151
|
Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 2006; 60:32-44. [PMID: 16802299 DOI: 10.1002/ana.20901] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We explored the potential of embryonic stem cell-derived motor neurons to functionally replace those cells destroyed in paralyzed adult rats. METHODS We administered a phosphodiesterase type 4 inhibitor and dibutyryl cyclic adenosine monophosphate to overcome myelin-mediated repulsion and provided glial cell-derived neurotrophic factor within the sciatic nerve to attract transplanted embryonic stem cell-derived axons toward skeletal muscle targets. RESULTS We found that these strategies significantly increased the success of transplanted axons extending out of the spinal cord into ventral roots. Furthermore, transplant-derived axons reached muscle, formed neuromuscular junctions, were physiologically active, and mediated partial recovery from paralysis. INTERPRETATION We conclude that restoration of functional motor units by embryonic stem cells is possible and represents a potential therapeutic strategy for patients with paralysis. To our knowledge, this is the first report of the anatomical and functional replacement of a motor neuron circuit within the adult mammalian host.
Collapse
Affiliation(s)
- Deepa M Deshpande
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Many common neurological disorders, such as Parkinson's disease, stroke and multiple sclerosis, are caused by a loss of neurons and glial cells. In recent years, neurons and glia have been generated successfully from stem cells in culture, fueling efforts to develop stem-cell-based transplantation therapies for human patients. More recently, efforts have been extended to stimulating the formation and preventing the death of neurons and glial cells produced by endogenous stem cells within the adult central nervous system. The next step is to translate these exciting advances from the laboratory into clinically useful therapies.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Wallenberg Neuroscience Center, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
153
|
Heidersbach A, Gaspar-Maia A, McManus MT, Ramalho-Santos M. RNA interference in embryonic stem cells and the prospects for future therapies. Gene Ther 2006; 13:478-86. [PMID: 16520820 DOI: 10.1038/sj.gt.3302723] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In 1998, two distinct and exciting scientific fields emerged which have profoundly shaped the current direction of biomedical research. The discovery of RNA interference (RNAi) and the derivation of human embryonic stem (ES) cells have yielded exciting new possibilities for researchers and clinicians alike. While fundamentally different, aspects from these two fields may be combined to yield extraordinary scientific and medical benefits. Here, we review the prospects of combining RNAi and ES cell manipulation for both basic research and future therapies, as well as current limitations and obstacles that need to be overcome.
Collapse
Affiliation(s)
- A Heidersbach
- Diabetes Center, University of California, San Francisco, CA 94143-0525, USA
| | | | | | | |
Collapse
|
154
|
Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci 2006; 26:3256-68. [PMID: 16554476 PMCID: PMC6674087 DOI: 10.1523/jneurosci.5537-05.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Embryonic stem (ES) cells differentiate into functional motoneurons when treated with a sonic hedgehog (Shh) agonist and retinoic acid (RA). Whether ES cells can be directed to differentiate into specific subtypes of motoneurons is unknown. We treated embryoid bodies generated from HBG3 ES cells with a Shh agonist and RA for 5 d in culture to induce motoneuron differentiation. Enhanced green fluorescent protein (eGFP) expression was used to identify putative motoneurons, because eGFP is expressed under the control of the Hb9 promoter in HBG3 cells. We found that 96 +/- 0.7% of the differentiated eGFP+ motoneurons expressed Lhx3, a homeobox gene expressed by postmitotic motoneurons in the medial motor column (MMCm), when the treated cells were plated on a neurite-promoting substrate for 5 d. When the treated embryoid bodies were transplanted into stage 17 chick neural tubes, the eGFP+ motoneurons migrated to the MMCm, expressed Lhx3, projected axons to the appropriate target for MMCm motoneurons (i.e., epaxial muscles), and contained synaptic vesicles within intramuscular axonal branches. In ovo and in vitro studies indicated that chemotropic factors emanating from the epaxial muscle and/or surrounding mesenchyme likely guide Lhx3+ motoneurons to their correct target. Finally, whole-cell patch-clamp recordings of transplanted ES cell-derived motoneurons demonstrated that they received synaptic input, elicited repetitive trains of action potentials, and developed passive membrane properties that were similar to host MMCm motoneurons. These results indicate that ES cells can be directed to form subtypes of neurons with specific phenotypic properties.
Collapse
|
155
|
Banks GB, Chamberlain JS. Relevance of motoneuron specification and programmed cell death in embryos to therapy of ALS. ACTA ACUST UNITED AC 2006; 75:294-304. [PMID: 16425251 DOI: 10.1002/bdrc.20051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular cues that generate spinal motoneurons in early embryonic development are well defined. Motoneurons are generated in excess and consequently undergo a natural period of programmed cell death. Although it is not known exactly how motoneurons compete for survival in embryonic development, it is hypothesized that they rely on the ability to access limited amounts of trophic factors from peripheral tissues, a process that is tightly regulated by skeletal muscle activity. Attempts to elucidate the molecular mechanisms that underlie motoneuron generation and programmed cell death in embryos have led to various effective strategies for treating injury and disease in animal models. Such studies provide great hope for the amelioration of human amyotrophic lateral sclerosis (ALS), a devastating progressive motoneuron degenerative disease. Here we review the clinical relevance of studying motoneuron specification and death during embryonic development.
Collapse
Affiliation(s)
- Glen B Banks
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
156
|
Abstract
Since the early 20th century, it has been recognized that motoneurons must fire repetitive trains of action potentials to produce muscle contraction. In 1932, Sir John Eccles, together with Hebbel Hoff, found that action potential spike trains in motor axons were produced by "rhythmic centres", which were within the motoneurons themselves. Two decades later, Eccles attended a Cold Spring Harbor Symposium in NY, USA entitled "The Neuron". Two of the many notable presentations at this symposium were juxtaposed: one by Eccles from the University of Otago, Dunedin, NZL, and the other by J. Walter Woodbury and Harry Patton from the University of Washington, Seattle, USA. Both presentations included data obtained using sharp microelectrodes to study the intracellularly recorded potentials of cat motoneurons. In this review, I discuss some of the events leading up to and surrounding this jointly accomplished advance and proceed to discussion of subsequent studies over 5+ decades that have made use of intracellular recordings from motoneurons to study their repetitive firing behavior. This begins with early descriptions of primary and secondary range firing, and continues to the discovery of dendritic persistent inward currents and their relation to plateau potentials, synaptic amplification, and motoneuronal firing. Following a brief description of the possible mechanisms underlying spike frequency adaptation, I discuss the modulation of repetitive firing properties during various motor behaviors. It has become increasingly clear that the central nervous system has exquisite control of the repetitive firing of motoneurons. Eccles' work laid the foundation for the present-day study of these processes.
Collapse
Affiliation(s)
- Robert M Brownstone
- Departments of Surgery (Neurosurgery) and Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
157
|
Abstract
Motor neuron diseases (MND), such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are progressive neurodegenerative diseases that share the common characteristic of upper and/or lower motor neuron degeneration. Therapeutic strategies for MND are designed to confer neuroprotection, using trophic factors, anti-apoptotic proteins, as well as antioxidants and anti-excitotoxicity agents. Although a large number of therapeutic clinical trials have been attempted, none has been shown satisfactory for MND at this time. A variety of strategies have emerged for motor neuron gene transfer. Application of these approaches has yielded therapeutic results in cell culture and animal models, including the SOD1 models of ALS. In this study we describe the gene-based treatment of MND in general, examining the potential viral vector candidates, gene delivery strategies, and main therapeutic approaches currently attempted. Finally, we discuss future directions and potential strategies for more effective motor neuron gene delivery and clinical translation.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience, Cleveland Clinic Foundation, NB2-126A, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
158
|
Anderová M, Kubinová S, Jelitai M, Neprasová H, Glogarová K, Prajerová I, Urdzíková L, Chvátal A, Syková E. Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: Immunohistochemical and electrophysiological analysis. ACTA ACUST UNITED AC 2006; 66:1084-100. [PMID: 16838369 DOI: 10.1002/neu.20278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GFP labeled/NE-4C neural progenitor cells cloned from primary neuroectodermal cultures of p53- mouse embryos give rise to neurons when exposed to retinoic acid in vitro. To study their survival and differentiation in vivo, cells were transplanted into the cortex of 6-week-old rats, 1 week after the induction of a photochemical lesion or into noninjured cortex. The electrophysiological properties of GFP/NE-4C cells were studied in vitro (8-10 days after differentiation induction) and 4 weeks after transplantation using the whole-cell patch-clamp technique, and immunohistochemical analyses were carried out. After transplantation into a photochemical lesion, a large number of cells survived, some of which expressed the astrocytic marker GFAP. GFP/GFAP-positive cells, with an average resting membrane potential (Vrest) of -71.9 mV, displayed passive time- and voltage-independent K+ currents and, additionally, voltage-dependent A-type K+ currents (KA) and/or delayed outwardly rectifying K+ currents (KDR). Numerous GFP-positive cells expressed NeuN, betaIII-tubulin, or 68 kD neurofilaments. GFP/betaIII-tubulin-positive cells, with an average Vrest of -61.6 mV, were characterized by the expression of KA and KDR currents and tetrodotoxin-sensitive Na+ currents. GFP/NE-4C cells also gave rise to oligodendrocytes, based on the detection of oligodendrocyte-specific markers. Our results indicate that GFP/NE-4C neural progenitors transplanted into the site of a photochemical lesion give rise to neurons and astrocytes with membrane properties comparable to those transplanted into noninjured cortex. Therefore, GFP/NE-4C cells provide a suitable model for studying neuro- and gliogenesis in vivo. Further, our results suggest that embryonic neuroectodermal progenitor cells may hold considerable promise for the repair of ischemic brain lesions.
Collapse
Affiliation(s)
- Miroslava Anderová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol 2005; 196:224-34. [PMID: 16198339 DOI: 10.1016/j.expneurol.2005.06.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/09/2005] [Accepted: 06/29/2005] [Indexed: 12/23/2022]
Abstract
Human embryonic stem (hES) cells may generate all major somatic cell types, yet no neuronal subtype has yet been specifically generated in useful purity from hES culture. We report here the selective induction and isolation of functional spinal motor neurons (MNs) from human ES cells. hES cells of the H1 line were transfected with plasmids encoding GFP placed under the control of an MN-specifying enhancer within the 5'-regulatory region of the gene encoding the transcription factor Hb9 and treated with sonic hedgehog (Shh) and retinoic acid (RA). As MNs were induced under the influence of Shh and RA, they activated Hb9-driven GFP expression, permitting their isolation by fluorescence-activated cell sorting (FACS). The MNs thereby generated and isolated became cholinergic and achieved functional maturation in vitro, as evidenced by their fast sodium currents and action potentials on whole-cell patch-clamp and alpha-bungarotoxin-identified clustering of AChR receptors on co-cultured skeletal myoblasts. The serial combination of these two approaches, motor neuron phenotypic induction followed by Hb9 enhancer-based FACS, permitted the high-efficiency induction and isolation of functional motor neurons from hES cells. These results suggest the utility of promoter/enhancer-based FACS for the isolation of specific phenotypes from hES cell populations as a means of purifying clinically appropriate vectors for cell therapy.
Collapse
Affiliation(s)
- Neeta Singh Roy
- Department of Neurology, Cornell University Medical College, NYC, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Miles GB, Dai Y, Brownstone RM. Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. J Physiol 2005; 566:519-32. [PMID: 15878947 PMCID: PMC1464745 DOI: 10.1113/jphysiol.2005.086033] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/28/2005] [Indexed: 12/13/2022] Open
Abstract
Spike frequency adaptation (SFA) is a fundamental property of repetitive firing in motoneurones (MNs). Early SFA (occurring over several hundred milliseconds) is thought to be important in the initiation of muscular contraction. To date the mechanisms underlying SFA in spinal MNs remain unclear. In the present study, we used both whole-cell patch-clamp recordings of MNs in lumbar spinal cord slices prepared from motor functionally mature mice and computer modelling of spinal MNs to investigate the mechanisms underlying SFA. Pharmacological blocking agents applied during whole-cell recordings in current-clamp mode demonstrated that the medium AHP conductance (apamin), BK-type Ca2+ -dependent K+ channels (iberiotoxin), voltage-activated Ca2+ channels (CdCl2), M-current (linopirdine) and persistent Na+ currents (riluzole) are all unnecessary for SFA. Measurements of Na+ channel availability including action potential amplitude, action potential threshold and maximum depolarization rate of the action potential were found to correlate with instantaneous firing frequency suggesting that the availability of fast, inactivating Na+ channels is involved in SFA. Characterization of this Na+ conductance in voltage-clamp mode demonstrated that it undergoes slow inactivation with a time course similar to that of SFA. When experimentally measured parameters for the fast, inactivating Na+ conductance (including slow inactivation) were incorporated into a MN model, SFA could be faithfully reproduced. The removal of slow inactivation from this model was sufficient to remove SFA. These data indicate that slow inactivation of the fast, inactivating Na+ conductance is likely to be the key mechanism underlying early SFA in spinal MNs.
Collapse
Affiliation(s)
- G B Miles
- Department of Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
161
|
Lu P, Tuszynski MH. Can bone marrow-derived stem cells differentiate into functional neurons? Exp Neurol 2005; 193:273-8. [PMID: 15869931 DOI: 10.1016/j.expneurol.2005.01.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/18/2005] [Accepted: 01/31/2005] [Indexed: 01/09/2023]
Affiliation(s)
- P Lu
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626, USA.
| | | |
Collapse
|
162
|
Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005; 23:215-21. [PMID: 15685164 DOI: 10.1038/nbt1063] [Citation(s) in RCA: 568] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 11/04/2004] [Indexed: 02/07/2023]
Abstract
An understanding of how mammalian stem cells produce specific neuronal subtypes remains elusive. Here we show that human embryonic stem cells generated early neuroectodermal cells, which organized into rosettes and expressed Pax6 but not Sox1, and then late neuroectodermal cells, which formed neural tube-like structures and expressed both Pax6 and Sox1. Only the early, but not the late, neuroectodermal cells were efficiently posteriorized by retinoic acid and, in the presence of sonic hedgehog, differentiated into spinal motoneurons. The in vitro-generated motoneurons expressed HB9, HoxC8, choline acetyltransferase and vesicular acetylcholine transporter, induced clustering of acetylcholine receptors in myotubes, and were electrophysiologically active. These findings indicate that retinoic acid action is required during neuroectoderm induction for motoneuron specification and suggest that stem cells have restricted capacity to generate region-specific projection neurons even at an early developmental stage.
Collapse
|
163
|
Bithell A, Williams BP. Neural stem cells and cell replacement therapy: making the right cells. Clin Sci (Lond) 2004; 108:13-22. [PMID: 15462670 DOI: 10.1042/cs20040276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.
Collapse
Affiliation(s)
- Angela Bithell
- Institute of Psychiatry, Department of Psychological Medicine, PO Box 52, De Crespigny Park, London SE5 8AF, U.K
| | | |
Collapse
|