151
|
Abstract
HIV causes several forms of immune dysfunction that need to be addressed in a functional cure for HIV. Immune exhaustion describes a dysfunctional phenotype caused by chronic cellular activation. Lymphocyte activation gene-3 (LAG3) is one of several negative coreceptors known as immune checkpoints that contribute to this exhaustion phenotype. Antibodies targeting immune checkpoints are now used clinically to restore immunity against cancer and hold promise in restoring immunity during HIV infection. Here, we summarize current knowledge surrounding LAG3 and discuss its relevance during HIV infection and the potential for LAG3-targeting antibodies in a functional HIV cure.
Collapse
Affiliation(s)
- Colin G. Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Allison L. Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| |
Collapse
|
152
|
Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, Grossenbacher SK, Withers SS, Rebhun RB, Hartigan-O'Connor DJ, Méndez-Lagares G, Tarantal AF, Isseroff RR, Griffith TS, Schalper KA, Merleev A, Saha A, Maverakis E, Kelly K, Aljumaily R, Ibrahimi S, Mukherjee S, Machiorlatti M, Vesely SK, Longo DL, Blazar BR, Canter RJ, Murphy WJ, Monjazeb AM. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 2019; 25:141-151. [PMID: 30420753 PMCID: PMC6324991 DOI: 10.1038/s41591-018-0221-5] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
The recent successes of immunotherapy have shifted the paradigm in cancer treatment, but because only a percentage of patients are responsive to immunotherapy, it is imperative to identify factors impacting outcome. Obesity is reaching pandemic proportions and is a major risk factor for certain malignancies, but the impact of obesity on immune responses, in general and in cancer immunotherapy, is poorly understood. Here, we demonstrate, across multiple species and tumor models, that obesity results in increased immune aging, tumor progression and PD-1-mediated T cell dysfunction which is driven, at least in part, by leptin. However, obesity is also associated with increased efficacy of PD-1/PD-L1 blockade in both tumor-bearing mice and clinical cancer patients. These findings advance our understanding of obesity-induced immune dysfunction and its consequences in cancer and highlight obesity as a biomarker for some cancer immunotherapies. These data indicate a paradoxical impact of obesity on cancer. There is heightened immune dysfunction and tumor progression but also greater anti-tumor efficacy and survival after checkpoint blockade which directly targets some of the pathways activated in obesity.
Collapse
Affiliation(s)
- Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ethan G Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jesus I Luna
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lam T Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Catherine T Le
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Annie Mirsoian
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christine M Minnar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kevin M Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ian R Sturgill
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sita S Withers
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Alice F Tarantal
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, Masonic Cancer Center, Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Kurt A Schalper
- Department of Pathology & Translational Immuno-oncology Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Immune Monitoring Core, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Asim Saha
- Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Immune Monitoring Core, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Karen Kelly
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Schoolof Medicine, Sacramento, CA, USA
| | - Raid Aljumaily
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sami Ibrahimi
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sarbajit Mukherjee
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Machiorlatti
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sara K Vesely
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dan L Longo
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA.
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Schoolof Medicine, Sacramento, CA, USA.
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Universityof California School of Medicine, Sacramento, CA, USA
| |
Collapse
|
153
|
Deep functional immunophenotyping predicts risk of cytomegalovirus reactivation after hematopoietic cell transplantation. Blood 2018; 133:867-877. [PMID: 30573634 DOI: 10.1182/blood-2018-10-878918] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common viral infection in hematopoietic cell transplantation (HCT) recipients. We performed deep phenotyping of CMV-specific T cells to predict CMV outcomes following allogeneic HCT. By using 13-color flow cytometry, we studied ex vivo CD8+ T-cell cytokine production in response to CMV-pp65 peptides in 3 clinically distinct subgroups of CMV-seropositive HCT patients: (1) Elite Controllers (n = 19): did not have evidence of CMV DNAemia on surveillance testing; (2) Spontaneous Controllers (n = 16): spontaneously resolved low-grade CMV DNAemia without antiviral therapy; and (3) Noncontrollers (NC; n = 21): experienced clinically significant CMV. Two CMV-specific CD8+ T-cell functional subsets were strongly associated with risk of CMV: (i) the nonprotective signature (NPS; IL-2-IFN-γ+TNF-α-MIP-1β+), found at increased levels among NC; and (ii) the protective signature (PS; IL-2+IFN-γ+TNF-α+MIP-1β+) found at low levels among NC. High levels of the NPS and low levels of PS were associated with an increased 100-day cumulative incidence of clinically significant CMV infection (35% vs 5%; P = .02; and 40% vs 12%; P = .05, respectively). The highest predictive value was observed when these signatures were combined into a composite biomarker consisting of low levels of the PS and high levels of the NPS (67% vs 10%; P < .001). After adjusting for steroid use or donor type, this composite biomarker remained associated with a fivefold increase in the risk of clinically significant CMV infection. CMV-specific CD8+ T-cell cytokine signatures with robust predictive value for risk of CMV reactivation should prove useful in guiding clinical decision making in HCT recipients.
Collapse
|
154
|
Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8 + T Cells. Front Immunol 2018; 9:2981. [PMID: 30619337 PMCID: PMC6305494 DOI: 10.3389/fimmu.2018.02981] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Eomes, a T-box transcription factor, is known important for both function and homeostasis of effector and memory T cells, but was recently also implicated in CD8+ T cell exhaustion. However, whether and how Eomes might regulate effector functions or exhaustion of CD8+ T cells, especially in the tumor setting, is unknown. Here we first show, as tumor progressed, Eomes expression was elevated in tumor-infiltrating CD8+ T cells, especially in PD-1+Tim-3+ exhausted CD8+ T cells. Complete loss of Eomes in T cells resulted in impaired development of anti-tumor CTLs, whereas deletion of one allele of Eomes in T cells decreased development of exhausted CD8+ T cells, which offered better tumor control. Integrative analysis of RNAseq and ChIPseq of Eomes-overexpressing T cells revealed that high levels of Eomes expression directly controlled expression of T cell exhaustion genes, such as Havcr2. In addition, Eomes might compete with T-bet binding to regulatory genomic loci to antagonize T-bet functions. Collectively, Eomes exerts bimodal functions in CD8+ T cells in tumor.
Collapse
Affiliation(s)
- Jing Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yi He
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
155
|
Fike AJ, Kumova OK, Tardif VJ, Carey AJ. Neonatal influenza-specific effector CTLs retain elevated CD31 levels at the site of infection and have decreased IFN-γ production. J Leukoc Biol 2018; 105:539-549. [PMID: 30536476 DOI: 10.1002/jlb.4a0518-191r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/08/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
The underlying mechanisms that regulate neonatal immune suppression are poorly characterized. CD31 (PECAM1) is highly expressed on neonatal lymphocytes and is a known modulator of TCR signaling. To further characterize the role of CD31 in the neonatal CTL response, 3-d and 7-d-old murine neonates were infected with influenza virus and compared to adults. The majority of the pulmonary viral-specific CTLs in the 3-d-old murine neonate retain CD31 expression, whereas adult CTLs have decreased CD31 expression. In addition, CD31+ neonatal viral-specific CTLs demonstrate decreased IFN-γ production, decreased proliferative capacity, and increased likelihood of death. At the peak of infection, sorted neonatal effector CTLs continue to transcribe CD31, indicating a developmental regulation of expression. To explore potential mechanisms for this reduced function, we compared the expression of the transcription factors Eomesodermin (Eomes) and T-bet; there was a significant increase in Eomes paired with a reduction in T-bet in CD31+ neonatal effector CTLs in the lung. Furthermore, in vitro stimulated neonatal CTLs significantly reduce IFN-γ production upon CD31 signaling. Altogether, these data indicate that neonatal CTLs may retain elevated levels of CD31 to maintain peripheral T cell suppression during the bridge to ex utero life.
Collapse
Affiliation(s)
- Adam J Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ogan K Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Virginie J Tardif
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alison J Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
156
|
Yang H, Wallace Z, Dorrell L. Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front Immunol 2018; 9:2861. [PMID: 30564246 PMCID: PMC6288286 DOI: 10.3389/fimmu.2018.02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
HIV cannot be cured by current antiretroviral therapy (ART) because it persists in a transcriptionally silent form in long-lived CD4+ cells. Leading efforts to develop a functional cure have prioritized latency reversal to expose infected cells to immune surveillance, coupled with enhancement of the natural cytolytic function of immune effectors, or "kick and kill." The most clinically advanced approach to improving the kill is therapeutic immunization, which aims to augment or re-focus HIV-specific cytolytic T cell responses. However, no vaccine strategy has enabled sustained virological control after ART withdrawal. Novel approaches are needed to overcome the limitations of natural adaptive immune responses, which relate to their specificity, potency, durability, and access to tissue reservoirs. Adoptive T cell therapy to treat HIV infection was first attempted over two decades ago, without success. Since then, progress in the field of cancer immunotherapy, together with recognition of the similarities in tumor microenvironments and HIV reservoirs has reignited interest in the application of T cell therapies to HIV eradication. Advances in engineering of chimeric antigen receptor (CAR)-transduced T cells have led to improved potency, persistence and latterly, resistance to HIV infection. Immune retargeting platforms have incorporated non-neutralizing and broadly neutralizing antibodies to generate Bispecific T cell Engagers (BiTEs) and Dual-Affinity Re-Targeting proteins (DARTs). T cell receptor engineering has enabled the development of the first bispecific Immune-mobilizing monoclonal T Cell receptors Against Viruses (ImmTAV) molecules. Here, we review the potential for these agents to provide a better "kill" and the challenges ahead for clinical development.
Collapse
Affiliation(s)
- Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom
| | - Zoë Wallace
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom.,Immunocore Ltd., Oxon, United Kingdom.,Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
157
|
Kim HD, Song GW, Park S, Jung MK, Kim MH, Kang HJ, Yoo C, Yi K, Kim KH, Eo S, Moon DB, Hong SM, Ju YS, Shin EC, Hwang S, Park SH. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8 + T Cells and Features of Hepatocellular Carcinoma. Gastroenterology 2018; 155:1936-1950.e17. [PMID: 30145359 DOI: 10.1053/j.gastro.2018.08.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS T-cell exhaustion, or an impaired capacity to secrete cytokines and proliferate with overexpression of immune checkpoint receptors, occurs during chronic viral infections but has also been observed in tumors, including hepatocellular carcinomas (HCCs). We investigated features of exhaustion in CD8+ T cells isolated from HCC specimens. METHODS We obtained HCC specimens, along with adjacent nontumor tissues and blood samples, from 90 patients who underwent surgical resection at Asan Medical Center (Seoul, Korea) from April 2016 through April 2018. Intrahepatic lymphocytes and tumor-infiltrating T cells were analyzed by flow cytometry. Tumor-infiltrating CD8+ T cells were sorted by flow cytometry into populations based on expression level of programmed cell death 1 (PDCD1 or PD1): PD1-high, PD1-intermediate, and PD1-negative. Sorted cells were analyzed by RNA sequencing. Proliferation and production of interferon gamma (IFNG) and tumor necrosis factor (TNF) by CD8+ T cells were measured in response to anti-CD3 and antibodies against immune checkpoint receptors including PD1, hepatitis A virus cellular receptor 2 (HAVCR2 or TIM3), lymphocyte activating 3 (LAG3), or isotype control. Tumor-associated antigen-specific CD8+ T cells were identified using HLA-A*0201 dextramers. PDL1 expression on tumor tissue was assessed by immunohistochemistry. RESULTS PD1-high, PD1-intermediate, and PD1-negative CD8+ T cells from HCCs had distinct gene expression profiles. PD1-high cells expressed higher levels of genes that regulate T-cell exhaustion than PD1-intermediate cells. PD1-high cells expressed TIM3 and LAG3, and low proportions of TCF1+, TBEThigh/eomesoderminlow, and CD127+. PD1-high cells produced the lowest amounts of IFNG and TNF upon anti-CD3 stimulation. Differences in the PD1 expression patterns of CD8+ T cells led to the identification of 2 subgroups of HCCs: HCCs with a discrete population of PD1-high cells were more aggressive than HCCs without a discrete population of PD1-high cells. HCCs with a discrete population of PD1-high cells had higher levels of predictive biomarkers of response to anti-PD1 therapy. Incubation of CD8+ T cells from HCCs with a discrete population of PD1-high cells with antibodies against PD1 and TIM3 or LAG3 further restored proliferation and production of IFNG and TNF in response to anti-CD3. CONCLUSIONS We found HCC specimens to contain CD8+ T cells that express different levels of PD1. HCCs with a discrete population of PD1-high CD8+ T cells express TIM3 and/or LAG3 and produce low levels of IFNG and TNF in response to anti-CD3. Incubation of these cells with antibodies against PD1 and TIM3 or LAG3 further restore proliferation and production of cytokines; HCCs with a discrete population of PD1-high CD8+ T cells might be more susceptible to combined immune checkpoint blockade-based therapies.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gi-Won Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Kyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kyung Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sukyeong Eo
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Deok-Bog Moon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
158
|
Yasuma-Mitobe K, Matsuoka M. The Roles of Coinhibitory Receptors in Pathogenesis of Human Retroviral Infections. Front Immunol 2018; 9:2755. [PMID: 30538707 PMCID: PMC6277675 DOI: 10.3389/fimmu.2018.02755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Costimulatory and coinhibitory receptors play a key role in regulating immune responses to infection and cancer. Coinhibitory receptors include programmed cell death 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and ITIM domain (TIGIT), which suppress immune responses. Coinhibitory receptors are highly expressed on exhausted virus-specific T cells, indicating that viruses evade host immune responses through enhanced expression of these molecules. Human retroviruses, human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), infect T cells, macrophages and dendritic cells. Therefore, one needs to consider the effects of coinhibitory receptors on both uninfected effector T cells and infected target cells. Coinhibitory receptors are implicated not only in the suppression of immune responses to viruses by inhibition of effector T cells, but also in the persistence of infected cells in vivo. Here we review recent studies on coinhibitory receptors and their roles in retroviral infections such as HIV and HTLV-1.
Collapse
Affiliation(s)
- Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
159
|
Pack AD, Collins MH, Rosenberg CS, Tarleton RL. Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection. PLoS Pathog 2018; 14:e1007410. [PMID: 30419010 PMCID: PMC6258465 DOI: 10.1371/journal.ppat.1007410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection is characterized by chronic parasitism of non-lymphoid tissues and is rarely eliminated despite potent adaptive immune responses. This failure to cure has frequently been attributed to a loss or impairment of anti-T. cruzi T cell responses over time, analogous to the T cell dysfunction described for other persistent infections. In this study, we have evaluated the role of CD8+ T cells during chronic T. cruzi infection (>100 dpi), with a focus on sites of pathogen persistence. Consistent with repetitive antigen exposure during chronic infection, parasite-specific CD8+ T cells from multiple organs expressed high levels of KLRG1, but exhibit a preferential accumulation of CD69+ cells in skeletal muscle, indicating recent antigen encounter in a niche for T. cruzi persistence. A significant proportion of CD8+ T cells in the muscle also produced IFNγ, TNFα and granzyme B in situ, an indication of their detection of and functional response to T. cruzi in vivo. CD8+ T cell function was crucial for the control of parasite burden during chronic infection as exacerbation of parasite load was observed upon depletion of this population. Attempts to improve T cell function by blocking PD-1 or IL-10, potential negative regulators of T cells, failed to increase IFNγ and TNFα production or to enhance T. cruzi clearance. These results highlight the capacity of the CD8+ T cell population to retain essential in vivo function despite chronic antigen stimulation and support a model in which CD8+ T cell dysfunction plays a negligible role in the ability of Trypanosoma cruzi to persist in mice. The parasite Trypanosoma cruzi establishes lifelong infections in humans and other mammals, leading to severe cardiac and gastrointestinal complications known as Chagas disease. Although the factors that enable T. cruzi persistence remain undefined, in this and many other infection models, pathogen persistence has been attributed to the exhaustion of the immune system, particularly of CD8+ T cells. Here, we show that the inability of hosts to fully resolve T. cruzi infection is not a result of immune exhaustion and that in fact the T. cruzi-specific CD8+ T cell population remains highly competent and actively suppresses parasite outgrowth throughout the chronic infection. These results demonstrate that compromised immunity is not the eventual outcome of all chronic infections and suggest that T. cruzi, and perhaps other pathogens, may employ alternative strategies to subvert immune clearance in the presence of highly functional pathogen-specific effectors. These findings also suggest that interventions to inhibit immune regulatory pathways or to otherwise boost existing immune responses in such infections, will have limited benefit.
Collapse
Affiliation(s)
- Angela D. Pack
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Matthew H. Collins
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Charles S. Rosenberg
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
160
|
Perez‐Gutierrez A, Metes DM, Lu L, Hariharan S, Thomson AW, Ezzelarab MB. Characterization of eomesodermin and T-bet expression by allostimulated CD8 + T cells of healthy volunteers and kidney transplant patients in relation to graft outcome. Clin Exp Immunol 2018; 194:259-272. [PMID: 30246373 PMCID: PMC6194331 DOI: 10.1111/cei.13162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Memory T cell (Tmem) responses play a critical role in the outcome of allo-transplantation. While the role of the T-box transcription factor Eomesodermin (Eomes) in the maintenance of antigen-specific Tmem is well studied, little is known about Eomes+ CD8+ T cell responses after transplantation. We evaluated the phenotype and function of allo-reactive Eomes+ CD8+ T cells in healthy volunteers and kidney transplant patients and their relation to transplant outcome. High Eomes expression by steady-state CD8+ T cells correlated with effector and memory phenotype. Following allo-stimulation, the expression of both the T-box proteins Eomes and T-bet by proliferating cells increased significantly, where high expression of Eomes and T-bet correlated with higher incidence of allo-stimulated IFNγ+ TNFα+ CD8+ T cells. In patients with no subsequent rejection, Eomes but not T-bet expression by donor-stimulated CD8+ T cells, increased significantly after transplantation. This was characterized by increased Eomeshi T-bet-/lo and decreased Eomes-/lo T-bethi CD8+ T cell subsets, with no significant changes in the Eomeshi T-bethi CD8+ T cell subset. No upregulation of exhaustion markers programmed-death-1 (PD-1) and cytotoxic-T-lymphocyte-associated-antigen-4 (CTLA4) by donor-stimulated Eomes+ CD8+ T cells was observed. Before transplantation, in patients without rejection, there were higher incidences of Eomeshi T-bet-/lo , and lower incidences of Eomeshi T-bethi and Eomes-/lo T-bethi donor-stimulated CD8+ T cell subsets, compared to those with subsequent rejection. Overall, our findings indicate that high Eomes expression by allo-stimulated T-bet+ CD8+ T cells is associated with enhanced effector function, and that an elevated incidence of donor-stimulated CD8+ T cells co-expressing high levels of Eomes and T-bet before transplantation, may correlate with an increased incidence of acute cellular rejection.
Collapse
Affiliation(s)
- A. Perez‐Gutierrez
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - D. M. Metes
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Departments of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - L. Lu
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - S. Hariharan
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - M. B. Ezzelarab
- Starzl Transplantation Institute, Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
161
|
Larimer BM, Bloch E, Nesti S, Austin EE, Wehrenberg-Klee E, Boland G, Mahmood U. The Effectiveness of Checkpoint Inhibitor Combinations and Administration Timing Can Be Measured by Granzyme B PET Imaging. Clin Cancer Res 2018; 25:1196-1205. [PMID: 30327313 DOI: 10.1158/1078-0432.ccr-18-2407] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE The lack of a timely and reliable measure of response to cancer immunotherapy has confounded understanding of mechanisms of resistance and subsequent therapeutic advancement. We hypothesized that PET imaging of granzyme B using a targeted peptide, GZP, could be utilized for early response assessment across many checkpoint inhibitor combinations, and that GZP uptake could be compared between therapeutic regimens and dosing schedules as an early biomarker of relative efficacy. EXPERIMENTAL DESIGN Two models, MC38 and CT26, were treated with a series of checkpoint inhibitors. GZP PET imaging was performed to assess tumoral GZP uptake, and tumor volume changes were subsequently monitored to determine response. The average GZP PET uptake and response of each treatment group were correlated to evaluate the utility of GZP PET for comparing therapeutic efficacy. RESULTS In both tumor models, GZP PET imaging was highly accurate for predicting response, with 93% sensitivity and 94% negative predictive value. Mean tumoral GZP signal intensity of treatment groups linearly correlated with percent response across all therapies and schedules. Moreover, GZP PET correctly predicted that sequential dose scheduling of PD-1 and CTLA-4 targeted therapies demonstrates comparative efficacy to concurrent administration. CONCLUSIONS Granzyme B quantification is a highly sensitive and specific early measure of therapeutic efficacy for checkpoint inhibitor regimens. This work provides evidence that GZP PET imaging may be useful for rapid assessment of therapeutic efficacy in the context of clinical trials for both novel drugs as well as dosing regimens.
Collapse
Affiliation(s)
- Benjamin M Larimer
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily Bloch
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah Nesti
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily E Austin
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Wehrenberg-Klee
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Center for Precision Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
162
|
Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, Melstrom L, Margolin K, Yim JH, Kruper L, Mortimer J, Lee PP. Human breast tumor-infiltrating CD8 + T cells retain polyfunctionality despite PD-1 expression. Nat Commun 2018; 9:4297. [PMID: 30327458 PMCID: PMC6191461 DOI: 10.1038/s41467-018-06653-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
Functional CD8+ T cells in human tumors play a clear role in clinical prognosis and response to immunotherapeutic interventions. PD-1 expression in T cells involved in chronic infections and tumors such as melanoma often correlates with a state of T-cell exhaustion. Here we interrogate CD8+ tumor-infiltrating lymphocytes (TILs) from human breast and melanoma tumors to explore their functional state. Despite expression of exhaustion hallmarks, such as PD-1 expression, human breast tumor CD8+ TILs retain robust capacity for production of effector cytokines and degranulation capacity. In contrast, melanoma CD8+ TILs display dramatic reduction of cytokine production and degranulation capacity. We show that CD8+ TILs from human breast tumors can potently kill cancer cells via bi-specific antibodies. Our data demonstrate that CD8+ TILs in human breast tumors retain polyfunctionality, despite PD-1 expression, and suggest that they may be harnessed for effective immunotherapies. Expression of the checkpoint molecule programmed cell death protein 1 (PD-1) is considered a marker of T cells exhaustion. Here the authors show that CD8T cells isolated from breast cancer patients are perfectly functional despite PD-1 expression while those isolated from melanoma patients are not.
Collapse
Affiliation(s)
- Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Travis Y Tu
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Grecia Jimenez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jae Y Jung
- Department of Dermatologic Oncology, Norton Cancer Institute, Louisville, KY, 40202, USA
| | - Laleh Melstrom
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Kim Margolin
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - John H Yim
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Laura Kruper
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Joanne Mortimer
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
163
|
Eshima K, Misawa K, Ohashi C, Iwabuchi K. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4 + T cells. Microbiol Immunol 2018; 62:348-356. [PMID: 29577371 DOI: 10.1111/1348-0421.12586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Although CD4+ T cells are generally regarded as helper T cells, some activated CD4+ T cells have cytotoxic properties. Given that CD4+ cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4+ T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4+ T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4+ T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4+ T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4+ T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas- target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells.
Collapse
Affiliation(s)
- Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kana Misawa
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Chihiro Ohashi
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
164
|
Shrivastava S, Bhatta M, Ward H, Romani S, Lee R, Rosenthal E, Osinusi A, Kohli A, Masur H, Kottilil S, Wilson E. Multitarget Direct-Acting Antiviral Therapy Is Associated With Superior Immunologic Recovery in Patients Coinfected With Human Immunodeficiency Virus and Hepatitis C Virus. Hepatol Commun 2018; 2:1451-1466. [PMID: 30556035 PMCID: PMC6287478 DOI: 10.1002/hep4.1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) have higher levels of immune activation, impaired antigen‐specific responses, and accelerated fibrogenesis compared to patients monoinfected with HCV. Whether different direct‐acting antiviral (DAA) combinations have differential effects on immunophenotypes and functions following successful HCV therapy remain unknown. Therefore, we aimed to assess the peripheral T‐cell immunophenotypes and functions in patients coinfected with HIV/HCV who were successfully treated with combination DAA treatment regimens. We analyzed peripheral blood mononuclear cells (PBMCs) at baseline and at the time of sustained viral response (SVR) from subjects treated with three different combination DAA regimens: daclatasvir (DCV) and asunaprevir (ASV) for 24 weeks (CONQUER 2‐DAA), DCV/ASV/beclabuvir (BCV) for 12 weeks (CONQUER 3‐DAA), and sofosbuvir (SOF) and ledipasvir (LDV) for 12 weeks (ERADICATE study). We used flow cytometry to assess T‐cell phenotypes (activation and exhaustion) and HCV‐specific T‐cell functions (cytokine secretion and cytotoxicity). Statistical analyses were conducted using the Wilcoxon matched‐pairs signed‐rank test with P < 0.05 considered significant. Overall, there was an improvement in T‐cell exhaustion markers, a decrease in T‐cell activation, an increase in the effector memory population, and improved T‐cell function after achieving SVR, with the largest effects noted with CONQUER 3‐DAA treatment. Conclusion: Treatment with DCV/ASV/BCV in patients coinfected with HIV/HCV resulted in greater restoration of the T‐cell impairments and perturbations associated with HIV/HCV coinfection to an extent that was greater than that observed in either two‐drug regimens. We showed that different DAA‐based therapies have different immunologic outcomes after successful HCV treatment in patients coinfected with HIV/HCV. This information will be beneficial for providers when selecting the regimens for patients coinfected with HIV/HCV.
Collapse
Affiliation(s)
- Shikha Shrivastava
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Manasa Bhatta
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Haley Ward
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD.,Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Sara Romani
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Rebecca Lee
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Elana Rosenthal
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | | | - Anita Kohli
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Henry Masur
- Critical Care Medicine Department, Clinical Center National Institutes of Health Bethesda MD
| | - Shyam Kottilil
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| | - Eleanor Wilson
- Institute of Human Virology University of Maryland School of Medicine Baltimore MD
| |
Collapse
|
165
|
Tilstra JS, Avery L, Menk AV, Gordon RA, Smita S, Kane LP, Chikina M, Delgoffe GM, Shlomchik MJ. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest 2018; 128:4884-4897. [PMID: 30130253 DOI: 10.1172/jci120859] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
While T cells are important for the pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis, little is known about how T cells function after infiltrating the kidney. The current paradigm suggests that kidney-infiltrating T cells (KITs) are activated effector cells contributing to tissue damage and ultimately organ failure. Herein, we demonstrate that the majority of CD4+ and CD8+ KITs in 3 murine lupus models are not effector cells, as hypothesized, but rather express multiple inhibitory receptors and are highly dysfunctional, with reduced cytokine production and proliferative capacity. In other systems, this hypofunctional profile is linked directly to metabolic and specifically mitochondrial dysfunction, which we also observed in KITs. The T cell phenotype was driven by the expression of an "exhausted" transcriptional signature. Our data thus reveal that the tissue parenchyma has the capability of suppressing T cell responses and limiting damage to self. These findings suggest avenues for the treatment of autoimmunity based on selectively exploiting the exhausted phenotype of tissue-infiltrating T cells.
Collapse
Affiliation(s)
| | - Lyndsay Avery
- Department of Immunology.,Infectious Disease and Microbiology Graduate Program
| | | | | | | | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Greg M Delgoffe
- Department of Immunology.,Tumor Microenvironment Center.,Cancer Immunology Program, and
| | | |
Collapse
|
166
|
Cheung PF, Neff F, Neander C, Bazarna A, Savvatakis K, Liffers ST, Althoff K, Lee CL, Moding EJ, Kirsch DG, Saur D, Bazhin AV, Trajkovic-Arsic M, Heikenwalder MF, Siveke JT. Notch-Induced Myeloid Reprogramming in Spontaneous Pancreatic Ductal Adenocarcinoma by Dual Genetic Targeting. Cancer Res 2018; 78:4997-5010. [PMID: 29844119 DOI: 10.1158/0008-5472.can-18-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Despite advances in our understanding of the genetics of pancreatic ductal adenocarcinoma (PDAC), the efficacy of therapeutic regimens targeting aberrant signaling pathways remains highly limited. Therapeutic strategies are greatly hampered by the extensive desmoplasia that comprises heterogeneous cell populations. Notch signaling is a contentious pathway exerting opposite roles in tumorigenesis depending on cellular context. Advanced model systems are needed to gain more insights into complex signaling in the multilayered tumor microenvironment. In this study, we employed a dual recombinase-based in vivo strategy to modulate Notch signaling specifically in myeloid cells to dissect the tumorigenic role of Notch in PDAC stroma. Pancreas-specific KrasG12D activation and loss of Tp53 was induced using a Pdx1-Flp transgene, whereas Notch signaling was genetically targeted using a myeloid-targeting Lyz2-Cre strain for either activation of Notch2-IC or deletion of Rbpj. Myeloid-specific Notch activation significantly decreased tumor infiltration by protumorigenic M2 macrophages in spontaneous endogenous PDAC, which translated into significant survival benefit. Further characterization revealed upregulated antigen presentation and cytotoxic T effector phenotype upon Notch-induced M2 reduction. This approach is the first proof of concept for genetic targeting and reprogramming of myeloid cells in a complex disease model of PDAC and provides evidence for a regulatory role of Notch signaling in intratumoral immune phenotypes.Significance: This study provides insight into the role of myeloid-dependent NOTCH signaling in PDAC and accentuates the need to dissect differential roles of signaling pathways in different cellular components within the tumor microenvironment. Cancer Res; 78(17); 4997-5010. ©2018 AACR.
Collapse
Affiliation(s)
- Phyllis F Cheung
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Florian Neff
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Anna Bazarna
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Konstantinos Savvatakis
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Kristina Althoff
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Everett J Moding
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Dieter Saur
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany.,German Caner Consortium (DKTK), Partner Site Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | | | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany. .,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
167
|
Sponaas AM, Yang R, Rustad EH, Standal T, Thoresen AS, Dao Vo C, Waage A, Slørdahl TS, Børset M, Sundan A. PD1 is expressed on exhausted T cells as well as virus specific memory CD8+ T cells in the bone marrow of myeloma patients. Oncotarget 2018; 9:32024-32035. [PMID: 30174794 PMCID: PMC6112830 DOI: 10.18632/oncotarget.25882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Characterization of CD8+ T cells in the tumor microenvironment (TME) is important to predict responses to checkpoint therapy. The TME in multiple myeloma is the bone marrow, which also is an immune organ where immune responses are generated and memory cells stored. The presence of T cells with other specificities than the tumor in the bone marrow may affect the search for biomarkers to predict responses to immunotherapy in myeloma. Here, we found similar proportions of PD1+ CD8+ T cells and similar levels of PD1 expression on CD8+ T cells in the bone marrow of myeloma patients and healthy controls. PD1 expression on CD8+ T cells did not correlate with tumor load suggesting that at least some of the PD1+ CD8+ T cells were specific for non-myeloma antigens. Indeed, PD1+ EBV-specific CD8+ T cells were detected it the bone marrow of patients. Terminal effectors (Teff), effector memory (Tem) and central memory (Tcm) cells as well as exhausted T cells were all found in the myeloma bone marrow. However, myeloma patients had more terminal effectors and fewer memory cells than healthy controls suggesting that the tumor generate an immune response against myeloma cells in the bone marrow. The presence of CD8 EOMEShigh Tbetlow T cells with intermediate levels of PD1 in myeloma patients suggests that T cell types, that are known to be responsive to checkpoint therapy, are found at the tumor site.
Collapse
Affiliation(s)
- Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rui Yang
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Even Holth Rustad
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Centre of Molecular Immune Regulation, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Anders Waage
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, Myeloma Research Center, Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Centre of Molecular Immune Regulation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
168
|
Reuter MA, Del Rio Estrada PM, Buggert M, Petrovas C, Ferrando-Martinez S, Nguyen S, Sada Japp A, Ablanedo-Terrazas Y, Rivero-Arrieta A, Kuri-Cervantes L, Gunzelman HM, Gostick E, Price DA, Koup RA, Naji A, Canaday DH, Reyes-Terán G, Betts MR. HIV-Specific CD8 + T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue. Cell Rep 2018; 21:3458-3470. [PMID: 29262326 PMCID: PMC5764192 DOI: 10.1016/j.celrep.2017.11.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Elimination of lymphoid tissue reservoirs is a key component of HIV eradication strategies. CD8+ T cells play a critical role in control of HIV, but their functional attributes in lymph nodes (LNs) remain unclear. Here, we show that memory, follicular CXCR5+, and HIV-specific CD8+ T cells from LNs do not manifest the properties of cytolytic CD8+ T cells. While the frequency of follicular CXCR5+ CD8+ T cells was strongly inversely associated with peripheral viremia, this association was not dependent on cytolytic CXCR5+ CD8+ T cells. Moreover, the poor cytolytic activity of LN CD8+ T cells was linked to a compartmentalized dissociation between effector programming and the transcription factor T-bet. In line with this, activation of LN CD8+ T cells only partially induced the acquisition of cytolytic functions relative to peripheral blood CD8+ T cells. These results suggest that a state of immune privilege against CD8+ T cell-mediated cytolysis exists in lymphoid tissue, potentially facilitating the persistence of HIV.
Collapse
Affiliation(s)
- Morgan A Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi M Gunzelman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Geriatric Research, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, INER, Mexico City, Mexico
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
169
|
Fox A, Harland KL, Kedzierska K, Kelso A. Exposure of Human CD8 + T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization. Front Immunol 2018; 9:1141. [PMID: 29892290 PMCID: PMC5985406 DOI: 10.3389/fimmu.2018.01141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Effector CD8+ T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8+ cells (Tc2) are detected in type-2 (T2) cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8+ T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8+ T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8+ naïve T cells (TN) in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of TN in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes, and lowered expression of type-1 cytokines, Prf1, Gzmb, T-BET, and Prdm1. However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of TN in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28) and lymph-node homing receptors (CCR7) and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8+ central memory T cells (TCM) were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8+ TN. In summary, while activation of TN in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and division are arrested, and reactivation of TCM is reduced in T2 conditions. Taken together, this suggests that exposure to T2 cytokines during activation may not be sufficient to generate and retain human Tc2 cells.
Collapse
Affiliation(s)
- Annette Fox
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
170
|
Wang H, Xiao Y, Su L, Cui N, Liu D. mTOR Modulates CD8+ T Cell Differentiation in Mice with Invasive Pulmonary Aspergillosis. Open Life Sci 2018; 13:129-136. [PMID: 33817078 PMCID: PMC7874697 DOI: 10.1515/biol-2018-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/13/2018] [Indexed: 11/24/2022] Open
Abstract
CD8+ T cells are a vital component of the adaptive immune system and important for eliminating intracellular pathogens. Notably, mTOR activity is associated with CD8+ T effector memory (Tem) cell differentiation in fungal infections. This study investigates the molecular mechanisms of CD8+ Tem cell proliferation and differentiation mediated by the mTOR pathway in immunosuppressed mice with invasive pulmonary aspergillosis (IPA). We first established the immunosuppressed IPA mouse model, then mice were subjected to rapamycin treatment daily or interleukin (IL)-12 treatment every other day. Lung tissues and blood samples were obtained seven days later. Aspergillus fumigatus was cultured from the lung tissue of mice inoculated with A. fumigatus spores. After IL-12 treatment, the expression of mTOR and its downstream signaling molecule S6 kinase, number of CD8+ Tem cells and interferon-γ expression were significantly increased, while they were significantly decreased after treatment with rapamycin. Additionally, IL-12 treatment induced T-bet but inhibited Eomesodermin expression, while the opposite was seen when the mTOR pathway was blocked by rapamycin. In conclusion, we found that the mTOR pathway induced CD8+ T cell proliferation and differentiation by regulating T-bet and Eomesodermin expression, which significantly influenced immune regulation during IPA and enhanced the immune response against fungal infection.
Collapse
Affiliation(s)
- Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
171
|
Reading JL, Gálvez-Cancino F, Swanton C, Lladser A, Peggs KS, Quezada SA. The function and dysfunction of memory CD8 + T cells in tumor immunity. Immunol Rev 2018; 283:194-212. [PMID: 29664561 DOI: 10.1111/imr.12657] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The generation and maintenance of CD8+ T cell memory is crucial to long-term host survival, yet the basic tenets of CD8+ T cell immunity are still being established. Recent work has led to the discovery of tissue-resident memory cells and refined our understanding of the transcriptional and epigenetic basis of CD8+ T cell differentiation and dysregulation. In parallel, the unprecedented clinical success of immunotherapy has galvanized an intense, global research effort to decipher and de-repress the anti-tumor response. However, the progress of immunotherapy is at a critical juncture, since the efficacy of immuno-oncology agents remains confined to a fraction of patients and often fails to provide durable benefit. Unlocking the potential of immunotherapy requires the design of strategies that both induce a potent effector response and reliably forge stable, functional memory T cell pools capable of protecting from recurrence or relapse. It is therefore essential that basic and emerging concepts of memory T cell biology are rapidly and faithfully transposed to advance therapeutic development in cancer immunotherapy. This review highlights seminal and recent reports in CD8+ T cell memory and tumor immunology, and evaluates recent data from solid cancer specimens in the context of the key paradigms from preclinical models. We elucidate the potential significance of circulating effector cells poised downstream of neoantigen recognition and upstream of T cell dysfunction and propose that cells in this immunological 'sweet spot' may be key anti-tumor effectors.
Collapse
Affiliation(s)
- James L Reading
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | | | | | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| | - Karl S Peggs
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
172
|
Kared H, Martelli S, Tan SW, Simoni Y, Chong ML, Yap SH, Newell EW, Pender SLF, Kamarulzaman A, Rajasuriar R, Larbi A. Adaptive NKG2C +CD57 + Natural Killer Cell and Tim-3 Expression During Viral Infections. Front Immunol 2018; 9:686. [PMID: 29731749 PMCID: PMC5919961 DOI: 10.3389/fimmu.2018.00686] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
Repetitive stimulation by persistent pathogens such as human cytomegalovirus (HCMV) or human immunodeficiency virus (HIV) induces the differentiation of natural killer (NK) cells. This maturation pathway is characterized by the acquisition of phenotypic markers, CD2, CD57, and NKG2C, and effector functions—a process regulated by Tim-3 and orchestrated by a complex network of transcriptional factors, involving T-bet, Eomes, Zeb2, promyelocytic leukemia zinc finger protein, and Foxo3. Here, we show that persistent immune activation during chronic viral co-infections (HCMV, hepatitis C virus, and HIV) interferes with the functional phenotype of NK cells by modulating the Tim-3 pathway; a decrease in Tim-3 expression combined with the acquisition of inhibitory receptors skewed NK cells toward an exhausted and cytotoxic phenotype in an inflammatory environment during chronic HIV infection. A better understanding of the mechanisms underlying NK cell differentiation could aid the identification of new immunological targets for checkpoint blockade therapies in a manner that is relevant to chronic infection and cancer.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Serena Martelli
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Meng Li Chong
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
173
|
Gangaplara A, Martens C, Dahlstrom E, Metidji A, Gokhale AS, Glass DD, Lopez-Ocasio M, Baur R, Kanakabandi K, Porcella SF, Shevach EM. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog 2018; 14:e1006985. [PMID: 29672594 PMCID: PMC5929570 DOI: 10.1371/journal.ppat.1006985] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/01/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/β receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity. Type I interferons (IFNs) play a predominant role in the immune response to infectious pathogens. The cellular targets of IFNs have been difficult to dissect because of the ubiquitous expression of the type I interferon receptor (IFNAR). The immune response of mice to lymphocytic choriomeningitis virus (LCMV) is one of the major models for analyzing the action of IFNs. Regulatory T cells (Tregs) have been implicated in the control of LCMV and it has been proposed that IFN may influence their function. The major goal of this study was to define the contribution of IFN signaling on Treg function during different stages LCMV infection. Tregs from mice with selective deletion of IFNAR manifested enhanced suppressive activity during acute/chronic LCMV infection resulting in increased CD8 T cell anergy, defective generation of memory T cells and persistence of virus. Similar effects of IFNAR signaling in Tregs were seen in a tumor model. We identified a unique set of genes in Tregs modulated by IFN signaling that may contribute to the enhanced suppressive function of IFNAR deficient Tregs. IFNs play a beneficial role during acute/chronic viral infections not only by contributing to viral clearance but also by attenuating the function of Tregs.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Arenaviridae Infections/drug therapy
- Arenaviridae Infections/immunology
- Arenaviridae Infections/metabolism
- Arenaviridae Infections/virology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/virology
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Interferon Type I/pharmacology
- Interferon-gamma/metabolism
- Lymphocytic Choriomeningitis/drug therapy
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/drug effects
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/virology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Craig Martens
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Amina Metidji
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- The Francis Crick Institute, London, United Kingdom
| | - Ameya S. Gokhale
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Deborah D. Glass
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Maria Lopez-Ocasio
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel Baur
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Kishore Kanakabandi
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Stephen F. Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
174
|
Buggert M, Nguyen S, McLane LM, Steblyanko M, Anikeeva N, Paquin-Proulx D, Del Rio Estrada PM, Ablanedo-Terrazas Y, Noyan K, Reuter MA, Demers K, Sandberg JK, Eller MA, Streeck H, Jansson M, Nowak P, Sönnerborg A, Canaday DH, Naji A, Wherry EJ, Robb ML, Deeks SG, Reyes-Teran G, Sykulev Y, Karlsson AC, Betts MR. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease. PLoS Pathog 2018; 14:e1006973. [PMID: 29652923 PMCID: PMC5919077 DOI: 10.1371/journal.ppat.1006973] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. CD4+ T cells have classically been divided into different subsets based on their different abilities to help and regulate specific parts of the immune system. Recent work in the HIV field has demonstrated that HIV-specific CD4+ T cells with unique effector functions, such as cytolytic activity and β-chemokine production, can play a direct role in control of HIV replication. However, HIV infection is generally considered to be a disease centered in lymphoid tissues, where unique CD4+ T helper cell subsets are present to orchestrate the maturation and priming of adaptive immunity. In this study, we identify that two specific transcription factors, T-bet and Eomes, mark cytolytic and β-chemokine producing CD4+ T cells. While this effector CD4+ T cell population is part of immunosurveillance mechanisms in blood, we find that lymph nodes largely lack this effector population–independent of HIV infection or disease progression status. These results indicate that current effector CD4+ T cell mediated correlates of HIV control are limited to blood and not representative of potential correlates of control in lymphoid tissues.
Collapse
Affiliation(s)
- Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (MRB)
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Laura M. McLane
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maria Steblyanko
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nadia Anikeeva
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Dominic Paquin-Proulx
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Perla M. Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Morgan A. Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Korey Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Johan K. Sandberg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Hendrik Streeck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Geriatric Research, Education and Clinical Center, Louis Stokes VA Medical Center, Cleveland, OH, United States of America
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA, United States of America
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuri Sykulev
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MB); (MRB)
| |
Collapse
|
175
|
Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, Jiang Y, Xu L, Ma Y, Zheng H, Kong Y, Zeng H. T-cell Immunoglobulin and ITIM Domain Contributes to CD8 + T-cell Immunosenescence. Aging Cell 2018; 17:e12716. [PMID: 29349889 PMCID: PMC5847879 DOI: 10.1111/acel.12716] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Aging is associated with immune dysfunction, especially T-cell defects, which result in increased susceptibility to various diseases. Previous studies showed that T cells from aged mice express multiple inhibitory receptors, providing evidence of the relationship between T-cell exhaustion and T-cell senescence. In this study, we showed that T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), a novel co-inhibitory receptor, was upregulated in CD8+ T cells of elderly adults. Aged TIGIT+ CD8+ T cells expressed high levels of other inhibitory receptors including PD-1 and exhibited features of exhaustion such as downregulation of the key costimulatory receptor CD28, representative intrinsic transcriptional regulation, low production of cytokines, and high susceptibility to apoptosis. Importantly, their functional defects associated with aging were reversed by TIGIT knockdown. CD226 downregulation on aged TIGIT+ CD8+ T cells is likely involved in TIGIT-mediated negative immune suppression. Collectively, our findings indicated that TIGIT acts as a critical immune regulator during aging, providing a strong rationale for targeting TIGIT to improve dysfunction related to immune system aging.
Collapse
Affiliation(s)
- Yangzi Song
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious DiseasesThe National Clinical Key Department of Infectious DiseaseBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Hao
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yuxin Li
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Ling Xu
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yaluan Ma
- Lab for Molecular BiologyInstitute of Basic Theory on Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong Zheng
- Penn State Hershey Cancer InstitutePenn State University College of MedicineHersheyPAUSA
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
176
|
Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE. T-cell Dysfunction in Glioblastoma: Applying a New Framework. Clin Cancer Res 2018; 24:3792-3802. [PMID: 29593027 DOI: 10.1158/1078-0432.ccr-18-0047] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
A functional, replete T-cell repertoire is an integral component to adequate immune surveillance and to the initiation and maintenance of productive antitumor immune responses. Glioblastoma (GBM), however, is particularly adept at sabotaging antitumor immunity, eliciting severe T-cell dysfunction that is both qualitative and quantitative. Understanding and countering such dysfunction are among the keys to harnessing the otherwise stark potential of anticancer immune-based therapies. Although T-cell dysfunction in GBM has been long described, newer immunologic frameworks now exist for reclassifying T-cell deficits in a manner that better permits their study and reversal. Herein, we divide and discuss the various T-cell deficits elicited by GBM within the context of the five relevant categories: senescence, tolerance, anergy, exhaustion, and ignorance. Categorization is appropriately made according to the molecular bases of dysfunction. Likewise, we review the mechanisms by which GBM elicits each mode of T-cell dysfunction and discuss the emerging immunotherapeutic strategies designed to overcome them. Clin Cancer Res; 24(16); 3792-802. ©2018 AACR.
Collapse
Affiliation(s)
- Karolina I Woroniecka
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristen E Rhodin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Kristin A Keith
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
177
|
McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8 + T cell-mediated suppression of HIV/SIV replication. Eur J Immunol 2018; 48:898-914. [PMID: 29427516 DOI: 10.1002/eji.201747172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
In this article, we summarize the role of CD8+ T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8+ T cell-based HIV cure strategies. Evidence suggests that CD8+ T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8+ T cells is responsible for control of viremia. However, it has been proposed that CD8+ T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8+ T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8+ T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8+ T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Nitasha A Kumar
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
178
|
He QF, Xu Y, Li J, Huang ZM, Li XH, Wang X. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Brief Funct Genomics 2018; 18:99-106. [DOI: 10.1093/bfgp/ely006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | - Jun Li
- Nanjing Medical University
| | | | - Xiu-Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Beijing Youan Hospital, Capital Medical University
| | | |
Collapse
|
179
|
Xia AL, Wang JC, Yang K, Ji D, Huang ZM, Xu Y. Genomic and epigenomic perspectives of T-cell exhaustion in cancer. Brief Funct Genomics 2018. [PMID: 29518177 DOI: 10.1093/bfgp/ely005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- An-Liang Xia
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Cheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Medical Engineering, 302 Hospital of PLA, Beijing, China
| | - Dong Ji
- Liver Cirrhosis Treatment and Research Center II, 302 Military Hospital of China 100 XiSiHuan Middle Road, FengTai District, Beijing, China
| | - Zheng-Ming Huang
- Department of Clinical Pharmacology, 302 Hospital of PLA, Beijing, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
180
|
Zhang J, Marotel M, Fauteux-Daniel S, Mathieu AL, Viel S, Marçais A, Walzer T. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol 2018; 48:738-750. [PMID: 29424438 DOI: 10.1002/eji.201747299] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022]
Abstract
T-bet and Eomes are T-box transcription factors that drive the differentiation and function of cytotoxic lymphocytes such as NK cells. Their DNA-binding domains are highly similar, suggesting redundant transcriptional activity. However, while these transcription factors have different patterns of expression, the phenotype of loss-of-function mouse models suggests that they play distinct roles in the development of NK cells and other innate lymphoid cells (ILCs). Recent technological advances using reporter mice and conditional knockouts were fundamental in defining the regulation and function of these factors at steady state and during pathological conditions such as various types of cancer or infection. Here, we review these recent developments, focusing on NK cells as prototypical cytotoxic lymphocytes and their development, and also discuss parallels between NK cells and T cells. We also examine the role of T-bet and Eomes in human NK cells and ILC1s. Considering divergent findings on mouse and human ILC1s, we propose that NK cells are defined by coexpression of T-bet and Eomes, while ILC1s express only one of these factors, either T-bet or Eomes, depending on the tissue or the species.
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Fauteux-Daniel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| |
Collapse
|
181
|
Noyan K, Nguyen S, Betts MR, Sönnerborg A, Buggert M. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells. Front Immunol 2018; 9:19. [PMID: 29403500 PMCID: PMC5786543 DOI: 10.3389/fimmu.2018.00019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a “healthy” state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Collapse
Affiliation(s)
- Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
182
|
Peng Y. Forced expression of IL-7R promotes CD8 T cell cytotoxicity to self antigen. PLoS One 2017; 12:e0188112. [PMID: 29272267 PMCID: PMC5741212 DOI: 10.1371/journal.pone.0188112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/01/2017] [Indexed: 01/22/2023] Open
Abstract
Cross-presentation of apoptotic cell associated antigens by immature dendritic cells prevents the activation of self reactive CD8 T cells. Tolerized self reactive CD8 T cells down-regulate IL-7R expression on their surface. Whether over-expression of IL-7R can reverse their fate and function has not been examined. In this paper, we showed forced expression of IL-7R in OT-I T cells by a transgene enhanced CD8 T cell mediated diabetes in the RIP-mOVA model. Although IL-7R Tg (transgenic) did not completely reverse the deletion of OT-I T cells, it provided a significant survival advantage over w.t OT-I T cells. Furthermore, IL7R Tg OT-I T cells isolated from diabetic pancreata displayed increased production of IFN-γ, higher expression of T-bet, and increased externalization of CD107a. We also found that immature DCs containing apoptotic cells expressed high levels of PDL-1 on their surface. Although IL-7R Tg did not change PD1 expression on activated OT-I cells in vivo, the transgene enabled a significantly lower number of OT-I T cells to induce diabetes in the absence of PDL-1. Our results demonstrated that forced expression of IL-7R not only improved the functionality of tolerized CD8 T cells, it also acted in synergy with PDL-1 deficiency to further promote CD8 T cell cytotoxicity to self antigens.
Collapse
Affiliation(s)
- YuFeng Peng
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
183
|
Méndez-Lagares G, Lu D, Chen C, Terrault N, Segal MR, Khalili M, Monto A, Shen H, Manos MM, Lanier LL, Ryan JC, McCune JM, Hartigan-O'Connor DJ. Memory T Cell Proliferation before Hepatitis C Virus Therapy Predicts Antiviral Immune Responses and Treatment Success. THE JOURNAL OF IMMUNOLOGY 2017; 200:1124-1132. [PMID: 29263212 DOI: 10.4049/jimmunol.1701364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
Abstract
The contribution of the host immune system to the efficacy of new anti-hepatitis C virus (HCV) drugs is unclear. We undertook a longitudinal prospective study of 33 individuals with chronic HCV treated with combination pegylated IFN-α, ribavirin, and telaprevir/boceprevir. We characterized innate and adaptive immune cells to determine whether kinetics of the host response could predict sustained virologic response (SVR). We show that characteristics of the host immune system present before treatment were correlated with successful therapy. Augmentation of adaptive immune responses during therapy was more impressive among those achieving SVR. Most importantly, active memory T cell proliferation before therapy predicted SVR and was associated with the magnitude of the HCV-specific responses at week 12 after treatment start. After therapy initiation, the most important correlate of success was minimal monocyte activation, as predicted by previous in vitro work. In addition, subjects achieving SVR had increasing expression of the transcription factor T-bet, a driver of Th1 differentiation and cytotoxic effector cell maturation. These results show that host immune features present before treatment initiation predict SVR and eventual development of a higher frequency of functional virus-specific cells in blood. Such host characteristics may also be required for successful vaccine-mediated protection.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, CA 95616; .,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Ding Lu
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Connie Chen
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Norah Terrault
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Mark R Segal
- Center for Bioinformatics and Molecular Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94107
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Division of Gastroenterology and Hepatology, San Francisco General Hospital, San Francisco, CA 94110
| | - Alexander Monto
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Hui Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - M Michele Manos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129; and
| | - James C Ryan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Joseph M McCune
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616.,Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110
| |
Collapse
|
184
|
Van Epps P, Kalayjian RC. Human Immunodeficiency Virus and Aging in the Era of Effective Antiretroviral Therapy. Infect Dis Clin North Am 2017; 31:791-810. [DOI: 10.1016/j.idc.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
185
|
Okoye IS, Houghton M, Tyrrell L, Barakat K, Elahi S. Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8 + T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol 2017; 8:1215. [PMID: 29033936 PMCID: PMC5626929 DOI: 10.3389/fimmu.2017.01215] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
In cancer and chronic viral infections, T cells are exposed to persistent antigen stimulation. This results in expression of multiple inhibitory receptors also called “immune checkpoints” by T cells. Although these inhibitory receptors under normal conditions maintain self-tolerance and prevent immunopathology, their sustained expression deteriorates T cell function: a phenomenon called exhaustion. Recent advances in cancer immunotherapy involve blockade of cytotoxic T lymphocyte antigen-4 and programmed cell death 1 in order to reverse T cell exhaustion and reinvigorate immunity, which has translated to dramatic clinical remission in many cases of metastatic melanoma and lung cancer. With the paucity of therapeutic vaccines against chronic infections such as HIV, HPV, hepatitis B, and hepatitis C, such adjunct checkpoint blockade strategies are required including the blockade of other inhibitory receptors such as T cell immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domains, T cell Ig and mucin-domain containing-3, lymphocyte activation gene 3, and V-domain Ig-containing suppressor of T cell activation. The nature of different chronic viral infections and cancers is likely to influence the level, composition, and pattern of inhibitory receptors expressed by responding T cells. This will have implications for checkpoint antibody blockade strategies employed for treating tumors and chronic viral infections. Here, we review recent advances that provide a clearer insight into the role of coinhibitory receptor expression in T cell exhaustion and reveal novel antibody-blockade therapeutic targets for chronic viral infections and cancer. Understanding the mechanism of T cell exhaustion in response to chronic virus infections and cancer as well as the nature of restored T cell responses will contribute to further improvement of immune checkpoint blockade strategies.
Collapse
Affiliation(s)
- Isobel S Okoye
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
186
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
187
|
Cheekatla SS, Tripathi D, Venkatasubramanian S, Paidipally P, Welch E, Tvinnereim AR, Nurieva R, Vankayalapati R. IL-21 Receptor Signaling Is Essential for Optimal CD4 + T Cell Function and Control of Mycobacterium tuberculosis Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:2815-2822. [PMID: 28855309 DOI: 10.4049/jimmunol.1601231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/08/2017] [Indexed: 01/05/2023]
Abstract
In this study, we determined the role of IL-21R signaling in Mycobacterium tuberculosis infection, using IL-21R knockout (KO) mice. A total of 50% of M. tuberculosis H37Rv-infected IL-21R KO mice died in 6 mo compared with no deaths in infected wild type (WT) mice. M. tuberculosis-infected IL-21R KO mice had enhanced bacterial burden and reduced infiltration of Ag-specific T cells in lungs compared with M. tuberculosis-infected WT mice. Ag-specific T cells from the lungs of M. tuberculosis-infected IL-21R KO mice had increased expression of T cell inhibitory receptors, reduced expression of chemokine receptors, proliferated less, and produced less IFN- γ, compared with Ag-specific T cells from the lungs of M. tuberculosis-infected WT mice. T cells from M. tuberculosis-infected IL-21R KO mice were unable to induce optimal macrophage responses to M. tuberculosis. This may be due to a decrease in the Ag-specific T cell population. We also found that IL-21R signaling is associated with reduced expression of a transcriptional factor Eomesodermin and enhanced functional capacity of Ag-specific T cells of M. tuberculosis-infected mice. The sum of our findings suggests that IL-21R signaling is essential for the optimal control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Satyanarayana Swamy Cheekatla
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Sambasivan Venkatasubramanian
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Elwyn Welch
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Amy R Tvinnereim
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Roza Nurieva
- Department of Immunology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| |
Collapse
|
188
|
The Transcription Factor NFAT1 Participates in the Induction of CD4 + T Cell Functional Exhaustion during Plasmodium yoelii Infection. Infect Immun 2017. [PMID: 28630062 DOI: 10.1128/iai.00364-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated stimulation of T cells that occurs in the context of chronic infection results in progressively reduced responsiveness of T cells to pathogen-derived antigens. This phenotype, known as T cell exhaustion, occurs during chronic infections caused by a variety of pathogens, from persistent viruses to parasites. Unlike the memory cells that typically form after successful pathogen clearance following an acute infection, exhausted T cells secrete lower levels of effector cytokines, proliferate less in response to cognate antigen, and upregulate cell surface inhibitory molecules such as PD-1 and LAG-3. The molecular events that lead to the induction of this phenotype have, however, not been fully characterized. In T cells, members of the NFAT family of transcription factors not only are responsible for the expression of many activation-induced genes but also are crucial for the induction of transcriptional programs that inhibit T cell activation and maintain tolerance. Here we show that NFAT1-deficient CD4+ T cells maintain higher proliferative capacity and expression of effector cytokines following Plasmodium yoelii infection and are therefore more resistant to P. yoelii-induced exhaustion than their wild-type counterparts. Consequently, gene expression microarray analysis of CD4+ T cells following P. yoelii-induced exhaustion shows upregulation of effector T cell-associated genes in the absence of NFAT1 compared with wild-type exhausted T cells. Furthermore, adoptive transfer of NFAT1-deficient CD4+ T cells into mice infected with P. yoelii results in increased production of antibodies to cognate antigen. Our results support the idea that NFAT1 is necessary to fully suppress effector responses during Plasmodium-induced CD4+ T cell exhaustion.
Collapse
|
189
|
Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep 2017; 7:5509. [PMID: 28710491 PMCID: PMC5511140 DOI: 10.1038/s41598-017-05849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes.
Collapse
|
190
|
Lucca LE, Hafler DA. Co-inhibitory blockade while preserving tolerance: checkpoint inhibitors for glioblastoma. Immunol Rev 2017; 276:9-25. [PMID: 28258696 DOI: 10.1111/imr.12529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of immunotherapy with checkpoint receptor blockade has changed the treatment of advanced cancers, at times inducing prolonged remission. Nevertheless, the success rate of the approach is variable across patients and different tumor types, and treatment is often accompanied by severe immune-related side effects, suggesting the importance of co-inhibitory pathway for both prevention of autoimmunity and failure of tumor rejection. A better understanding of how to uncouple anti-tumor activity from loss of self-tolerance is necessary to increase the therapeutic efficacy of checkpoint immunotherapy. In this review, we describe basic concepts of T-cell exhaustion that occur in cancer, highlighting the role of co-inhibitory receptors in contributing to this process while preventing immunopathology. By providing an overview of the current therapeutic success and immune-related burden of secondary effects of checkpoint immunotherapy, we illustrate the "double-edged sword" related to interference with immune-regulatory pathways. Finally, since achieving tumor rejection while preserving self-tolerance is particularly important for the central nervous system, we analyze the case for checkpoint immunotherapy in glioblastoma, the most common adult brain tumor.
Collapse
Affiliation(s)
- Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
191
|
Liu M, Barton ES, Jennings RN, Oldenburg DG, Whirry JM, White DW, Grayson JM. Unsupervised learning techniques reveal heterogeneity in memory CD8 + T cell differentiation following acute, chronic and latent viral infections. Virology 2017; 509:266-279. [PMID: 28689040 DOI: 10.1016/j.virol.2017.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/09/2023]
Abstract
CD8+ T lymphocytes are critical for the control of gammaherpesvirus latency. To determine how memory CD8+ T cells generated during latency differ from those primed during acute or chronic viral infection, we adoptively transferred naive P14 CD8+ T cells into uninfected recipients, and examined surface proteins, cytokines and transcription factors following infection with the Armstrong (acute) or Clone 13 (chronic) strains of lymphocytic choriomeningitis virus (LCMV), or murine gammaherpesvirus 68 (MHV68) expressing the LCMV epitope DbGP33-41. By performing k-means clustering and generating self organizing maps (SOM), we observed increased short-lived effector-like, CD27lo CD62Llo and Bcl-6lo CD8+ T cells following latent infection. In addition, we found that memory CD8+ T cells from latent primed mice underwent less expansion following adoptive transfer and antigen rechallenge. Data from cluster models were combined and visualized by principal component analysis (PCA) demonstrating memory CD8+ T cells from latent infection occupy an intermediate differentiation space.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Erik S Barton
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | | | | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
192
|
Wang C, Singer M, Anderson AC. Molecular Dissection of CD8 + T-Cell Dysfunction. Trends Immunol 2017; 38:567-576. [PMID: 28662970 DOI: 10.1016/j.it.2017.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/06/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
Chronic viral infections and cancer often lead to the emergence of dysfunctional or 'exhausted' CD8+ T cells, and the restoration of their functions is currently the focus of therapeutic interventions. In this review, we detail recent advances in the annotation of the gene modules and the epigenetic landscape associated with T-cell dysfunction. Together with analysis of single-cell transcriptomes, these findings have enabled a deeper and more precise understanding of the transcriptional mechanisms that induce and maintain the dysfunctional state and highlight the heterogeneity of CD8+ T-cell phenotypes present in chronically inflamed tissue. We discuss the relevance of these findings for understanding the transcriptional and spatial regulation of dysfunctional T cells and for the design of therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Meromit Singer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
193
|
Camargo JF, Komanduri KV. Emerging concepts in cytomegalovirus infection following hematopoietic stem cell transplantation. Hematol Oncol Stem Cell Ther 2017. [PMID: 28641094 DOI: 10.1016/j.hemonc.2017.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the refinements in molecular methods for the detection of cytomegalovirus (CMV) and the advent of highly effective preemptive strategies, CMV remains a leading cause of morbidity and mortality in hematopoietic cell transplant (HCT) recipients. CMV can cause tissue-invasive disease including pneumonia, hepatitis, colitis, retinitis, and encephalitis. Mortality in HCT recipients with CMV disease can be as high as 60%. CMV infection has been associated with increased risk of secondary bacterial and fungal infections, increased risk of graft-versus-host disease, and high rates of non-relapse mortality following HCT. The risk of CMV is highly dependent on the donor (D) and the recipient (R) serostatus (D-/R+>D+/R+>D+/R->D-/R-). Among allogeneic HCT recipients, high-dose corticosteroids, T-cell depletion, graft-versus-host disease, and mismatched or unrelated donors constitute the main predisposing factors. However, not all seropositive individuals with these risk factors develop CMV, which strongly suggests that host factors, such as those regulating CMV-specific T-cell responses, play a major role in predisposition to CMV in HCT recipients. Here, we discuss emerging concepts in CMV infection in HCT with emphasis on immunological factors that govern CMV reactivation and the applicability of immune monitoring to understand correlates of pathogenesis and its potential to guide clinical decision making.
Collapse
Affiliation(s)
- Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna V Komanduri
- Departments of Medicine, Microbiology and Immunology and Adult Stem Cell Transplant Program, Sylvester Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
194
|
Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol 2017; 102:601-615. [PMID: 28606939 DOI: 10.1189/jlb.2ri0317-097r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Naive CD8+ T cells differentiate into effector and memory cytolytic T cells (CTLs) during an acute infection. In contrast, in scenarios of persistent antigen stimulation, such as chronic infections and cancer, antigen-specific CTLs show a gradual decrease in effector function, a phenomenon that has been termed CD8+ T cell "exhaustion" or "dysfunction." Another hyporesponsive state, termed "anergy", is observed when T cells are activated in the absence of positive costimulatory signals. Among the many negative regulators induced in hyporesponsive T cells are inhibitory cell-surface receptors, such as PD-1, LAG-3, CTLA-4, and TIM-3; "checkpoint blockade" therapies that involve treatment of patients with cancer with blocking antibodies to those receptors show considerable promise in the clinic because the blocking antibodies can mitigate hyporesponsiveness and promote tumor rejection. In this review, we describe recent advances in our molecular understanding of these hyporesponsive states. We review evidence for the involvement of diverse transcription factors, metabolic programs, and chromatin accessibility changes in hyporesponsive T cells, and we discuss how checkpoint blockade therapies affect the molecular program of CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Renata M Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, California, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California, USA; and
| | - Gustavo J Martinez
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
195
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
196
|
Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells. Proc Natl Acad Sci U S A 2017. [PMID: 28283662 DOI: 10.1073/pnas.1620498114.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti-PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.
Collapse
|
197
|
Pupovac A, Good-Jacobson KL. An antigen to remember: regulation of B cell memory in health and disease. Curr Opin Immunol 2017; 45:89-96. [PMID: 28319732 PMCID: PMC7126224 DOI: 10.1016/j.coi.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
IgM+ MBCs are early responders in malaria and may be vital in parasite clearance. MBC heterogeneity may be expanded to tackle varying antigen in chronic infection. Atypical MBCs, CD21neg and T-bet+CD11c+ B cells may share transcriptional programs. In vivo studies will allow insight into intrinsic and extrinsic regulators of MBCs.
Vaccine success relies on the formation of immunity. Humoral immunity is critical and is mediated by long-lived antibody-secreting cells and memory B cells (MBCs). Chronic infectious diseases cause a significant global burden of disease; pathogens that evade the immune system can cause phenotypical and functional changes to immune memory populations. Thus, recent studies have focused on MBC subset function. IgM+ MBCs have emerged as important early responders in malaria. Atypical MBCs have functional qualities associated with exhaustion in chronic infectious diseases, but the requirements for their formation and where they localize remains unknown. Similarly, the T-bet-driven transcriptional program drives formation of MBCs phenotypically similar to atypical MBCs. Identifying protective or detrimental roles of MBC subsets, and their regulators, will be important for clinical intervention.
Collapse
Affiliation(s)
- Aleta Pupovac
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
198
|
Cui N, Su LX, Wang H, Xiao M, Yang F, Zheng M, Li X, Xu YC, Liu DW. mTOR Modulates Lymphocyte Differentiation through T-bet and Eomesodermin in Response to Invasive Pulmonary Aspergillosis in Rats. Chin Med J (Engl) 2017; 129:1704-10. [PMID: 27411458 PMCID: PMC4960960 DOI: 10.4103/0366-6999.185858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Aspergillosis infection is common in the patients with insufficient immunity. The role of mammalian target of rapamycin (mTOR), T-box expressed in T-cells (T-bet), and eomesodermin (EOMES) in mediating T lymphocytes differentiation in response to Aspergillus fumigatus infection in immunocompromised rats was investigated in this study. Methods: Invasive pulmonary aspergillosis (IPA) of immunosuppressive twenty male rats were established and sacrificed at 24 h (n = 5), 48 h (n = 5), 72 h (n = 5), and 96 h (n = 5) after A. fumigatus infection. In addition, control (n = 5), cyclophosphamide (CTX) (n = 5), and aspergillosis (n = 5) group were also established the tissues and pathology of lung tissue was examined by hematoxylin and eosin staining. CD8+ T-cells was sorted by flow cytometry. Serum mTOR, S6K, T-bet, and EOMES were quantified by enzyme-linked immunosorbent assay. Results: Histology of lung tissue indicated severe lung tissue injury including infiltration of inflammatory cells, alveolar wall damage or degradation, blood congestion, and hemorrhage in the CTX, IPA, and CTX + IPA rats. Hyphae were seen in the IPA, and CTX + IPA groups. The proportion of CD8+ T-cells was significantly increased in the animals of CTX + IPA. Memory CD8+ T-cells was significantly increased in early stage (24 h and 48 h, P < 0.001), but decreased in the late phase of fungal infection (72 h and 96 h) in the animals of CTX + IPA. In addition, at early stage of fungal infection (24 h and 48 h), serum mTOR (P < 0.001), S6K (P < 0.001), and T-bet (P < 0.05) was significantly higher, while EOMES was significantly lower (P < 0.001), in CTX + IPA group than that in control, CTX alone or IPA alone group. Conversely, serum mTOR, S6K, T-bet, and EOMES showed opposite changed in the late stage (72 h and 96 h). Pearson's correlation analysis indicated that mTOR and S6K were significantly correlated with T-bet (r = 0.901 and 0.91, respectively, P < 0.001), but negatively and significantly correlated with EOMES (r = −0.758 and −0.751, respectively, P < 0.001). Conclusions: mTOR may regulate transcription factors of EOMES and T-bet, and by which mechanism, it may modulate lymphocytes differentiation in animals with immune suppression and fungal infection.
Collapse
Affiliation(s)
- Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Long-Xiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Hospital, Chifeng, Inner Mongolia 024000, China
| | - Min Zheng
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xin Li
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
199
|
Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells. Proc Natl Acad Sci U S A 2017; 114:E2776-E2785. [PMID: 28283662 DOI: 10.1073/pnas.1620498114] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti-PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.
Collapse
|
200
|
The Balance between CD8 + T Cell-Mediated Clearance of AAV-Encoded Antigen in the Liver and Tolerance Is Dependent on the Vector Dose. Mol Ther 2017; 25:880-891. [PMID: 28284982 DOI: 10.1016/j.ymthe.2017.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
The liver continuously receives antigens from circulation and the gastrointestinal tract. A complex immune regulatory system has evolved in order to both limit inflammation and promote tolerance in the liver. Although in situ immune tolerance mechanisms enable successful gene therapy and liver transplantation, at the same time they facilitate chronic infections by pathogens such as hepatitis viruses. It is, however, poorly understood why hepatocytes infected with hepatitis viruses or transduced with adeno-associated virus (AAV)-based vectors may be rejected by CD8+ T cells several months later. We found that hepatic transfer of limited doses of an AAV-ovalbumin vector rapidly induced antigen-specific CD8+ T cells that only became functionally competent after >2 months. At this time, CD8+ T cells had downregulated negative checkpoint markers, e.g., the programmed death 1 [PD-1] receptor, and upregulated expression of relevant cytokines. At further reduced vector dose, only intrahepatic rather than systemic CD8+ T cell responses occurred, showing identical delay in antigen clearance. In contrast, PD-1-deficient mice rapidly cleared ovalbumin. Interestingly, higher vector dose directed sustained transgene expression without CD8+ T cell responses. Regulatory T cells, IL-10 expression, and Fas-L contributed to high-dose tolerance. Thus, viral vector doses profoundly impact CD8+ T cell responses.
Collapse
|