151
|
de Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina V, Quillfeldt J. Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience 2008; 154:1648-55. [DOI: 10.1016/j.neuroscience.2008.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 11/30/2022]
|
152
|
The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotox Res 2008; 14:273-94. [DOI: 10.1007/bf03033816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
153
|
Kimura R, Matsuki N. Protein kinase CK2 modulates synaptic plasticity by modification of synaptic NMDA receptors in the hippocampus. J Physiol 2008; 586:3195-206. [PMID: 18483072 DOI: 10.1113/jphysiol.2008.151894] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is the foundation of learning and memory. The protein kinase CK2 phosphorylates many proteins related to synaptic plasticity, but whether it is directly involved in it has not been clarified. Here, we examined the role of CK2 in synaptic plasticity in hippocampal slices using the CK2 selective inhibitors 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromobenzotriazole (TBB). These significantly inhibited N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). DRB also inhibited NMDA receptor-mediated synaptic transmission, while leaving NMDA receptor-independent LTP unaffected. NMDA receptors thus appear to be the primary targets of CK2. Although both long-term depression (LTD) and LTP are induced by the influx of Ca(2+) through NMDA receptors, surprisingly, LTD was not affected by CK2 inhibitors. We postulated that the LTP-selective modulation by CK2 is due to selective modulation of NMDA receptors, and tested two hypotheses concerning the modulation of NMDA receptors: (i) CK2 selectively modulates NR2A subunits possibly related to LTP, but not NR2B subunits possibly related to LTD; and (ii) CK2 selectively affects synaptic but not extrasynaptic NMDA receptors whose activation is sufficient to induce LTD. DRB decreased NMDA receptor-mediated synaptic transmission in the presence of selective NR2A subunit antagonist. The former hypothesis thus appears unlikely to be correct. However, DRB decreased synaptic NMDA receptor responses in cultured hippocampal neurons without affecting extrasynaptic NMDA receptor current. These findings support the latter hypothesis, that CK2 selectively affects LTP by selective modification of synaptic NMDA receptors in a receptor-location-specific manner.
Collapse
Affiliation(s)
- Rie Kimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
154
|
Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl) 2008; 198:1-27. [PMID: 18392810 DOI: 10.1007/s00213-008-1092-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/28/2008] [Indexed: 12/14/2022]
Abstract
RATIONALE Alzheimer disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia in the elderly. A combination of cholinergic and glutamatergic dysfunction appears to underlie the symptomatology of AD, and thus, treatment strategies should address impairments in both systems. Evidence suggests the involvement of phospholipase A(2) (PLA(2)) enzyme in memory impairment and neurodegeneration in AD via actions on both cholinergic and glutamatergic systems. OBJECTIVES To review cholinergic and glutamatergic alterations underlying cognitive impairment and neuropathology in AD and attempt to link PLA(2) with such alterations. METHODS Medline databases were searched (no date restrictions) for published articles with links among the terms Alzheimer disease (mild, moderate, severe), mild cognitive impairment, choline acetyltransferase, acetylcholinesterase, NGF, NGF receptor, muscarinic receptor, nicotinic receptor, NMDA, AMPA, metabotropic glutamate receptor, atrophy, glucose metabolism, phospholipid metabolism, sphingolipid, membrane fluidity, phospholipase A(2), arachidonic acid, attention, memory, long-term potentiation, beta-amyloid, tau, inflammation, and reactive species. Reference lists of the identified articles were checked to identify additional studies of interest. RESULTS Overall, results suggest the hypothesis that persistent inhibition of cPLA(2) and iPLA(2) isoforms at early stages of AD may play a central role in memory deficits and beta-amyloid production through down-regulation of cholinergic and glutamate receptors. As the disease progresses, beta-amyloid induced up-regulation of cPLA(2) and sPLA(2) isoforms may play critical roles in inflammation and oxidative stress, thus participating in the neurodegenerative process. CONCLUSION Activation and inhibition of specific PLA(2) isoforms at different stages of AD could be of therapeutic importance and delay cognitive dysfunction and neurodegeneration.
Collapse
|
155
|
Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2008; 89:312-23. [PMID: 17942328 PMCID: PMC2387254 DOI: 10.1016/j.nlm.2007.08.018] [Citation(s) in RCA: 588] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 01/27/2023]
Abstract
It is generally believed that late-phase long-term potentiation (L-LTP) and long-term memory (LTM) require new protein synthesis. Although the full complement of proteins mediating the long-lasting changes in synaptic efficacy have yet to be identified, several lines of evidence point to a crucial role for activity-induced brain-derived neurotrophic factor (BDNF) expression in generating sustained structural and functional changes at hippocampal synapses thought to underlie some forms of LTM. In particular, BDNF is sufficient to induce the transformation of early to late-phase LTP in the presence of protein synthesis inhibitors, and inhibition of BDNF signaling impairs LTM. Despite solid evidence for a critical role of BDNF in L-LTP and LTM, many issues are not resolved. Given that BDNF needs to be processed in Golgi outposts localized at the branch point of one or few dendrites, a conceptually challenging problem is how locally synthesized BDNF in dendrites could ensure synapse-specific modulation of L-LTP. An interesting alternative is that BDNF-TrkB signaling is involved in synaptic tagging, a prominent hypothesis that explains how soma-derived protein could selectively modulate the tetanized (tagged) synapse. Finally, specific roles of BDNF in the acquisition, retention or extinction of LTM remain to be established.
Collapse
Affiliation(s)
- Yuan Lu
- Gene, Cognition and Psychosis Program (GCAP), NIMH, National Institutes of Health, Bethesda, MD 20892-3714
| | - Kimberly Christian
- Mood and Anxiety Program (MAP), NIMH, National Institutes of Health, Bethesda, MD 20892-3714
| | - Bai Lu
- Gene, Cognition and Psychosis Program (GCAP), NIMH, National Institutes of Health, Bethesda, MD 20892-3714
- Section on Neural Development & Plasticity, NICHD, National Institutes of Health, Bethesda, MD 20892-3714
| |
Collapse
|
156
|
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem 2008; 89:293-311. [PMID: 18053752 PMCID: PMC2745628 DOI: 10.1016/j.nlm.2007.09.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/30/2007] [Indexed: 12/30/2022]
Abstract
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
157
|
Izquierdo I, Cammarota M, Silva WCD, Bevilaqua LR, Rossato JI, Bonini JS, Mello P, Benetti F, Costa JC, Medina JH. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. AN ACAD BRAS CIENC 2008; 80:115-27. [DOI: 10.1590/s0001-37652008000100007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 01/06/2023] Open
Abstract
Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.
Collapse
Affiliation(s)
- Iván Izquierdo
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | | | | | | - Pamela Mello
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
158
|
Effects of reversible inactivation of the dorsal hippocampus on the behavioral and cardiovascular responses to an aversive conditioned context. Behav Pharmacol 2008; 19:137-44. [DOI: 10.1097/fbp.0b013e3282f62c9e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Do memories consolidate to persist or do they persist to consolidate? Behav Brain Res 2008; 192:61-9. [PMID: 18374993 DOI: 10.1016/j.bbr.2008.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/15/2022]
Abstract
Memories are believed to be initially and temporarily stored in the hippocampus and later transferred to the cortex for persistent storage during a process named system consolidation. Alternatively, the cortex may also have a crucial role in the initial steps of memory formation and the hippocampus may not be disengaged from memory processing as early as it has been originally proposed. Here we review earlier and recent studies and hypotheses that address the nature of long-term memory storage.
Collapse
|
160
|
Smid HM, Wang G, Bukovinszky T, Steidle JLM, Bleeker MAK, van Loon JJA, Vet LEM. Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc Biol Sci 2008; 274:1539-46. [PMID: 17439855 PMCID: PMC2176164 DOI: 10.1098/rspb.2007.0305] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term memory (LTM) formation usually requires repeated, spaced learning events and is achieved by the synthesis of specific proteins. Other memory forms require a single learning experience and are independent of protein synthesis. We investigated in two closely related parasitic wasp species, Cotesia glomerata and Cotesia rubecula, whether natural differences in foraging behaviour are correlated with differences in LTM acquisition and formation. These parasitic wasp species lay their eggs in young caterpillars of pierid butterflies and can learn to associate plant odours with a successful egg laying experience on caterpillars on the odour-producing plant. We used a classical conditioning set-up, while interfering with LTM formation through translation or transcription inhibitors. We show here that C. rubecula formed LTM after three spaced learning trials, whereas C. glomerata required only a single trial for LTM formation. After three spaced learning trials, LTM formation was complete within 4 h in C. glomerata, whereas in C. rubecula, LTM formation took 3 days. Linking neurobiology with ecology, we argue that this species-specific difference in LTM acquisition and formation is adaptive given the extreme differences in both the number of foraging decisions of the two wasp species and in the spatial distributions of their respective hosts in nature.
Collapse
Affiliation(s)
- Hans M Smid
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
161
|
Bevilaqua LRM, Rossato JI, Bonini JS, Myskiw JC, Clarke JR, Monteiro S, Lima RH, Medina JH, Cammarota M, Izquierdo I. The role of the entorhinal cortex in extinction: influences of aging. Neural Plast 2008; 2008:595282. [PMID: 18584042 PMCID: PMC2435227 DOI: 10.1155/2008/595282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 05/23/2008] [Indexed: 11/17/2022] Open
Abstract
The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.
Collapse
Affiliation(s)
- Lia R. M. Bevilaqua
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
- Centro Universitário IPA, Rua Cel. Joaquim Pedro Salgado 80, 90420-060 Porto Alegre, RS, Brazil
| | - Janine I. Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Juliana S. Bonini
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane C. Myskiw
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Julia R. Clarke
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Siomara Monteiro
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ramón H. Lima
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jorge H. Medina
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 7th floor, 1121 Buenos Aires, Argentina
| | - Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| | - Iván Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Avenue Ipiranga 6690, 2nd floor, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
162
|
Solntseva SV, Nikitin VP, Kozyrev SA, Shevelkin AV, Lagutin AV, Sherstnev VV. Effects of protein synthesis inhibitors during reactivation of associative memory in the common snail induces reversible and irreversible amnesia. ACTA ACUST UNITED AC 2007; 37:921-8. [DOI: 10.1007/s11055-007-0100-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Indexed: 11/30/2022]
|
163
|
Sheridan GK, Pickering M, Twomey C, Moynagh PN, O’Connor JJ, Murphy KJ. NF-kappaB activity in distinct neural subtypes of the rat hippocampus: Influence of time and GABA antagonism in acute slice preparations. Learn Mem 2007; 14:525-32. [PMID: 17686946 PMCID: PMC1951791 DOI: 10.1101/lm.590007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hippocampal memory-associated synaptic plasticity is driven by a cascade of transcription and new protein synthesis. In vitro electrophysiological studies on acute hippocampal slices have elucidated much of what we know about this molecular cascade. Curiously, these slices require a period of "equilibration" for the recovery of electrophysiological properties such as LTP, implying ongoing time-dependent molecular events necessary for full expression of plasticity. Using standard immunofluorescence combined with confocal imaging and a novel data analysis approach, we implicate the transcription factor NF-kappaB in this plasticity-related molecular adaptation during equilibration. Marked differences in basal NF-kappaB activity in distinct cell types of the hippocampus were observed, with the amount of active NF-kappaB increasing throughout the 2-h equilibration period in all cell types. Moreover, distinct hippocampal neuronal subfields exhibit very different responses to the GABA(A) receptor blocker picrotoxin, the presence of which is required to achieve LTP in the dentate gyrus. These findings have implications for the use of acute hippocampal slices to study the effects of compounds that signal through NF-kappaB on synaptic plasticity. Further investigation into the cellular processes that occur during this molecular adaptation may increase our understanding of plasticity-related events common to both LTP and memory formation.
Collapse
Affiliation(s)
- Graham K. Sheridan
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mark Pickering
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Clare Twomey
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul N. Moynagh
- Institute of Immunology, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - John J. O’Connor
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J. Murphy
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Corresponding author.E-mail ; fax +353-01-7166920
| |
Collapse
|
164
|
Brouillette J, Quirion R. Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 2007; 29:1721-32. [PMID: 17512093 DOI: 10.1016/j.neurobiolaging.2007.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/13/2007] [Accepted: 04/14/2007] [Indexed: 11/26/2022]
Abstract
Aging is often associated with decline of memory function. Aged animals, like humans, can naturally develop memory impairments and thus represent a useful model to investigate genes involved in long-term memory formation that are differentially expressed between aged memory-impaired (AI) and aged memory-unimpaired (AU) animals following stimulation in a spatial memory task. We found that alterations in hippocampal gene expression of transthyretin (TTR), calcineurin, and NAD(P)H dehydrogenase quinone 2 (NQO2) were associated with memory deficits in aged animals. Decreased TTR gene expression could be attributed at least partially to diminish activity of C/EBP immediate-early gene cascade initiated by CREB since protein levels of C/EBP, a transcription factor regulating both TTR and NQO2 expression, was decreased in AI animals. Memory deficits were also found during aging in mice lacking TTR, a retinol transporter known to prevent amyloid-beta aggregation and plaque formation as seen in Alzheimer's disease. Treatment with retinoic acid reversed cognitive deficits in these knock-out mice as well as in aged rats. Our study provides genetic, behavioural and molecular evidence that TTR is involved in the maintenance of normal cognitive processes during aging by acting on the retinoid signalling pathway.
Collapse
Affiliation(s)
- Jonathan Brouillette
- Department of Neurology & Neurosurgery, Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada H4H 1R3
| | | |
Collapse
|
165
|
Meneses A. Do serotonin1–7 receptors modulate short and long-term memory? Neurobiol Learn Mem 2007; 87:561-72. [PMID: 17224282 DOI: 10.1016/j.nlm.2006.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.
Collapse
Affiliation(s)
- A Meneses
- Depto de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, México City, Mexico.
| |
Collapse
|
166
|
Brouillette J, Young D, During MJ, Quirion R. Hippocampal gene expression profiling reveals the possible involvement ofHomer1andGABABreceptors in scopolamine-induced amnesia. J Neurochem 2007; 102:1978-1989. [PMID: 17540011 DOI: 10.1111/j.1471-4159.2007.04666.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Scopolamine-treated rats are commonly used as a psychopharmacological model of memory dysfunction and have been extensively studied to establish the effectiveness of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease. Scopolamine is a muscarinic acetylcholine receptor antagonist that induces memory deficits in young subjects similar to those occurring during aging. The amnesic effect of scopolamine is well established but the molecular and cellular mechanisms that sustain its neuropharmacological action are still unclear. The present genome wide study investigates hippocampal gene expression profiling in scopolamine-treated adult rats following stimulation in a spatial memory task. Using microarray and quantitative real-time RT-PCR approaches, we identified several genes previously known to be associated with memory processes (Homer1, GABA(B) receptor, early growth response 1, prodynorphin, VGF nerve growth factor inducible) and multiple novel candidate genes possibly involved in cognition (including calcium/calmodulin-dependent protein kinase kinase 2, dual specificity phosphatase 5 and 6, glycophorin C) that were altered following scopolamine treatment. Moreover, we found that stable over-expression of glutamatergic components Homer1a and 1c in the hippocampus of adult rats induced by recombinant adeno-associated virus vector abolished memory improvement produced by the GABA(B) receptor antagonist SGS742 in scopolamine-treated rats. Taken together, these results reveal novel genes and mechanisms involved in scopolamine-induced amnesia, and demonstrate the involvement of both GABA and glutamate neurotransmission in this animal model of cognitive dysfunctions.
Collapse
Affiliation(s)
- Jonathan Brouillette
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Deborah Young
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Matthew J During
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Rémi Quirion
- Department of Neurology & Neurosurgery, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, CanadaDepartment of Molecular Medicine and Pathology, University of Auckland, Auckland, New ZealandDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
167
|
Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 2007; 53:261-77. [PMID: 17224407 DOI: 10.1016/j.neuron.2006.11.025] [Citation(s) in RCA: 488] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/20/2006] [Accepted: 11/27/2006] [Indexed: 12/25/2022]
Abstract
Persistence is the most characteristic attribute of long-term memory (LTM). To understand LTM, we must understand how memory traces persist over time despite the short-lived nature and rapid turnover of their molecular substrates. It is widely accepted that LTM formation is dependent upon hippocampal de novo protein synthesis and Brain-Derived Neurotrophic Factor (BDNF) signaling during or early after acquisition. Here we show that 12 hr after acquisition of a one-trial associative learning task, there is a novel protein synthesis and BDNF-dependent phase in the rat hippocampus that is critical for the persistence of LTM storage. Our findings indicate that a delayed stabilization phase is specifically required for maintenance, but not formation, of the memory trace. We propose that memory formation and memory persistence share some of the same molecular mechanisms and that recurrent rounds of consolidation-like events take place in the hippocampus for maintenance of the memory trace.
Collapse
Affiliation(s)
- Pedro Bekinschtein
- Instituto de Biología Celular y Neurociencias, UBA, Buenos Aires (C1121ABG), Argentina
| | | | | | | | | | | |
Collapse
|
168
|
O'Sullivan NC, McGettigan PA, Sheridan GK, Pickering M, Conboy L, O'Connor JJ, Moynagh PN, Higgins DG, Regan CM, Murphy KJ. Temporal change in gene expression in the rat dentate gyrus following passive avoidance learning. J Neurochem 2007; 101:1085-98. [PMID: 17298388 DOI: 10.1111/j.1471-4159.2006.04418.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A learning event initiates a cascade of altered gene expression leading to synaptic remodelling within the hippocampal dentate gyrus, a structure vital to memory formation. To illuminate this transcriptional program of synaptic plasticity we used microarrays to quantify mRNA from the rat dentate gyrus at increasing times following passive avoidance learning. Approximately, 500 known genes were transcriptionally regulated across the 24 h post-training period. The 0-2 h period saw up-regulation of genes involved in transcription while genes with a role in synaptic/cytoskeletal structure increased 0-6 h, consistent with structural rearrangements known to occur at these times. The most striking feature was the profound down-regulation, across all functional groups, 12 h post-training. Bioinformatics analysis identified the likely transcription factors controlling gene expression in each post-training period. The role of NF kappa B, implicated in the early post-training period was subsequently confirmed with activation and nuclear translocation seen in dentate granule neurons following training. mRNA changes for four genes, LRP3 (0 h), alpha actin (3 h), SNAP25 and NSF (6-12 h), were validated at message and/or protein level and shown to be learning specific. Thus, the memory-associated transcriptional cascade supports the cardinal periods of synaptic loosening, reorganisation and selection thought to underpin the process of long-term memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Niamh C O'Sullivan
- Applied Neurotherapeutics Research Group, UCD Schools of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Nijholt IM, Ostroveanu A, de Bruyn M, Luiten PGM, Eisel ULM, Van der Zee EA. Both exposure to a novel context and associative learning induce an upregulation of AKAP150 protein in mouse hippocampus. Neurobiol Learn Mem 2007; 87:693-6. [PMID: 17270471 DOI: 10.1016/j.nlm.2006.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/12/2006] [Accepted: 12/18/2006] [Indexed: 11/19/2022]
Abstract
A-kinase anchoring protein 150 (AKAP150) is a multi-enzyme signaling complex that coordinates the action of PKA, PKC, and PP2B at neuronal membranes and synapses. We measured levels of AKAP150 protein in the hippocampus 6h after training mice in a contextual fear conditioning paradigm. In contextual fear conditioning mice learn to associate a context with a footshock presentation. Mice were divided in four experimental groups with different training protocols: naive, no footshock exposure, immediate footshock exposure, and footshock 3min after exposure to the context. We found that AKAP150 protein levels were increased upon exposing mice to the novel context independent of the training protocol. However, when the animals were habituated to the experimental context, only mice that learned to associate the context with the footshock showed an upregulation of AKAP150. We suggest that upregulated levels of AKAP150 contribute to processing the exposure to a novel context and associative learning.
Collapse
Affiliation(s)
- Ingrid M Nijholt
- Department of Molecular Neurobiology, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
170
|
Rossato JI, Bevilaqua LR, Myskiw JC, Medina JH, Izquierdo I, Cammarota M. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 2007; 14:36-46. [PMID: 17272651 PMCID: PMC1838544 DOI: 10.1101/lm.422607] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/07/2006] [Indexed: 11/24/2022]
Abstract
Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in the consolidation and reconsolidation of different memories. Despite this fact, at present there are no studies about the consequences of hippocampal protein synthesis inhibition in the storage and post-retrieval persistence of object recognition memory. Here we report that infusion of the protein synthesis inhibitor anisomycin in the dorsal CA1 region immediately or 180 min but not 360 min after training impairs consolidation of long-term object recognition memory without affecting short-term memory, exploratory behavior, anxiety state, or hippocampal functionality. When given into CA1 after memory reactivation in the presence of familiar objects, ANI did not affect further retention. However, when administered into CA1 immediately after exposing animals to a novel and a familiar object, ANI impaired memory of both of them. The amnesic effect of ANI was long-lasting, did not happen after exposure to two novel objects, following exploration of the context alone, or in the absence of specific stimuli, suggesting that it was not reversible but was contingent on the reactivation of the consolidated trace in the presence of a salient, behaviorally relevant novel cue. Our results indicate that hippocampal protein synthesis is required during a limited post-training time window for consolidation of object recognition memory and show that the hippocampus is engaged during reconsolidation of this type of memory, maybe accruing new information into the original trace.
Collapse
Affiliation(s)
- Janine I. Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | - Lia R.M. Bevilaqua
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | - Jociane C. Myskiw
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | - Jorge H. Medina
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | - Iván Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | - Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brasil and Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias “Prof. Dr. Eduardo de Robertis,” Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 3° Piso, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| |
Collapse
|
171
|
Da Silva WC, Bonini JS, Bevilaqua LRM, Medina JH, Izquierdo I, Cammarota M. Inhibition of mRNA synthesis in the hippocampus impairs consolidation and reconsolidation of spatial memory. Hippocampus 2007; 18:29-39. [PMID: 17853412 DOI: 10.1002/hipo.20362] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using two different mRNA synthesis inhibitors, we show that blockade of hippocampal gene expression during restricted posttraining or postretrieval time windows hinders retention of long-term spatial memory for the Morris water maze task, without affecting short-term memory, nonspatial learning, or the functionality of the hippocampus. Our results indicate that spatial memory consolidation induces the activation of the hippocampal transcriptional machinery and suggest the existence of a gene expression-dependent reconsolidation process that operates in the dorsal hippocampus at the moment of retrieval to stabilize the reactivated mnemonic trace.
Collapse
Affiliation(s)
- Weber C Da Silva
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre, Rio Grande do Sul, Brasil
| | | | | | | | | | | |
Collapse
|
172
|
Arshavsky YI. “The seven sins” of the Hebbian synapse: Can the hypothesis of synaptic plasticity explain long-term memory consolidation? Prog Neurobiol 2006; 80:99-113. [PMID: 17074430 DOI: 10.1016/j.pneurobio.2006.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 11/16/2022]
Abstract
Memorizing new facts and events means that entering information produces specific physical changes within the brain. According to the commonly accepted view, traces of memory are stored through the structural modifications of synaptic connections, which result in changes of synaptic efficiency and, therefore, in formations of new patterns of neural activity (the hypothesis of synaptic plasticity). Most of the current knowledge on learning and initial stages of memory consolidation ("synaptic consolidation") is based on this hypothesis. However, the hypothesis of synaptic plasticity faces a number of conceptual and experimental difficulties when it deals with potentially permanent consolidation of declarative memory ("system consolidation"). These difficulties are rooted in the major intrinsic self-contradiction of the hypothesis: stable declarative memory is unlikely to be based on such a non-stable foundation as synaptic plasticity. Memory that can last throughout an entire lifespan should be "etched in stone." The only "stone-like" molecules within living cells are DNA molecules. Therefore, I advocate an alternative, genomic hypothesis of memory, which suggests that acquired information is persistently stored within individual neurons through modifications of DNA, and that these modifications serve as the carriers of elementary memory traces.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- Institute for Nonlinear Science, University of California San Diego, La Jolla, CA 92093-0402, USA.
| |
Collapse
|
173
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 2006; 29:496-505. [PMID: 16872686 DOI: 10.1016/j.tins.2006.07.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 07/14/2006] [Indexed: 11/25/2022]
Abstract
To understand cognition, it is important to understand how a learned response becomes a long-lasting memory. This process of memory consolidation has been modeled extensively using one-trial avoidance learning, in which animals (or humans) establish a conditioned response by learning to avoid danger in just one trial. This relies on molecular events in the CA1 region of the hippocampus that resemble those involved in CA1 long-term potentiation (LTP), and it also requires equivalent events to occur with different timings in the basolateral amygdala and the entorhinal, parietal and cingulate cortex. Many of these steps are modulated by monoaminergic pathways related to the perception of and reaction to emotion, which at least partly explains why strong and resistant consolidation is typical of emotion-laden memories. Thus memory consolidation involves a complex network of brain systems and serial and parallel molecular events, even for a task as deceptively simple as one-trial avoidance. We propose that these molecular events might also be involved in many other memory types in animals and humans.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Hospital Sao Lucas, Av. Ipiranga 6690, 2 Andar, (90610-000) Porto Alegre, RS, Brasil.
| | | | | | | | | | | |
Collapse
|
174
|
PARSONS RG, RIEDNER BA, GAFFORD GM, HELMSTETTER FJ. The formation of auditory fear memory requires the synthesis of protein and mRNA in the auditory thalamus. Neuroscience 2006; 141:1163-70. [PMID: 16766126 PMCID: PMC1698266 DOI: 10.1016/j.neuroscience.2006.04.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/17/2006] [Accepted: 04/14/2006] [Indexed: 11/21/2022]
Abstract
The medial geniculate nucleus of the thalamus responds to auditory information and is a critical part of the neural circuitry underlying aversive conditioning with auditory signals for shock. Prior work has shown that lesions of this brain area selectively disrupt conditioning with auditory stimuli and that neurons in the medial geniculate demonstrate plastic changes during fear conditioning. However, recent evidence is less clear as to whether or not this area plays a role in the storage of auditory fear memories. In the current set of experiments rats were given infusions of protein or messenger RNA (mRNA) synthesis inhibitors into the medial geniculate nucleus of the thalamus 30 min prior to auditory fear conditioning. The next day animals were tested to the auditory cue and conditioning context. Results showed that rats infused with either inhibitor demonstrated less freezing to the auditory cue 24 h after training, while freezing to the context was normal. Autoradiography confirmed that the doses used were effective in disrupting synthesis. Taken together with prior work, these data suggest that the formation of fear memory requires the synthesis of new protein and mRNA at multiple brain sites across the neural circuit that supports fear conditioning.
Collapse
Key Words
- pavlovian fear conditioning
- anisomycin
- medial geniculate nucleus
- rat
- distributed plasticity
- consolidation
- acsf, artificial cerebrospinal fluid
- ani, anisomycin
- dmso, dimethyl sulfoxide
- drb, 5,6-dichlorobenzimidazole 1-β-d-ribofuranoside
- erk/mapk, extracellular-signal-related/mitogen-activated protein kinase
- ieg, immediate early gene
- ltp, long-term potentiation
- mgm, medial division of medial geniculate thalamic nucleus
- mrna, messenger rna
- tia, training-induced neuronal activity
Collapse
Affiliation(s)
- R. G. PARSONS
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | | - G. M. GAFFORD
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - F. J. HELMSTETTER
- Department of Psychology, Garland Hall, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| |
Collapse
|
175
|
Igaz LM, Winograd M, Cammarota M, Izquierdo LA, Alonso M, Izquierdo I, Medina JH. Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol 2006; 26:989-1002. [PMID: 16977492 PMCID: PMC11520636 DOI: 10.1007/s10571-006-9116-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. According to its duration there are, at least, two major forms of memory in mammals: short term memory (STM) which develops in a few seconds and lasts several hours and long-term memory (LTM) lasting days, weeks and even a lifetime. In contrast to LTM, very little is known about the neural, cellular and molecular requirements for mammalian STM formation. 2. Here we show that early activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the hippocampus is required for the establishment of STM for a one-trial inhibitory avoidance task in the rat. Immediate posttraining infusion of U0126 (a selective inhibitor of ERK kinase) into the CA1 region of the dorsal hippocampus blocked STM formation. 3. Reversible inactivation of the entorhinal cortex through muscimol infusion produced deficits in STM and a selective and rapid decrease in hippocampal ERK2 activation.4. Together with our previous findings showing a rapid decrease in ERK2 activation and impaired STM after blocking BDNF function, the present results strongly suggest that ERK2 signaling in the hippocampus is a critical step in STM processing.
Collapse
Affiliation(s)
- Lionel Müller Igaz
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 3, 1121 Buenos Aires, Argentina
| | - Milena Winograd
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 3, 1121 Buenos Aires, Argentina
- Present Address: Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, Ap. 18, 03550, San Juan de, Alicante, Spain
| | - Martín Cammarota
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 3, 1121 Buenos Aires, Argentina
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), 90610-000 Porto Alegre, Brasil
| | - Luciana A. Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), 90610-000 Porto Alegre, Brasil
| | - Mariana Alonso
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 3, 1121 Buenos Aires, Argentina
- Present Address: Olfactory Memory and Perception Laboratory, Department of Neuroscience, Pasteur Institute, Paris, France
| | - Iván Izquierdo
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), 90610-000 Porto Alegre, Brasil
| | - Jorge H. Medina
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 3, 1121 Buenos Aires, Argentina
| |
Collapse
|
176
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M. The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotox Res 2006; 10:113-21. [PMID: 17062373 DOI: 10.1007/bf03033240] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two major memory systems have been recognized over the years (Squire, in Memory and Brain, 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections (Mishkin et al., in Neurobiology of Learning by G Lynch et al., 1984; Knowlton et al., Science 273:1399, 1996). Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement. Animals acquire connections between environmental or discrete sensory cues (conditioned stimuli, CSs) and emotionally or otherwise significant stimuli (unconditioned stimuli, USs). As a result, they learn to perform or to inhibit the performance of certain motor responses to the CS which, when learned well, become what can only be called habits (Mishkin et al., 1984): to regularly walk or swim to a place or away from a place, or to inhibit one or several forms of movement. These responses can be viewed as conditioned responses (CRs) and may sometimes be very complex. This is of course also seen in humans: people learn how to play on a keyboard in response to a mental or written script and perform the piano or write a text; with practice, the performance improves and eventually reaches a high criterion and becomes a habit, performed almost if not completely without awareness. Commuting to school in a big city in the shortest possible time and eschewing the dangers is a complex learning that children acquire to the point of near-perfection. It is agreed that the rules that connect the perception of the CS and the expression of the CR change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Are different brain systems used the first time one plays a sonata or goes to school as compared with the 100th time? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- I Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Andar (90610-000) Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
177
|
Parsons RG, Gafford GM, Baruch DE, Riedner BA, Helmstetter FJ. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur J Neurosci 2006; 23:1853-9. [PMID: 16623842 PMCID: PMC1698267 DOI: 10.1111/j.1460-9568.2006.04723.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic modification supporting memory formation is thought to depend on gene expression and protein synthesis. Disrupting either process around the time of learning prevents the formation of long-term memory. Recent evidence suggests that memory also becomes susceptible to disruption upon retrieval. Whether or not the molecular events involved in the formation of new memory are the same as what is needed for memory to persist after retrieval has yet to be determined. In the present set of experiments, rats were given inhibitors of protein or messenger ribonucleic acid (mRNA) synthesis into the amygdala just after training or retrieval of fear memory. Results showed that blocking mRNA or protein synthesis immediately after learning prevented the formation of long-term memory, while stability of memory after retrieval required protein, but not mRNA, synthesis. These data suggest that the protein needed for memory reconsolidation after retrieval may be transcribed from pre-existing stores of mRNA.
Collapse
|
178
|
Trifilieff P, Herry C, Vanhoutte P, Caboche J, Desmedt A, Riedel G, Mons N, Micheau J. Foreground contextual fear memory consolidation requires two independent phases of hippocampal ERK/CREB activation. Learn Mem 2006; 13:349-58. [PMID: 16705140 PMCID: PMC1475817 DOI: 10.1101/lm.80206] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fear conditioning is a popular model for investigating physiological and cellular mechanisms of memory formation. In this paradigm, a footshock is either systematically associated to a tone (paired conditioning) or is pseudorandomly distributed (unpaired conditioning). In the former procedure, the tone/shock association is acquired, whereas in the latter procedure, the context/shock association will prevail. Animals with chronically implanted recording electrodes show enhanced amplitude of the extracellularly recorded field EPSP in CA1 pyramidal cells for up to 24 h after unpaired, but not paired, fear conditioning. This is paralleled by a differential activation of the ERK/CREB pathway in CA1, which is monophasic in paired conditioning (0-15 min post-conditioning), but biphasic (0-1 h and 9-12 h post-conditioning) in unpaired conditioning as revealed by immunocytochemistry and Western blotting. Intrahippocampal injection of the MEK inhibitor U0126 prior to each phase prevents the activation of both ERK1/2 and CREB after unpaired conditioning. Block of any activation phase leads to memory impairment. We finally reveal that the biphasic activation of ERK/CREB activity is independently regulated, yet both phases are critically required for the consolidation of long-term memories following unpaired fear conditioning. These data provide compelling evidence that CA1 serves different forms of memory by expressing differential cellular mechanisms that are dependent on the training regime.
Collapse
Affiliation(s)
- Pierre Trifilieff
- Laboratoire de Neurosciences Cognitives, Centre National de la Recherche Scientifique, CNRS UMR 5106, Université de Bordeaux I, 33605 Talence, France
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Tramontina F, Tramontina AC, Souza DF, Leite MC, Gottfried C, Souza DO, Wofchuk ST, Gonçalves CA. Glutamate uptake is stimulated by extracellular S100B in hippocampal astrocytes. Cell Mol Neurobiol 2006; 26:81-6. [PMID: 16633903 PMCID: PMC11521381 DOI: 10.1007/s10571-006-9099-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/14/2005] [Indexed: 01/21/2023]
Abstract
1.S100B is a calcium-binding protein expressed and secreted by astrocytes, which has been implicated in glial-neuronal communication. Extracellular S100B appears to protect hippocampal neurons against toxic concentrations of glutamate. Here we investigated a possible autocrine role of S100B in glutamate uptake activity. 2. Astrocyte cultures were prepared of hippocampi from neonate Wistar rats. [(3)H] Glutamate uptake was measured after addition of S100B protein, antibody anti-S100B or TRTK-12, a peptide that blocks S100B activity mediated by the C-terminal region. 3.Antibody anti-S100B addition decreased glutamate uptake measured 30 min after medium replacement, without affecting cell integrity or viability. Moreover, low levels of S100B (less than 0.1 ng/mL) stimulated glutamate uptake measured immediately after medium replacement. 4. This finding reinforces the importance of astrocytes in the glutamatergic transmission, particularly the role of S100B neuroprotection against excitotoxic damage.
Collapse
Affiliation(s)
- Francine Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Carolina Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniela F. Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina C. Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carmem Gottfried
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O. Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Susana T. Wofchuk
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Depto Bioquímica, ICBS, UFRGS, Ramiro Barcelos, 2600-anexo, Porto Alegre, RS 90035-003 Brazil
| |
Collapse
|
180
|
Gafford GM, Parsons RG, Helmstetter FJ. Effects of post-training hippocampal injections of midazolam on fear conditioning. Learn Mem 2006; 12:573-8. [PMID: 16322359 PMCID: PMC1356174 DOI: 10.1101/lm.51305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA(A)/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained with a series of white noise-shock pairings. In the first experiment, animals received intrahippocampal infusion of midazolam or vehicle immediately or 3 h after training. Then, 24 h later, freezing to the training context and the white noise were measured independently. Results show infusion of midazolam immediately, but not 3 h, after training selectively attenuates contextual fear conditioning. In the second experiment, animals received intrahippocampal infusions of an antisense oligodeoxynucleotide (ODN) targeting the alpha5 subunit of the GABA(A) receptor or a missense control for several days prior to training and testing. Immediately after training, animals received an infusion of either midazolam or vehicle. Western blots conducted after testing showed a significant decrease in alpha5-containing GABA(A) receptor protein. This reduction did not alter the effectiveness of midazolam immediately after training at impairing context fear memory. Therefore, alpha5-containing GABA(A) receptors may not contribute to the effects of midazolam on context fear conditioning when given immediately post-training.
Collapse
Affiliation(s)
- Georgette M Gafford
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
181
|
Pavlov IF. Effect of ultralow doses of antibodies to S-100 antigen (Proproten-100) on spatial learning in rats. Bull Exp Biol Med 2005; 139:196-7. [PMID: 16027805 DOI: 10.1007/s10517-005-0246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In experiments on rats we studied the effect of potentiated antibodies against S-100 antigen on training a step-down passive avoidance task and choice between drinking bowls with sucrose solution. Peroral treatment with antibodies accelerated inhibition of ineffective and punished locomotor reactions in animals.
Collapse
Affiliation(s)
- I F Pavlov
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk
| |
Collapse
|
182
|
LaPorte DJ, Blaxton TA, Michaelidis T, Robertson DU, Weiler MA, Tamminga CA, Lahti AC. Subtle effects of ketamine on memory when administered following stimulus presentation. Psychopharmacology (Berl) 2005; 180:385-90. [PMID: 15719220 DOI: 10.1007/s00213-005-2179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 01/06/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE N-methyl-D-aspartate (NMDA) receptor antagonists (e.g., PCP, ketamine) have been shown to impair learning/memory. Well documented in animal models, only limited research in humans has been reported. Findings to date are similar to results of animal studies; however, antagonists are typically administered before the learning experience. This may be problematic as memory failure could be secondary to inattention induced by the psychotomimetic effects of these drugs and/or alterations in sensory processing which can degrade the quality of the stimulus, thereby affecting the accuracy of recall. OBJECTIVE The objective of the study is to compare the effects of ketamine vs placebo on recall for words when administered after stimulus presentation. METHODS In this double-blind crossover study, 24 normal controls were given bolus injections of ketamine (0.3 mg/kg) or placebo. Immediately prior to infusion, subjects were administered a verbal memory test. Delayed recall was measured 45 min postinfusion. Mental status changes were assessed using the Brief Psychiatric Rating Scale. RESULTS Subjects experienced a significant increase in psychiatric symptoms that peaked at 20 min. Results indicate no differences between the drug and placebo conditions for the memory task. However, reminiscence (i.e., recall of previously unrecalled items with repeated testing) was significantly reduced following ketamine administration compared to placebo. CONCLUSIONS Findings suggest that aspects of memory consolidation are affected by drugs that interfere with NMDA receptor function.
Collapse
Affiliation(s)
- David J LaPorte
- Department of Psychology, Indiana University of Pennsylvania, Uhler Hall, Indiana, PA 15705-1068, USA.
| | | | | | | | | | | | | |
Collapse
|
183
|
Cammarota M, Bevilaqua LRM, Barros DM, Vianna MRM, Izquierdo LA, Medina JH, Izquierdo I. Retrieval and the extinction of memory. Cell Mol Neurobiol 2005; 25:465-74. [PMID: 16075375 PMCID: PMC11529503 DOI: 10.1007/s10571-005-4009-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/03/2004] [Indexed: 11/28/2022]
Abstract
1. Memory is assessed by measuring retrieval which is often elicited by the solely presentation of the conditioned stimulus (CS). However, as known since Pavlov, presentation of the CS alone generates extinction. 2. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response (CR) is to stay in the safe area. Retrieval of the memory for the step-down version of this task is measured in the absence of the US, as latency to step-down from the safe area (i.e., a platform). 3. Extinction of the IA response is installed at the moment of the first non-reinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. 4. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is necessary for the generation of extinction this last process constitutes a new learning secondary to the non-reinforced expression of the original trace.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, IPB, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6690-2. Andar, 90610-000, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
184
|
Kudo K, Qiao CX, Kanba S, Arita J. A selective increase in phosphorylation of cyclic AMP response element-binding protein in hippocampal CA1 region of male, but not female, rats following contextual fear and passive avoidance conditioning. Brain Res 2005; 1024:233-43. [PMID: 15451386 DOI: 10.1016/j.brainres.2004.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 11/30/2022]
Abstract
Cyclic AMP response element-binding protein (CREB), a transcription factor on which multiple signal transduction pathways converge, has been implicated in long-term memory. We examined whether the sex difference in the performance of contextual fear or passive avoidance conditioning is associated with a change in the activation of CREB in the hippocampus, a neural structure important for long-term memory. The activation of CREB in different subregions within the hippocampus in male and female rats was determined immunohistochemically with an antibody that specifically recognizes the phosphorylated form of CREB (pCREB). With respect to the freezing time in contextual fear conditioning and the step-through latency in passive avoidance conditioning, male rats exhibited better performance than female rats. Phosphorylation of CREB (% pCREB) as revealed by the ratio of the pCREB-immunoreactive (pCREB-ir) cell number to the CREB-immunoreactive cell number was increased in the CA1 region, but not in CA3, CA4, or in the dentate gyrus following training for both types of conditioning in males. In females, such an increase in % pCREB was not found in any hippocampal subregion at any time after conditioning or by increasing the intensity of foot shock. Orchidectomy in males did not alter either the performance of contextual conditioning or conditioning-induced CREB phosphorylation in CA1. The close relationship between behavioral performance and CREB phosphorylation in the CA1 region suggests that hippocampal CREB is involved in the sex difference in some forms of learning and memory.
Collapse
Affiliation(s)
- Koutarou Kudo
- Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan
| | | | | | | |
Collapse
|
185
|
Cammarota M, Bevilaqua LRM, Köhler C, Medina JH, Izquierdo I. Learning twice is different from learning once and from learning more. Neuroscience 2005; 132:273-9. [PMID: 15802182 DOI: 10.1016/j.neuroscience.2005.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2005] [Indexed: 11/29/2022]
Abstract
The rat hippocampus plays a crucial role in the consolidation of a variety of memories, including that for a one trial inhibitory avoidance learning task in which stepping down from a platform is associated with a footshock. Here we show that this is the case regardless of the intensity of the footshock used and hence, of the strength of the learned response. However, additional learning produced by a second training session in this task does not involve the hippocampus but, instead, the striatum. Memory consolidation of the second trial requires glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, N-methyl-D-aspartate and metabotropic receptors, activation of signaling pathways, gene expression and protein synthesis in the striatum, as are required in the hippocampus during memory consolidation of the first trial.
Collapse
Affiliation(s)
- M Cammarota
- Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias Prof. Dr. Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Ciudad Autónoma de Buenos Aires CP 1121, Argentina
| | | | | | | | | |
Collapse
|
186
|
Quevedo J, Vianna MRM, Roesler R, Martins MR, de-Paris F, Medina JH, Izquierdo I. Pretraining but not Preexposure to the Task Apparatus Prevents the Memory Impairment Induced by Blockade of Protein Synthesis, PKA or MAP Kinase in Rats. Neurochem Res 2005; 30:61-7. [PMID: 15756933 DOI: 10.1007/s11064-004-9686-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adult male Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.4 mA footshock, 24 h training-test interval). Fifteen minutes before or 0, 1.5 or 3 hours after training, animals received a 0.8 microl intrahippocampal infusion of the protein synthesis inhibitor anisomycin (80 microg), the PKA inhibitor Rp-cAMP (0.05 microg), the MAPK kinase inhibitor PD 098059 (50 microM solution) or vehicle (phosphate buffer in saline, pH 7.4). Anisomycin, Rp-cAMP and PD 098059 impaired retention test performance in animals injected at different times, prior and after training. Pretraining with a low footshock intensity (0.2 mA) 24 h before training prevented the amnestic effect of all drugs studied. However, simple preexposure to the inhibitory avoidance apparatus did not alter the amnestic effects of all drugs. The results suggest that memory processing requires hippocampal mechanisms dependent on protein synthesis, PKA and MAPK kinase at different times after training. These findings suggest that weak training must be sufficient to produce some lasting cellular expression of the experience so that the enhancement of consolidation of a previously acquired memory is not dependent on protein synthesis, PKA or MAPK.
Collapse
Affiliation(s)
- João Quevedo
- Laboratório de Neurociências, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
Learning and memory processes are thought to underlie a variety of human psychiatric disorders, including generalised anxiety disorder and post-traumatic stress disorder. Basic research performed in laboratory animals may help to elucidate the aetiology of the respective diseases. This chapter gives a short introduction into theoretical and practical aspects of animal experiments aimed at investigating acquisition, consolidation and extinction of aversive memories. It describes the behavioural paradigms most commonly used as well as neuroanatomical, cellular and molecular correlates of aversive memories. Finally, it discusses clinical implications of the results obtained in animal experiments in respect to the development of novel pharmacotherapeutic strategies for the treatment of human patients.
Collapse
Affiliation(s)
- C T Wotjak
- Research Group Neuronal Plasticity/Mouse Behaviour, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| |
Collapse
|
188
|
Igaz LM, Bekinschtein P, Izquierdo I, Medina JH. One-trial aversive learning induces late changes in hippocampal CaMKIIα, Homer 1a, Syntaxin 1a and ERK2 protein levels. ACTA ACUST UNITED AC 2004; 132:1-12. [PMID: 15548423 DOI: 10.1016/j.molbrainres.2004.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2004] [Indexed: 11/25/2022]
Abstract
Most studies regarding altered gene expression after learning are performed using multi-trial tasks, which do not allow a clear discrimination of memory acquisition, consolidation and retrieval. We screened for candidate memory-modulated genes in the hippocampus at 3 and 24 h after one-trial inhibitory avoidance (IA) training, using a cDNA array containing 1176 genes. While 33 genes were modulated by training (respect to shocked-only animals), most of them were upregulated (27 genes) and only 6 were downregulated. To confirm and extend these findings, we performed RT-PCRs and analyzed differences in protein levels in rat hippocampus using immunoblot assays. We found several proteins upregulated 24 h after training: extracellular signal-regulated kinase ERK2, Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIalpha), Syntaxin 1a, c-fos and Homer 1a. The total level of none of these proteins were found to be altered when measured 3-h post-training. Several of the mRNAs corresponding to the upregulated proteins were changed at 3 h but not 24 h. Additionally, a number of other candidates were identified for the first time as modulated by learning. The results presented here suggest that single-trial tasks can expose previously unseen differences in dynamic regulation of gene expression after behavioral manipulations, both at the transcriptional and translational levels, and reveal a diversity of gene products modulated by this task, allowing deeper understanding of the molecular basis of memory formation.
Collapse
Affiliation(s)
- Lionel Müller Igaz
- Instituto de Biologia Celular y Neurociencias, Facultad de Medicina, UBA, Paraguay 2155, piso 3, 1121 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
189
|
Lai WS, Chen A, Johnston RE. Patterns of neural activation associated with exposure to odors from a familiar winner in male golden hamsters. Horm Behav 2004; 46:319-29. [PMID: 15325232 DOI: 10.1016/j.yhbeh.2004.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 05/27/2004] [Accepted: 06/01/2004] [Indexed: 11/18/2022]
Abstract
The neural mechanisms underlying recognition of familiar individuals and responses appropriate to them are not well known. Previous studies with male golden hamsters have shown that, after a series of brief aggressive encounters, a loser selectively avoids his own, familiar winner but does not avoid other males. Using this paradigm, we investigated activity in 20 areas of the brain using immunohistochemistry for c-Fos and Egr-1 during exposure to a familiar winner compared to control groups not exposed to another male. Behavioral data showed that 1 day after fights males that lost avoided the familiar winner, suggesting that they recognized this individual. The c-Fos and Egr-1 immunohistochemistry showed that the losers exposed to familiar winners had a greater density of stained cells in the basolateral amygdala, the CA1 region of anterior dorsal hippocampus and the dorsal subiculum than control groups had in these areas. These results suggest that these brain areas may be involved in the memory for other males, the learned fear of familiar winners, or related processes.
Collapse
Affiliation(s)
- Wen-Sung Lai
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
190
|
Cammarota M, Barros DM, Vianna MRM, Bevilaqua LRM, Coitinho A, Szapiro G, Izquierdo LA, Medina JH, Izquierdo I. The transition from memory retrieval to extinction. AN ACAD BRAS CIENC 2004; 76:573-82. [PMID: 15334255 DOI: 10.1590/s0001-37652004000300011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Memory is measured by measuring retrieval. Retrieval is often triggered by the conditioned stimulus (CS); however, as known since Pavlov, presentation of the CS alone generates extinction. One-trial avoidance (IA) is a much used conditioned fear paradigm in which the CS is the safe part of a training apparatus, the unconditioned stimulus (US) is a footshock and the conditioned response is to stay in the safe area. In IA, retrieval is measured without the US, as latency to step-down from the safe area (i.e., a platform). Extinction is installed at the moment of the first unreinforced test session, as clearly shown by the fact that many drugs, including PKA, ERK and protein synthesis inhibitors as well as NMDA receptor antagonists, hinder extinction when infused into the hippocampus or the basolateral amygdala at the moment of the first test session but not later. Some, but not all the molecular systems required for extinction are also activated by retrieval, further endorsing the hypothesis that although retrieval is behaviorally and biochemically necessary for the generation of extinction, this last process constitutes a new learning secondary to the unreinforced expression of the original trace.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, ICS, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, 90035-003 Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P. Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 2004; 11:253-60. [PMID: 15169854 PMCID: PMC419727 DOI: 10.1101/lm.68204] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze. By using Affymetrix GeneChip microarrays, we found a distinct pattern of age-related change, consisting mostly of gene overexpression in the middle-aged mice, suggesting that the induction of negative regulators in the middle-aged hippocampus could be involved in impairment of learning. Interestingly, we report changes in transcript levels for genes that could affect synaptic plasticity. Those changes could be involved in the memory deficits we observed in the 15-month-old mice. In agreement with previous reports, we also found altered expression in genes related to inflammation, protein processing, and oxidative stress.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
192
|
Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004; 279:40545-59. [PMID: 15273246 DOI: 10.1074/jbc.m402229200] [Citation(s) in RCA: 859] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of long term memory begins with the activation of many disparate signaling pathways that ultimately impinge on the cellular mechanisms regulating gene expression. We investigated whether mechanisms regulating chromatin structure were activated during the early stages of long term memory formation in the hippocampus. Specifically, we investigated hippocampal histone acetylation during the initial stages of consolidation of long term association memories in a contextual fear conditioning paradigm. Acetylation of histone H3 in area CA1 of the hippocampus was regulated in contextual fear conditioning, an effect dependent on activation of N-methyl-D-aspartic acid (NMDA) receptors and ERK, and blocked using a behavioral latent inhibition paradigm. Activation of NMDA receptors in area CA1 in vitro increased acetylation of histone H3, and this effect was blocked by inhibition of ERK signaling. Moreover, activation of ERK in area CA1 in vitro through either the protein kinase C or protein kinase A pathways, biochemical events known to be involved in long term memory formation, also increased histone H3 acetylation. Furthermore, we observed that elevating levels of histone acetylation through the use of the histone deacetylase inhibitors trichostatin A or sodium butyrate enhanced induction of long term potentiation at Schaffer-collateral synapses in area CA1 of the hippocampus, a candidate mechanism contributing to long term memory formation in vivo. In concert with our findings in vitro, injection of animals with sodium butyrate prior to contextual fear conditioning enhanced formation of long term memory. These results indicate that histone-associated heterochromatin undergoes changes in structure during the formation of long term memory. Mimicking memory-associated changes in heterochromatin enhances a cellular process thought to underlie long term memory formation, hippocampal long term potentiation, and memory formation itself.
Collapse
Affiliation(s)
- Jonathan M Levenson
- Baylor College of Medicine, Department of Neuroscience, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
193
|
Comas D, Petit F, Preat T. Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 2004; 430:460-3. [PMID: 15269770 DOI: 10.1038/nature02726] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 06/03/2004] [Indexed: 11/09/2022]
Abstract
Whereas short-term memory lasts from minutes to hours, long-term memory (LTM) can last for days or even an entire lifetime. LTM generally forms after spaced repeated training sessions and involves the regulation of gene expression, thereby implicating transcription factors in the initial steps of LTM establishment. However, the direct participation of effector genes in memory formation has been rarely documented, and many of the mechanisms involved in LTM formation remain to be understood. Here we describe a Drosophila melanogaster mutant, crammer (cer), which shows a specific LTM defect. The cer gene encodes an inhibitor of a subfamily of cysteine proteinases, named cathepsins, some of which might be involved in human Alzheimer's disease. The Cer peptide was found in the mushroom bodies (MBs), the Drosophila olfactory memory centre and in glial cells around the MBs. The overexpression of cer in glial cells but not in MB neurons induces a decrease in LTM, suggesting that Cer might have a role in glia and that the concentration of the Cer peptide is critical for LTM. In wild-type flies, cer expression transiently decreases after LTM conditioning, indicating that cysteine proteinases are activated early in LTM formation.
Collapse
Affiliation(s)
- Daniel Comas
- Développement, Evolution et Plasticité du Système Nerveux, CNRS, 1, Avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | |
Collapse
|
194
|
Weeber EJ, Caldwell KK. Delay fear conditioning modifies phospholipase C-β1a signaling in the hippocampus and frontal cortex. Pharmacol Biochem Behav 2004; 78:155-64. [PMID: 15159145 DOI: 10.1016/j.pbb.2004.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/02/2004] [Accepted: 03/04/2004] [Indexed: 11/30/2022]
Abstract
The use of the single-trial fear conditioning paradigm allows for control over the exact moment when an animal is exposed to a learning event, making it possible to study both the initial neurobiological changes that are associated with learning and changes that take place over long periods of time. In the present study, we performed detailed analyses of the alterations in phosphatidylinositol-specific phospholipase C-beta1a (PLC-beta1a) levels and enzyme activities in subcellular fractions prepared from the hippocampal formation (HPF) and medial frontal cortex (MFC) 1, 3, 5, 7, 24, and 72 h following single-trial fear conditioning. We observed tissue- and time-dependent changes in both PLC-beta1a enzyme activity and anti-PLC-beta1a immunoreactivity in each subcellular fraction. Based on these observations, we hypothesize that changes in PLC-beta1a catalytic activity and subcellular distribution play important roles in neuronal signaling processes that are required for fear-conditioned learning and memory.
Collapse
Affiliation(s)
- Edwin J Weeber
- Department of Neurosciences, MSC08 4740, University of New Mexico, Albuquerque, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
195
|
Wang J, Ren K, Pérez J, Silva AJ, Peña de Ortiz S. The antimetabolite ara-CTP blocks long-term memory of conditioned taste aversion. Learn Mem 2004; 10:503-9. [PMID: 14657261 PMCID: PMC305465 DOI: 10.1101/lm.63003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the hypothesis that processes related to DNA recombination and repair are involved in learning and memory. Rats received intracerebroventricular (i.c.v.) infusions of the antimetabolite 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP) or its precursor cytosine arabinoside (ara-C) 30 min prior to conditioned taste aversion (CTA) training. Both ara-CTP and ara-C caused significant impairments in long-term memory (LTM) of CTA. Control experiments indicate that the effect of ara-CTP on CTA memory is related to interference with learning. Furthermore, as it was previously demonstrated for the protein synthesis inhibitor anisomycin, ara-CTP had no effect on CTA memory when it was injected 1 h after training. Importantly, although both ara-CTP and anisomycin significantly blocked LTM in the task, short-term memory (STM) measured 1 h after training was not affected by either of the drugs. Finally, ara-CTP had no effect on in vitro transcription, but it did effectively block nonhomologous DNA end joining (NHEJ) activity of brain protein extracts. We suggest that DNA ligase-mediated DNA recombination and repair processes are necessary for the expression of LTM in the brain.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico, USA
| | | | | | | | | |
Collapse
|
196
|
Abstract
Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found.
Collapse
Affiliation(s)
- Martijn Meeter
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
197
|
Igaz LM, Bekinschtein P, Vianna MMR, Izquierdo I, Medina JH. Gene expression during memory formation. Neurotox Res 2004; 6:189-204. [PMID: 15325958 DOI: 10.1007/bf03033221] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis of complex psychiatric disorders involving learning and memory impairments, and may allow the development of new methods for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Lionel Muller Igaz
- Instituto de Biología Celular y Neurociencia Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, (1113) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
198
|
Abstract
A conditioned stimulus (CS) associated with a fearsome unconditioned stimulus (US) generates learned fear. Acquired fear is at the root of a variety of mental disorders, among which phobias, generalized anxiety, the posttraumatic stress disorder (PTSD) and some forms of depression. The simplest way to inhibit learned fear is to extinguish it, which is usually done by repeatedly presenting the CS alone, so that a new association, CS-"no US", will eventually overcome the previously acquired CS-US association. Extinction was first described by Pavlov as a form of "internal inhibition" and was recommended by Freud and Ferenczi in the 1920s (who called it "habituation") as the treatment of choice for phobic disorders. It is used with success till this day, often in association with anxiolytic drugs. Extinction has since then been applied, also successfully and also often in association with anxiolytics, to the treatment of panic, generalized anxiety disorders and, more recently, PTSD. Extinction of learned fear involves gene expression, protein synthesis, N-methyl-D-aspartate (NMDA) receptors and signaling pathways in the hippocampus and the amygdala at the time of the first CS-no US association. It can be enhanced by increasing the exposure to the "no US" component at the time of behavioral testing, to the point of causing the complete uninstallment of the original fear response. Some theorists have recently proposed that reiteration of the CS alone may induce a reconsolidation of the learned behavior instead of its extinction. Reconsolidation would preserve the original memory from the labilization induced by its retrieval. If true, this would of course be disastrous for the psychotherapy of fear-motivated disorders. Here we show that neither the CS nor retrieval cause anything remotely like reconsolidation, but just extinction. In fact, our findings indicate that the reconsolidation hypothesis is essentially incorrect, at least for the form of contextual fear most commonly studied in rodents. Therefore, it seems safe to continue using extinction-based forms of therapy for disorders secondary to acquired fear. Further, it is useful and desirable to device procedures by which the "no US" component of the extinction is strengthened in order to alleviate the symptoms of victims of acquired fear.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, ICBS, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600--Anexo, Porto Alegre, RS 90035-003, Brasil.
| | | | | | | |
Collapse
|
199
|
Depino AM, Alonso M, Ferrari C, del Rey A, Anthony D, Besedovsky H, Medina JH, Pitossi F. Learning modulation by endogenous hippocampal IL-1: Blockade of endogenous IL-1 facilitates memory formation. Hippocampus 2004; 14:526-35. [PMID: 15224987 DOI: 10.1002/hipo.10164] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The interleukin-1 (IL-1) cytokine family (IL-1alpha, IL-beta, and the IL-1 receptor antagonist) is involved in immune and inflammatory responses both in the brain and in the periphery. Recently, it has also been shown to influence behavior and memory consolidation. However, within the experimental systems studied, it has remained unclear whether the role of IL-1beta is associated solely with a pathophysiological process or whether it is a neuromodulator in normal adult brain. To evaluate the involvement of the nonpathological endogenous IL-1 system in learning, we studied the expression of IL-1alpha, IL-1beta, and IL-1ra during memory consolidation. We observed a learning-specific hippocampal IL-1alpha mRNA induction, but not that of IL-1beta or IL-1ra mRNAs, after inhibitory avoidance training. Moreover, when IL-1 receptor activity was inhibited using an adenoviral vector that expresses the IL-1 receptor antagonist (IL-1ra) in the hippocampus, both short-term and long-term memory retention scores were facilitated. In contrast, endogenous hippocampal IL-1 played no role in the habituation to a novel environment. These results demonstrate that endogenous hippocampal IL-1 specifically modulates a fear-motivated learning task, and suggest that IL-1alpha activity in the CNS is part of the hippocampal memory processing.
Collapse
Affiliation(s)
- Amaicha M Depino
- Fundación Instituto Leloir, UBA-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
|