151
|
Behera R, Kumar V, Lohite K, Karnik S, Kundu GC. Activation of JAK2/STAT3 signaling by osteopontin promotes tumor growth in human breast cancer cells. Carcinogenesis 2009; 31:192-200. [DOI: 10.1093/carcin/bgp289] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
152
|
Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia 2009; 11:583-93. [PMID: 19484147 DOI: 10.1593/neo.09266] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/06/2009] [Accepted: 03/11/2009] [Indexed: 12/16/2022] Open
Abstract
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL- 6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Collapse
|
153
|
Adam12 plays a role during uterine decidualization in mice. Cell Tissue Res 2009; 338:413-21. [PMID: 19841944 DOI: 10.1007/s00441-009-0884-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
In mouse, decidualization is characterized by the proliferation of stromal cells and their differentiation into specialized type of cells (decidual cells) with polyploidy, surrounding the implanting blastocyst. However, the mechanisms involved in these processes remain poorly understood. Using multiple approaches, we have examined the role of Adam12 in decidualization during early pregnancy in mice. Adam12 is spatiotemporally expressed in decidualizing stromal cells in intact pregnant females and in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Adam12 is upregulated after progesterone treatment, which is primarily mediated by nuclear progesterone receptor. In a stromal cell culture model, the expression of Adam12 gradually rises with the progression of stromal decidualization, whereas the attenuated expression of Adam12 after siRNA knockdown significantly blocks the progression of decidualization. Our study suggests that Adam12 is involved in promoting uterine decidualization during pregnancy.
Collapse
|
154
|
Issigonis M, Tulina N, de Cuevas M, Brawley C, Sandler L, Matunis E. JAK-STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science 2009; 326:153-6. [PMID: 19797664 DOI: 10.1126/science.1176817] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult stem cells often reside in local microenvironments, or niches. Although niches can contain multiple types of stem cells, the coordinate regulation of stem cell behavior is poorly understood. In the Drosophila testis, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is directly required for maintenance of the resident germline and somatic stem cells. We found that the JAK-STAT signaling target and inhibitor Suppressor of cytokine signaling 36E (SOCS36E) is required for germline stem cell maintenance. SOCS36E suppresses JAK-STAT signaling specifically in the somatic stem cells, preventing them from displacing neighboring germline stem cells in a manner that depends on the adhesion protein integrin. Thus, in niches housing multiple stem cell types, negative feedback loops can modulate signaling, preventing one stem cell population from outcompeting the other.
Collapse
Affiliation(s)
- Melanie Issigonis
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
155
|
Leeman-Neill RJ, Wheeler SE, Singh SV, Thomas SM, Seethala RR, Neill DB, Panahandeh MC, Hahm ER, Joyce SC, Sen M, Cai Q, Freilino ML, Li C, Johnson DE, Grandis JR. Guggulsterone enhances head and neck cancer therapies via inhibition of signal transducer and activator of transcription-3. Carcinogenesis 2009; 30:1848-56. [PMID: 19762335 DOI: 10.1093/carcin/bgp211] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Treatment of human head and neck squamous cell carcinoma (HNSCC) cell lines with guggulsterone, a widely available, well-tolerated nutraceutical, demonstrated dose-dependent decreases in cell viability with EC(50)s ranging from 5 to 8 microM. Guggulsterone induced apoptosis and cell cycle arrest, inhibited invasion and enhanced the efficacy of erlotinib, cetuximab and cisplatin in HNSCC cell lines. Guggulsterone induced decreased expression of both phosphotyrosine and total signal transducer and activator of transcription (STAT)-3, which contributed to guggulsterone's growth inhibitory effect. Hypoxia-inducible factor (HIF)-1alpha was also decreased in response to guggulsterone treatment. In a xenograft model of HNSCC, guggulsterone treatment resulted in increased apoptosis and decreased expression of STAT3. In vivo treatment with a guggulsterone-containing natural product, Guggulipid, resulted in decreased rates of tumor growth and enhancement of cetuximab's activity. Our results suggest that guggulsterone-mediated inhibition of STAT3 and HIF-1alpha provide a biologic rationale for further clinical investigation of this compound in the treatment of HNSCC.
Collapse
|
156
|
Wang F, Arun P, Friedman J, Chen Z, Van Waes C. Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol 2009; 9:389-95. [PMID: 19570715 PMCID: PMC2731001 DOI: 10.1016/j.coph.2009.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022]
Abstract
Inflammation often exists in the tumor microenvironment and is induced by inflammatory mediators (cytokines, chemokines, and growth factors) produced by the tumor, stroma, and infiltrating cells. These factors modulate tissue remodeling and angiogenesis and actively promote tumor cell survival and chemoresistance through autocrine and paracrine mechanisms. Head and neck squamous cell carcinomas (HNSCCs) are highly inflammatory and aggressive in nature, and they express a number of cytokines and growth factors involved in inflammation. These cytokines and growth factors activate important signal transduction pathways, including NF-kappaB, JAK/STAT, and PI3K/Akt/mTOR, which regulate the expression of genes controlling growth, survival, and chemosensitivity. This review provides an update on recent advances in the understanding of the mechanisms driving cancer-related inflammation in HNSCC and on molecular targeted therapies under preclinical and clinical investigation.
Collapse
Affiliation(s)
- Frederick Wang
- Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, 1 Cloister Ct, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
157
|
Ratushny V, Astsaturov I, Burtness BA, Golemis EA, Silverman JS. Targeting EGFR resistance networks in head and neck cancer. Cell Signal 2009; 21:1255-68. [PMID: 19258037 PMCID: PMC2770888 DOI: 10.1016/j.cellsig.2009.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/17/2009] [Indexed: 01/01/2023]
Abstract
A core set of oncoproteins is overexpressed or functionally activated in many types of cancer, and members of this group have attracted significant interest as subjects for development of targeted therapeutics. For some oncoproteins such as EGFR/ErbB1, both small molecule and antibody agents have been developed and applied in the clinic for over a decade. Analysis of clinical outcomes has revealed an initially unexpected complexity in the response of patients to these agents. Diverse factors, including developmental lineage of the tumor progenitor cell, co-mutation or epigenetic modulation of genes encoding proteins in an extended EGFR signaling network or regulating core survival responses in individual tumors, and environmental factors including inflammatory agents and viral infection, all have been identified as modulating response to treatment with EGFR-targeted drugs. Second and third generation therapeutic strategies increasingly incorporate knowledge of cancer type-specific signaling environments, in a more personalized treatment approach. This review takes squamous cell carcinoma of the head and neck (SCCHN) as a specific example of an EGFR-involved cancer with idiosyncratic biological features that influence design of treatment modalities, with particular emphasis on commonalities and differences with other cancer types.
Collapse
Affiliation(s)
- Vladimir Ratushny
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129
| | - Igor Astsaturov
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Barbara A. Burtness
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Erica A. Golemis
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Joshua S. Silverman
- Programs in Head and Neck Cancer and Molecular Medicine, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
158
|
Activation of the JAK-STAT pathway is necessary for desensitization of 5-HT2A receptor-stimulated phospholipase C signalling by olanzapine, clozapine and MDL 100907. Int J Neuropsychopharmacol 2009; 12:651-65. [PMID: 18976543 PMCID: PMC3733235 DOI: 10.1017/s1461145708009590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have previously demonstrated that olanzapine-induced desensitization of 5-HT2A receptor-stimulated phospholipase C (PLC) activity is associated with increases in RGS7 protein levels both in vivo and in cells in culture, and the increase in RGS7 is dependent on activation of the JAK-STAT pathway in cells in culture. In the present study, we found that desensitization of 5-HT2A receptor-stimulated PLC activity induced by olanzapine is dependent on activation of the JAK-STAT pathway. Similar to olanzapine, clozapine-induced desensitization of 5-HT2A receptor signalling is accompanied by increases in RGS7 and activation of JAK2. Treatment with the selective 5-HT2A receptor antagonist MDL 100907 also increased RGS7 protein levels and JAK2 activation. Using a JAK2 inhibitor AG490, we found that clozapine and MDL 100907-induced increases in RGS7 are dependent on activation of the JAK-STAT pathway. Olanzapine, clozapine, and MDL 100907 treatment increased mRNA levels of RGS7. Using a chromatin immunoprecipitation assay we found STAT3 binding to the putative RGS7 promoter region. Taken together, olanzapine-induced activation of the JAK-STAT pathway, and STAT3 binding to the RGS7 gene could underlie the increase in RGS7 mRNA which could subsequently increase protein expression. Furthermore, the increase in RGS7 protein could play a role in the desensitization of 5-HT2A receptor signalling by terminating the activated Galphaq/11 proteins more rapidly. Overall, our data suggest that the complete desensitization of 5-HT2A receptor-stimulated PLC activity by olanzapine, clozapine and MDL 100907 requires activation of the JAK-STAT pathway, which in turn increases RGS7 expression probably by direct transcriptional activity of STAT3.
Collapse
|
159
|
Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 2009; 45:324-34. [PMID: 18805044 PMCID: PMC2743485 DOI: 10.1016/j.oraloncology.2008.07.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple genetic and epigenetic events, including the aberrant expression and function of molecules regulating cell signaling, growth, survival, motility, angiogenesis, and cell cycle control, underlie the progressive acquisition of a malignant phenotype in squamous carcinomas of the head and neck (HNSCC). In this regard, there has been a recent explosion in our understanding on how extracellular components, cell surface molecules, and a myriad of intracellular proteins and second messenger systems interact with each other, and are organized in pathways and networks to control cellular and tissue functions and cell fate decisions. This emerging ability to understand the basic mechanism controlling inter- and intra-cellular communication has provided an unprecedented opportunity to understand how their dysregulation contributes to the growth and dissemination of human cancers. Here, we will discuss the emerging information on how the use of modern technologies, including gene array and proteomic studies, combined with the molecular dissection of aberrant signaling networks, including the EGFR, ras, NFkappaB, Stat, Wnt/beta-catenin, TGF-beta, and PI3K-AKT-mTOR signaling pathways, can help elucidate the molecular mechanisms underlying HNSCC progression. Ultimately, we can envision that this knowledge may provide tremendous opportunities for the diagnosis of premalignant squamous lesions, and for the development of novel molecular-targeted strategies for the prevention and treatment of HNSCC.
Collapse
Affiliation(s)
- Alfredo A. Molinolo
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Panomwat Amornphimoltham
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Cristiane H. Squarize
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Rogerio M. Castilho
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Vyomesh Patel
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - J. Silvio Gutkind
- Oral & Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
160
|
Moral M, Segrelles C, Lara MF, Martínez-Cruz AB, Lorz C, Santos M, García-Escudero R, Lu J, Kiguchi K, Buitrago A, Costa C, Saiz C, Rodriguez-Peralto JL, Martinez-Tello FJ, Rodriguez-Pinilla M, Sanchez-Cespedes M, Garín M, Grande T, Bravo A, DiGiovanni J, Paramio JM. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res 2009; 69:1099-108. [PMID: 19176372 DOI: 10.1158/0008-5472.can-08-3240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia with poor prognosis and survival that frequently displays Akt overactivation. Here we show that mice displaying constitutive Akt activity (myrAkt) in combination with Trp53 loss in stratified epithelia develop oral cavity tumors that phenocopy human HNSCC. The myrAkt mice develop oral lesions, making it a possible model of human oral dysplasia. The malignant conversion of these lesions, which is hampered due to the induction of premature senescence, is achieved by the subsequent ablation of Trp53 gene in the same cells in vivo. Importantly, mouse oral tumors can be followed by in vivo imaging, show metastatic spreading to regional lymph nodes, and display activation of nuclear factor-kappaB and signal transducer and activator of transcription-3 pathways and decreased transforming growth factor-beta type II receptor expression, thus resembling human counterparts. In addition, malignant conversion is associated with increased number of putative tumor stem cells. These data identify activation of Akt and p53 loss as a major mechanism of oral tumorigenesis in vivo and suggest that blocking these signaling pathways could have therapeutic implications for the management of HNSCC.
Collapse
Affiliation(s)
- Marta Moral
- Division of Biomedicine, Molecular Oncology Unit, CIEMAT, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Kim JE, Kim HS, Shin YJ, Lee CS, Won C, Lee SA, Lee JW, Kim Y, Kang JS, Ye SK, Chung MH. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression. Exp Mol Med 2009; 40:514-22. [PMID: 18985009 DOI: 10.3858/emm.2008.40.5.514] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor migration/invasion is the main cause of tumor progression and STAT3 is needed to enhance tumor migration/invasion by up-regulating MMP-9. Thus, agents that inhibit STAT3 activation may be used as an anticancer drug. We present herein that 6-methyl-2-propylimino-6, 7-dihydro-5H-benzo [1, 3]-oxathiol- 4-one (LYR71) , a derivative of trimeric resveratrol, has an anticancer activity through inhibition of STAT3 activation. We found that LYR71 suppressed STAT3 activation and inhibited the expression and activity of MMP-9 in RANTES-stimulated breast cancer cells. In addition, LYR71 reduced RANTES-induced MMP-9 transcripts by blocking STAT3 recruitment, dissociating p300 and deacetylating histone H3 and H4 on the MMP-9 promoter. Furthermore, LYR71 inhibited tumor migration/invasion in RANTES-treated breast cancer cells and consequently blocked tumor progression in tumor-bearing mice. Taken together, the results of this study suggest that LYR71 can be therapeutically useful due to the inhibition effect of STAT3-mediated MMP-9 expression in breast cancer cells.
Collapse
Affiliation(s)
- Ja Eun Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Gelbard A, Kupferman ME, Jasser SA, Chen W, El-Naggar AK, Myers JN, Hanna EY. An orthotopic murine model of sinonasal malignancy. Clin Cancer Res 2009; 14:7348-57. [PMID: 19010850 DOI: 10.1158/1078-0432.ccr-08-0977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Malignant sinonasal tumors are clinically challenging due to their proximity to vital structures and their diverse histogenesis and biological behavior. To date, no animal models accurately reflect the clinical behavior of these malignancies. We developed an orthotopic murine model of sinonasal malignancy that reproduces the intracranial extension, bony destruction, and spread along neural fascial planes seen in patients with aggressive sinonasal malignancies of various histologies. EXPERIMENTAL DESIGN Human squamous cell carcinoma line (DM14) and adenoid cystic carcinoma line (ACC-3) were implanted in the right maxillary sinus or soft palate in male nude mice. Animals were monitored for tumor growth and survival. Tumor specimens were removed for histopathologic evaluation to assess for intracranial extension, orbital invasion, bony invasion, perineural invasion, and distant metastasis. Statistical analysis was done to calculate P values with the Student's t test for individual tumor volumes. Differences in survival times were assessed using the log-rank test. RESULTS Mice with DM14 or ACC-3 implanted in either the maxillary sinus or the soft palate developed large primary tumors. A statistically significant inverse correlation between survival and the number of tumor cells implanted was found. Histopathologic evaluation revealed orbital invasion, intracranial extension, pulmonary metastasis, lymph node metastasis, and perineural invasion. CONCLUSIONS We describe the first orthotopic model for sinonasal malignancy. Our model faithfully recapitulates the phenotype and malignant behavior of the aggressive tumor types seen in patients. This model offers an opportunity to identify and specifically target the aberrant molecular mechanisms underlying this heterogeneous group of malignancies.
Collapse
Affiliation(s)
- Alexander Gelbard
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol 2008; 63:983-95. [PMID: 18766340 DOI: 10.1007/s00280-008-0823-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/11/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND STAT3 overexpression has been detected in several cancers including head and neck squamous cell carcinoma (HNSCC). Previous studies using intratumoral administration of a STAT3 decoy oligonucleotide that abrogates STAT3-mediated gene transcription in preclinical cancer models have demonstrated antitumor efficacy. This study was conducted to observe the toxicity and biologic effects of the STAT3 decoy in a non-human primate model, in anticipation of initiating a clinical trial in HNSCC patients. METHODS Three study groups (two monkeys/sex/group) were administered a single intramuscular injection of low dose of STAT3 decoy (0.8 mg total dose/monkey), high dose of STAT3 decoy (3.2 mg total dose/monkey) or vehicle control (PBS alone) on day 1 and necropsies were performed on days 2 and 15 (one monkey/sex/group/day). Low and high doses of the decoy were administered in the muscle in a volume of 0.9 ml. Tissue and blood were harvested for toxicology and biologic analyses. RESULTS Upon observation, the STAT3 decoy-treated animals exhibited behavior that was similar to the vehicle control group. Individual animal body weights remained within 1% of pretreatment weights throughout the study. Hematological parameters were not significantly different between the control and the treatment groups. Clinical chemistry fluctuations were considered within normal limits and were not attributed to the STAT3 decoy. Assessment of complement activation breakdown product (Bb) levels demonstrated no activation of the alternative pathway of complement in any animal at any dose level. At necropsy, there were no gross or microscopic findings attributed to STAT3 decoy in any organ examined. STAT3 target gene expression at the injection site revealed decreased Bcl-X(L) and cyclin D1 expression levels in the animals treated with high dose of STAT3 decoy compared to the animals injected with low dose of STAT3 decoy or the vehicle as control. CONCLUSION Based on these findings, the no-observable-adverse-effect-level (NOAEL) was greater than 3.2 mg/kg when administered as a single dose to male and female Cynomolgus monkeys. Plans are underway to test the safety and biologic effects of intratumoral administration of the STAT3 decoy in HNSCC patients.
Collapse
|
164
|
Berg T. Signal Transducers and Activators of Transcription as Targets for Small Organic Molecules. Chembiochem 2008; 9:2039-44. [DOI: 10.1002/cbic.200800274] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
165
|
ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res 2008; 315:572-82. [PMID: 18778701 DOI: 10.1016/j.yexcr.2008.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 01/02/2023]
Abstract
The most common sites of malignancies in the aerodigestive tract include the lung, head and neck and the esophagus. Esophageal adenocarcinomas (EA), esophageal squamous cell carcinomas (ESCC), and squamous cell carcinomas of the head and neck (SCCHN) are the primary focus of this review. Traditional treatment for aerodigestive tract cancers includes primary chemoradiotherapy (CRT) or surgical resection followed by radiation (or CRT). Recent developments in treatment have focused increasingly on molecular targeting strategies including cetuximab (a monoclonal antibody against epidermal growth factor receptor (EGFR)). Cetuximab was FDA approved in 2006 for treatment of SCCHN, underscoring the importance of understanding the biology of these malignancies. EGFR is a member of the ErbB family of growth factor receptor tyrosine kinases. The major pathways activated by ErbB receptors include Ras/Raf/MAPK; PI3K/AKT; PLCgamma and STATs, all of which lead to the transcription of target genes that may contribute to aerodigestive tumor progression. This review explores the expression of ErbB receptors in EA, ESCC and SCCHN and the signaling pathways of EGFR in SCCHN.
Collapse
|
166
|
SOCS3 regulates p21 expression and cell cycle arrest in response to DNA damage. Cell Signal 2008; 20:2221-30. [PMID: 18793717 DOI: 10.1016/j.cellsig.2008.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.
Collapse
|
167
|
Berg T. Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol 2008; 12:464-71. [DOI: 10.1016/j.cbpa.2008.07.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
|
168
|
Allen C, Saigal K, Nottingham L, Arun P, Chen Z, Van Waes C. Bortezomib-induced apoptosis with limited clinical response is accompanied by inhibition of canonical but not alternative nuclear factor-{kappa}B subunits in head and neck cancer. Clin Cancer Res 2008; 14:4175-85. [PMID: 18593997 DOI: 10.1158/1078-0432.ccr-07-4470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nuclear factor-kappaB (NF-kappaB)/REL transcription factors promote cancer cell survival and progression. The canonical (NF-kappaB1/RELA or cREL) and alternate (NF-kappaB2/RELB) pathways require the proteasome for cytoplasmic-nuclear translocation, prompting the investigation of bortezomib for cancer therapy. However, limited clinical activity of bortezomib has been observed in many epithelial malignancies, suggesting this could result from incomplete inhibition of NF-kappaB/RELs or other prosurvival signal pathways. EXPERIMENTAL DESIGN To examine these possibilities, matched biopsies from 24 h posttreatment were obtained from accessible tumors of patients who received low-dose bortezomib (0.6 mg/m(2)) before reirradiation in a phase I trial for recurrent head and neck squamous cell carcinoma (HNSCC). Effects of bortezomib on apoptosis and proliferation by TUNEL and Ki67 staining were compared with nuclear staining for all five NF-kappaB subunits, phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated signal transducers and activators of transcription 3 (STAT3) in tumor biopsies, and by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTP) and DNA binding assay for the five NF-kappaB subunits in HNSCC cell lines. RESULTS HNSCC showed increased nuclear staining for all five NF-kappaB subunits, phosphorylated ERK1/2, and phosphorylated STAT3. Bortezomib treatment significantly enhanced apoptosis with inhibition of nuclear RELA in three of four tumors, but other NF-kappaB subunits, ERK1/2, and STAT3 were variably or not affected, and tumor progression was observed within 3 months. In HNSCC cell lines, 10(-8) mol/L bortezomib inhibited cell density while inhibiting tumor necrosis factor-alpha-induced and partially inhibiting basal activation of NF-kappaB1/RELA, but not NF-kappaB2/RELB. CONCLUSIONS Although low-dose bortezomib inhibits activation of subunits of the canonical pathway, it does not block nuclear activation of the noncanonical NF-kappaB or other prosurvival signal pathways, which may contribute to the heterogeneous responses observed in HNSCC.
Collapse
Affiliation(s)
- Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
169
|
Patel V, Hood BL, Molinolo AA, Lee NH, Conrads TP, Braisted JC, Krizman DB, Veenstra TD, Gutkind JS. Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer Res 2008; 14:1002-14. [PMID: 18281532 DOI: 10.1158/1078-0432.ccr-07-1497] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC. EXPERIMENTAL DESIGN Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform. Approximately 20,000 cells procured from FFPE tissue sections of normal oral epithelium and well, moderately, and poorly differentiated HNSCC were processed for mass spectrometry and bioinformatic analysis. RESULTS A large number of proteins expressed in normal oral epithelium and HNSCC, including cytokeratins, intermediate filaments, differentiation markers, and proteins involved in stem cell maintenance, signal transduction, migration, cell cycle regulation, growth and angiogenesis, matrix degradation, and proteins with tumor suppressive and oncogenic potential, were readily detected. Of interest, the relative expression of many of these molecules followed a distinct pattern in normal squamous epithelia and well, moderately, and poorly differentiated HNSCC tumor tissues. Representative proteins were further validated using immunohistochemical studies in HNSCC tissue sections and tissue microarrays. CONCLUSIONS The ability to combine laser capture microdissection and in-depth proteomic analysis of FFPE tissues provided a wealth of information regarding the nature of the proteins expressed in normal squamous epithelium and during HNSCC progression, which may allow the development of novel biomarkers of diagnostic and prognostic value and the identification of novel targets for therapeutic intervention in HNSCC.
Collapse
Affiliation(s)
- Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Boehm AL, Sen M, Seethala R, Gooding WE, Freilino M, Wong SMY, Wang S, Johnson DE, Grandis JR. Combined targeting of epidermal growth factor receptor, signal transducer and activator of transcription-3, and Bcl-X(L) enhances antitumor effects in squamous cell carcinoma of the head and neck. Mol Pharmacol 2008; 73:1632-42. [PMID: 18326051 PMCID: PMC3437602 DOI: 10.1124/mol.107.044636] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a leading cause of cancer deaths worldwide. Epidermal growth factor receptor (EGFR), an upstream mediator of signal transducer and activator of transcription (STAT)-3 is overexpressed in a variety of cancers, including SCCHN. Therapies such as monoclonal antibodies and tyrosine kinase inhibitors targeting EGFR have demonstrated limited antitumor efficacy, which may be explained, in part, by persistent STAT3 activation despite EGFR inhibition. STAT3 activation induces expression of target genes in SCCHN, including Bcl-X(L), a mediator of antiapoptotic activity. Bcl-X(L) is commonly overexpressed in SCCHN where it correlates with chemoresistance, making it a potential therapeutic target. Targeting the EGFR-STAT3-Bcl-X(L) pathway at several levels, including the upstream receptor, the intracellular transcription factor, and the downstream target gene, has not been investigated previously. Using erlotinib, an EGFR-specific reversible tyrosine kinase inhibitor in combination with a STAT3 transcription factor decoy, we found enhanced antitumor effects in vitro and in vivo. The combination of the STAT3 decoy and gossypol, a small molecule targeting Bcl-X(L), also yielded enhanced inhibition of cell proliferation. The triple combination of erlotinib, STAT3 decoy, and gossypol further enhanced cell growth inhibition and apoptosis in vitro, and it down-regulated signaling molecules further downstream of the EGFR-STAT3 signaling pathway, such as cyclin D1. These results suggest that combined targeting of several components of an oncogenic signaling pathway may be an effective therapeutic strategy for SCCHN.
Collapse
Affiliation(s)
- Amanda L Boehm
- Department of Pathology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The epidermal growth factor receptor (EGFR) and signal transducers and activators of transcription (STATs) are commonly expressed and activated in many malignancies. EGFR is an upstream activator of several pathways involved in tumor progression, and STATs activate selected genes involved in oncogenesis. There are several different mechanisms by which STAT proteins can mediate intracellular EGFR signaling, including direct activation of STATs by EGFR binding and indirect activation of STATs through Src-mediated EGFR signaling. EGFR likely activates STAT in a manner distinctive from other mechanisms of STAT activation; STAT5 can be phosphorylated in an EGF-dependent manner at unique sites, conferring novel functions. Cumulative evidence suggests that targeting EGFR signaling pathways at several levels may demonstrate synergistic therapeutic effects compared with targeting the upstream receptor alone. Thus, methods to inhibit EGFR in conjunction with oncogenic STATs may represent a novel therapeutic strategy for cancers characterized by upregulation of EGFR signaling.
Collapse
Affiliation(s)
- Kelly M Quesnelle
- Department of Otolaryngology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
172
|
Wang J, Seethala RR, Zhang Q, Gooding W, van Waes C, Hasegawa H, Ferris RL. Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: implications for therapy. J Natl Cancer Inst 2008; 100:502-12. [PMID: 18364504 DOI: 10.1093/jnci/djn059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine receptor 7 (CCR7) mediates survival and invasiveness of metastatic squamous cell carcinoma of the head and neck (SCCHN) to regional lymph nodes. Constitutive prosurvival signaling by the phosphoinositide-3 kinase/Akt pathway has been observed in SCCHN cells independent of epidermal growth factor receptor (EGFR) signaling. METHODS Human SCCHN cell lines were treated with agents that block or activate CCR7-mediated signaling, and Akt activation, cell viability in the presence or absence of EGFR inhibition, and cisplatin-induced apoptosis (in the presence or absence of Akt inhibition) were assessed by immunoblotting, the MTT assay, and the detection of annexin V, respectively. Expression and secretion of chemokines by primary tumors, metastatic nodes, and benign nodes of patients with SCCHN were determined by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The role of paracrine activation of CCR7 on tumor growth was analyzed by comparing the growth of orthotopic tumors derived from B7E3 murine oral carcinoma cells in wild-type BALB/c mice, in paucity of lymphoid T cell (plt, deficient in CCL19 and CCL21 expression) mice, and in plt mice in which the implanted B7E3 cells overexpressed CCR7 (n = 14 mice per group). RESULTS In the absence of exogenous ligand treatment, blockade of CCR7 signaling reduced levels of phosphorylated (activated) Akt and decreased SCCHN cell viability by up to 59% (95% confidence interval [CI] = 58.2% to 59.8%), enhancing the effect of EGFR inhibition. CCR7 stimulation protected metastatic SCCHN cells from cisplatin-induced apoptosis in an Akt-dependent manner. Metastatic nodes expressed and secreted higher levels of CCL19 than benign nodes or primary tumors. CCR7-positive murine SCCHN tumors grew more slowly in plt mice than in control BALB/c mice (mean average tumor volume on day 20 = 12.2 and 26.5 mm(3), respectively; difference = 14.3 mm(3), 95% CI = 12.3 to 17.1 mm(3)). CONCLUSIONS Secretion of CCL19 and CCL21 by SCCHN cells and by paracrine sources combine to promote activation of CCR7 prosurvival signaling associated with tumor progression and disease relapse. CCR7 and its cognate chemokines may be useful biomarkers of SCCHN progression, and blockade of CCR7-mediated signaling may enhance the efficacy of platinum- and EGFR-based therapies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Van Waes C, Chen Z. A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer 2008; 122:1987-98. [PMID: 18172861 DOI: 10.1002/ijc.23324] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abrogation of apoptosis to sustain cell survival is an essential step in development of cancer. Aberrant activation of signal transcription factors NF-kappaB or STAT3, alterations in p53 status, or BCL/BAX family expression have each been reported to affect cell survival in cancer, including head and neck squamous cell carcinomas (HNSCC). However, molecular targeting of these alterations individually has yielded disappointing results. In our study, we examined the hypothesis that alterations in a signal network involving NF-kappaB, STAT3 and p53 modulates expression of proapoptotic BAX and antiapoptotic BCL-XL proteins, and promotes cell survival of HNSCC. We found that NF-kappaB and STAT3 are coactivated together, and with cytokine stimulation or siRNA knock-down, both modulate BAX/BCL-XL. Greater modulation among HNSCC lines expressing low wt p53 than those over-expressing mt p53 protein suggested that decreased p53 expression might enhance activation of NF-kappaB, STAT3 and BCL-XL. Reexpression of wt p53 suppressed NF-kappaB and STAT3 nuclear binding activity, and BCL-XL expression, while inducing p21 and BAX. Over-expression of p53 together with inhibition of NF-kappaB or STAT3 induced greater increase in the BAX/BCL-XL ratio and apoptosis than modulation of these transcription factors individually. Conversely, NF-kappaB or STAT3 inducing cytokines decreased the BAX/BCL-XL ratio. Thus, a network involving signal coactivation of NF-kappaB and STAT3, differentially modified by p53 inactivation or mutation, promotes altered BAX/BCL-XL expression and cell survival in HNSCC. Inhibition of signal activation of both NF-kappaB and STAT3 together with reexpression of p53 could be the most effective strategy to restore BAX/BCL-XL regulation and for cytotoxic therapy of HNSCC.
Collapse
Affiliation(s)
- Tin Lap Lee
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892-1419, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Yan B, Chen G, Saigal K, Yang X, Jensen ST, Van Waes C, Stoeckert CJ, Chen Z. Systems biology-defined NF-kappaB regulons, interacting signal pathways and networks are implicated in the malignant phenotype of head and neck cancer cell lines differing in p53 status. Genome Biol 2008; 9:R53. [PMID: 18334025 PMCID: PMC2397505 DOI: 10.1186/gb-2008-9-3-r53] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/28/2008] [Accepted: 03/11/2008] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Aberrant activation of the nuclear factor kappaB (NF-kappaB) pathway has been previously implicated as a crucial signal promoting tumorigenesis. However, how NF-kappaB acts as a key regulatory node to modulate global gene expression, and contributes to the malignant heterogeneity of head and neck cancer, is not well understood. RESULTS To address this question, we used a newly developed computational strategy, COGRIM (Clustering Of Gene Regulons using Integrated Modeling), to identify NF-kappaB regulons (a set of genes under regulation of the same transcription factor) for 1,265 genes differentially expressed by head and neck cancer cell lines differing in p53 status. There were 748 NF-kappaB targets predicted and individually annotated for RELA, NFkappaB1 or cREL regulation, and a prevalence of RELA related genes was observed in over-expressed clusters in a tumor subset. Using Ingenuity Pathway Analysis, the NF-kappaB targets were reverse-engineered into annotated signature networks and pathways, revealing relationships broadly altered in cancer lines (activated proinflammatory and down-regulated Wnt/beta-catenin and transforming growth factor-beta pathways), or specifically defective in cancer subsets (growth factors, cytokines, integrins, receptors and intermediate kinases). Representatives of predicted NF-kappaB target genes were experimentally validated through modulation by tumor necrosis factor-alpha or small interfering RNA for RELA or NFkappaB1. CONCLUSION NF-kappaB globally regulates diverse gene programs that are organized in signal networks and pathways differing in cancer subsets with distinct p53 status. The concerted alterations in gene expression patterns reflect cross-talk among NF-kappaB and other pathways, which may provide a basis for molecular classifications and targeted therapeutics for heterogeneous subsets of head and neck or other cancers.
Collapse
Affiliation(s)
- Bin Yan
- Head and Neck Surgery Branch, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Liu T, Zhang M, Zhang H, Sun C, Deng Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 2008; 265:1225-32. [DOI: 10.1007/s00405-008-0625-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/17/2008] [Indexed: 11/29/2022]
|
176
|
Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res 2008; 87:14-32. [PMID: 18096889 DOI: 10.1177/154405910808700104] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The development of oral squamous cell carcinoma (OSCC) is a multistep process requiring the accumulation of multiple genetic alterations, influenced by a patient's genetic predisposition as well as by environmental influences, including tobacco, alcohol, chronic inflammation, and viral infection. Tumorigenic genetic alterations consist of two major types: tumor suppressor genes, which promote tumor development when inactivated; and oncogenes, which promote tumor development when activated. Tumor suppressor genes can be inactivated through genetic events such as mutation, loss of heterozygosity, or deletion, or by epigenetic modifications such as DNA methylation or chromatin remodeling. Oncogenes can be activated through overexpression due to gene amplification, increased transcription, or changes in structure due to mutations that lead to increased transforming activity. This review focuses on the molecular mechanisms of oral carcinogenesis and the use of biologic therapy to specifically target molecules altered in OSCC. The rapid progress that has been made in our understanding of the molecular alterations contributing to the development of OSCC is leading to improvements in the early diagnosis of tumors and the refinement of biologic treatments individualized to the specific characteristics of a patient's tumor.
Collapse
Affiliation(s)
- S Choi
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 441, [corrected] Houston, TX 77030-4009, USA
| | | |
Collapse
|
177
|
Xu J, Sylvester R, Tighe AP, Chen S, Gudas LJ. Transcriptional activation of the suppressor of cytokine signaling-3 (SOCS-3) gene via STAT3 is increased in F9 REX1 (ZFP-42) knockout teratocarcinoma stem cells relative to wild-type cells. J Mol Biol 2008; 377:28-46. [PMID: 18237746 DOI: 10.1016/j.jmb.2007.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Rex1 (Zfp42), first identified as a gene that is transcriptionally repressed by retinoic acid (RA), encodes a zinc finger transcription factor expressed at high levels in F9 teratocarcinoma stem cells, embryonic stem cells, and other stem cells. Loss of both alleles of Rex1 by homologous recombination alters the RA-induced differentiation of F9 cells, a model of pluripotent embryonic stem cells. We identified Suppressor of Cytokine Signaling-3 (SOCS-3) as a gene that exhibits greatly increased transcriptional activation in RA, cAMP, and theophylline (RACT)-treated F9 Rex1(-/-) cells (approximately 25-fold) as compared to wild-type (WT) cells ( approximately 2.5-fold). By promoter deletion, mutation, and transient transfection analyses, we have shown that this transcriptional increase is mediated by the STAT3 DNA-binding elements located between -99 to -60 in the SOCS-3 promoter. Overexpression of STAT3 dominant-negative mutants greatly diminishes this SOCS-3 transcriptional increase in F9 Rex1(-/-) cells. This increase in SOCS-3 transcription is associated with a four- to fivefold higher level of tyrosine-phosphorylated STAT3 in the RACT-treated F9 Rex1(-/-) cells as compared to WT. Dominant-negative Src tyrosine kinase, Jak2, and protein kinase A partially reduce the transcriptional activation of the SOCS 3 gene in RACT-treated F9 Rex1 null cells. In contrast, parathyroid hormone peptide enhances the effect of RA in F9 Rex1(-/-) cells, but not in F9 WT. Thus, Rex1, which is highly expressed in stem cells, inhibits signaling via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, thereby modulating the differentiation of F9 cells.
Collapse
Affiliation(s)
- Juliana Xu
- Pharmacology Department, Weill Cornell Medical College, 1300 York Avenue, Room E-409, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
178
|
Ferris RL, Grandis JR. NF-kappaB gene signatures and p53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res 2007; 13:5663-4. [PMID: 17908953 DOI: 10.1158/1078-0432.ccr-07-1544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
179
|
Xu Y, Ikegami M, Wang Y, Matsuzaki Y, Whitsett JA. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells. BMC Genomics 2007; 8:455. [PMID: 18070348 PMCID: PMC2234434 DOI: 10.1186/1471-2164-8-455] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 12/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background The signal transducer and activator of transcription 3 (STAT3) mediates gene expression in response to numerous growth factors and cytokines, playing an important role in many cellular processes. To better understand the molecular mechanisms by which Stat3 influences gene expression in the lung, the effect of pulmonary epithelial cell specific deletion of Stat3 on genome wide mRNA expression profiling was assessed. Differentially expressed genes were identified from Affymetrix Murine GeneChips analysis and subjected to gene ontology classification, promoter analysis, pathway mapping and literature mining. Results Total of 791 mRNAs were significantly increased and 314 mRNAs were decreased in response to the deletion of Stat3Δ/Δ in the lung. STAT is the most enriched cis-elements in the promoter regions of those differentially expressed genes. Deletion of Stat3 induced genes influencing protein metabolism, transport, chemotaxis and apoptosis and decreased the expression of genes mediating lipid synthesis and metabolism. Expression of Srebf1 and 2, genes encoding key regulators of fatty acid and steroid biosynthesis, was decreased in type II cells from the Stat3Δ/Δ mice, consistent with the observation that lung surfactant phospholipids content was decreased. Stat3 influenced both pro- and anti-apoptotic pathways that determine cell death or survival. Akt, a potential transcriptional target of Stat3, was identified as an important participant in Stat3 mediated pathways including Jak-Stat signaling, apoptosis, Mapk signaling, cholesterol and fatty acid biosynthesis. Conclusion Deletion of Stat3 from type II epithelial cells altered the expression of genes regulating diverse cellular processes, including cell growth, apoptosis and lipid metabolism. Pathway analysis indicates that STAT3 regulates cellular homeostasis through a complex regulatory network that likely enhances alveolar epithelial cell survival and surfactant/lipid synthesis, necessary for the protection of the lung during injury.
Collapse
Affiliation(s)
- Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
180
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
181
|
Watterson TL, Sorensen J, Martin R, Coulombe RA. Effects of PM2.5 collected from Cache Valley Utah on genes associated with the inflammatory response in human lung cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1731-44. [PMID: 17885930 DOI: 10.1080/15287390701457746] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In January 2004, the normally picturesque Cache Valley in northern Utah made national headlines with the highest PM2.5 levels in the nation. Epidemiological studies linked exposure to particulate air pollution in other locations with stroke and Alzheimer's disease and to early mortality from all causes, cancer, and cardiopulmonary diseases. To determine potential effects of these particles on human health, human bronchial epithelial cells (BEAS-2B) were cultured with PM2.5 collected from various locations in the Cache Valley. These particles were slightly cytotoxic, but more potent than NH4NO3, the major chemical component of Cache Valley PM2.5. Gene expression analysis of PM2.5-exposed cells was performed using microarray and quantitative reverse-transcription polymerase chain reaction (RT-PCR). Among other genes, PM2.5 exposure induced genes and proteins involved in the inflammatory response. Most notably, PM2.5-exposed cells showed significant gene level upregulation of activating receptors to interleukins 1 and 6 (IL-1R1 and IL-6R), as well as concomitant increases in protein. Increases in IL-1 receptor associated kinase-1 (IRAK) protein were observed. PM2.5 exposure resulted in release of IL-6, as well phosphorylated STAT3 protein, providing evidence that PM activates the IL-6/gp130/STAT3 signaling pathway in BEAS-2B cells. IL-20 and major histocompatibility complex peptide class-1 (MICA) were upregulated and cleavage of caspase-12 was detected. In total, our results indicate that Cache Valley PM2.5 produces the upregulation of important cytokine receptors and is able to activate both IL-1R- and IL-6R-mediated signaling pathways in human lung cells. These observations are generally consistent with the adverse effects associated with inhalation of fine particulate matter like PM2.5.
Collapse
Affiliation(s)
- Todd L Watterson
- Graduate Program in Toxicology, Department of Veterinary Sciences, Utah State University, Logan, Utah 84322-4620, USA
| | | | | | | |
Collapse
|
182
|
Molinolo AA, Hewitt SM, Amornphimoltham P, Keelawat S, Rangdaeng S, Meneses García A, Raimondi AR, Jufe R, Itoiz M, Gao Y, Saranath D, Kaleebi GS, Yoo GH, Leak L, Myers EM, Shintani S, Wong D, Massey HD, Yeudall WA, Lonardo F, Ensley J, Gutkind JS. Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res 2007; 13:4964-73. [PMID: 17785546 DOI: 10.1158/1078-0432.ccr-07-1041] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE As an approach to evaluate the expression pattern and status of activation of signaling pathways in clinical specimens from head and neck squamous cell carcinoma (HNSCC) patients, we established the Head and Neck Cancer Tissue Array Initiative, an international consortium aimed at developing a high-density HNSCC tissue microarray, with a high representation of oral squamous cell carcinoma. EXPERIMENTAL DESIGN These tissue arrays were constructed by acquiring cylindrical biopsies from multiple individual tumor tissues and transferring them into tissue microarray blocks. From a total of 1,300 cases, 547 cores, including controls, were selected and used to build the array. RESULTS Emerging information by the use of phosphospecific antibodies detecting the activated state of signaling molecules indicates that the Akt-mammalian target of rapamycin (mTOR) pathway is frequently activated in HNSCC, but independently from the activation of epidermal growth factor receptor or the detection of mutant p53. Indeed, we identified a large group of tissue samples displaying active Akt and mTOR in the absence of epidermal growth factor receptor activation. Furthermore, we have also identified a small subgroup of patients in which the mTOR pathway is activated but not Akt, suggesting the existence of an Akt-independent signaling route stimulating mTOR. CONCLUSIONS These findings provide important information about the nature of the dysregulated signaling networks in HNSCC and may also provide the rationale for the future development of novel mechanism-based therapies for HNSCC patients.
Collapse
Affiliation(s)
- Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Grace M, Blakely W. Transcription of five p53- and Stat-3-Inducible genes after ionizing radiation. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. ACTA ACUST UNITED AC 2007; 13:1235-42. [PMID: 17114005 DOI: 10.1016/j.chembiol.2006.09.018] [Citation(s) in RCA: 842] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/26/2022]
Abstract
Signal transducers and activators of transcription (STATs) are a family of latent cytoplasmic transcription factors that transmit signals from the cell membrane to the nucleus. One family member, STAT3, is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of cancer cell lines and human tumors. Screening of chemical libraries led to the identification of Stattic, a nonpeptidic small molecule shown to selectively inhibit the function of the STAT3 SH2 domain regardless of the STAT3 activation state in vitro. Stattic selectively inhibits activation, dimerization, and nuclear translocation of STAT3 and increases the apoptotic rate of STAT3-dependent breast cancer cell lines. We propose Stattic as a tool for the inhibition of STAT3 in cell lines or animal tumor models displaying constitutive STAT3 activation.
Collapse
Affiliation(s)
- Jochen Schust
- Department of Molecular Biology, Independent Research Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
185
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The role of STATs in lung carcinogenesis: an emerging target for novel therapeutics. J Mol Med (Berl) 2007; 85:427-36. [PMID: 17216202 DOI: 10.1007/s00109-006-0152-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription (STAT) proteins are a family of latent cytoplasmic transcription factors, which form dimers when activated by cytokine receptors, tyrosine kinase growth factor receptors as well as non-receptor tyrosine kinases. Dimeric STATs translocate to the nucleus, where they bind to specific DNA-response elements in the promoters of target genes, thereby inducing unique gene expression programs often in association with other transcription regulatory proteins. The functional consequence of different STAT proteins activation varies, as their target genes play diverse roles in normal cellular/tissue functions, including growth, apoptosis, differentiation and angiogenesis. Certain activated STATs have been implicated in human carcinogenesis, albeit only few studies have focused into their role in lung tumours. Converging evidence unravels their molecular interplays and complex multipartite regulation, rendering some of them appealing targets for lung cancer treatment with new developing strategies.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | |
Collapse
|
186
|
Spano JP, Milano G, Rixe C, Fagard R. JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 2006; 42:2668-70. [PMID: 16963263 DOI: 10.1016/j.ejca.2006.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 11/25/2022]
|