | - Ryan Robinson
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Adriana Vieira-de-Abreu
- Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, 84112
| | - Adam J Gormley
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Robert A Campbell
- Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
156
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
157
|
de Buhr N, Reuner F, Neumann A, Stump-Guthier C, Tenenbaum T, Schroten H, Ishikawa H, Müller K, Beineke A, Hennig-Pauka I, Gutsmann T, Valentin-Weigand P, Baums CG, von Köckritz-Blickwede M. Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cell Microbiol 2016; 19. [PMID: 27450700 DOI: 10.1111/cmi.12649] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Streptococcus suis is an important meningitis-causing pathogen in pigs and humans. Neutrophil extracellular traps (NETs) have been identified as host defense mechanism against different pathogens. Here, NETs were detected in the cerebrospinal fluid (CSF) of S. suis-infected piglets despite the presence of active nucleases. To study NET-formation and NET-degradation after transmigration of S. suis and neutrophils through the choroid plexus epithelial cell barrier, a previously described model of the human blood-CSF barrier was used. NETs and respective entrapment of streptococci were recorded in the "CSF compartment" despite the presence of active nucleases. Comparative analysis of S. suis wildtype and different S. suis nuclease mutants did not reveal significant differences in NET-formation or bacterial survival. Interestingly, transcript expression of the human cathelicidin LL-37, a NET-stabilizing factor, increased after transmigration of neutrophils through the choroid plexus epithelial cell barrier. In good accordance, the porcine cathelicidin PR-39 was significantly increased in CSF of piglets with meningitis. Furthermore, we confirmed that PR-39 is associated with NETs in infected CSF and inhibits neutrophil DNA degradation by bacterial nucleases. In conclusion, neutrophils form NETs after breaching the infected choroid plexus epithelium, and those NETs may be protected by antimicrobial peptides against bacterial nucleases.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friederike Reuner
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carolin Stump-Guthier
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Kristin Müller
- Institute for Veterinary Pathology, Faculty of Veterinary Medicine, University Leipzig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Hennig-Pauka
- University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Gutsmann
- Research group Biophysics, Research Centre Borstel, Borstel, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
158
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
159
|
de Stoppelaar SF, Claushuis TAM, Schaap MCL, Hou B, van der Poll T, Nieuwland R, van ‘t Veer C. Toll-Like Receptor Signalling Is Not Involved in Platelet Response to Streptococcus pneumoniae In Vitro or In Vivo. PLoS One 2016; 11:e0156977. [PMID: 27253707 PMCID: PMC4890788 DOI: 10.1371/journal.pone.0156977] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus (S.) pneumoniae strains vary considerably in their ability to cause invasive disease in humans, which is at least in part determined by the capsular serotype. Platelets have been implicated as sentinel cells in the circulation for host defence. One of their utensils for this function is the expression of Toll-like receptors (TLRs). We here aimed to investigate platelet response to S. pneumoniae and a role for TLRs herein. Platelets were stimulated using four serotypes of S. pneumonia including an unencapsulated mutant strain. In vitro aggregation and flow cytometry assays were performed using blood of healthy volunteers, or blood of TLR knock out and WT mice. For in vivo pneumonia experiments, platelet specific Myd88 knockout (Plt-Myd88-/-) mice were used. We found that platelet aggregation was induced by unencapsulated S. pneumoniae only. Whole blood incubation with all S. pneumoniae serotypes tested resulted in platelet degranulation and platelet-leukocyte complex formation. Platelet activation was TLR independent, as responses were not inhibited by TLR blocking antibodies, not induced by TLR agonists and were equally induced in wild-type and Tlr2-/-, Tlr4-/-, Tlr2/4-/-, Tlr9-/- and Myd88-/- blood. Plt-Myd88-/- and control mice displayed no differences in bacterial clearance or immune response to pneumonia by unencapsulated S. pneumoniae. In conclusion, S. pneumoniae activates platelets through a TLR-independent mechanism that is impeded by the bacterial capsule. Additionally, platelet MyD88-dependent TLR signalling is not involved in host defence to unencapsulated S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Sacha F. de Stoppelaar
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Theodora A. M. Claushuis
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - Marianne C. L. Schaap
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, University of Amsterdam, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van ‘t Veer
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
160
|
Abstract
Platelets are megakaryocyte-derived cellular fragments, which lack a nucleus and are the smallest circulating cells and are classically known to have a major role in supporting hemostasis. Apart from this well-established role, it is now becoming evident that platelets are also capable of conveying other important functions, such as during infection and inflammation. This paper will outline these nonhemostatic functions in two major sections termed "Platelets versus pathogens" and "Platelet-target cell communication". Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through sophisticated and efficient mechanisms. These relatively novel features will be highlighted, illustrating the multifunctional role of platelets in inflammation.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada; Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
161
|
Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet Interaction with Innate Immune Cells. Transfus Med Hemother 2016; 43:78-88. [PMID: 27226790 DOI: 10.1159/000444807] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/11/2022] Open
Abstract
Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis.
Collapse
Affiliation(s)
- Julia Barbara Kral
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Manuel Salzmann
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
162
|
Misra DP, Agarwal V. Innate immune cells in the pathogenesis of primary systemic vasculitis. Rheumatol Int 2016; 36:169-182. [PMID: 26403285 DOI: 10.1007/s00296-015-3367-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareily Road, Lucknow, Uttar Pradesh, 226 014, India.
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareily Road, Lucknow, Uttar Pradesh, 226 014, India.
| |
Collapse
|
163
|
Kaltsa G, Bamias G, Siakavellas SI, Goukos D, Karagiannakis D, Zampeli E, Vlachogiannakos J, Michopoulos S, Vafiadi I, Daikos GL, Ladas SD. Systemic levels of human β-defensin 1 are elevated in patients with cirrhosis. Ann Gastroenterol 2016; 29:63-70. [PMID: 26751578 PMCID: PMC4700849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Bacterial translocation (BT) commonly occurs in cirrhosis. Reliable biomarkers for BT are currently lacking. Human beta defensin-1 (hBD-1) is a member of the family of natural antimicrobial peptides produced by epithelial cells and participates in the mucosal defensive mechanisms that prevent BT. The aim of the present study was to examine the local and systemic expression of hBD-1 in patients with cirrhosis. METHODS Plasma concentrations of hBD-1 and of soluble CD14 (sCD14) proteins were measured by ELISA in patients with chronic viral hepatitis, cirrhosis, and healthy controls. Relative mRNA expression of various natural antimicrobial peptides was determined by real-time PCR in biopsies from the terminal ileum and colon. RESULTS We found significant upregulation of hBD-1 and sCD14 in the peripheral blood of patients with cirrhosis compared to patients with chronic viral hepatitis and healthy controls. The etiology of cirrhosis did not affect the concentration of either protein. The levels of hBD-1 protein correlated significantly with the levels of sCD14 in blood collected from hepatic veins of cirrhotic patients. In contrast, no significant differences were observed in the intestinal mucosal mRNA expression of the Paneth cell specific defensin A5 or hBD-1 between patients with cirrhosis and healthy controls. CONCLUSIONS hBD-1 is upregulated in patients with cirrhosis and highly correlates with the lipopolysaccharide-induced protein sCD14. hBD-1 may serve as a biomarker of BT in patients with cirrhosis.
Collapse
Affiliation(s)
- Garyfallia Kaltsa
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas),
Correspondence to: Garyfallia Kaltsa, MD, Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University, School of Medical Sciences, Laikon General Hospital, 17 Agiou Thoma Street, Athens 11527, Greece, Fax: +30 210 7791839, e-mail:
| | - Giorgos Bamias
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| | - Spyros I. Siakavellas
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| | - Dimitris Goukos
- First Department of Internal Medicine, Propedeutic, Infectious Diseases Research Laboratory (Dimitris Goukos, George L. Daikos), Kapodistrian University of Athens, Laikon Hospital
| | - Dimitris Karagiannakis
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| | - Evanthia Zampeli
- Department of Gastroenterology, Alexandra General Hospital (Evanthia Zampeli, Spyridon Michopoulos), Athens, Greece
| | - Jiannis Vlachogiannakos
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| | - Spyridon Michopoulos
- Department of Gastroenterology, Alexandra General Hospital (Evanthia Zampeli, Spyridon Michopoulos), Athens, Greece
| | - Irene Vafiadi
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| | - George L. Daikos
- First Department of Internal Medicine, Propedeutic, Infectious Diseases Research Laboratory (Dimitris Goukos, George L. Daikos), Kapodistrian University of Athens, Laikon Hospital
| | - Spiros D. Ladas
- Department of Gastroenterology (Garyfallia Kaltsa, Giorgos Bamias, Spyros I. Siakavellas, Dimitris Karagiannakis, Jiannis Vlachogiannakos, Irene Vafiadi, Spiros D. Ladas)
| |
Collapse
|
164
|
Abstract
Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.
Collapse
|
165
|
Ahmadsei M, Lievens D, Weber C, von Hundelshausen P, Gerdes N. Immune-mediated and lipid-mediated platelet function in atherosclerosis. Curr Opin Lipidol 2015; 26:438-48. [PMID: 26270811 DOI: 10.1097/mol.0000000000000212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is the leading cause of death and morbidity worldwide. Detailed knowledge of the mechanisms of atherosclerosis, the main underlying disease of CVD, will enable improved preventive and therapeutic options, thus potentially limiting the burden of vascular disease in aging societies. A large body of evidence illustrates the contribution of platelets to processes beyond their traditionally recognized role as mediators in thrombosis and hemostasis. Recent advances in molecular biology help to understand the complexity of atherosclerosis. RECENT FINDINGS This article outlines the role of platelets as modulators of immune responses in the context of atherosclerosis. It provides a short overview of interactions between platelets and endothelial cells or immune cells via direct cell contact or soluble factors during atherogenesis. By means of some well examined, exemplary pathways (e.g. CD40/CD40L dyad), this article will discuss recent discoveries in immune-related function of platelets. We also focus on the relationship between platelets and the lipid metabolism highlighting potential consequences to atherosclerosis and dyslipidemia. SUMMARY A better understanding of the molecular mechanisms of platelet-related immune activity allows their utilization as powerful diagnostic tools or targets of therapeutic intervention. Those findings might help to develop new classes of drugs which may supplement or replace classical anticoagulants and help clinicians to tackle CVD more efficiently.
Collapse
Affiliation(s)
- Maiwand Ahmadsei
- aInstitute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany bDZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | | | | | | |
Collapse
|
166
|
Selectin' for NETs. Blood 2015; 126:129-30. [PMID: 26160186 DOI: 10.1182/blood-2015-05-646729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
167
|
Abstract
Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This article reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
168
|
Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev 2015; 39:750-63. [PMID: 25994610 DOI: 10.1093/femsre/fuv024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 01/14/2023] Open
Abstract
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination.
Collapse
Affiliation(s)
- Clarissa Pozzi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | | | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, 27100 Pavia, Italy
| | - Ennio De Gregorio
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Sylvie Bertholet
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
169
|
Mondal NK, Sorensen EN, Feller ED, Pham SM, Griffith BP, Wu ZJ. Systemic Inflammatory Response Syndrome After Contentious-Flow Left Ventricular Assist Device Implantation and Change in Platelet Mitochondrial Membrane Potential. J Card Fail 2015; 21:564-71. [PMID: 25921521 DOI: 10.1016/j.cardfail.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/10/2014] [Accepted: 04/10/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND The objective of this study was to investigate the change of platelet function and platelet mitochondrial membrane potential in contentious-flow left ventricular assist device (CF-LVAD)-implanted heart failure (HF) patients with or without systemic inflammatory response syndrome (SIRS). METHODS AND RESULTS We recruited 31 CF-LVAD patients (16 SIRS and 15 non-SIRS) and 11 healthy volunteers as control. Pre- and post-implantation blood samples were collected. We used PFA-100 to test platelet functionality. Mitochondrial potential-sensitive dye was used to detect platelet dysfunction (mitochondrial membrane potential; ΔΨm) via flow cytometry. The percentage of depolarized-ΔΨm platelets was found to be a preexisting condition in all HF patients before CF-LVAD implantation compared with control subjects (10.3 ± 6.3% vs 2.8 ± 2.2%; P < .001). As evident from the PFA-100 test, the HF patients who developed SIRS after CF-LVAD implantation had significantly more qualitative platelet defects and thrombocytopathies compared with baseline. After implantation, the depolarized platelets in the SIRS patients increased by 2-fold compared with baseline (18.2 ± 8.4% vs 9.0 ± 6.6%; P < .01); whereas no change was noticed in the non-SIRS patients (10.9 ± 6.2% vs 11.7 ± 5.8%; P = .75). CONCLUSIONS We identified that platelet function and mitochondrial damage were enhanced in CF-LVAD patients with SIRS. Our findings suggest that depolarization of mitochondrial membrane potential is associated with SIRS after CF-LVAD implantation surgery.
Collapse
Affiliation(s)
- Nandan K Mondal
- Department of Surgery, Artificial Organs Laboratory, University of Maryland School of Medicine, Baltimore, Maryland
| | - Erik N Sorensen
- Department of Clinical Engineering, University of Maryland Medical Center, Baltimore, Maryland
| | - Erika D Feller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Si M Pham
- Department of Surgery, Artificial Organs Laboratory, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P Griffith
- Department of Surgery, Artificial Organs Laboratory, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J Wu
- Department of Surgery, Artificial Organs Laboratory, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
170
|
Berglund NA, Piggot TJ, Jefferies D, Sessions RB, Bond PJ, Khalid S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLoS Comput Biol 2015; 11:e1004180. [PMID: 25885324 PMCID: PMC4401565 DOI: 10.1371/journal.pcbi.1004180] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/06/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development.
Collapse
Affiliation(s)
- Nils A Berglund
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom; Bioinformatics Institute (A*STAR), Singapore
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| |
Collapse
|
171
|
Cooper PR, Palmer LJ, Chapple ILC. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol 2000 2015; 63:165-97. [PMID: 23931060 DOI: 10.1111/prd.12025] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/12/2022]
Abstract
The discovery of neutrophil extracellular traps in 2004 opened a fascinating new chapter in immune-mediated microbial killing. Brinkman et al. demonstrated that neutrophils, when catastrophically stimulated, undergo a novel form of programmed cell death (neutrophil extracellular trap formation) whereby they decondense their entire nuclear chromatin/DNA and release the resulting structure into the cytoplasm to mix with granule-derived antimicrobial peptides before extruding these web-like structures into the extracellular environment. The process requires the activation of the granule enzyme peptidyl arginine deiminase-4, the formation of reactive oxygen species (in particular hypochlorous acid), the neutrophil microtubular system and the actin cytoskeleton. Recent work by Yousefi et al. demonstrated that exposure to different agents for shorter stimulation periods resulted in neutrophil extracellular trap release from viable granulocytes, and that such neutrophil extracellular traps comprised mitochondrial DNA rather than nuclear DNA and were also capable of microbial entrapment and destruction. Deficiency in NADPH-oxidase production (as found in patients with chronic granulomatous disease) results in an inability to produce neutrophil extracellular traps and, along with their failure to produce antimicrobial reactive oxygen species, these patients suffer from severe, and sometimes life-threatening, infections. However, conversely the release of nuclear chromatin into tissues is also potentially autoimmunogenic and is now associated with the generation of anti-citrullinated protein antibodies in seropositive rheumatoid arthritis. Other neutrophil-derived nuclear and cytoplasmic contents are also pathogenic, either through direct effects on tissues or via autoimmune processes (e.g. autoimmune vasculitis). In this review, we discuss the plant origins of a highly conserved innate immune method of microbial killing, the history and biology of neutrophil extracellular traps and their role in defence and in human diseases. We attempt to resolve areas of controversy and propose roles for excess neutrophil extracellular trap release from hyperactive/reactive neutrophils and for the unique peptidyl arginine deiminase enzyme of Porphyromonas gingivalis in the pathogenesis of periodontitis, and subsequently a role for periodontitis/the peptidyl arginine deiminase enzyme of P. gingivalis in the causal pathway of autoimmune diseases such as rheumatoid arthritis. We propose that neutrophil extracellular trap and peptidyl arginine deiminase release may propagate tissue-destructive mechanisms rather than provide protection in susceptible individuals and that release of host-derived DNase may play an important role in the digestion and removal of neutrophil extracellular traps within tissues.
Collapse
|
172
|
Franks Z, Carlisle M, Rondina MT. Current challenges in understanding immune cell functions during septic syndromes. BMC Immunol 2015; 16:11. [PMID: 25887317 PMCID: PMC4374283 DOI: 10.1186/s12865-015-0073-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sepsis is a dynamic infectious disease syndrome characterized by dysregulated inflammatory responses. RESULTS Despite decades of research, improvements in the treatment of sepsis have been modest. These limited advances are likely due, in part, to multiple factors, including substantial heterogeneity in septic syndromes, significant knowledge gaps in our understanding of how immune cells function in sepsis, and limitations in animal models that accurately recapitulate the human septic milieu. The goal of this brief review is to describe current challenges in understanding immune cell functions during sepsis. We also provide a framework to guide scientists and clinicians in research and patient care as they strive to better understand dysregulated cell responses during sepsis. CONCLUSIONS Additional, well-designed translational studies in sepsis are critical for enhancing our understanding of the role of immune cells in sepsis.
Collapse
Affiliation(s)
- Zechariah Franks
- Program in Molecular Medicine, Salt Lake City, 84112, , Utah, USA.
| | | | - Matthew T Rondina
- Program in Molecular Medicine, Salt Lake City, 84112, , Utah, USA.
- Division of General Internal Medicine, University of Utah School of Medicine, Salt Lake City, 84112, , Utah, USA.
| |
Collapse
|
173
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
174
|
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6:82. [PMID: 25767472 PMCID: PMC4341565 DOI: 10.3389/fimmu.2015.00082] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.
Collapse
Affiliation(s)
| | | | | | | | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon, Saint-Etienne, France
- Etablissement Français du Sang Auvergne-Loire, Saint-Etienne, France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Etienne, France
- Institut National de la Transfusion Sanguine, Paris, France
| |
Collapse
|
175
|
Rossaint J, Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res 2015; 107:386-95. [PMID: 25712962 DOI: 10.1093/cvr/cvv048] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/08/2015] [Indexed: 11/14/2022] Open
Abstract
Platelets have a longstanding recognition as an essential cellular component of the coagulation system. However, substantial research over the last decade has added another important aspect to platelet function in that they are also an integral part of the innate immune system. Complex organisms are facing a constant threat of infections by invading pathogens, and they have developed a sophisticated and elegant measure to combat this threat, namely the immune system. Leucocyte recruitment to sites of infections is an essential step at the forefront of the immune response. Platelets have been shown to be involved in several steps of this process and they are an integrated connecting element among haemostasis, host defence, and additional immunological functions (e.g. neutrophil extracellular traps formation). However, the immune system also requires a tight regulation, as an overshooting immune response carries the risk of harming the host itself. This review aims at highlighting the unique features and molecular mechanisms that allow for the interactions of platelets and leucocytes and the regulation of this process. Furthermore, this article identifies the functional relevance of these events for the immune response.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW Platelets are most identified as the cellular mediator of thrombosis. It is becoming increasingly evident that platelets also have complicated roles in vascular inflammatory and infectious diseases. Platelets have been linked to initiating or accelerating the pathogenesis of diverse pathologies, such as atherosclerosis acute and chronic transplant rejection, arthritis, influenza, and malaria infection. Platelets may also have protective roles in killing microbes, such as bacteria. Malaria kills over 500,000 people per year, so understanding the multifaceted roles for platelets in malaria infection is of critical importance. RECENT FINDINGS Recent literature has on the surface made the role of platelets in malaria infection somewhat confusing, with seemingly contradictory studies indicating a protective role for platelets in malaria infection by direct parasite killing, although others have indicated that platelets have an adverse proinflammatory role. However, what can appear to be mechanistic discrepancies are likely best explained through a better understanding and appreciation of platelet immune functions, especially in the context of the disease outcome or model systems used. SUMMARY In this review, we will first briefly highlight platelet immune cell functions. We will then discuss how platelet immune and inflammatory functions may affect responses to malaria infection in a disease outcome and animal model context.
Collapse
|
177
|
Stolla M, Refaai MA, Heal JM, Spinelli SL, Garraud O, Phipps RP, Blumberg N. Platelet transfusion - the new immunology of an old therapy. Front Immunol 2015; 6:28. [PMID: 25699046 PMCID: PMC4313719 DOI: 10.3389/fimmu.2015.00028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/14/2023] Open
Abstract
Platelet transfusion has been a vital therapeutic approach in patients with hematologic malignancies for close to half a century. Randomized trials show that prophylactic platelet transfusions mitigate bleeding in patients with acute myeloid leukemia. However, even with prophylactic transfusions, as many as 75% of patients, experience hemorrhage. While platelet transfusion efficacy is modest, questions and concerns have arisen about the risks of platelet transfusion therapy. The acknowledged serious risks of platelet transfusion include viral transmission, bacterial sepsis, and acute lung injury. Less serious adverse effects include allergic and non-hemolytic febrile reactions. Rare hemolytic reactions have occurred due to a common policy of transfusing without regard to ABO type. In the last decade or so, new concerns have arisen; platelet-derived lipids are implicated in transfusion-related acute lung injury after transfusion. With the recognition that platelets are immune cells came the discoveries that supernatant IL-6, IL-27 sCD40L, and OX40L are closely linked to febrile reactions and sCD40L with acute lung injury. Platelet transfusions are pro-inflammatory, and may be pro-thrombotic. Anti-A and anti-B can bind to incompatible recipient or donor platelets and soluble antigens, impair hemostasis and thus increase bleeding. Finally, stored platelet supernatants contain biological mediators such as VEGF and TGF-β1 that may compromise the host versus tumor response. This is particularly of concern in patients receiving many platelet transfusions, as for acute leukemia. New evidence suggests that removing stored supernatant will improve clinical outcomes. This new view of platelets as pro-inflammatory and immunomodulatory agents suggests that innovative approaches to improving platelet storage and pre-transfusion manipulations to reduce toxicity could substantially improve the efficacy and safety of this long-employed therapy.
Collapse
Affiliation(s)
- Moritz Stolla
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Joanna M Heal
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Olivier Garraud
- Etablissement Francais du Sang Auvergne-Loire, Universite de Lyon , Saint-Etienne , France
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA ; Department of Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester Medical Center , Rochester, NY , USA
| |
Collapse
|
178
|
Tamagawa-Mineoka R. Important roles of platelets as immune cells in the skin. J Dermatol Sci 2015; 77:93-101. [DOI: 10.1016/j.jdermsci.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
|
179
|
Wuescher LM, Takashima A, Worth RG. A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia. J Thromb Haemost 2015; 13:303-13. [PMID: 25418277 PMCID: PMC4320667 DOI: 10.1111/jth.12795] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Platelets are critical cells for maintaining vascular hemostasis, but their activities in other processes are becoming apparent. Specifically, the ability of platelets to recognize and respond to infectious agents is an important area of investigation. To understand the physiologic roles of platelets in vivo, most researchers have used antibody-mediated platelet depletion, which has certain limitations. OBJECTIVE To develop an optimal system with which to study the contribution of platelets to protection against S. aureus blood infection. METHODS Here, we describe a novel experimental model of conditional platelet depletion based on the Cre-recombinase cell ablation system. With this technology, the simian diphtheria toxin receptor was expressed in platelet factor 4-positive cells (megakaryocytes and platelets). RESULTS Systemic administration of diphtheria toxin every 48 h resulted in reduced platelet numbers that became undetectable after 6 days. Although platelets were depleted, no other blood cells were affected. With this newly developed model, the functional contributions of platelets to protection against Staphylococcus aureus bacteremia was examined. Platelet-depleted mice succumbed to infection more rapidly than wild-type mice, and had a significantly higher bacterial burden in kidneys, elevated levels of serum markers of kidney damage, and increased levels of cytokines indicative of septic shock. CONCLUSIONS Here, we illustrate a new mouse model for conditional platelet depletion, and implicate platelets as important participants in the immune response to bacterial blood infections.
Collapse
Affiliation(s)
- Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, 43614, USA
| |
Collapse
|
180
|
Bello-López JM, Ibáñez-Cervantes G, Fernández-Sánchez V, Arroyo-Pérez JA, Rojo-Medina J. Propagation capacity of bacterial contaminants in platelet concentrates using a luciferase reporter system. Transfus Apher Sci 2015; 52:326-31. [PMID: 25687788 DOI: 10.1016/j.transci.2015.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently the use of molecular tools and techniques of Genetic Engineering in the study of microbial behavior in blood components has replaced the employment of classical methods of microbiology. This work focuses on the use of a novel lux reporter system for monitoring the contaminating propagation capacity of bacteria present in platelet concentrates under standard storage conditions in the blood bank. METHODS A miniTn5 promotor probe carrying the lux operon from Photorhabdus luminiscens (pUTminiTn5luxCDABEKm2) was used to construct four bacterial bioluminescent mutants: Escherichia coli, Salmonella typhi, Proteus mirabilis and Pseudomonas aeruginosa. Luminescent mutants were used for contamination tests with 20 CFU in platelet concentrates bags and were stored under standard storage conditions in the blood bank (100 rpm at 22 °C). The measurements of luminous activity and optical density were used to monitor bacterial proliferation during 7 days (168 h). RESULTS During the exponential growth phase (log) of bacterial strains, a lineal correlation between luminous activity vs biomass was observed (R(2) = 0.985, 0.976, 0.981) for E. coli::Tn5luxCDABEKm2, P. mirabilis::Tn5luxCDABEKm2 and P. auriginosa::Tn5luxCDABEKm2, respectively. The above indicates that metabolic activity (production of ATP) is directly related to biomass in this phase of microbial growth. While conducting experiments, the inability to propagate S. typhi::Tn5luxCDABEKm2 was detected. We can speculate that platelet concentrates contain specific components that prevent the propagation of S. typhi. CONCLUSION The use of luxCDABE system for the quantification of luminous activity is a rapid and sensitive alternative to study the propagation and auto-sterilization of bacterial contaminants in platelet concentrates.
Collapse
Affiliation(s)
- Juan Manuel Bello-López
- Departamento de Investigación, Desarrollo y Control de Calidad, Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Col. Zacatenco, México D.F. C.P. 07360, Mexique
| | - Gabriela Ibáñez-Cervantes
- Departamento de Investigación, Desarrollo y Control de Calidad, Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Col. Zacatenco, México D.F. C.P. 07360, Mexique
| | - Verónica Fernández-Sánchez
- Departamento de Investigación, Desarrollo y Control de Calidad, Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Col. Zacatenco, México D.F. C.P. 07360, Mexique
| | - José Antonio Arroyo-Pérez
- Departamento de Investigación, Desarrollo y Control de Calidad, Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Col. Zacatenco, México D.F. C.P. 07360, Mexique
| | - Julieta Rojo-Medina
- Departamento de Investigación, Desarrollo y Control de Calidad, Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Col. Zacatenco, México D.F. C.P. 07360, Mexique.
| |
Collapse
|
181
|
The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 2015; 464:3-11. [PMID: 25181554 DOI: 10.1042/bj20140778] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NETs (neutrophil extracellular traps) have been described as a fundamental innate immune defence mechanism. During formation of NETs, the nuclear membrane is disrupted by an as-yet unknown mechanism. In the present study we investigated the role of human cathelicidin LL-37 in nuclear membrane disruption and formation of NETs. Immunofluorescence microscopy revealed that 5 μM LL-37 significantly facilitated NET formation by primary human blood-derived neutrophils alone, in the presence of the classical chemical NET inducer PMA or in the presence of Staphylococcus aureus. Parallel assays with a random LL-37 fragment library indicated that the NET induction is mediated by the hydrophobic character of the peptide. The trans-localization of LL-37 towards the nucleus and the disruption of the nuclear membrane were visualized using confocal fluorescence microscopy. In conclusion, the present study demonstrates a novel role for LL-37 in the formation of NETs.
Collapse
|
182
|
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. CURRENT TRENDS IN IMMUNOLOGY 2015; 16:65-78. [PMID: 27818580 PMCID: PMC5096834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Platelets are anucleate cell fragments known for their central role in coagulation and vascular integrity. However, it is becoming increasingly clear that platelets contribute to diverse immunological processes extending beyond the traditional view of platelets as fragmentary mediators of hemostasis and thrombosis. There is recent evidence that platelets participate in: 1) intervention against microbial threats; 2) recruitment and promotion of innate effector cell functions; 3) modulating antigen presentation; and 4) enhancement of adaptive immune responses. In this way, platelets should be viewed as the underappreciated orchestrator of the immune system. This review will discuss recent and historical evidence regarding how platelets influence both innate and adaptive immune responses.
Collapse
|
183
|
Weyrich AS. Platelets: more than a sack of glue. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:400-403. [PMID: 25696885 DOI: 10.1182/asheducation-2014.1.400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Platelets are primary effector cells in hemostasis. Emerging evidence over the last decade, however, demonstrates that platelets also have critical roles in immunity and inflammation. These nontraditional functions of platelets influence the development, progression, and evolution of numerous diseases, including arthritis, cancer, cardiovascular disease, and infectious syndromes. This chapters reviews recently discovered attributes of platelets that contribute to human disease, paying particular attention to the inflammatory activities of this anucleate cytoplast.
Collapse
Affiliation(s)
- Andrew S Weyrich
- Molecular Medicine Program and the Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
184
|
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12:1764-75. [PMID: 25224706 DOI: 10.1111/jth.12730] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
Collapse
Affiliation(s)
- J M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
185
|
Drago L, Bortolin M, Vassena C, Romanò CL, Taschieri S, Fabbro MD. Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study. PLoS One 2014; 9:e107813. [PMID: 25232963 PMCID: PMC4169456 DOI: 10.1371/journal.pone.0107813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022] Open
Abstract
Autologous platelet concentrates are successfully adopted in a variety of medical fields to stimulate bone and soft tissue regeneration. The rationale for their use consists in the delivery of a wide range of platelet-derived bioactive molecules that promotes wound healing. In addition, antimicrobial properties of platelet concentrates have been pointed out. In this study, the effect of the platelet concentration, of the activation step and of the presence of plasmatic components on the antimicrobial activity of pure platelet-rich plasma was investigated against gram positive bacteria isolated from oral cavity. The antibacterial activity, evaluated as the minimum inhibitory concentration, was determined through the microdilution two-fold serial method. Results seem to suggest that the antimicrobial activity of platelet-rich plasma against Enterococcus faecalis, Streptococcus agalactiae, Streptococcus oralis and Staphylococcus aureus is sustained by a co-operation between plasma components and platelet-derived factors and that the activation of coagulation is a fundamental step. The findings of this study may have practical implications in the modality of application of platelet concentrates.
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Technical Sciences for Laboratory Medicine, Department of Biomedical Science for Health, University of Milan, Milan, Italy
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- * E-mail:
| | - Monica Bortolin
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Christian Vassena
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Carlo L. Romanò
- Center of Reconstructive Surgery and Osteoarticular Infection, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Silvio Taschieri
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Dental Clinic, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
186
|
Duerschmied D, Bode C, Ahrens I. Immune functions of platelets. Thromb Haemost 2014; 112:678-91. [PMID: 25209670 DOI: 10.1160/th14-02-0146] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
This review collects evidence about immune and inflammatory functions of platelets from a clinician's point of view. A focus on clinically relevant immune functions aims at stimulating further research, because the complexity of platelet immunity is incompletely understood and not yet translated into patient care. Platelets promote chronic inflammatory reactions (e.g. in atherosclerosis), modulate acute inflammatory disorders such as sepsis and other infections (participating in the host defense against pathogens), and contribute to exacerbations of autoimmune conditions (like asthma or arthritis). It would hence be obsolete to restrict a description of platelet functions to thrombosis and haemostasis--platelets clearly are the most abundant cells with immune functions in the circulation.
Collapse
Affiliation(s)
- Daniel Duerschmied
- Daniel Duerschmied, MD, Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, Tel.: +49 761 207 34410, Fax: +49 761 270 37855, E-mail:
| | | | | |
Collapse
|
187
|
Andres O, Schulze H, Speer CP. Platelets in neonates: central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost 2014; 113:3-12. [PMID: 25185520 DOI: 10.1160/th14-05-0476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 12/26/2022]
Abstract
Platelets are not only centrally involved in haemostasis, but also in antimicrobial defence and inflammation. Since evaluation of platelet physiology in the particular patient group of preterm and term neonatal infants is highly restricted for ethical reasons, there are hardly any data available in healthy and much less in extremely immature or ill neonates. By summarising current knowledge and addressing both platelet researchers and neonatologists, we describe neonatal platelet count and morphology, report on previous analyses of neonatal platelet function in primary haemostasis and provide insights into recent advances in platelet immunology that considerably impacts our clinical view on the critically ill neonatal infant. We conclude that neonatal platelets, originating from liver megakaryocytes, substantially differ from adult platelets and may play a pivotal role in the pathophysiology of neonatal sepsis or intraventricular haemorrhage, both complications which seriously augment perinatal morbidity and mortality.
Collapse
Affiliation(s)
- Oliver Andres
- Dr. med. Oliver Andres, University Children's Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany, Tel.: +49 931 201 27728, Fax: +49 931 201 6027799, E-mail:
| | | | | |
Collapse
|
188
|
de Stoppelaar SF, van 't Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost 2014; 112:666-77. [PMID: 24966015 DOI: 10.1160/th14-02-0126] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
Abstract
Platelets are small circulating anucleate cells that are of crucial importance in haemostasis. Over the last decade, it has become increasingly clear that platelets play an important role in inflammation and can influence both innate and adaptive immunity. Sepsis is a potentially lethal condition caused by detrimental host response to an invading pathogen. Dysbalanced immune response and activation of the coagulation system during sepsis are fundamental events leading to sepsis complications and organ failure. Platelets, being major effector cells in both haemostasis and inflammation, are involved in sepsis pathogenesis and contribute to sepsis complications. Platelets catalyse the development of hyperinflammation, disseminated intravascular coagulation and microthrombosis, and subsequently contribute to multiple organ failure. Inappropriate accumulation and activity of platelets are key events in the development of sepsis-related complications such as acute lung injury and acute kidney injury. Platelet activation readouts could serve as biomarkers for early sepsis recognition; inhibition of platelets in septic patients seems like an important target for immune-modulating therapy and appears promising based on animal models and retrospective human studies.
Collapse
Affiliation(s)
- Sacha F de Stoppelaar
- Sacha F. de Stoppelaar, MD, Academic Medical Centre, Centre of Experimental and Molecular Medicine, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, the Netherlands, Tel.: +31 20 5665910, Fax: +31 20 6977192, E-mail:
| | | | | |
Collapse
|
189
|
|
190
|
Abstract
Despite their small size and anucleate status, platelets have diverse roles in vascular biology. Not only are platelets the cellular mediator of thrombosis, but platelets are also immune cells that initiate and accelerate many vascular inflammatory conditions. Platelets are linked to the pathogenesis of inflammatory diseases such as atherosclerosis, malaria infection, transplant rejection, and rheumatoid arthritis. In some contexts, platelet immune functions are protective, whereas in others platelets contribute to adverse inflammatory outcomes. In this review, we will discuss platelet and platelet-derived mediator interactions with the innate and acquired arms of the immune system and platelet-vessel wall interactions that drive inflammatory disease. There have been many recent publications indicating both important protective and adverse roles for platelets in infectious disease. Because of this new accumulating data, and the fact that infectious disease continues to be a leading cause of death globally, we will also focus on new and emerging concepts related to platelet immune and inflammatory functions in the context of infectious disease.
Collapse
|
191
|
Gründler K, Angstwurm M, Hilge R, Baumann P, Annecke T, Crispin A, Sohn HY, Massberg S, Kraemer BF. Platelet mitochondrial membrane depolarization reflects disease severity in patients with sepsis and correlates with clinical outcome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R31. [PMID: 24521521 PMCID: PMC4056796 DOI: 10.1186/cc13724] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
Abstract
Introduction Sepsis is still a leading cause of morbidity and mortality, even in modern times, and thrombocytopenia has been closely associated with unfavorable disease outcome. Decreases in mitochondrial membrane potential (depolarization) were found in different tissues during sepsis. Previous work suggests that mitochondrial dysfunction of platelets correlates with clinical disease activity in sepsis. However, platelet mitochondrial membrane potential (Mmp) has not been investigated in a clinical follow-up design and not with regard to disease outcome. Methods In this study, platelet mitochondrial membrane depolarization was assessed by means of a fluorescent Mmp-Index with flow cytometry in 26 patients with sepsis compared with control patients. Platelet Mmp-Index on admission was correlated with the clinical disease scores Acute Physiology and Chronic Health Evaluation Score II (APACHE II), Sequential Organ Failure Score (SOFA), and Simplified Acute Physiology Score II (SAPS II). Finally, platelet Mmp-Index on admission and follow-up were compared in the group of sepsis survivors and nonsurvivors. Expression of the prosurvival protein Bcl-xL in platelets was quantified by immunoblotting. Results Platelet mitochondrial membrane depolarization correlated significantly with the simultaneously assessed clinical disease severity by APACHE II (r = -0.867; P < 0.0001), SOFA (r = -0.857; P <0.0001), and SAPS II score (r = -0.839; P < 0.0001). Patients with severe sepsis showed a significant reduction in platelet Mmp-Index compared with sepsis without organ failure (0.18 (0.12 to 0.25) versus 0.79 (0.49 to 0.85), P < 0.0006) or with the control group (0.18 (0.12 to 0.25) versus 0.89 (0.68 to 1.00), P < 0.0001). Platelet Mmp-Index remained persistently low in sepsis nonsurvivors (0.269 (0.230 to 0.305)), whereas we observed recovery of platelet Mmp-Index in the survivor group (0.9 (0.713 to 1.017)). Furthermore, the level of prosurvival protein Bcl-xL decreased in platelets during severe sepsis. Conclusion In this study, we demonstrated that mitochondrial membrane depolarization in platelets correlates with clinical disease severity in patients with sepsis during the disease course and may be a valuable adjunct parameter to aid in the assessment of disease severity, risk stratification, and clinical outcome.
Collapse
|
192
|
Xu Y, Yu H, Sun H. Targeting the host hemostatic system function in bacterial infection for antimicrobial therapies. J Thromb Thrombolysis 2014; 37:66-73. [PMID: 24379143 DOI: 10.1007/s11239-013-0994-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hemostatic system is an important player in host's response to infection. It has been shown that host hemostatic factors as well as platelets, interact with various proteins from bacteria and play important roles in host defense against infections. This review summarizes studies of function of host hemostatic system in host defense against bacterial infections and efforts to target hemostatic system interaction with pathogens to develop potential antimicrobial therapies.
Collapse
Affiliation(s)
- Yuanxi Xu
- Department of Internal Medicine, University of Missouri Hospital and Clinics, Columbia, MO, USA
| | | | | |
Collapse
|
193
|
Ng TH, Chang SH, Wu MH, Wang HC. Shrimp hemocytes release extracellular traps that kill bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:644-651. [PMID: 23817142 DOI: 10.1016/j.dci.2013.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Extracellular traps (ETs) are formed from the DNA, histones and cytoplasmic antimicrobial proteins that are released from a range of vertebrate immune-cells in response to pathogenic stimulation. This novel defense mechanism has not been demonstrated in invertebrates. In this study, we investigated the formation of ETs in the crustacean Litopenaeus vannamei. We found that stimulation of shrimp hemocytes with phorbol myristate acetate (PMA), lipopolysaccharide (LPS) and live Escherichia coli all led to the formation of the characteristic ET fibers made from host cell DNA. After E. coli stimulation, we found that histone proteins were co-localized with these extracellular DNA fibers. The results further showed that E. coli were trapped by these ET-like fibers and that some of the trapped bacteria were permeabilized. All of these results are characteristic of the ETs that are seen in vertebrates and we therefore conclude that shrimp are also capable of forming extracellular traps.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
194
|
Cell-mediated reduction of human β-defensin 1: a major role for mucosal thioredoxin. Mucosal Immunol 2013; 6:1179-90. [PMID: 23571504 PMCID: PMC3806438 DOI: 10.1038/mi.2013.17] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
Human β-defensin 1 (hBD-1) is an antimicrobial peptide expressed by epithelia and hematopoietic cells. We demonstrated recently that hBD-1 shows activity against enteric commensals and Candida species only after its disulfide bonds have been reduced by thioredoxin (TRX) or a reducing environment. Here we show that besides TRX, glutaredoxin (GRX) is also able to reduce hBD-1, although with far less efficacy. Moreover, living intestinal and lymphoid cells can effectively catalyze reduction of extracellular hBD-1. By chemical inhibition of the TRX system or specific knockdown of TRX, we demonstrate that cell-mediated reduction is largely dependent on TRX. Quantitative PCR in intestinal tissues of healthy controls and inflammatory bowel disease patients revealed altered expression of some, although not all, redox enzymes, especially in ulcerative colitis. Reduced hBD-1 and TRX localize to extracellular colonic mucus, suggesting that secreted or membrane-bound TRX converts hBD-1 to a potent antimicrobial peptide in vivo.
Collapse
|
195
|
Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol 2013; 8:1431-51. [DOI: 10.2217/fmb.13.104] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelets have been shown to cover a broad range of functions. Besides their role in hemostasis, they have immunological functions and thus participate in the interaction between pathogens and host defense. Platelets have a broad repertoire of receptor molecules that enable them to sense invading pathogens and infection-induced inflammation. Consequently, platelets exert antimicrobial effector mechanisms, but also initiate an intense crosstalk with other arms of the innate and adaptive immunity, including neutrophils, monocytes/macrophages, dendritic cells, B cells and T cells. There is a fragile balance between beneficial antimicrobial effects and detrimental reactions that contribute to the pathogenesis, and many pathogens have developed mechanisms to influence these two outcomes. This review aims to highlight aspects of the interaction strategies between platelets and pathogenic bacteria, viruses, fungi and parasites, in addition to the subsequent networking between platelets and other immune cells, and the relevance of these processes for the pathogenesis of infections.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Jürgen Löffler
- Laboratory of Innate Immunity, Infection, Inflammation, University Hospital Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute – Clinical Microbiology, Immunology & Hygiene, University Hospital of Erlangen & Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Cornelia Lass-Flörl
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| |
Collapse
|
196
|
Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 2013; 35:254-61. [PMID: 23590652 DOI: 10.1111/ijlh.12084] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
Abstract
Although the function of platelets in the maintenance of hemostasis has been studied in great detail, more recent evidence has highlighted a central role for platelets in the host inflammatory and immune responses. Platelets by virtue of their large numbers and their ability to rapidly release a broad spectrum of immunomodulatory cytokines, chemokines, and other mediators act as circulating sentinels. Upon detection of a pathogen, platelets quickly activate and begin to drive the ensuing inflammatory response. Platelets have the ability to directly modulate the activity of neutrophils (phagocytosis, oxidative burst), endothelium (adhesion molecule and chemokine expression), and lymphocytes. Due to their diverse array of adhesion molecules and preformed chemokines, platelets are able to adhere to leukocytes and facilitate their recruitment to sites of tissue damage or infection. Furthermore, platelets directly participate in the capture and sequestration of pathogens within the vasculature. Platelet-neutrophil interactions are known to induce the release of neutrophil extracellular traps (NETs) in response to either bacterial or viral infection, and platelets have been shown to internalize pathogens, sequestering them in engulfment vacuoles. Finally, emerging data indicate that platelets also participate in the host immune response by directly killing infected cells. This review will highlight the central role platelets play in the initiation and modulation of the host inflammatory and immune responses.
Collapse
Affiliation(s)
- C N Jenne
- Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
197
|
Becknell B, Spencer JD, Carpenter AR, Chen X, Singh A, Ploeger S, Kline J, Ellsworth P, Li B, Proksch E, Schwaderer AL, Hains DS, Justice SS, McHugh KM. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 2013; 8:e77714. [PMID: 24204930 PMCID: PMC3804605 DOI: 10.1371/journal.pone.0077714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/12/2013] [Indexed: 12/03/2022] Open
Abstract
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1-/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.
Collapse
Affiliation(s)
- Brian Becknell
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John David Spencer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashley R. Carpenter
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Xi Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Aspinder Singh
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Suzanne Ploeger
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jennifer Kline
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick Ellsworth
- Department of Internal Medicine and Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Birong Li
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Andrew L. Schwaderer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David S. Hains
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| | - Kirk M. McHugh
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| |
Collapse
|
198
|
Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013; 112:1506-19. [PMID: 23704217 DOI: 10.1161/circresaha.113.300512] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key thromboinflammatory activities in a variety of vascular disorders and vasculopathies. Recently identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases.
Collapse
Affiliation(s)
- Matthew T Rondina
- Department of Medicine and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | |
Collapse
|
199
|
Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013; 17:1176-84. [PMID: 23810443 DOI: 10.1016/j.intimp.2013.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/20/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
The manifestation of platelet 'satallitism' around neutrophils in whole blood is a long acknowledged phenomenon [1]. Circulating platelet-neutrophil complexes (PNC) occur in a diverse range of inflammatory disorders and infections that affect numerous organs of the body. Animal models have revealed that the formation of PNC is required for the recruitment of neutrophils to inflamed tissue, since platelets 'prime' neutrophils for efficient adhesion to vascular endothelium via the up-regulation of integrins and enhanced responsiveness to chemokines (Fig. 1). Perhaps surprisingly, the surface contact between platelets and neutrophils additionally enhances other neutrophil functions, such as chemotaxis that is required for migration into tissues, trans-cellular production of eicosanoids, phagocytosis and trapping of pathogens, increased respiratory burst leading to the production of reactive oxygen species (ROS), and modulation of neutrophil apoptosis (Fig. 1). Platelet P-selectin appears to have a particular role in enhancing the majority of these activities, and the influence of platelet P-selectin is not therefore confined to the initial rolling events in the process of neutrophil extravasation.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | | |
Collapse
|
200
|
Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol 2013; 4:45. [PMID: 23459634 PMCID: PMC3585429 DOI: 10.3389/fimmu.2013.00045] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/07/2013] [Indexed: 01/13/2023] Open
Abstract
Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury.
Collapse
Affiliation(s)
- Nikolaos G Almyroudis
- Division of Infectious Diseases, Department of Medicine, University at Buffalo School of Medicine Buffalo, NY, USA ; Department of Medicine, Roswell Park Cancer Institute Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|