151
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
152
|
Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog 2018; 14:e1007156. [PMID: 30048533 PMCID: PMC6062147 DOI: 10.1371/journal.ppat.1007156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.
Collapse
|
153
|
Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX. Parasitic insect-derived miRNAs modulate host development. Nat Commun 2018; 9:2205. [PMID: 29880839 PMCID: PMC5992160 DOI: 10.1038/s41467-018-04504-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/30/2018] [Indexed: 01/20/2023] Open
Abstract
Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Fei Li
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Ze-Hua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Qi-Juan Gu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Chuan-Lin Yin
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Dian-Hao Guo
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Rong-Min Hu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Na-Na Hu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Ting Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Bo-Ying Zheng
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Jia-Ni Zou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Le-Qing Zhan
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Yan-Ping Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China
| | | | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Xue-Xin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 310058, Hangzhou, China.
- State Key Lab of Rice Biology, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
154
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
155
|
Naqvi AR, Seal A, Shango J, Shukla D, Nares S. In silico prediction of cellular gene targets of herpesvirus encoded microRNAs. Data Brief 2018; 19:249-255. [PMID: 29892642 PMCID: PMC5993014 DOI: 10.1016/j.dib.2018.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Herpesviruses have evolved to encode multiple microRNAs [viral miRNAs (v-miRs)], a unique feature of this family of double stranded DNA (dsDNA) viruses. However, functional role of these v-miRs in host-pathogen interaction remains poorly studied. In this data, we examined the impact of oral disease associated v-miRs viz., miR-H1 [encoded by herpes simplex virus 1 (HSV1)] and miR-K12-3 [encoded by Kaposi sarcoma-associated herpesvirus (KSHV)] by identifying putative targets of viral miRNAs. We used our published microarray data (GSE107005) to identify the transcripts downregulated by the v-miRs. The 3′ untranslated region (UTR) of these genes were extracted using BioMart tool on Ensembl and subjected to RNA:RNA interaction employing RNA Hybrid. We obtained hundreds of potential and novel miR-H1 and miR-K12-3 binding sites on the 3′UTR of the genes downregulated by these v-miRs. The information can provide likely regulatory mechanisms of the candidate v-miRs through which they can exert biological impact during herpesvirus infection and pathogenesis.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Jennifer Shango
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| |
Collapse
|
156
|
Zhang S, Li J, Li J, Yang Y, Kang X, Li Y, Wu X, Zhu Q, Zhou Y, Hu Y. Up-regulation of microRNA-203 in influenza A virus infection inhibits viral replication by targeting DR1. Sci Rep 2018; 8:6797. [PMID: 29717211 PMCID: PMC5931597 DOI: 10.1038/s41598-018-25073-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that play important roles in various biological processes. Much evidence shows that miRNAs are closely associated with numerous virus infections; however, involvement of cellular miRNAs in influenza A virus (IAV) infection is unclear. Here, we found that expression of miR-203 was up-regulated markedly via two different mechanisms during IAV infection. First, we examined the effects of type I interferon induced by IAV on direct activation of miR-203 expression. Next, we showed that DNA demethylation within the miR-203 promoter region in A549 cells induced its up-regulation, and that expression of DNA methyltransferase 1 was down-regulated following H5N1 virus infection. Ectopic expression of miR-203 in turn inhibited H5N1 virus replication by targeting down-regulator of transcription 1 (DR1), which was identified as a novel target of miR-203. Silencing DR1 in miR-203 knockout cells using a specific siRNA inhibited replication of the H5N1 virus, an effect similar to that of miR-203. In summary, the data show that host cell expression of miR-203 is up-regulated upon IAV infection, which increases antiviral responses by suppressing a novel target gene, DR1. Thus, we have identified a novel mechanism underlying the relationship between miR-203 and IAV infection.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Junfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yinhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Xiaoyan Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Qingyu Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
157
|
Wu X, Jia R, Zhou J, Wang M, Chen S, Liu M, Zhu D, Zhao X, Sun K, Yang Q, Wu Y, Yin Z, Chen X, Wang J, Cheng A. Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs. BMC Vet Res 2018; 14:144. [PMID: 29704894 PMCID: PMC5923184 DOI: 10.1186/s12917-018-1468-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Duck enteritis virus (DEV) belongs to the family Herpesviridae and is an important epornitic agent that causes economic losses in the waterfowl industry. The Chinese virulent (CHv) and attenuate vaccines (VAC) are two different pathogenic DEV strains. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression in viral infection. Nonetheless, there is little information on virulent duck enteritis virus (DEV)-encoded miRNAs. Results Using high-throughput sequencing, we identified 39 mature viral miRNAs from CHv-infected duck embryo fibroblasts cells. Compared with the reported 33 VAC-encoded miRNAs, only 13 miRNA sequences and 22 “seed sequences” of miRNA were identical, and 8 novel viral miRNAs were detected and confirmed by stem-loop RT-qPCR in this study. Using RNAhybrid and PITA software, 38 CHv-encoded miRNAs were predicted to target 41 viral genes and formed a complex regulatory network. Dual luciferase reporter assay (DLRA) confirmed that viral dev-miR-D8-3p can directly target the 3’-UTR of CHv US1 gene (p < 0.05). Gene Ontology analysis on host target genes of viral miRNAs were mainly involved in biological regulation, cellular and metabolic processes. In addition, 598 novel duck-encoded miRNAs were detected in this study. Thirty-eight host miRNAs showed significant differential expression after CHv infection: 13 miRNAs were up-regulated, and 25 miRNAs were down-regulated, which may affect viral replication in the host cell. Conclusions These data suggested that CHv encoded a different set of microRNAs and formed a unique regulatory network compared with VAC. This is the first report of DEF miRNAs expression profile and an analysis of these miRNAs regulatory mechanisms during DEV infection. These data provide a basis for further exploring miRNA regulatory roles in the pathogenesis of DEV infection and contribute to the understanding of the CHv-host interaction at the miRNA level. Electronic supplementary material The online version of this article (10.1186/s12917-018-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Kunfeng Sun
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Jue Wang
- BGI Genomics Co,shenzhen Ltd, Shenzhen, 518083, Guangdong Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
158
|
Koupenova M, Mick E, Corkrey HA, Huan T, Clancy L, Shah R, Benjamin EJ, Levy D, Kurt-Jones EA, Tanriverdi K, Freedman JE. Micro RNAs from DNA Viruses are Found Widely in Plasma in a Large Observational Human Population. Sci Rep 2018; 8:6397. [PMID: 29686252 PMCID: PMC5913337 DOI: 10.1038/s41598-018-24765-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Viral infections associate with disease risk and select families of viruses encode miRNAs that control an efficient viral cycle. The association of viral miRNA expression with disease in a large human population has not been previously explored. We sequenced plasma RNA from 40 participants of the Framingham Heart Study (FHS, Offspring Cohort, Visit 8) and identified 3 viral miRNAs from 3 different human Herpesviridae. These miRNAs were mostly related to viral latency and have not been previously detected in human plasma. Viral miRNA expression was then screened in the plasma of 2763 participants of the remaining cohort utilizing high-throughput RT-qPCR. All 3 viral miRNAs associated with combinations of inflammatory or prothrombotic circulating biomarkers (sTNFRII, IL-6, sICAM1, OPG, P-selectin) but did not associate with hypertension, coronary heart disease or cancer. Using a large observational population, we demonstrate that the presence of select viral miRNAs in the human circulation associate with inflammatory biomarkers and possibly immune response, but fail to associate with overt disease. This study greatly extends smaller singular observations of viral miRNAs in the human circulation and suggests that select viral miRNAs, such as those for latency, may not impact disease manifestation.
Collapse
Affiliation(s)
- Milka Koupenova
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA, 01605, USA.
| | - Eric Mick
- University of Massachusetts Medical School, Department of Quantitative Health Sciences, Worcester, MA, 01605, USA
| | - Heather A Corkrey
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA, 01605, USA
| | - Tianxiao Huan
- National Heart, Lung, and Blood Institute, National Institutes of Health (NHLBI) and Boston University's Framingham Heart Institute, Framingham, MA, 01702, USA
- Population Sciences Branch, NHLBI, Bethesda, Maryland, 20824, USA
| | - Lauren Clancy
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA, 01605, USA
| | - Ravi Shah
- Beth Israel Deaconess Medical Center, Cardiovascular Institute, Boston, MA, 02215, USA
| | - Emelia J Benjamin
- Boston University School of Medicine, Department of Medicine, Boston, MA, 02118, USA
- Boston University School of Public Health, Department of Epidemiology, Boston, MA, 02118, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health (NHLBI) and Boston University's Framingham Heart Institute, Framingham, MA, 01702, USA
| | - Daniel Levy
- National Heart, Lung, and Blood Institute, National Institutes of Health (NHLBI) and Boston University's Framingham Heart Institute, Framingham, MA, 01702, USA
- Population Sciences Branch, NHLBI, Bethesda, Maryland, 20824, USA
| | - Evelyn A Kurt-Jones
- University of Massachusetts Medical School, Department of Medicine, Division of Infectious Disease and Immunology, Worcester, MA, 01605, USA
| | - Kahraman Tanriverdi
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA, 01605, USA
| | - Jane E Freedman
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA, 01605, USA
| |
Collapse
|
159
|
The Role of miRNAs in Virus-Mediated Oncogenesis. Int J Mol Sci 2018; 19:ijms19041217. [PMID: 29673190 PMCID: PMC5979478 DOI: 10.3390/ijms19041217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Collapse
|
160
|
Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood. Front Microbiol 2018; 9:686. [PMID: 29692764 PMCID: PMC5902699 DOI: 10.3389/fmicb.2018.00686] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Massimo Pifferi
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Maria E Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
161
|
Zhang R, Liu C, Cao Y, Jamal M, Chen X, Zheng J, Li L, You J, Zhu Q, Liu S, Dai J, Cui M, Fu ZF, Cao G. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication. Oncotarget 2018; 8:43822-43837. [PMID: 28388579 PMCID: PMC5546443 DOI: 10.18632/oncotarget.16517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/13/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuangang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunzi Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamal
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfang Zheng
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Liu
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
162
|
MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. J Virol 2018; 92:JVI.02009-17. [PMID: 29321333 PMCID: PMC5972888 DOI: 10.1128/jvi.02009-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication. IMPORTANCE We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections.
Collapse
|
163
|
Zheng K, Liu Q, Wang S, Ren Z, Kitazato K, Yang D, Wang Y. HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein. Virus Genes 2018. [DOI: 10.1007/s11262-018-1551-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
164
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
165
|
Li N, Yan Y, Zhang A, Gao J, Zhang C, Wang X, Hou G, Zhang G, Jia J, Zhou EM, Xiao S. MicroRNA-like viral small RNA from porcine reproductive and respiratory syndrome virus negatively regulates viral replication by targeting the viral nonstructural protein 2. Oncotarget 2018; 7:82902-82920. [PMID: 27769040 PMCID: PMC5347740 DOI: 10.18632/oncotarget.12703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Angke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiming Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xue Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jinbu Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
166
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
167
|
Liu X, Wei H, Liao S, Ye J, Zhu L, Xu Z. MicroRNA transcriptome analysis of porcine vital organ responses to immunosuppressive porcine cytomegalovirus infection. Virol J 2018; 15:16. [PMID: 29347945 PMCID: PMC5774105 DOI: 10.1186/s12985-018-0922-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background Porcine cytomegalovirus (PCMV) is an immunosuppressive virus that mainly inhibits T-lymphocyte and macrophage immune functions; it has significantly damaged the farming industry. Although recent studies have shown that miRNAs play important roles in immune responses, the regulatory mechanisms of miRNAs during immunosuppressive virus infection remain unclear. Methods In this study, porcine small-RNA transcriptomes of PCMV-infected and uninfected vital organs were first characterised by high-throughput sequencing. miRDeep2 software was used to predict novel pig-encoded miRNAs. To verify the accuracy of the high-throughput sequencing results, stem-loop qRT-PCR was performed on 12 significantly DE miRNAs. The physical and functional interactions between the immune-related target genes of the DE miRNAs in PCMV-infected organs were analysed using the STRING database. Results In total, 306 annotated and 295 novel miRNAs were identified from PCMV-infected and uninfected porcine organs, respectively, through alignment with known Sus scrofa pre-miRNAs. Overall, 92, 107, 95, 77 and 111 miRNAs were significantly differentially expressed in lung, liver, spleen, kidney and thymus after PCMV infection, respectively. According to Gene Ontology enrichment analysis, target genes of the differentially expressed miRNAs associated with immune system processes, regulation of biological processes and metabolic processes were enriched in every sample. Integrated expression analysis of the differentially expressed miRNAs and their target mRNAs in PCMV-infected thymus showed that the significant differential expression of specific miRNAs under the pressure of PCMV infection in central immune organs interfered with the expression of genes involved in important immune-related signalling pathways, thus promoting the viral infection. Conclusions This is the first comprehensive analysis of the responses of host small-RNA transcriptomes to PCMV infection in vital porcine organs. It provides new insights into the regulatory mechanisms of miRNAs during infection by immunosuppressive viruses. Electronic supplementary material The online version of this article (10.1186/s12985-018-0922-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Liu
- Southwest University, College of Animal Science and technology, Chongqing, 400715, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Haoche Wei
- College of Life Sciences, Sichuan University, Chengdu, 610000, China
| | - Shan Liao
- Southwest University, College of Animal Science and technology, Chongqing, 400715, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province and Animal Biotechnology Center, College of Veterinary Medicine of Sichuan Agricultural University, 211#Huimin Road, Wenjiang District, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|
168
|
Honegger A, Schilling D, Sültmann H, Hoppe-Seyler K, Hoppe-Seyler F. Identification of E6/E7-Dependent MicroRNAs in HPV-Positive Cancer Cells. Methods Mol Biol 2018; 1699:119-134. [PMID: 29086374 DOI: 10.1007/978-1-4939-7435-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oncogenic types of human papillomaviruses (HPVs) are closely linked to the development of anogenital and head and neck cancers . The expression of the viral E6 and E7 genes is crucial for the transforming activities of HPVs. There is accumulating evidence that the HPV E6/E7 oncogenes can profoundly affect the cellular microRNA (miRNA) composition. Since alterations of miRNA expression levels can contribute to cancer development and maintenance, it will be important to understand in depth the crosstalk between the HPV oncogenes and the cellular miRNA network . Here, we describe a method to identify E6/E7-dependent intracellular miRNAs by small RNA deep sequencing , upon silencing of endogenous E6/E7 expression in HPV-positive cancer cells in vitro. In addition, we provide a protocol to identify E6/E7-dependent miRNA alterations in exosomes that are secreted by HPV-positive cancer cells in vitro.
Collapse
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Daniela Schilling
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| |
Collapse
|
169
|
Scolaro LA, Roldan JS, Theaux C, Damonte EB, Carlucci MJ. Experimental Aspects Suggesting a "Fluxus" of Information in the Virions of Herpes Simplex Virus Populations. Front Microbiol 2017; 8:2625. [PMID: 29375500 PMCID: PMC5770744 DOI: 10.3389/fmicb.2017.02625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Abstract
Our perspective on nature has changed throughout history and at the same time has affected directly or indirectly our perception of biological processes. In that sense, the "fluxus" of information in a viral population arises a result of a much more complex process than the encoding of a protein by a gene, but as the consequence of the interaction between all the components of the genome and its products: DNA, RNA, and proteins and its modulation by the environment. Even modest "agents of life" like viruses display an intricate way to express their information. This conclusion can be withdrawn from the huge quantity of data furnished by new and potent technologies available now to analyze viral populations. Based on this premise, evolutive processes for viruses are now interpreted as a simultaneous and coordinated phenomenon that leads to global (i.e., not gradual or 'random') remodeling of the population. Our system of study involves the modulation of herpes simplex virus populations through the selective pressure exerted by carrageenans, natural compounds that interfere with virion attachment to cells. On this line, we demonstrated that the passaging of virus in the presence of carrageenans leads to the appearance of progeny virus phenotipically different from the parental seed, particularly, the emergence of syncytial (syn) variants. This event precedes the emergence of mutations in the population which can be readily detected five passages after from the moment of the appearance of syn virus. This observation can be explained taking into consideration that the onset of phenotypic changes may be triggered by "environmental-sensitive" glycoproteins. These "environmental-sensitive" glycoproteins may act by themselves or may transmit the stimulus to "adapter" proteins, particularly, proteins of the tegument, which eventually modulate the expression of genomic products in the "virocell." The modulation of the RNA network is a common strategy of the virocell to respond to environmental changes. This "fast" adaptive mechanism is followed eventually by the appearance of mutations in the viral genome. In this paper, we interpret these findings from a philosophical and scientific point of view interconnecting epigenetic action, exerted by carragenans from early RNA network-DNA interaction to late DNA mutation. The complexity of HSV virion structure is an adequate platform to envision new studies on this topic that may be complemented in a near future through the analysis of the genetic dynamics of HSV populations.
Collapse
Affiliation(s)
- Luis A. Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta S. Roldan
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara Theaux
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria J. Carlucci
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
170
|
Liu F, Zhang S, Zhao Z, Mao X, Huang J, Wu Z, Zheng L, Wang Q. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget 2017; 7:19666-79. [PMID: 26910911 PMCID: PMC4991410 DOI: 10.18632/oncotarget.7531] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the “seed regions”. The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.
Collapse
Affiliation(s)
- Fei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shimeng Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Central Laboratory, Shenzhen Shekou People's Hospital, Shenzhen 518000, China
| | - Zhen Zhao
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD 20892, USA
| | - Xinru Mao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zixian Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
171
|
McLinden JH, Bhattarai N, Stapleton JT, Chang Q, Kaufman TM, Cassel SL, Sutterwala FS, Haim H, Houtman JC, Xiang J. Yellow Fever Virus, but Not Zika Virus or Dengue Virus, Inhibits T-Cell Receptor-Mediated T-Cell Function by an RNA-Based Mechanism. J Infect Dis 2017; 216:1164-1175. [PMID: 28968905 PMCID: PMC5853456 DOI: 10.1093/infdis/jix462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023] Open
Abstract
The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.
Collapse
Affiliation(s)
- James H McLinden
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Nirjal Bhattarai
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jack T Stapleton
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Qing Chang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Thomas M Kaufman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Suzanne L Cassel
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Fayyaz S Sutterwala
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Hillel Haim
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jon C Houtman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Jinhua Xiang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| |
Collapse
|
172
|
Kincaid RP, Panicker NG, Lozano MM, Sullivan CS, Dudley JP, Mustafa F. MMTV does not encode viral microRNAs but alters the levels of cancer-associated host microRNAs. Virology 2017; 513:180-187. [PMID: 29096160 DOI: 10.1016/j.virol.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022]
Abstract
Mouse mammary tumor virus (MMTV) induces breast cancer in mice in the absence of known virally-encoded oncogenes. Tumorigenesis by MMTV is thought to occur primarily through insertional mutagenesis, leading to the activation of cellular proto-oncogenes and outgrowth of selected cells. Here we investigated whether MMTV encodes microRNAs (miRNAs) and/or modulates host miRNAs that could contribute to tumorigenesis. High throughput small RNA sequencing analysis of MMTV-infected cells and MMTV-induced mammary tumors demonstrates that MMTV does not encode miRNAs. However, infected tissues have altered levels of several host miRNAs, including increased expression of members of the oncogenic miRNA cluster, miR-17-92. Notably, similar changes in miRNA levels have been previously reported in human breast cancers. Combined, our results demonstrate that virally encoded miRNAs do not contribute to MMTV-mediated tumorigenesis, but that changes in specific host miRNAs in infected cells may contribute to virus replication and tumor biology.
Collapse
Affiliation(s)
- Rodney P Kincaid
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Neena G Panicker
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Christopher S Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street, NHB 2.616, Austin, TX, United States of America.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Tawam Hospital Complex, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
173
|
miR-31: a key player in CD8 T-cell exhaustion. Cell Mol Immunol 2017; 14:954-956. [PMID: 28890544 DOI: 10.1038/cmi.2017.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
|
174
|
Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, Herrero J, Enver T. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog 2017; 13:e1006524. [PMID: 28837697 PMCID: PMC5570218 DOI: 10.1371/journal.ppat.1006524] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023] Open
Abstract
Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness.
Collapse
Affiliation(s)
- Ohad Yogev
- UCL Cancer Institute, Research Department of Cancer Biology, Paul O’Gorman Building, University College London, London, England, United Kingdom
| | - Stephen Henderson
- UCL Cancer Institute, Bill Lyons Informatics Centre, Paul O’Gorman Building, University College London, London, England, United Kingdom
| | - Matthew John Hayes
- UCL Institute of Ophthalmology, EM-Unit, Bath Street, London, England, United Kingdom
| | - Sara Sofia Marelli
- UCL Cancer Institute, Research Department of Cancer Biology, Paul O’Gorman Building, University College London, London, England, United Kingdom
| | - Yifat Ofir-Birin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Javier Herrero
- UCL Cancer Institute, Bill Lyons Informatics Centre, Paul O’Gorman Building, University College London, London, England, United Kingdom
| | - Tariq Enver
- UCL Cancer Institute, Research Department of Cancer Biology, Paul O’Gorman Building, University College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
175
|
Sunagawa K, Hishima T, Fukumoto H, Hasegawa H, Katano H. Conserved sequences of BART and BHRF regions encoding viral microRNAs in Epstein-Barr virus-associated lymphoma. BMC Res Notes 2017; 10:279. [PMID: 28705173 PMCID: PMC5513352 DOI: 10.1186/s13104-017-2603-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Epstein-Barr virus (EBV) encodes at least 25 pri-microRNAs (miRNAs) in two regions of its DNA genome, BART and BHRF. B95-8, an EBV reference strain, has a deletion in the BART region. However, no information is available on the deletions or mutations in the BART and BHRF regions in clinical samples of EBV-associated lymphoma. Results Nine DNA fragments encoding miR-BARTs and two coding miR-BHRF1s were amplified by PCR from DNA samples extracted from 16 cases of EBV-associated lymphoma. All the PCR products were sequenced directly. DNA fragments encoding miR-BARTs and miR-BHRF1-1 were successfully amplified from all samples. An adenine-to-guanine mutation in the DNA fragment encoding miR-BART2-3p was detected in four of the 16 cases, and a cytosine-to-thymidine mutation in the DNA fragment encoding miR-BART11-3p was detected in one of the 16 samples. These mutations were not associated with any histological categories of lymphoma. In conclusion, mutations were rarely observed in the DNA encoding viral miRNAs in cases of lymphoma. This suggests that the DNA sequences of EBV-encoded miR-BARTs and miR-BHRF1-1 are conserved in EBV-associated lymphoma.
Collapse
Affiliation(s)
- Keishin Sunagawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pathology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
176
|
Zhuang G, Sun A, Teng M, Luo J. A Tiny RNA that Packs a Big Punch: The Critical Role of a Viral miR-155 Ortholog in Lymphomagenesis in Marek's Disease. Front Microbiol 2017; 8:1169. [PMID: 28694799 PMCID: PMC5483433 DOI: 10.3389/fmicb.2017.01169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been identified in animals, plants, and viruses. These small RNAs play important roles in post-transcriptional regulation of various cellular processes, including development, differentiation, and all aspects of cancer biology. Rapid-onset T-cell lymphoma of chickens, namely Marek’s disease (MD), induced by Gallid alphaherpesvirus 2 (GaHV2), could provide an ideal natural animal model for herpesvirus-related cancer research. GaHV2 encodes 26 mature miRNAs derived from 14 precursors assembled in three distinct gene clusters in the viral genome. One of the most highly expressed GaHV2 miRNAs, miR-M4-5p, shows high sequence similarity to the cellular miR-155 and the miR-K12-11 encoded by Kaposi’s sarcoma-associated herpesvirus, particularly in the miRNA “seed region.” As with miR-K12-11, miR-M4-5p shares a common set of host and viral target genes with miR-155, suggesting that they may target the same regulatory cellular networks; however, differences in regulatory function between miR-155 and miR-M4-5p may distinguish non-viral and viral mediated tumorigenesis. In this review, we focus on the functions of miR-M4-5p as the viral ortholog of miR-155 to explore how the virus mimics a host pathway to benefit the viral life cycle and trigger virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Guoqing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China.,College of Animal Science and Technology, Henan University of Science and TechnologyLuoyang, China
| |
Collapse
|
177
|
Burke JM, Kincaid RP, Nottingham RM, Lambowitz AM, Sullivan CS. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Dev 2017; 30:2076-2092. [PMID: 27798849 PMCID: PMC5066614 DOI: 10.1101/gad.282616.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Here, Burke et al. delineate a new pathway for mammalian small RNAs to enter the RNAi gene silencing machinery. They show that DUSP11 directly dephosphorylates viral triphosphate ncRNA transcripts and that this is required for efficient silencing by RISC, suggesting that mammalian viral pathogens can use DUSP11 to generate atypical microRNAs. RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.
Collapse
Affiliation(s)
- James M Burke
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rodney P Kincaid
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher S Sullivan
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
178
|
Ding M, Wang X, Wang C, Liu X, Zen K, Wang W, Zhang CY, Zhang C. Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients. J Transl Med 2017; 15:133. [PMID: 28592251 PMCID: PMC5463403 DOI: 10.1186/s12967-017-1222-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background Oral lichen planus (OLP) is a T cell-mediated autoimmune disease. The aetiology and molecular mechanisms of OLP remain unclear. Human cytomegalovirus (HCMV) infection is a causal factor in the development of various diseases, but the clinical relevance of HCMV in OLP has not been thoroughly investigated. Methods In the present study, we firstly examined twenty-three HCMV-encoded microRNA (miRNA) expression profiles in plasma from training set that including 21 OLP patients and 18 healthy controls using RT-qPCR technology. Dysregulated miRNAs were subsequently confirmed in another larger cohort refereed as validation set consisting of 40 OLP patients and 33 healthy controls. HCMV DNA in peripheral blood leukocytes (PBLs) was also measured in an additional cohort of 13 OLP patients and 12 control subjects. Furthermore, bioinformatics analyses, luciferase reporter assay and western blotting were also performed to predict and verify the direct potential targets of HCMV-encoded miRNAs. Results The RT-qPCR results showed that the plasma levels of five HCMV-encoded miRNAs including hcmv-miR-UL112-3p, hcmv-miR-UL22a-5p, hcmv-miR-UL148d, hcmv-miR-UL36-5p and hcmv-miR-UL59 were significantly increased in OLP patients in both training and validation sets. HCMV DNA in PBLs was also significantly higher in OLP patients than in control subjects. Additionally, by using a combination of luciferase reporter assay and western blotting, we demonstrated that cytomegalovirus UL16-binding protein 1, a molecule that mediates the killing of virus-infected cells by natural killer cells, is a direct target of hcmv-miR-UL59. Conclusions Our results demonstrate a distinct expression pattern of HCMV-encoded miRNAs in OLP patients, which may provide insight into the relationship between HCMV infection and OLP, and warrants additional study in the diagnosis and aetiology of OLP. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1222-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomat-ological Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiaoshuang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomat-ological Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210002, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
179
|
Assadian F, Kamel W, Laurell G, Svensson C, Punga T, Akusjärvi G. Expression profile of Epstein-Barr virus and human adenovirus small RNAs in tonsillar B and T lymphocytes. PLoS One 2017; 12:e0177275. [PMID: 28542273 PMCID: PMC5444648 DOI: 10.1371/journal.pone.0177275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
We have used high-throughput small RNA sequencing to characterize viral small RNA expression in purified tonsillar B and T lymphocytes isolated from patients tested positive for Epstein-Barr virus (EBV) or human adenovirus (HAdV) infections, respectively. In the small set of patients analyzed, the expression profile of EBV and HAdV miRNAs could not distinguish between patients diagnosed with tonsillar hypertrophy or chronic/recurrent tonsillitis. The EBV miR-BART expression profile among the patients diagnosed with tonsillar diseases resembles most closely the pattern seen in EBV+ tumors (Latency II/I). The miR-BARTs that appear to be absent in normal EBV infected cells are essentially all detectable in the diseased tonsillar B lymphocytes. In the EBV+ B cells we detected 44 EBV miR-BARTs derived from the proposed BART precursor hairpins whereof five are not annotated in miRBase v21. One previously undetected miRNA, BART16b-5p, originates from the miR-BART16 precursor hairpin as an alternative 5´ miR-BART16 located precisely upstream of the annotated miR-BART16-5p. Further, our analysis revealed an extensive sequence variation among the EBV miRNAs with isomiRs having a constant 5´ end but alternative 3´ ends. A range of small RNAs was also detected from the terminal stem of the EBER RNAs and the 3´ part of v-snoRNA1. During a lytic HAdV infection in established cell lines the terminal stem of the viral non-coding VA RNAs are processed to highly abundant viral miRNAs (mivaRNAs). In contrast, mivaRNA expression in HAdV positive tonsillar T lymphocytes was very low. The small RNA profile further showed that the 5´ mivaRNA from VA RNAI and the 3´ mivaRNA from VA RNAII were as predicted, whereas the 3´ mivaRNA from VA RNAI showed an aberrant processing upstream of the expected Dicer cleavage site.
Collapse
Affiliation(s)
- Farzaneh Assadian
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
180
|
Teng M, Yu ZH, Zhao P, Zhuang GQ, Wu ZX, Dang L, Li HZ, Ma SM, Cui ZZ, Zhang GP, Wu R, Luo J. Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis. J Gen Virol 2017; 98:1097-1112. [PMID: 28510513 PMCID: PMC5656797 DOI: 10.1099/jgv.0.000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last decade, numerous microRNAs (miRNAs) have been identified in diverse virus families, particularly in herpesviruses. Gallid alphaherpesvirus 2 (GaHV2) is a representative oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts, namely Marek’s disease (MD). In the GaHV2 genome there are 26 mature miRNAs derived from 14 precursors assembled into three clusters, namely the Meq-cluster, Mid-cluster and LAT-cluster. Several GaHV2 miRNAs, especially those in the Meq-cluster (e.g. miR-M4-5p), have been demonstrated to be critical in MD pathogenesis and/or tumorigenesis. Interestingly the downstream Mid-cluster is regulated and transcribed by the same promoter as the Meq-cluster in the latent phase of the infection, but the role of these Mid-clustered miRNAs in GaHV2 biology remains unclear. We have generated the deletion mutants of the Mid-cluster and of its associated individual miRNAs in GX0101 virus, a very virulent GaHV2 strain, and demonstrated that the Mid-clustered miRNAs are not essential for virus replication. Using GaHV2-infected chickens as an animal model, we found that, compared with parental GX0101 virus, the individual deletion of miR-M31 decreased the mortality and gross tumour incidence of infected chickens while the deletion individually of miR-M1 or miR-M11 unexpectedly increased viral pathogenicity or oncogenicity, similarly to the deletion of the entire Mid-cluster region. More importantly, our data further confirm that miR-M11-5p, the miR-M11-derived mature miRNA, targets the viral oncogene meq and suppresses its expression in GaHV2 infection. We report here that members of the Mid-clustered miRNAs, miR-M31-3p and miR-M11-5p, potentially act either as oncogene or tumour suppressor in MD lymphomagenesis.
Collapse
Affiliation(s)
- Man Teng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Zu-Hua Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Guo-Qing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Zi-Xiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu Dang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Sheng-Ming Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhi-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, PR China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Run Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
181
|
Burke JM, Sullivan CS. DUSP11 - An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells. RNA Biol 2017; 14:1457-1465. [PMID: 28296624 PMCID: PMC5785229 DOI: 10.1080/15476286.2017.1306169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells.
Collapse
Affiliation(s)
- James M Burke
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| | - Christopher S Sullivan
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| |
Collapse
|
182
|
Zhao G, Hou J, Xu G, Xiang A, Kang Y, Yan Y, Zhang X, Yang G, Xiao S, Sun S. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14. J Gen Virol 2017; 98:624-632. [PMID: 28086075 DOI: 10.1099/jgv.0.000708] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs have recently been demonstrated to play vital roles in virus-host interactions. Our previous research on small RNA deep sequencing showed that the expression level of miR-10a increased during the viral life cycle. The present study sought to determine the function of miR-10a and its molecular mechanism during PRRSV infection. In the current study, the result of PRRSV infection inducing miR-10a expression was validated by quantitative reverse transcriptase PCR. Overexpression of miR-10a-5p using its mimics markedly reduced the expression level of intracellular PRRSV ORF7 mRNA and N protein. Simultaneously, overexpression of miR-10a-5p also significantly decreased the expression level of extracellular viral RNA and virus titres in the supernatants. These results demonstrated that miR-10a-5p could suppress the replication of PRRSV. A direct interaction between miR-10a-5p and signal recognition particle 14 (SRP14) was confirmed using bioinformatic prediction and experimental verification. miR-10a-5p could directly target the 3'UTR of pig SRP14 mRNA in a sequence-specific manner and decrease SRP14 expression through translational repression but not mRNA degradation. Further, knockdown of SRP14 by small interfering RNA also inhibits the replication of PRRSV. Collectively, these results suggested that miR-10a-5p inhibits PRRSV replication through suppression of SRP14 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection.
Collapse
Affiliation(s)
- Guangwei Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jianye Hou
- Chuying Agro-Pastoral Group Co., Ltd, No. 1 Century Avenue, Zhengzhou Airport Development Zone, Zhengzhou, Henan 451162, PR China
| | - Gaoxiao Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Aoqi Xiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Yanmei Kang
- Department of Animal Science and Technology, Guangdong Vocational College of Science and Trade, No. 388 Shiqing Road, Baiyun, Guangzhou, Guangdong 510640, PR China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiaobin Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Shiduo Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
183
|
Wang YF, He DD, Liang HW, Yang D, Yue H, Zhang XM, Wang R, Li B, Yang HX, Liu Y, Chen Y, Duan YX, Zhang CY, Chen X, Fu J. The identification of up-regulated ebv-miR-BHRF1-2-5p targeting MALT1 and ebv-miR-BHRF1-3 in the circulation of patients with multiple sclerosis. Clin Exp Immunol 2017; 189:120-126. [PMID: 28253538 DOI: 10.1111/cei.12954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a well-documented aetiological factor for multiple sclerosis (MS). EBV encodes at least 44 microRNAs (miRNAs) that are readily detectable in the circulation of human. Previous studies have demonstrated that EBV-encoded miRNAs regulate host immune response and may serve as biomarkers for EBV-associated diseases. However, the roles of EBV miRNAs in MS are still unknown. To fill the gap, we conducted a comprehensive profiling of 44 mature EBV miRNAs in 30 relapsing-remitting MS (RRMS) patients at relapse and 30 matched healthy controls. Expression levels of ebv-miR-BHRF1-2-5p and ebv-miR-BHRF1-3 were elevated significantly in the circulation and correlated positively with the expanded disability status scale (EDSS) scores of MS patients. Receiver operating characteristic (ROC) analyses confirmed that the expression of these two miRNAs distinguished MS patients clearly from healthy controls. Luciferase assays revealed that ebv-miR-BHRF1-2-5p may directly target MALT1 (mucosa-associated lymphoid tissue lymphoma transport protein 1), a key regulator of immune homeostasis. In conclusion, we described the expression of EBV miRNAs in MS and preliminarily validated the potential target genes of significantly altered EBV miRNAs. The findings may pave the way for prospective study about the pathogenesis of MS.
Collapse
Affiliation(s)
- Y F Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - D D He
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H W Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - D Yang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H Yue
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - X M Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - R Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - B Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - H X Yang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y Chen
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Y X Duan
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - C Y Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - X Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - J Fu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
184
|
Vu DL, Kaiser L. The concept of commensal viruses almost 20 years later: redefining borders in clinical virology. Clin Microbiol Infect 2017; 23:688-690. [PMID: 28288831 PMCID: PMC7130093 DOI: 10.1016/j.cmi.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/21/2023]
Affiliation(s)
- D-L Vu
- Geneva University Hospital, Department of Internal Medicine Specialties, Division of Infectious Diseases, Switzerland.
| | - L Kaiser
- Geneva University Hospital, Department of Internal Medicine Specialties, Division of Infectious Diseases, Switzerland
| |
Collapse
|
185
|
Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, De Nova-Ocampo MA, Del Ángel RM, Salas-Benito JS. Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2. Virus Res 2017; 232:139-151. [PMID: 28267608 DOI: 10.1016/j.virusres.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Dengue virus (DENV) is the most important arbovirus in the world; DENV is transmitted by the Aedes genus of mosquitoes and can establish a life-long persistent infection in mosquitoes. However, the exact mechanism by which persistent infection is established remains unknown. In this study the differential expression of miRNAs was analysed by deep sequencing and RT-qPCR using a previously established C6/36-HT cell line persistently infected with DENV 2 (C6-L) as a model. miR-927, miR-87, miR-210, miR-2a-3p, miR-190 and miR-970 were up-regulated, whereas miR-252, miR-263a-3p, miR-92b, miR-10-5p miR-9a-5p, miR-9a-1, miR-124, miR-286a and miR-286b were down-regulated in C6-L cells compared with C6/36 cells acutely infected with the same virus or mock-infected cells. Deep sequencing results were validated by RT-qPCR for the highly differentially expressed miR-927 and miR-9a-5p, which were up- and down-regulated, respectively, compared with both acutely and mock-infected C6/36 cells. The putative targets of these miRNAs include components of the ubiquitin conjugation pathway, vesicle-mediated transport, autophagy, and the JAK-STAT cascade as well as proteins with endopeptidase activity. Other putative targets include members of the Toll signalling pathway and proteins with kinase, ATPase, protease, scavenger receptor or Lectin C-type activity or that participate in fatty acid biosynthesis or oxidative stress. Our results suggest that several specific miRNAs help regulate the cellular functions that maintain equilibrium between viral replication and the antiviral response during persistent infection of mosquito cells. This study is the first report of a global miRNA profile in a mosquito cell line persistently infected with DENV.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico.
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Del Valle Sur, Mexico City, CP 03100, Mexico.
| | - Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico.
| | - Mónica A De Nova-Ocampo
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico.
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados-IPN. Av, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City, CP 07360, Mexico.
| | - Juan Santiago Salas-Benito
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City, CP 07320, Mexico.
| |
Collapse
|
186
|
Mekuria ZH, El-Hage C, Ficorilli NP, Washington EA, Gilkerson JR, Hartley CA. Mapping B lymphocytes as major reservoirs of naturally occurring latent equine herpesvirus 5 infection. J Gen Virol 2017; 98:461-470. [DOI: 10.1099/jgv.0.000668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zelalem H Mekuria
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Centre, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Charles El-Hage
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Nino P Ficorilli
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Elizabeth A Washington
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| | - Carol A Hartley
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
187
|
Abstract
Cell-specific restriction of viral replication without concomitant attenuation can benefit vaccine development, gene therapy, oncolytic virotherapy, and understanding the biological properties of viruses. There are several mechanisms for regulating viral tropism, however they tend to be virus class specific and many result in virus attenuation. Additionally, many viruses, including picornaviruses, exhibit size constraints that do not allow for incorporation of large amounts of foreign genetic material required for some targeting methods. MicroRNAs are short, non-coding RNAs that regulate gene expression in eukaryotic cells by binding complementary target sequences in messenger RNAs, preventing their translation or accelerating their degradation. Different cells exhibit distinct microRNA signatures and many microRNAs serve as biomarkers. These differential expression patterns can be exploited for restricting gene expression in cells that express specific microRNAs while maintaining expression in cells that do not. In regards to regulating viral tropism, sequences complementary to specific microRNAs are incorporated into the viral genome, generally in the 3' non-coding regions, targeting them for destruction in the presence of the cognate microRNAs thus preventing viral gene expression and/or replication. MicroRNA-targeting is a technique that theoretically can be applied to all viral vectors without altering the potency of the virus in the absence of the corresponding microRNAs. Here we describe experimental methods associated with generating a microRNA-targeted picornavirus and evaluating the efficacy and specificity of that targeting in vitro. This protocol is designed for a rapidly replicating virus with a lytic replication cycle, however, modification of the time points analyzed and the specific virus titration readouts used will aid in the adaptation of this protocol to many different viruses.
Collapse
Affiliation(s)
- Autumn J Ruiz
- Department of Molecular Medicine, Mayo Clinic College of Medicine;
| | | |
Collapse
|
188
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
189
|
Abstract
Virology is probably the most rapidly developing field within clinical laboratory medicine. Adequate diagnostic methods exist for the diagnostics of most acute viral infections. However, emergence of pathogenic viruses or virus strains and new disease associations of known viruses require the establishment of new diagnostic methods, sometimes very rapidly. In the field of chronic or persistent viral diseases, particularly those involving potential of malignant or fatal development, there is a constant need for improved differential diagnostics, monitoring, prognosis and risk assessment. Increasing understanding of disease pathogenesis also enables better patient management and personalized medicine, where companion diagnostics can offer precise and specific tools for individual care. Very often the new tools are offered by molecular diagnostic techniques, and this includes the detection of microRNAs (miRNAs). miRNAs are small regulatory RNA molecules, which regulate the expression of their target genes. They are encoded both by viruses and their host, and both can target either viral or cellular gene expression. In this review the diagnostic possibilities offered by miRNA will be discussed. The focus will be on selected viral and human miRNAs in viral diseases, and examples of miRNAs of putative diagnostic potential will be presented.
Collapse
Affiliation(s)
- Eeva Auvinen
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, POB 21, 00014, Helsinki, Finland.
| |
Collapse
|
190
|
Li Y, Zheng G, Zhang Y, Yang X, Liu H, Chang H, Wang X, Zhao J, Wang C, Chen L. MicroRNA analysis in mouse neuro-2a cells after pseudorabies virus infection. J Neurovirol 2017; 23:430-440. [PMID: 28130759 DOI: 10.1007/s13365-016-0511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV), an alpha herpesvirus can enter the mammalian nervous system, causing Aujezsky's disease. Previous studies have reported an alteration of microRNA (miRNA) expression levels during PRV infections. However, knowledge regarding miRNA response in nervous cells to PRV infection is still unknown. To address this issue, small RNA libraries from infected and uninfected mouse neuroblastoma cells were assessed after Illumina deep sequencing. A total of eight viral miRNA were identified, and ten host miRNAs showed significantly different expression upon PRV infection. Among these, five were analyzed by stem-loop RT-qPCR, which confirmed the above data. Interestingly, these viral miRNAs were mainly found in the large latency transcript region of PRV, and predicted to target a variety of genes, forming a complicated regulatory network. Moreover, ten cellular miRNAs were expressed differently upon PRV infection, including nine upregulated and one downregulated miRNAs. Host targets of these miRNAs obtained by bioinformatics analysis belonged to large signaling networks, mainly encompassing calcium signaling pathway, cAMP signaling pathway, MAPK signaling pathway, and other nervous-associated pathways. These findings further highlighted miRNA features in nervous cells after PRV infection and contributed to unveil the underlying mechanisms of neurotropism as well as the neuropathogenesis of PRV.
Collapse
Affiliation(s)
- Yongtao Li
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanmin Zheng
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yujuan Zhang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Yang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongying Liu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongtao Chang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinwei Wang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Zhao
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuanqing Wang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
191
|
Scheel TKH, Luna JM, Liniger M, Nishiuchi E, Rozen-Gagnon K, Shlomai A, Auray G, Gerber M, Fak J, Keller I, Bruggmann R, Darnell RB, Ruggli N, Rice CM. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration. Cell Host Microbe 2016; 19:409-23. [PMID: 26962949 DOI: 10.1016/j.chom.2016.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation.
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, 2650 Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Matthias Liniger
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Gaël Auray
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Markus Gerber
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; New York Genome Center, New York, NY 10013, USA
| | - Nicolas Ruggli
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
192
|
Wang B, Ye N, Cao SJ, Wen XT, Huang Y, Yan QG. Identification of novel and differentially expressed MicroRNAs in goat enzootic nasal adenocarcinoma. BMC Genomics 2016; 17:896. [PMID: 27825300 PMCID: PMC5101819 DOI: 10.1186/s12864-016-3238-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) post-transcriptionally regulate a variety of genes involved in eukaryotic cell growth, development, metabolism and other biological processes, and numerous miRNAs are implicated in the initiation and progression of cancer. Enzootic nasal adenocarcinoma (ENA), an epithelial tumor induced in goats and sheep by enzootic nasal tumor virus (ENTV), is a chronic, progressive, contact transmitted disease. Methods In this work, small RNA Illumina high-throughput sequencing was used to construct a goat nasal miRNA library. This study aimed to identify novel and differentially expressed miRNAs in the tumor and para-carcinoma nasal tissues of Nanjiang yellow goats with ENA. Results Four hundred six known miRNAs and 29 novel miRNAs were identified. A total of 116 miRNAs were significantly differentially expressed in para-carcinoma nasal tissues and ENA (54 downregulated; 60 upregulated; two only expressed in control group); Target gene prediction and functional analysis revealed that 6176 non-redundancy target genes, 1792 significant GO and 97 significant KEGG pathway for 121 miRNAs (116 significant expression miRNAs and five star sequence) were predicted. GO and KEGG pathway analysis revealed the majority of target genes in ENA are involved in cell proliferation, signal transduction and other processes associated with cancer. Conclusions This is the first large-scale identification of miRNAs in Capra hircus ENA and provides a theoretical basis for investigating the complicated miRNA-mediated regulatory networks involved in the pathogenesis and progression of ENA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3238-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ni Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Hui Min Road 211, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
193
|
Pan C, Zhu D, Wang Y, Li L, Li D, Liu F, Zhang CY, Zen K. Human Cytomegalovirus miR-UL148D Facilitates Latent Viral Infection by Targeting Host Cell Immediate Early Response Gene 5. PLoS Pathog 2016; 12:e1006007. [PMID: 27824944 PMCID: PMC5100954 DOI: 10.1371/journal.ppat.1006007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying human cytomegalovirus (HCMV) latency remain incompletely understood. Here, we showed that a HCMV-encoded miRNA, miR-UL148D, robustly accumulates during late stages of experimental latent HCMV infection in host cells and promotes HCMV latency by modulating the immediate early response gene 5 (IER5)-cell division cycle 25B (CDC25B) axis in host cells. miR-UL148D inhibited IER5 expression by directly targeting the three-prime untranslated region(3'UTR) of IER5 mRNA and thus rescued CDC25B expression during the establishment of viral latency. Infection with NR-1ΔmiR-UL148D, a derivative of the HCMV clinical strain NR-1 with a miR-UL148D knockout mutation, resulted in sustained induction of IER5 expression but decreased CDC25B expression in host cells. Mechanistically, we further showed that CDC25B plays an important role in suppressing HCMV IE1 and lytic gene transcription by activating cyclin-dependent kinase 1 (CDK-1). Both gain-of-function and lose-of-function assays demonstrated that miR-UL148D promotes HCMV latency by helping maintain CDC25B activity in host cells. These results provide a novel mechanism through which a HCMV miRNA regulates viral latency.
Collapse
Affiliation(s)
- Chaoyun Pan
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dihan Zhu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Donghai Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fenyong Liu
- School of Public Health, University of California at Berkeley, Berkeley, California, Unites States of America
- * E-mail: (KZ); (CYZ); (FL)
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (KZ); (CYZ); (FL)
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (KZ); (CYZ); (FL)
| |
Collapse
|
194
|
Tahamtan A, Inchley CS, Marzban M, Tavakoli‐Yaraki M, Teymoori‐Rad M, Nakstad B, Salimi V. The role of microRNAs in respiratory viral infection: friend or foe? Rev Med Virol 2016; 26:389-407. [PMID: 27373545 PMCID: PMC7169129 DOI: 10.1002/rmv.1894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs in host-pathogen interactions. Aberrant miRNA expression seems to play a central role in the pathology of several respiratory viruses, promoting development and progression of infection. miRNAs may thus serve as therapeutic and prognostic factors for respiratory viral infectious disease caused by a variety of agents. We present a comprehensive review of recent findings related to the role of miRNAs in different respiratory viral infections and discuss possible therapeutic opportunities aiming to attenuate the burden of viral infections. Our review supports the emerging concept that cellular and viral-encoded miRNAs might be broadly implicated in human respiratory viral infections, with either positive or negative effects on virus life cycle. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Christopher S. Inchley
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
| | - Mona Marzban
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Majid Teymoori‐Rad
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Britt Nakstad
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Vahid Salimi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
195
|
Shi J, Sun J, Wu M, Wang H, Hu N, Hu Y. Comprehensive profiling and characterization of cellular miRNAs in response to hepatitis A virus infection in human fibroblasts. INFECTION GENETICS AND EVOLUTION 2016; 45:176-186. [DOI: 10.1016/j.meegid.2016.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 11/27/2022]
|
196
|
Samir M, Vaas LAI, Pessler F. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Front Vet Sci 2016; 3:86. [PMID: 27800484 PMCID: PMC5065965 DOI: 10.3389/fvets.2016.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lea A I Vaas
- TWINCORE, Center for Experimental and Clinical Infection Research , Hannover , Germany
| | - Frank Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
197
|
Rasschaert P, Figueroa T, Dambrine G, Rasschaert D, Laurent S. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript. RNA Biol 2016; 13:1310-1322. [PMID: 27715458 DOI: 10.1080/15476286.2016.1244600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.
Collapse
Affiliation(s)
- Perrine Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Thomas Figueroa
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Ginette Dambrine
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Denis Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Sylvie Laurent
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France.,b Département de Santé Animale , INRA , Nouzilly , France
| |
Collapse
|
198
|
Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A 2016; 113:E6467-E6475. [PMID: 27698133 DOI: 10.1073/pnas.1605884113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infection with Epstein-Barr virus (EBV) affects most humans worldwide and persists life-long in the presence of robust virus-specific T-cell responses. In both immunocompromised and some immunocompetent people, EBV causes several cancers and lymphoproliferative diseases. EBV transforms B cells in vitro and encodes at least 44 microRNAs (miRNAs), most of which are expressed in EBV-transformed B cells, but their functions are largely unknown. Recently, we showed that EBV miRNAs inhibit CD4+ T-cell responses to infected B cells by targeting IL-12, MHC class II, and lysosomal proteases. Here we investigated whether EBV miRNAs also counteract surveillance by CD8+ T cells. We have found that EBV miRNAs strongly inhibit recognition and killing of infected B cells by EBV-specific CD8+ T cells through multiple mechanisms. EBV miRNAs directly target the peptide transporter subunit TAP2 and reduce levels of the TAP1 subunit, MHC class I molecules, and EBNA1, a protein expressed in most forms of EBV latency and a target of EBV-specific CD8+ T cells. Moreover, miRNA-mediated down-regulation of the cytokine IL-12 decreases the recognition of infected cells by EBV-specific CD8+ T cells. Thus, EBV miRNAs use multiple, distinct pathways, allowing the virus to evade surveillance not only by CD4+ but also by antiviral CD8+ T cells.
Collapse
|
199
|
Liu Y, Sun J, Zhang H, Wang M, Gao GF, Li X. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cell Mol Life Sci 2016; 73:3733-44. [PMID: 27094387 PMCID: PMC11108478 DOI: 10.1007/s00018-016-2215-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
Abstract
The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.
Collapse
Affiliation(s)
- Yuanwu Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jing Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Rd, 100193, Beijing, China
| | - Hongwen Zhang
- Department of General Surgery, The 306th Hospital of PLA, Beijing, China
| | - Mingming Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Rd, 100193, Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2, Yuanmingyuan West Rd, 100193, Beijing, China.
| |
Collapse
|
200
|
Japanese Macaque Rhadinovirus Encodes a Viral MicroRNA Mimic of the miR-17 Family. J Virol 2016; 90:9350-63. [PMID: 27512057 DOI: 10.1128/jvi.01123-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Japanese macaque (JM) rhadinovirus (JMRV) is a novel, gamma-2 herpesvirus that was recently isolated from JM with inflammatory demyelinating encephalomyelitis (JME). JME is a spontaneous and chronic disease with clinical characteristics and immunohistopathology comparable to those of multiple sclerosis in humans. Little is known about the molecular biology of JMRV. Here, we sought to identify and characterize the small RNAs expressed during lytic JMRV infection using deep sequencing. Fifteen novel viral microRNAs (miRNAs) were identified in JMRV-infected fibroblasts, all of which were readily detectable by 24 h postinfection and accumulated to high levels by 72 h. Sequence comparisons to human Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs revealed several viral miRNA homologs. To functionally characterize JMRV miRNAs, we screened for their effects on nuclear factor kappa B (NF-κB) signaling in the presence of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Multiple JMRV miRNAs suppressed cytokine-induced NF-κB activation. One of these miRNAs, miR-J8, has seed sequence homology to members of the cellular miR-17/20/106 and miR-373 families, which are key players in cell cycle regulation as well as inflammation. Using reporters, we show that miR-J8 can target 3' untranslated regions (UTRs) with miR-17-5p or miR-20a cognate sites. Our studies implicate JMRV miRNAs in the suppression of innate antiviral immune responses, which is an emerging feature of many viral miRNAs. IMPORTANCE Gammaherpesviruses are associated with multiple diseases linked to immunosuppression and inflammation, including AIDS-related cancers and autoimmune diseases. JMRV is a recently identified herpesvirus that has been linked to JME, an inflammatory demyelinating disease in Japanese macaques that mimics multiple sclerosis. There are few large-animal models for gammaherpesvirus-associated pathogenesis. Here, we provide the first experimental evidence of JMRV miRNAs in vitro and demonstrate that one of these viral miRNAs can mimic the activity of the cellular miR-17/20/106 family. Our work provides unique insight into the roles of viral miRNAs during rhadinovirus infection and provides an important step toward understanding viral miRNA function in a nonhuman primate model system.
Collapse
|