151
|
Li M, Wei L, Zhou W, He Z, Ran S, Liang J. miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis. Stem Cell Res Ther 2020; 11:317. [PMID: 32711573 PMCID: PMC7382064 DOI: 10.1186/s13287-020-01833-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Background Upon migrating to the injured sites, bone marrow mesenchymal stem cells (BMSCs) play critical roles in the repair of bone lesion caused by chronic apical periodontitis. Emerging evidences have shown that Enterococcus faecalis is always associated with apical periodontitis, especially refractory apical periodontitis. But the mechanism underlying how Enterococcus faecalis affects the migration of BMSCs remains unclear. Methods The effects of Enterococcus faecalis supernatants on the migration of BMSCs were determined by transwell migration assays. miRNA sequencing was performed to detect the significantly differentially expressed miRNAs of BMSCs. Proteomics analysis was used to detect the protein expression alterations of BMSCs. Luciferase report assays were deployed to verify the targets of miRNA. Western blot analysis was performed to examine the expressions of matrix metalloproteinases-3, matrix metalloproteinases-9, Forkhead Box Protein J1 (FOXJ1), and nuclear factor kappa B (NFκB). The activations of NFκB were detected by luciferase assays with NFκBluc reporter. Results We found that Enterococcus faecalis supernatants could promote the migration of BMSCs. The upregulation of miR-200a-3p in this process contributed to BMSC migration through downregulating its target Forkhead Box Protein J1. Moreover, FOXJ1/ NFκB axis was found to regulate matrix metalloproteinases (MMPs) in this process. Conclusions These results above suggest that miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyan He
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingping Liang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
152
|
Abplanalp WT, Fischer A, John D, Zeiher AM, Gosgnach W, Darville H, Montgomery R, Pestano L, Allée G, Paty I, Fougerousse F, Dimmeler S. Efficiency and Target Derepression of Anti-miR-92a: Results of a First in Human Study. Nucleic Acid Ther 2020; 30:335-345. [PMID: 32707001 DOI: 10.1089/nat.2020.0871] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNA (miRNA) inhibition is a promising therapeutic strategy in several disease indications. MRG-110 is a locked nucleic acid-based antisense oligonucleotide that targets miR-92a-3p and experimentally was shown to have documented therapeutic effects on cardiovascular disease and wound healing. To gain first insights into the activity of anti-miR-92a in humans, we investigated miR-92a-3p expression in several blood compartments and assessed the effect of MRG-110 on target derepression. Healthy adults were randomly assigned (5:2) to receive a single intravenous dose of MRG-110 or placebo in one of seven sequential ascending intravenous dose cohorts ranging from 0.01 to 1.5 mg/kg body weight. MiR-92a-3p whole blood levels were time and dose dependently decreased with half-maximal inhibition of 0.27 and 0.31 mg/kg at 24 and 72 h after dosing, respectively. In the high-dose groups, >95% inhibition was detected at 24-72 h postinfusion and significant inhibition was observed for 2 weeks. Similar inhibitory effects were detected in isolated CD31+ cells, and miR-92a-3p expression was also inhibited in extracellular vesicles in the high-dose group. Target derepression was measured in whole blood and showed that ITGA5 and CD93 were increased at a dose of 1.5 mg/kg. Single-cell RNA sequencing of peripheral blood cells revealed a cell type-specific derepression of miR-92a targets. Together this study demonstrates that systemic infusion of anti-miR-92a efficiently inhibits miR-92a in the peripheral blood compartment and derepresses miR-92a targets in humans.
Collapse
Affiliation(s)
- Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany
| | - Ariane Fischer
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas M Zeiher
- German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Willy Gosgnach
- CentEX Biotechnology, Institut de Recherche SERVIER, Paris, France
| | - Helene Darville
- CentEX Biotechnology, Institut de Recherche SERVIER, Paris, France
| | | | | | - Guillaume Allée
- Center for Therapeutic Innovation Cardiovascular and Metabolic Disease, Institut de Recherches Internationales SERVIER, Paris, France
| | - Isabelle Paty
- Center for Therapeutic Innovation Cardiovascular and Metabolic Disease, Institut de Recherches Internationales SERVIER, Paris, France
| | - Francoise Fougerousse
- Center for Therapeutic Innovation Cardiovascular and Metabolic Disease, Institut de Recherches Internationales SERVIER, Paris, France
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
153
|
The pHLIP system as a vehicle for microRNAs in the kidney. Nefrologia 2020; 40:491-498. [PMID: 32693933 DOI: 10.1016/j.nefro.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.
Collapse
|
154
|
Guay C, Jacovetti C, Bayazit MB, Brozzi F, Rodriguez-Trejo A, Wu K, Regazzi R. Roles of Noncoding RNAs in Islet Biology. Compr Physiol 2020; 10:893-932. [PMID: 32941685 DOI: 10.1002/cphy.c190032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery that most mammalian genome sequences are transcribed to ribonucleic acids (RNA) has revolutionized our understanding of the mechanisms governing key cellular processes and of the causes of human diseases, including diabetes mellitus. Pancreatic islet cells were found to contain thousands of noncoding RNAs (ncRNAs), including micro-RNAs (miRNAs), PIWI-associated RNAs, small nucleolar RNAs, tRNA-derived fragments, long non-coding RNAs, and circular RNAs. While the involvement of miRNAs in islet function and in the etiology of diabetes is now well documented, there is emerging evidence indicating that other classes of ncRNAs are also participating in different aspects of islet physiology. The aim of this article will be to provide a comprehensive and updated view of the studies carried out in human samples and rodent models over the past 15 years on the role of ncRNAs in the control of α- and β-cell development and function and to highlight the recent discoveries in the field. We not only describe the role of ncRNAs in the control of insulin and glucagon secretion but also address the contribution of these regulatory molecules in the proliferation and survival of islet cells under physiological and pathological conditions. It is now well established that most cells release part of their ncRNAs inside small extracellular vesicles, allowing the delivery of genetic material to neighboring or distantly located target cells. The role of these secreted RNAs in cell-to-cell communication between β-cells and other metabolic tissues as well as their potential use as diabetes biomarkers will be discussed. © 2020 American Physiological Society. Compr Physiol 10:893-932, 2020.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Adriana Rodriguez-Trejo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
155
|
Venø MT, Reschke CR, Morris G, Connolly NMC, Su J, Yan Y, Engel T, Jimenez-Mateos EM, Harder LM, Pultz D, Haunsberger SJ, Pal A, Heller JP, Campbell A, Langa E, Brennan GP, Conboy K, Richardson A, Norwood BA, Costard LS, Neubert V, Del Gallo F, Salvetti B, Vangoor VR, Sanz-Rodriguez A, Muilu J, Fabene PF, Pasterkamp RJ, Prehn JHM, Schorge S, Andersen JS, Rosenow F, Bauer S, Kjems J, Henshall DC. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A 2020; 117:15977-15988. [PMID: 32581127 PMCID: PMC7355001 DOI: 10.1073/pnas.1919313117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-β signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-β signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Lea M Harder
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stefan J Haunsberger
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ajay Pal
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Janosch P Heller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Aoife Campbell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Karen Conboy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Amy Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Braxton A Norwood
- Department of Neuroscience, Expesicor Inc, Kalispell, MT 59901
- Diagnostics Development, FYR Diagnostics, Missoula, MT 59801
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, 18051, Germany
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Beatrice Salvetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Vamshidhar R Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Juha Muilu
- Research and Development, BC Platforms, FI-02130, Espoo, Finland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - R Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jens S Andersen
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland;
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| |
Collapse
|
156
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
157
|
Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020; 12:nu12071959. [PMID: 32630045 PMCID: PMC7399912 DOI: 10.3390/nu12071959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which Foxo1 and Foxo3 genes were conditionally knocked out in the myeloid cell lineage.
Collapse
Affiliation(s)
| | | | - Isao Shimokawa
- Correspondence: ; Tel.: +81-95-819-7050; Fax: +81-95-819-7051
| |
Collapse
|
158
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
159
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
160
|
Lei Z, Fang J, Deddens JC, Metz CHG, van Eeuwijk ECM, El Azzouzi H, Doevendans PA, Sluijter JPG. Loss of miR-132/212 Has No Long-Term Beneficial Effect on Cardiac Function After Permanent Coronary Occlusion in Mice. Front Physiol 2020; 11:590. [PMID: 32612537 PMCID: PMC7309700 DOI: 10.3389/fphys.2020.00590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Myocardial infarction (MI) is caused by occlusion of the coronary artery and induces ischemia in the myocardium and eventually a massive loss in cardiomyocytes. Studies have shown many factors or treatments that can affect the healing and remodeling of the heart upon infarction, leading to better cardiac performance and clinical outcome. Previously, miR-132/212 has been shown to play an important role in arteriogenesis in a mouse model of hindlimb ischemia and in the regulation of cardiac contractility in hypertrophic cardiomyopathy in mice. In this study, we explored the role of miR-132/212 during ischemia in a murine MI model. Methods and Results: miR-132/212 knockout mice show enhanced cardiac contractile function at baseline compared to wild-type controls, as assessed by echocardiography. One day after induction of MI by permanent occlusion, miR-132/212 knockout mice display similar levels of cardiac damage as wild-type controls, as demonstrated by infarction size quantification and LDH release, although a trend toward more cardiomyocyte cell death was observed in the knockout mice as shown by TUNEL staining. Four weeks after MI, miR-132/212 knockout mice show no differences in terms of cardiac function, expression of cardiac stress markers, and fibrotic remodeling, although vascularization was reduced. In line with these in vivo observation, overexpression of miR-132 or miR-212 in neonatal rat cardiomyocyte suppress hypoxia induced cardiomyocyte cell death. Conclusion: Although we previously observed a role in collateral formation and myocardial contractility, the absence of miR-132/212 did not affect the overall myocardial performance upon a permanent occlusion of the coronary artery. This suggests an interplay of different roles of this miR-132/212 before and during MI, including an inhibitory effect on cell death and angiogenesis, and a positive effect on cardiac contractility and autophagic response. Thus, spatial or tissue specific manipulation of this microRNA family may be essential to fully understand the roles and to develop interventions to reduce infarct size.
Collapse
Affiliation(s)
- Zhiyong Lei
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Juntao Fang
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Janine C Deddens
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Corina H G Metz
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esther C M van Eeuwijk
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands.,National Heart Institute, Utrecht, Netherlands.,Central Military Hospital Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
161
|
Arisan ED, Dart A, Grant GH, Arisan S, Cuhadaroglu S, Lange S, Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses 2020; 12:v12060614. [PMID: 32512929 PMCID: PMC7354481 DOI: 10.3390/v12060614] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Alwyn Dart
- Institute of Medical and Biomedical Education, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Serdar Arisan
- Department of Urology, Şişli Hamidiye Etfal Research and Training Hospital, 34360 Istanbul, Turkey;
| | - Songul Cuhadaroglu
- Thoracic Surgery Clinic, Memorial Hospital Sisli, Kaptanpasa Mah. Piyalepasa Bulvarı, 434385 Istanbul, Turkey;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
162
|
Bolz M, Thomas L, Scheffer U, Kalden E, Hartmann RK, Göbel MW. Redirection of miRNA-Argonaute Complexes to Specific Target Sites by Synthetic Adaptor Molecules. Chem Biodivers 2020; 17:e2000272. [PMID: 32428353 DOI: 10.1002/cbdv.202000272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Dysregulation of miRNAs is connected with a multitude of diseases for which antagomirs and miRNA replacement are discussed as therapeutic options. Here, we suggest an alternative concept based on the redirection of RISCs to non-native target sites. Metabolically stable DNA-LNA mixmers are used to mediate the binding of RISCs to mRNAs without any direct base complementarity to the presented guide RNA strand. Physical redirection of a dye-labeled miRNA model and of specific miRNA-programmed RISC fractions present in HeLa extracts is demonstrated by pull-down experiments with biotinylated capture oligonucleotides.
Collapse
Affiliation(s)
- Mathias Bolz
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Laura Thomas
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, DE-35032, Marburg, Germany
| | - Ute Scheffer
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Elisabeth Kalden
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, DE-35032, Marburg, Germany
| | - Michael W Göbel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| |
Collapse
|
163
|
Değerli E, Torun V, Cansaran-Duman D. miR-185-5p response to usnic acid suppresses proliferation and regulating apoptosis in breast cancer cell by targeting Bcl2. Biol Res 2020; 53:19. [PMID: 32366289 PMCID: PMC7197166 DOI: 10.1186/s40659-020-00285-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer types among women. Recent researches have focused on determining the efficiency of alternative molecules and miRNAs in breast cancer treatment. The aim of this study was to determine the effect of usnic acid response-miR-185-5p on proliferation in the breast cancer cell and to determine its relationship with apoptosis pathway. METHODS The cell proliferation and cell apoptosis rate were significantly increased following the ectopic expression of miR-185-5p in BT-474 cells. Furthermore, the results of cell cycle assay performed by flow cytometry revealed that the transfection with miR-185-5p induced G1/S phase arrest. The apoptosis-related genes expression analysis was performed by qRT-PCR and the direct target of miR-185-5p in BT-474 cells was identified by western blot and luciferase reporter assay. RESULTS Our data showed that miR-185-5p can cause significant changes in apoptosis-related genes expression levels, suggesting that cell proliferation was suppressed by miR-185-5p via inducing apoptosis in breast cancer cells. According to western blot results, miR-185-5p lead to decrease BCL2 protein level in BT-474 cells and direct target of miR-185-5p was identified as BCL by luciferase reporter assay. CONCLUSION This study revealed that miR-185-5p may be an effective agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Elif Değerli
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | - Vildan Torun
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | | |
Collapse
|
164
|
Sannicandro AJ, McDonagh B, Goljanek-Whysall K. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia. Curr Opin Clin Nutr Metab Care 2020; 23:157-163. [PMID: 32073414 DOI: 10.1097/mco.0000000000000645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Muscle wasting in cancer cachexia remains an unmet clinical need due to lack of effective therapies associated with the complexity of the disease. Here, we discuss microRNAs, robust regulators of the expression of multiple genes, only recently characterized in cancer cachexia in humans and their therapeutic potential for muscle wasting. RECENT FINDINGS Changes in microRNAs in muscle of cancer patients have been demonstrated for the first time and these are associated with dysregulated signalling networks during muscle wasting. These data, together with studies in animal models, indicate that microRNAs are attractive therapeutic candidates for maintaining muscle mass, both during and following cancer treatment ultimately improving patient outcomes. SUMMARY Cancer cachexia is a complex metabolic condition associated with muscle wasting. Maintenance of muscle mass in cancer patients can improve their response to therapy and prognosis. microRNAs, which can act as oncogenes or tumour suppressors, are also dysregulated in muscle of cachexia patients. Studies in animal models of muscle wasting have demonstrated that microRNAs regulate muscle mass and strength. With more microRNA-based therapeutics in clinical trials and first RNA drugs approved, microRNAs present an attractive novel therapeutic avenue for maintaining muscle homeostasis in cachexia patients to improve their prognosis.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
165
|
Chen Y, Du M, Yusuying S, Liu W, Tan Y, Xie P. Nedd8-activating enzyme inhibitor MLN4924 (Pevonedistat), inhibits miR-1303 to suppress human breast cancer cell proliferation via targeting p27 Kip1. Exp Cell Res 2020; 392:112038. [PMID: 32360865 DOI: 10.1016/j.yexcr.2020.112038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
Abstract
MLN4924/Pevonedistat, a Nedd8-activating enzyme (NAE, E1) inhibitor, has shown notable anti-cancer effect in pre-clinical trials, but it still faces tolerance resistance risk. Combination target therapy indicates a much better clinical effect than single target, and miRNAs are beneficial for easy detection in bodily fluids and tissues. Up to now, MLN4924 and miRNA-targeting combination approaching to treat breast cancer patients remains largely unknown. Here, microRNA-seq analysis showed that the expression of miR-1303 was significantly decreased after MLN4924 treatment in breast cancer cells. Moreover, miR-1303 was abnormally high in breast cancer tissues, and breast cancer patients with high miR-1303 showed poor prognosis. Functionally, excessive miR-1303 promoted the malignant phenotypes of breast cancer cells. Excessive miR-1303 accelerated cell cycle progression by promoting G2/M arrest. Furthermore, we revealed that miR-1303 targeted p27Kip1 to release G2/M arrest. Notably, excessive miR-1303 partially disturbed the anti-cancer effect of MLN4924. These findings provide potential evidences for combined anti-cancer target therapy of breast cancer patients in the future.
Collapse
Affiliation(s)
- Yujiao Chen
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Mengge Du
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Shadamu Yusuying
- The First School of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Wei Liu
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Guangdong Province, 518035, China
| | - Ping Xie
- Department of Cell Biology, The Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
166
|
Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in Venous Thromboembolism. Int J Mol Sci 2020; 21:ijms21072602. [PMID: 32283653 PMCID: PMC7177540 DOI: 10.3390/ijms21072602] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that execute their function by targeted downregulation of gene expressions. There is growing evidence from epidemiological studies and animal models suggesting that the expression level of miRNAs is dysregulated in venous thromboembolism (VTE). In this review, we summarize the current knowledge on the role of miRNAs as biomarkers for VTE and provide general insight into research exploring the modulation of miRNA activity in animal models of venous thrombosis. Up to now, published studies have yielded inconsistent results on the role of miRNAs as biomarkers for VTE with most of the reports focused on diagnostic research. The limited statistical power of the individual studies, due to the small sample sizes, may substantially contribute to the poor reproducibility among studies. In animal models, over-expression or inhibition of some miRNAs appear to influence venous thrombus formation and resolution. However, there is an important gap in knowledge on the potential role of miRNAs as therapeutic targets in VTE. Future research involving large cohorts should be designed to clarify the clinical usefulness of miRNAs as biomarkers for VTE, and animal model studies should be pursued to unravel the role of miRNAs in the pathogenesis of VTE and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Vânia M. Morelli
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Correspondence: ; Tel.: +47-77625105
| | - Sigrid K. Brækkan
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| | - John-Bjarne Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| |
Collapse
|
167
|
Cai W, Feng H, Yin L, Wang M, Jiang X, Qin Z, Liu W, Li C, Jiang H, Weizmann Y, Wang X. Bio responsive self-assembly of Au-miRNAs for targeted cancer theranostics. EBioMedicine 2020; 54:102740. [PMID: 32276223 PMCID: PMC7139156 DOI: 10.1016/j.ebiom.2020.102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) therapeutics are a promising approach to cancer treatment. However, this method faces considerable challenges to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. METHODS Herein, we developed a miRNA delivery system based on the in situ self-assembly of Au-miRNA nanocomplexes (Au-miRNA NCs). Within the cancer microenvironment, we constructed in situ self-assembled Au-miRNA NCs by coincubating gold salt and tumor suppressor mimics, such as let-7a, miRNA-34a, and miRNA-200a. FINDINGS The in vitro experiments demonstrated that characteristic in situ self-assembled Au-miRNA NCs were present in cancer cells and can be taken up to inhibit the proliferation of cancer cells effectively. Most importantly, as proven in subcutaneous tumor treatment models, Au-miRNA NCs were especially useful for accurate target imaging and tumor suppression, with significantly enhanced antitumor effects for combination therapy. INTERPRETATION These observations highlight that a new strategy for the in situ biosynthesis of Au-let-7a NCs, Au-miR-34a NCs, and Au-miR-200a NCs is feasible, and this may assist in the delivery of more miRNA to tumor cells for cancer treatment. This work opens up new opportunities for the development of miRNA tumor therapy strategies. FUNDING National Natural Science Foundation of China (91753106); Primary Research & Development Plan of Jiangsu Province (BE2019716); National Key Research and Development Program of China (2017YFA0205300).
Collapse
Affiliation(s)
- Weijuan Cai
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shunde Hospital of Southern Medical University, Shunde 528300, China
| | - Huan Feng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liang Yin
- Shunde Hospital of Southern Medical University, Shunde 528300, China
| | - Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuerui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhaojian Qin
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chunmei Li
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
168
|
Wu W, Choi EJ, Lee I, Lee YS, Bao X. Non-Coding RNAs and Their Role in Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (hMPV) Infections. Viruses 2020; 12:v12030345. [PMID: 32245206 PMCID: PMC7150941 DOI: 10.3390/v12030345] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Recent high-throughput sequencing revealed that only 2% of the transcribed human genome codes for proteins, while the majority of transcriptional products are non-coding RNAs (ncRNAs). Herein, we review the current knowledge regarding ncRNAs, both host- and virus-derived, and their role in respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. RSV is known as the most common cause of lower respiratory tract infection (LRTI) in children, while hMPV is also a significant contributor to LRTI in the pediatrics population. Although RSV and hMPV are close members, belonging to the Pneumoviridae family, they induce distinct changes in the ncRNA profile. Several types of host ncRNAs, including long ncRNA (lncRNA), microRNAs (miRNAs), and transfer RNA (tRNA)-derived RNA fragments (tRFs), are involved as playing roles in RSV and/or hMPV infection. Given the importance of ncRNAs in regulating the expression and functions of genes and proteins, comprehensively understanding the roles of ncRNAs in RSV/hMPV infection could shed light upon the disease mechanisms of RSV and hMPV, potentially providing insights into the development of prevention strategies and antiviral therapy. The presence of viral-derived RNAs and the potential of using ncRNAs as diagnostic biomarkers are also discussed in this review.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
| | - Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
| | | | - Yong Sun Lee
- Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do 10408, Korea;
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +409-772-1777
| |
Collapse
|
169
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
170
|
Liang G, Meng W, Huang X, Zhu W, Yin C, Wang C, Fassan M, Yu Y, Kudo M, Xiao S, Zhao C, Zou P, Wang Y, Li X, Croce CM, Cui R. miR-196b-5p-mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer. Proc Natl Acad Sci U S A 2020; 117:4347-4357. [PMID: 32041891 PMCID: PMC7049122 DOI: 10.1073/pnas.1917531117] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases. The RNA binding protein, QKI, belongs to the STAR family and plays tumor-suppressive functions in NSCLC. QKI-5 is a major isoform of QKIs and is predominantly expressed in NSCLC. However, the underlying mechanisms of QKI-5 in NSCLC progression remain unclear. We found that QKI-5 regulated microRNA (miRNA), miR-196b-5p, and its expression was significantly up-regulated in NSCLC tissues. Up-regulated miR-196b-5p promotes lung cancer cell migration, proliferation, and cell cycle through directly targeting the tumor suppressors, GATA6 and TSPAN12. Both GATA6 and TSPAN12 expressions were down-regulated in NSCLC patient tissue samples and were negatively correlated with miR-196b-5p expression. Mouse xenograft models demonstrated that miR-196b-5p functions as a potent onco-miRNA, whereas TSPAN12 functions as a tumor suppressor in NSCLC in vivo. QKI-5 bound to miR-196b-5p and influenced its stability, resulting in up-regulated miR-196b-5p expression in NSCLC. Further analysis showed that hypomethylation in the promoter region enhanced miR-196b-5p expression in NSCLC. Our findings indicate that QKI-5 may exhibit novel anticancer mechanisms by regulating miRNA in NSCLC, and targeting the QKI5∼miR-196b-5p∼GATA6/TSPAN12 pathway may enable effectively treating some NSCLCs.
Collapse
Affiliation(s)
- Guang Liang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Meng
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Changtian Yin
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canwei Wang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua 35128, Italy
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Masahisa Kudo
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Sisi Xiao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yumin Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaokun Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
171
|
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N. The Long Noncoding RNA DNM3OS Is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 200:184-198. [PMID: 30964696 DOI: 10.1164/rccm.201807-1237oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-β (transforming growth factor-β) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Grégoire Savary
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,2 EA 4483-IMPECS and
| | | | - Serena Diazzi
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Matthieu Buscot
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Nicolas Nottet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Julien Fassy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Imène-Sarah Henaoui
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Nihal Martis
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | | | - Nicolas Pons
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Virginie Magnone
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Sylvie Leroy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Véronique Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Laurent Plantier
- 6 Centre d'Étude des Pathologies Respiratoires-CEPR, INSERM, UMR1100, Labex Mabimprove, Université François Rabelais, Tours, France
| | - Kevin Lebrigand
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Agnès Paquet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Georges Vassaux
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Paul Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Andreas Günther
- 7 Center for Interstitial and Rare Diseases and Cardiopulmonary Institute and.,8 European IPF Registry and Biobank and
| | - Bruno Crestani
- 8 European IPF Registry and Biobank and.,9 Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, INSERM U1152, Université Paris Diderot, LABEX Inflamex, DHU FIRE, Paris, France; and
| | | | - Roger Rezzonico
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Thierry Brousseau
- 11 Service de Biochimie Automatisée, Protéines et Biologie Prédictive
| | | | - Saverio Bellusci
- 13 Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research, Justus-Liebig-University Gießen, Giessen, Germany
| | | | - Franck Broly
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - Pascal Barbry
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | | | - Bernard Mari
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Nicolas Pottier
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| |
Collapse
|
172
|
Hu Z, Zhang L, Wang H, Wang Y, Tan Y, Dang L, Wang K, Sun Z, Li G, Cao X, Zhang S, Shi F, Zhang G. Targeted silencing of miRNA-132-3p expression rescues disuse osteopenia by promoting mesenchymal stem cell osteogenic differentiation and osteogenesis in mice. Stem Cell Res Ther 2020; 11:58. [PMID: 32054528 PMCID: PMC7020585 DOI: 10.1186/s13287-020-1581-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023] Open
Abstract
Background Skeletal unloading can induce severe disuse osteopenia that often occurs in spaceflight astronauts or in patients subjected to prolonged bed-rest or immobility. Previously, we revealed a mechano-sensitive factor, miRNA-132-3p, that is closely related to the osteoblast function. The aim of this study was to investigate whether miRNA-132-3p could be an effective target for treating disuse osteopenia. Methods The 2D-clinostat device and the hindlimb-unloaded (HU) model were used to copy the mechanical unloading condition at the cellular and animal levels, respectively. Mimics or inhibitors of miRNA-132-3p were used to interfere with the expression of miRNA-132-3p in bone marrow-derived mesenchymal stem cells (BMSCs) in vitro for analyzing the effects on osteogenic differentiation. The special in vivo antagonists of miRNA-132-3p was delivered to the bone formation regions of HU mice for treating disuse osteopenia by a bone-targeted (AspSerSer)6-cationic liposome system. The bone mass, microstructure, and strength of the hindlimb bone tissue were analyzed for evaluating the therapeutic effect in vivo. Results miRNA-132-3p expression was declined under normal conditions and increased under gravitational mechanical unloading conditions during osteogenic differentiation of BMSCs in vitro. The upregulation of miRNA-132-3p expression resulted in the inhibition of osteogenic differentiation, whereas the downregulation of miRNA-132-3p expression enhanced osteogenic differentiation. The inhibition of miRNA-132-3p expression was able to attenuate the negative effects of mechanical unloading on BMSC osteogenic differentiation. Most importantly, the targeted silencing of miRNA-132-3p expression in the bone tissues could effectively preserve bone mass, microstructure, and strength by promoting osteogenic differentiation and osteogenesis in HU mice. Conclusion The overexpression of miRNA-132-3p induced by mechanical unloading is disadvantageous for BMSC osteogenic differentiation and osteogenesis. Targeted silencing of miRNA-132-3p expression presents a potential therapeutic target for the prevention and treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, Affiliated Hospital of Air Force Aviation Medicine Research Institute, Air Force Medical University, Beijing, 100089, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, No. 454 Hospital of PLA, Nanjing, 210002, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
173
|
Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, Matin MM, Shah K. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10:1779. [PMID: 32019988 PMCID: PMC7000780 DOI: 10.1038/s41598-020-58072-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNA expression has been implicated in cancer. Numerous strategies have been explored to modulate miR but sub-optimal delivery and inability to concurrently target multiple pathways involved in tumor progression have limited their efficacy. In this study, we explored the potential co-modulation of upregulated miR-21 and downregulated miR-7 to enhance therapeutic outcomes in heterogenic tumor types. We first engineered lentiviral (LV) and adeno-associated viral (AAV) vectors that preferentially express anti-sense miR against miR-21(miRzip-21) and show that modulating miR-21 via miRzip extensively targets tumor cell proliferation, migration and invasion in vitro in a broad spectrum of cancer types and has therapeutic efficacy in vivo. Next, we show a significantly increased expression of caspase-mediated apoptosis by simultaneously downregulating miR-21 and upregulating miR-7 in different tumor cells. In vivo co-treatment with AAV-miRzip-21 and AAV-miR-7 in mice bearing malignant brain tumors resulted in significantly decreased tumor burden with a corresponding increase in survival. To our knowledge, this is the first study that demonstrates the therapeutic efficacy of simultaneously upregulating miR-7 and downregulating miR-21 and establishes a roadmap towards clinical translation of modulating miRs for various cancer types.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nahid Arghiani
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Alsaab
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Joint Center of Excellence in Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam M Matin
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
174
|
Martínez-Barriocanal Á, Arango D, Dopeso H. PVT1 Long Non-coding RNA in Gastrointestinal Cancer. Front Oncol 2020; 10:38. [PMID: 32083000 PMCID: PMC7005105 DOI: 10.3389/fonc.2020.00038] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Whole genome and transcriptome sequencing technologies have led to the identification of many long non-coding RNAs (lncRNAs) and stimulated the research of their role in health and disease. LncRNAs participate in the regulation of critical signaling pathways including cell growth, motility, apoptosis, and differentiation; and their expression has been found dysregulated in human tumors. Thus, lncRNAs have emerged as new players in the initiation, maintenance and progression of tumorigenesis. PVT1 (plasmacytoma variant translocation 1) lncRNA is located on chromosomal 8q24.21, a large locus frequently amplified in human cancers and predictive of increased cancer risk in genome-wide association studies (GWAS). Combined, colorectal and gastric adenocarcinomas are the most frequent tumor malignancies and also the leading cause of cancer-related deaths worldwide. PVT1 expression is elevated in gastrointestinal tumors and correlates with poor patient prognosis. In this review, we discuss the mechanisms of action underlying PVT1 oncogenic role in colorectal and gastric cancer such as MYC upregulation, miRNA production, competitive endogenous RNA (ceRNA) function, protein stabilization, and epigenetic regulation. We also illustrate the potential role of PVT1 as prognostic biomarker and its relationship with resistance to current chemotherapeutic treatments.
Collapse
Affiliation(s)
- Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
175
|
Jiang B, Tang Y, Wang H, Chen C, Yu W, Sun H, Duan M, Lin X, Liang P. Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death Dis 2020; 11:61. [PMID: 31974341 PMCID: PMC6978466 DOI: 10.1038/s41419-020-2247-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023]
Abstract
miR-126, an endothelial-specific microRNA, is associated to vascular integrity and angiogenesis. It is well established that angiogenesis plays a critical role in burn wound healing. However, there was a lack of understanding of the mechanism by which miR-126 regulates angiogenesis during burn wound healing. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized long non-coding RNA (lncRNA) involved in cell proliferation, apoptosis, migration, and invasion of cancer cells. Sciellin (SCEL), a precursor to the cornified envelope of human keratinocytes, has been shown to inhibit migration and invasion capabilities of colorectal cancer cells. In this study, a cohort of 20 burn wound tissues and paired adjacent normal tissues were collected. LncRNA and messenger RNA expression profiles were screened by microarray analysis in five pairs of samples with mostly increased miR-126 levels. miR-126 was highly expressed in burn wound tissues and human umbilical vein endothelial cells (HUVECs) exposed to heat stress, whereas HOTAIR and SCEL were down-regulated after thermal injury. Bioinformatic analysis, dual luciferase reporter assay, and quantitative real-time PCR were conducted to validate that HOTAIR and SCEL competitively bind to miR-126 to function as the competitive endogenous RNA. miR-126 promoted endothelial cell proliferation, migration, and angiogenesis, but suppressed apoptosis, while HOTAIR and SCEL exerted opposite effects in HUVECs. The biological functions were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Annexin-V-FITC/PI (propidium iodide/fluorescein isothiocyanate) staining, transwell migration, and tube formation assays. Collectively, our study revealed that HOTAIR/miR-126/SCEL axis contributes to burn wound healing through mediating angiogenesis.
Collapse
Affiliation(s)
- Bimei Jiang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
176
|
Gurien SD, Aziz M, Jin H, Wang H, He M, Al‐Abed Y, Nicastro JM, Coppa GF, Wang P. Extracellular microRNA 130b-3p inhibits eCIRP-induced inflammation. EMBO Rep 2020; 21:e48075. [PMID: 31724825 PMCID: PMC10563445 DOI: 10.15252/embr.201948075] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Although microRNAs regulate mRNA expression intracellularly, they are often released into the circulation in inflammatory diseases. During sepsis, secreted extracellular cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern (DAMP), inducing tissue damage by elevating inflammatory cytokines and chemokines. Here, we report that the circulating microRNA 130b-3p inhibits eCIRP-mediated sterile and cecal ligation and puncture (CLP)-induced non-sterile inflammation. We find that levels of miR-130b-3p are increased in the serum of septic mice and patients and that it strongly interacts with recombinant murine (rm) CIRP in vitro and with eCIRP in the serum of septic mice in vivo. Combining a miR-130b-3p mimic with rmCIRP significantly decreases TNF-α release by macrophages compared to only rmCIRP-treated cells. This combined treatment also dose-dependently decreases the affinity of rmCIRP with its receptor TLR4/MD2. Finally, injection of a miR-130b-3p mimic significantly reduces rmCIRP- or CLP-induced systemic inflammation and acute lung injury in mice. These data show that extracellular miR-130b-3p functions as a novel endogenous inhibitor of eCIRP and point to an innovative therapeutic approach to treat inflammatory diseases.
Collapse
Affiliation(s)
- Steven D Gurien
- Center for Immunology and InflammationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
- Department of SurgeryDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellManhassetNYUSA
| | - Monowar Aziz
- Center for Immunology and InflammationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
| | - Hui Jin
- Center for Immunology and InflammationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
| | - Haichao Wang
- Center for Biomedical ScienceThe Feinstein Institutes for Medical ResearchManhassetNYUSA
| | - Mingzhu He
- Center for Molecular InnovationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
| | - Yousef Al‐Abed
- Center for Molecular InnovationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
| | - Jeffrey M Nicastro
- Department of SurgeryDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellManhassetNYUSA
| | - Gene F Coppa
- Department of SurgeryDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellManhassetNYUSA
| | - Ping Wang
- Center for Immunology and InflammationThe Feinstein Institutes for Medical ResearchManhassetNYUSA
- Department of SurgeryDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellManhassetNYUSA
| |
Collapse
|
177
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
178
|
Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell Biosci 2020; 10:1. [PMID: 31911829 PMCID: PMC6942390 DOI: 10.1186/s13578-019-0370-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
miRNAs, the smallest nucleotide molecules able to regulate gene expression at post transcriptional level, are found in both animals and plants being involved in fundamental processes for growth and development of living organisms. The number of miRNAs has been hypothesized to increase when some organisms specialized the process of mastication and grinding of food. Further to the vertical transmission, miRNAs can undergo horizontal transmission among different species, in particular between plants and animals. In the last years, an increasing number of studies reported that miRNA passage occurs through feeding, and that in animals, plant miRNAs can survive the gastro intestinal digestion and transferred by blood into host cells, where they can exert their functions modulating gene expression. The present review reports studies on miRNAs during evolution, with particular focus on biogenesis and mechanisms regulating their stability in plants and animals. The different biogenesis and post biogenesis modifications allow to discriminate miRNAs of plant origin from those of animal origin, and make it possible to better clarify the controversial question on whether a possible cross-kingdom miRNA transfer through food does exist. The majority of human medicines and supplements derive from plants and a regular consumption of plant food is suggested for their beneficial effects in the prevention of metabolic diseases, cancers, and dietary related disorders. So far, these beneficial effects have been generally attributed to the content of secondary metabolites, whereas mechanisms regarding other components remain unclear. Therefore, in light of the above reported studies miRNAs could result another component for the medical properties of plants. miRNAs have been mainly studied in mammals characterizing their sequences and molecular targets as available in public databases. The herein presented studies provide evidences that miRNA situation is much more complex than the static situation reported in databases. Indeed, miRNAs may have redundant activities, variable sequences, different methods of biogenesis, and may be differently influenced by external and environmental factors. In-depth knowledge of mechanisms of synthesis, regulation and transfer of plant miRNAs to other species can open new frontiers in the therapy of many human diseases, including cancer.
Collapse
Affiliation(s)
- Bernardetta Ledda
- 1Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Laura Ottaggio
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Alberto Izzotti
- 1Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy.,Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Samir G Sukkar
- UOD Dietetic and Clinical Nutrition, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| | - Mariangela Miele
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, L.Go R. Benzi, 10, Genoa, Italy
| |
Collapse
|
179
|
Wong RR, Abd-Aziz N, Affendi S, Poh CL. Role of microRNAs in antiviral responses to dengue infection. J Biomed Sci 2020; 27:4. [PMID: 31898495 PMCID: PMC6941309 DOI: 10.1186/s12929-019-0614-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is the etiological agent of dengue fever. Severe dengue could be fatal and there is currently no effective antiviral agent or vaccine. The only licensed vaccine, Dengvaxia, has low efficacy against serotypes 1 and 2. Cellular miRNAs are post-transcriptional regulators that could play a role in direct regulation of viral genes. Host miRNA expressions could either promote or repress viral replications. Induction of some cellular miRNAs could help the virus to evade the host immune response by suppressing the IFN-α/β signaling pathway while others could upregulate IFN-α/β production and inhibit the viral infection. Understanding miRNA expressions and functions during dengue infections would provide insights into the development of miRNA-based therapeutics which could be strategized to act either as miRNA antagonists or miRNA mimics. The known mechanisms of how miRNAs impact DENV replication are diverse. They could suppress DENV multiplication by directly binding to the viral genome, resulting in translational repression. Other miRNA actions include modulation of host factors. In addition, miRNAs that could modulate immunopathogenesis are discussed. Major hurdles lie in the development of chemical modifications and delivery systems for in vivo delivery. Nevertheless, advancement in miRNA formulations and delivery systems hold great promise for the therapeutic potential of miRNA-based therapy, as supported by Miravirsen for treatment of Hepatitis C infection which has successfully completed phase II clinical trial.
Collapse
Affiliation(s)
- Rui Rui Wong
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sarah Affendi
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
180
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
181
|
Wu Y, Tang Y, Xie S, Zheng X, Zhang S, Mao J, Wang B, Hou Y, Hu L, Chai K, Chen W. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics 2020; 10:1151-1165. [PMID: 31938057 PMCID: PMC6956805 DOI: 10.7150/thno.38327] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis. Insights into the roles of MicroRNAs (miRNAs) in diseases, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Methods: Here, we employed a novel chimeric peptide supramolecular nanoparticle delivery system for plectin-1 (PL-1)-targeted PDAC-specific miR-9 delivery in vitro and in pancreatic cancer patient-derived xenograft (PDX) model. RT-PCR and immunohistochemistry (IHC) were conducted to detect the expression pattern of eIF5A2. mRFP-GFP-LC3 fluorescence microscopy and Western blot were carried out to determine autophagy. Luciferase reporter assays were performed to elucidate the regulatory role of miR-9/eIF5A2 axis. Results: PL-1/miR-9 nanocomplexes dramatically improve the anticancer effect of doxorubicin through downregulating eIF5A2 expression to inhibit autophagy and induce apoptosis in PDAC therapy in vivo. Mechanistically, miR-9 directly targets the eIF5A2 transcript by binding to its 3'-untranslated region (3'-UTR) to reduce the expression levels and the secreted protein of eIF5A2 in PDAC cells. Conclusion: PL-1/miR-9 nanoparticles can be used as a novel promising anti-cancer strategy with tumor targeting and miR-9/eIF5A2 may serve as a new potential therapeutic target for future synergic therapy against human PDAC.
Collapse
Affiliation(s)
- Ying Wu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Yuexiao Tang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
- Department of Genetics, Institute of Genetics, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Baoming Wang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Yuerou Hou
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Kequn Chai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang province, Hangzhou 310012, China
| |
Collapse
|
182
|
Elhefnawi M, Salah Z, Soliman B. The Promise of miRNA Replacement Therapy for Hepatocellular Carcinoma. Curr Gene Ther 2019; 19:290-304. [DOI: 10.2174/1566523219666191023101433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is a devastating tumor which accounts for death mortality rate
94% globally, and about 780,000 new cases each year. Tumor suppressor miRNAs represent a class of
noncoding RNAs, which exhibit decreased or inhibited expression in the case of carcinogenesis.
Therefore, the replacement of these molecules leads to post-transcriptional regulation of tens to hundreds
of oncogenic targets and limiting the tumor. Interestingly, there is a group of tumor silencer
miRNAs that have been highlighted in HCC and herein, our review will discuss the prominent examples
of these miRs in terms of their efficient delivery using vectors, nano-delivery systems, their successful
models either in vitro or in vivo and pre-clinical trials. Collectively, tumor suppressor miRNAs
can act as novel therapeutics for HCC and more studies should be directed towards these promising
therapeutics.
Collapse
Affiliation(s)
- Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Zeinab Salah
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| | - Bangly Soliman
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
183
|
Thibonnier M, Esau C. Metabolic Benefits of MicroRNA-22 Inhibition. Nucleic Acid Ther 2019; 30:104-116. [PMID: 31873061 DOI: 10.1089/nat.2019.0820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabesity is a growing pandemic with substantial health and financial consequences. We are developing microRNA (miRNA)-based drug candidates that transform fat storing adipocytes into fat burning adipocytes (browning effect) to treat metabolic diseases characterized by lipotoxicity. Through phenotypic screening in primary cultures of human subcutaneous adipocytes, we discovered that inhibition of miRNA-22-3p by several complementary antagomirs resulted in increased lipid oxidation, mitochondrial activity, and energy expenditure (EE). These effects may be mediated through activation of target genes like KDM3A, KDM6B, PPARA, PPARGC1B, and SIRT1 involved in lipid catabolism, thermogenesis, and glucose homeostasis. In the model of Diet-Induced Obesity in mice of various ages, weekly subcutaneous injections of various miRNA-22-3p antagomirs produced a significant fat mass reduction, but no change of appetite or body temperature. Insulin sensitivity, as well as circulating glucose and cholesterol levels, was also improved. These original findings suggest that miRNA-22-3p inhibition could become a potent treatment of human obesity and type 2 diabetes mellitus, the so-called diabesity characterized by lipotoxicity and insulin resistance.
Collapse
|
184
|
Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, Salido-Guadarrama I, Rodríguez-Bautista R, Montaño S, Muñiz-Mendoza R, Arriaga-Canon C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Hernández G, Herrera LA. MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities. Front Oncol 2019; 9:1404. [PMID: 31921661 PMCID: PMC6917641 DOI: 10.3389/fonc.2019.01404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Dysregulated metabolism is a common feature of cancer cells and is considered a hallmark of cancer. Altered tumor-metabolism confers an adaptive advantage to cancer cells to fulfill the high energetic requirements for the maintenance of high proliferation rates, similarly, reprogramming metabolism confers the ability to grow at low oxygen concentrations and to use alternative carbon sources. These phenomena result from the dysregulated expression of diverse genes, including those encoding microRNAs (miRNAs) which are involved in several metabolic and tumorigenic pathways through its post-transcriptional-regulatory activity. Further, the identification of key actionable altered miRNA has allowed to propose novel targeted therapies to modulated tumor-metabolism. In this review, we discussed the different roles of miRNAs in cancer cell metabolism and novel miRNA-based strategies designed to target the metabolic machinery in human cancer.
Collapse
Affiliation(s)
- Abraham Pedroza-Torres
- Cátedra CONACyT-Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Sandra L Romero-Córdoba
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Montserrat Justo-Garrido
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Iván Salido-Guadarrama
- Biología Computacional, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Rubén Rodríguez-Bautista
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán, Mexico
| | - Rodolfo Muñiz-Mendoza
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Greco Hernández
- Laboratorio de Traducción y Cáncer, Unidad de Investigaciones Biomedicas en Cáncer, Instituto Nacional de Cancerolgía, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas - Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
185
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
186
|
Jing Z, Qi R, Thibonnier M, Ren P. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides. J Chem Theory Comput 2019; 15:6422-6432. [PMID: 31553600 PMCID: PMC6889957 DOI: 10.1021/acs.jctc.9b00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations. To achieve a reliable prediction of the hybridization free energy, the AMOEBA polarizable force field and the free energy perturbation technique were employed. The calculated hybridization free energies are generally compatible with previous experiments. For LNA and PNA, the enhanced duplex stability can be explained by the preorganization mechanism, i.e., the single strands adopt stable helical structures similar to those in the duplex. For PS, the S and R isomers (Sp and Rp) have preferences for C2'-endo and C3'-endo sugar puckering conformations, respectively, and therefore Sp is less stable than Rp in DNA/RNA hybrids. In addition, the solvation penalty of Rp accounts for its destabilization effect. PS-LNA is similar to LNA as the sugar puckering is dominated by the locked sugar ring. This work demonstrated that MD simulations with polarizable force fields are useful for the understanding and design of modified nucleic acids.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
187
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
188
|
Kanwal F, Chen T, Zhang Y, Simair A, Lu C. A Modified In Vitro Transcription Approach to Improve RNA Synthesis and Ribozyme Cleavage Efficiency. Mol Biotechnol 2019; 61:469-476. [PMID: 30868354 DOI: 10.1007/s12033-019-00167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA elements such as catalytic RNA, riboswitch, microRNA, and long non-coding RNA perform a major role in cellular processes. A complete understanding of cellular processes is impossible without knowing the structure-function relationship of participating RNA molecules that ultimately requires large quantities of pure RNAs. Thus, structural/functional analyses of emerging RNAs necessitate revised protocols for improved RNA quantity and quality. Here we present a modified in vitro transcription protocol to enhance ribozyme cleaving efficiency and RNA yield by working on two variables, i.e., incubation temperature and limiting GTPs. Following an improved RNA synthesis, the target RNA is purified from transcription mixture components through denaturing size-exclusion chromatography. The protocol confirms that cyclic elevated incubation temperatures during transcription and increased concentrations of GTPs improve the production rate of RNA. Our modified in vitro transcription method improves the ribozyme cleaving efficiency and targets RNA yield by four- to fivefold that can benefit almost any RNA-related study from protein-RNA interaction analysis to crystallography.
Collapse
Affiliation(s)
- Fariha Kanwal
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, DongHua University, 2999 North Ren Min Road, Shanghai, 201620, China
| | - Ting Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, DongHua University, 2999 North Ren Min Road, Shanghai, 201620, China
| | - Yunlong Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, DongHua University, 2999 North Ren Min Road, Shanghai, 201620, China
| | - Altaf Simair
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, DongHua University, 2999 North Ren Min Road, Shanghai, 201620, China
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, DongHua University, 2999 North Ren Min Road, Shanghai, 201620, China.
| |
Collapse
|
189
|
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 2019; 69:226-237. [PMID: 31704145 DOI: 10.1016/j.semcancer.2019.10.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is amongst the most lethal cancer among females and conventional treatment methods like surgery, radiotherapy and chemotherapy are not effective enough as expected and suffer concerns of low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. Gene therapy using free nucleic acids has potential to deal with key candidate genes of BC, but their effect is retarded due to poor cell uptake and instability in circulation. The rapidly evolving field of nanomedicine aiming targeted drug/gene delivery curtailing BC promises to overcome the limitations of conventional therapies. Nanoparticles can be game changer for BC gene therapy as they can be effective carrier of specific drug/gene by improving the circulation time, enhancing bioavailability, reducing the immune system based recognition chances, and delivering the gene regulator accurately. Herein, we discuss the mechanism of nanoparticles targeted drug delivery, recent advancement of therapeutic strategies of nanoparticles based carriers for small interfering RNA, and microRNA, and gene augmentation therapies in BC. We also discuss the future prospect and challenges of nanoparticle-based therapies for BC.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sajjad Karim
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
190
|
Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut 2019; 68:2065-2079. [PMID: 31300518 DOI: 10.1136/gutjnl-2018-318146] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with a thorough reprogramming of hepatic metabolism. Epigenetic mechanisms, in particular those associated with deregulation of the expressions and activities of microRNAs (miRNAs), play a major role in metabolic disorders associated with NAFLD and their progression towards more severe stages of the disease. In this review, we discuss the recent progress addressing the role of the many facets of complex miRNA regulatory networks in the development and progression of NAFLD. The basic concepts and mechanisms of miRNA-mediated gene regulation as well as the various setbacks encountered in basic and translational research in this field are debated. miRNAs identified so far, whose expressions/activities are deregulated in NAFLD, and which contribute to the outcomes of this pathology are further reviewed. Finally, the potential therapeutic usages in a short to medium term of miRNA-based strategies in NAFLD, in particular to identify non-invasive biomarkers, or to design pharmacological analogues/inhibitors having a broad range of actions on hepatic metabolism, are highlighted.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
191
|
Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet 2019; 10:1017. [PMID: 31737035 PMCID: PMC6834788 DOI: 10.3389/fgene.2019.01017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. Its detailed pathogenesis is still unclear, although available evidence supports that IBD is caused by a complex interplay between genetic predispositions, environmental factors, and aberrant immune responses. Recent breakthroughs with regard to its genetics have offered valuable insights into the sophisticated genetic basis, but the identified genetic factors only explain a small part of overall disease variance. It is becoming increasingly apparent that epigenetic factors can mediate the interaction between genetics and environment, and play a fundamental role in the pathogenesis of IBD. This review outlines recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential translational applications.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
192
|
Salloum-Asfar S, Satheesh NJ, Abdulla SA. Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder. Front Mol Neurosci 2019; 12:253. [PMID: 31680857 PMCID: PMC6808050 DOI: 10.3389/fnmol.2019.00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a heterogeneous group of complex neurodevelopmental disorders characterized by social skill and communication deficits, along with stereotyped repetitive behavior. miRNAs, small non-coding RNAs that have been recognized as critical regulators of gene expression, play a key role in the neurodevelopmental transcriptional networks of the human brain. Previous investigations have proven that circulating miRNAs open up new possibilities for the emerging roles of diagnostic and prognostic biomarkers in human disorders and diseases. Biomarker development has been progressively becoming more recognized as a cornerstone in medical diagnosis, paving the way to drug discoveries and limiting the progression of various diseases. Due to the complexity of ASD, considerable endeavors have either unsuccessfully identified biomarkers for the disorder or have not yet been established. Cell-free circulating miRNAs in biofluids are extraordinarily stable and considered to represent the next-generation of clinical, non-invasive, biomarkers for many pathologies including neurological and neurodevelopmental disorders. Here, we conducted a review of all peer-reviewed articles addressing the circulating profiles of miRNAs, mostly performed in serum and saliva samples in individuals with ASD.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Noothan J Satheesh
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
193
|
Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci 2019; 20:E4940. [PMID: 31590453 PMCID: PMC6801796 DOI: 10.3390/ijms20194940] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Brendan P Norman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, UAE.
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
194
|
Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2019; 121:898-929. [DOI: 10.1002/jcb.29364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sherien Bukhat
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Majid Manzoor
- College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
195
|
Galloway DA, Gowing E, Setayeshgar S, Kothary R. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia 2019; 68:859-877. [PMID: 31441132 DOI: 10.1002/glia.23711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Elizabeth Gowing
- Neurosciences Department, Faculty of Medicine, Centre de recherche du CHUM, Université de Montreal, Montreal, Quebec, Canada
| | - Solmaz Setayeshgar
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Department of Biochemistry, Microbiology and Immunology, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
196
|
Mondejar-Parreño G, Callejo M, Barreira B, Morales-Cano D, Esquivel-Ruiz S, Filice M, Moreno L, Cogolludo A, Perez-Vizcaino F. miR-1 induces endothelial dysfunction in rat pulmonary arteries. J Physiol Biochem 2019; 75:519-529. [PMID: 31432395 DOI: 10.1007/s13105-019-00696-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction plays a central role in the pathophysiology of pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are small single-strand and non-coding RNAs that negatively regulate gene function by binding to the 3'-untranslated region (3'-UTR) of specific mRNAs. microRNA-1 (miR-1) is upregulated in plasma from idiopathic PAH patients and in lungs from an experimental model of PAH. However, the role of miRNA-1 on endothelial dysfunction is unknown. The aim of this study was to analyze the effects of miR-1 on endothelial function in rat pulmonary arteries (PA). Endothelial function was studied in PA from PAH or healthy animals and mounted in a wire myograph. Some PA from control animals were transfected with miR-1 or scramble miR. Superoxide anion production by miR-1 was quantified by dihydroethidium (DHE) fluorescence in rat PA smooth muscle cells (PASMC). Bioinformatic analysis identified superoxide dismutase-1 (SOD1), connexin-43 (Cx43), caveolin 2 (CAV2) and Krüppel-like factor 4 (KLF4) as potential targets of miR-1. The expression of SOD1, Cx43, CAV2, and KLF4 was determined by qRT-PCR and western blot in PASMC. PA incubated with miR-1 presented decreased endothelium-dependent relaxation to acetylcholine. We also found an increase in the production of O2- and decreased expression of SOD1, Cx43, CAV2, and KLF4 in PASMC induced by miR-1, which may contribute to endothelial dysfunction. In conclusion, these data indicate that miR-1 induces endothelial dysfunction, suggesting a pathophysiological role in PAH.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - María Callejo
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Bianca Barreira
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Daniel Morales-Cano
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Marco Filice
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Moreno
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departament of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain. .,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain. .,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
197
|
Fu L, Jiang G, Weng H, Dick GM, Chang Y, Kassab GS. Cerebrovascular miRNAs correlate with the clearance of Aβ through perivascular route in younger 3xTg-AD mice. Brain Pathol 2019; 30:92-105. [PMID: 31206909 DOI: 10.1111/bpa.12759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
The "two-hit vascular hypothesis for Alzheimer's disease (AD)" and amyloid-β (Aβ) oligomer hypothesis suggest that impaired soluble Aβ oligomers clearance through the cerebral vasculature may be an initial step of the AD process. Soluble Aβ oligomers are driven into perivascular spaces from the brain parenchyma and toward peripheral blood flow. The underlying vascular-based mechanism, however, has not been defined. Given that microRNAs (miRNAs), emerging as novel modulators, are involved in numerous physiological and pathological processes, we hypothesized that cerebrovascular miRNAs may regulate the activities of brain blood vessels, which further affects the concentration of Aβ in the AD brain. In this study, perivascular Aβ deposits, higher vascular activation, increased pericyte coverage and up-regulated capillaries miRNAs at 6 months old (6 mo) were found to correlate with the lower Aβ levels of middle AD stage (9 mo) in 3xTg-AD (3xTg) mice. It is implicated that at the early stage of AD when intracellular Aβ appeared, higher expression of vessel-specific miRNAs, elevated pericyte coverage, and activated endothelium facilitate Aβ oligomer clearance through the perivascular route, resulting in a transient reduction of Aβ oligomers at 9 mo. Additionally, ghrelin-induced upregulation of capillary miRNAs and increased pericyte coverage attenuated Aβ burden at 9 mo, in further support of the relationship between vascular miRNAs and Aβ clearance. This work suggests a cerebral microvessel miRNA may boost endothelial highly activated phenotypes to promote elimination of Aβ oligomers through the perivascular drainage pathway and contribute to AD progression. The targeting of brain vessel-specific miRNAs may provide a new rationale for the development of innovative therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Lijuan Fu
- California Medical Innovations Institute, San Diego, USA
| | - Ge Jiang
- California Medical Innovations Institute, San Diego, USA
| | - Hope Weng
- California Medical Innovations Institute, San Diego, USA
| | - Gregory M Dick
- California Medical Innovations Institute, San Diego, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | | |
Collapse
|
198
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
199
|
Xu J, Sun J, Ho PY, Luo Z, Ma W, Zhao W, Rathod SB, Fernandez CA, Venkataramanan R, Xie W, Yu AM, Li S. Creatine based polymer for codelivery of bioengineered MicroRNA and chemodrugs against breast cancer lung metastasis. Biomaterials 2019; 210:25-40. [PMID: 31054369 PMCID: PMC6538300 DOI: 10.1016/j.biomaterials.2019.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/05/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the major cause for breast cancer related mortality. The combination of miRNA-based therapy and chemotherapy represents a promising approach against breast cancer lung metastasis. The goal of this study is to develop an improved therapy that co-delivers a novel bioengineered miRNA prodrug (tRNA-mir-34a) and doxorubicin (DOX) via a multifunctional nanomicellar carrier that is based on a conjugate of amphiphilic copolymer POEG-VBC backbone with creatine, a naturally occurring cationic molecule. Co-delivery of DOX leads to more effective processing of tRNA-mir-34a into mature miR-34a and down-regulation of target genes. DOX + tRNA-mir-34a/POEG-PCre exhibits potent synergistic anti-tumor and anti-metastasis activity in vitro and in vivo. Interestingly, the enhanced immune response contributes to the overall antitumor efficacy. POEG-PCre may represent a safe and effective delivery system for an optimal chemo-gene combination therapy.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pui Yan Ho
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 96817, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Weina Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wenchen Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sanjay B Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christian A Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 96817, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
200
|
Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J Cell Biochem 2019; 120:16316-16329. [DOI: 10.1002/jcb.29053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
|