151
|
Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro. Vaccine 2009; 27:5187-94. [DOI: 10.1016/j.vaccine.2009.06.069] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/21/2009] [Indexed: 01/10/2023]
|
152
|
Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:528-39. [PMID: 19392698 DOI: 10.1111/j.1365-313x.2009.03894.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium signals are critical for the regulation of polarized growth in many eukaryotic cells, including pollen tubes and neurons. In plants, the regulatory pathways that code and decode Ca(2+) signals are poorly understood. In Arabidopsis thaliana, genetic evidence presented here indicates that pollen tube tip growth involves the redundant activity of two Ca(2+)-dependent protein kinases (CPKs), isoforms CPK17 and -34. Both isoforms appear to target to the plasma membrane, as shown by imaging of CPK17-yellow fluorescent protein (YFP) and CPK34-YFP in growing pollen tubes. Segregation analyses from two independent sets of T-DNA insertion mutants indicate that a double disruption of CPK17 and -34 results in an approximately 350-fold reduction in pollen transmission efficiency. The near sterile phenotype of homozygous double mutants could be rescued through pollen expression of a CPK34-YFP fusion. In contrast, a transgene rescue was blocked by mutations engineered to disrupt the Ca(2+)-activation mechanism of CPK34 (CPK34-YFP-E465A,E500A), providing in vivo evidence linking Ca(2+) activation to a biological function of a CPK. While double mutant pollen tubes displayed normal morphology, relative growth rates for the most rapidly growing tubes were reduced by more than three-fold compared with wild type. In addition, while most mutant tubes appeared to grow far enough to reach ovules, the vast majority (>90%) still failed to locate and fertilize ovules. Together, these results provide genetic evidence that CPKs are essential to pollen fitness, and support a mechanistic model in which CPK17 and -34 transduce Ca(2+) signals to increase the rate of pollen tube tip growth and facilitate a response to tropism cues.
Collapse
Affiliation(s)
- Candace Myers
- Biochemistry Department MS200, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
|
154
|
Chu FH, Chen YR, Lee CH, Chang TT. Molecular characterization and expression analysis of Acmago and AcY14 in Antrodia cinnamomea. ACTA ACUST UNITED AC 2009; 113:577-82. [DOI: 10.1016/j.mycres.2009.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/04/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
155
|
Park NI, Yeung EC, Muench DG. Mago Nashi is involved in meristem organization, pollen formation, and seed development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:461-9. [PMID: 26493135 DOI: 10.1016/j.plantsci.2008.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 05/03/2023]
Abstract
Mago Nashi (Mago) is involved in several processes related to mRNA physiology in animal cells, including mRNA export from the nucleus, cytoplasmic mRNA localization, non-sense mediated mRNA decay, and translation. These cellular roles are visible as defects in development when Mago gene expression is modified in mutant model animal systems. Mago gene orthologs exist in plants, however, their functional roles in growth and development have not been well studied. Using an RNA interference (RNAi) approach, we produced transgenic Arabidopsis plants that had reduced levels of AtMago mRNA. RNAi-AtMago plants were delayed in their overall development, produced a greater number of leaves, and possessed short and occasionally fasciated stems. The leaves were small in size and demonstrated enhanced curling along their length. Shoot meristems of RNAi-AtMago plants lacked the cellular organization of wildtype meristems. Shoot meristematic cells were extensively vacuolated and large intercellular spaces were evident. RNAi-AtMago plants produced short lateral roots that lacked normal cell profiles and demonstrated premature root hair differentiation. The arrangement of microspore tetrads in RNAi-AtMago plants was aberrant, and microspores were extensively vacuolated. Pollen production and pollen germination rates were also reduced. RNAi-AtMago plants occasionally produced aborted seeds, or demonstrated delayed seed development that resulted in non-viable seed. The range of developmental defects visible in RNAi-AtMago plants and the ubiquitous expression of AtMago indicates that Mago has essential functions in most, if not all plant cell types.
Collapse
Affiliation(s)
- Nam-Il Park
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada.
| |
Collapse
|
156
|
Boavida LC, Shuai B, Yu HJ, Pagnussat GC, Sundaresan V, McCormick S. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 2009; 181:1369-85. [PMID: 19237690 PMCID: PMC2666506 DOI: 10.1534/genetics.108.090852] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
Functional analyses of the Arabidopsis genome require analysis of the gametophytic generation, since approximately 10% of the genes are expressed in the male gametophyte and approximately 9% in the female gametophyte. Here we describe the genetic and molecular characterization of 67 Ds insertion lines that show reduced transmission through the male gametophyte. About half of these mutations are male gametophytic-specific mutations, while the others also affect female transmission. Genomic sequences flanking both sides of the Ds element were recovered for 39 lines; for 16 the Ds elements were inserted in or close to coding regions, while 7 were located in intergenic/unannotated regions of the genome. For the remaining 16 lines, chromosomal rearrangements such as translocations or deletions, ranging between 30 and 500 kb, were associated with the transposition event. The mutants were classified into five groups according to the developmental processes affected; these ranged from defects in early stages of gametogenesis to later defects affecting pollen germination, pollen tube growth, polarity or guidance, or pollen tube-embryo sac interactions or fertilization. The isolated mutants carry Ds insertions in genes with diverse biological functions and potentially specify new functions for several unannotated or unknown proteins.
Collapse
Affiliation(s)
- Leonor C Boavida
- Plant Gene Expression Center and Plant and Microbial Biology, US Department of Agriculture/Agricultural Research Service, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
157
|
Szumlanski AL, Nielsen E. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. THE PLANT CELL 2009; 21:526-44. [PMID: 19208902 PMCID: PMC2660625 DOI: 10.1105/tpc.108.060277] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 01/16/2009] [Accepted: 01/26/2009] [Indexed: 05/03/2023]
Abstract
During reproduction in flowering plants, pollen grains form a tube that grows in a polarized fashion through the female tissues to eventually fertilize the egg cell. These highly polarized pollen tubes have a rapid rate of growth that is supported by a tip-focused delivery of membrane and cell wall components. To gain a better understanding of how this growth is regulated, we investigated the function RABA4D, a member of the Arabidopsis thaliana RabA4 subfamily of Rab GTPase proteins. Here, we show that RABA4D was expressed in a pollen-specific manner and that enhanced yellow fluorescent protein (EYFP)-RabA4d-labeled membrane compartments localized to the tips of growing pollen tubes. Mutant pollen in which the RABA4D gene was disrupted displayed bulged pollen tubes with a reduced rate of growth in vitro and displayed altered deposition of some cell wall components. Expression of EYFP-RabA4d restored wild-type phenotypes to the raba4d mutant pollen tubes, while expression of EYFP-RabA4b did not rescue the raba4d phenotype. In vivo, disruption of RABA4D resulted in a male-specific transmission defect with mutant raba4d pollen tubes displaying aberrant growth in the ovary and reduced guidance at the micropyle. We propose that RabA4d plays an important role in the regulation of pollen tube tip growth.
Collapse
Affiliation(s)
- Amy L Szumlanski
- Department of Molecular Cellular and Developmental Biology, University of Michigan, An Arbor, Michigan 48109, USA
| | | |
Collapse
|
158
|
Zhao Z, Zhang W, Stanley BA, Assmann SM. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. THE PLANT CELL 2008; 20:3210-26. [PMID: 19114538 PMCID: PMC2630442 DOI: 10.1105/tpc.108.063263] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 05/17/2023]
Abstract
We isolated a total of 3 x 10(8) guard cell protoplasts from 22,000 Arabidopsis thaliana plants and identified 1734 unique proteins using three complementary proteomic methods: protein spot identification from broad and narrow pH range two-dimensional (2D) gels, and 2D liquid chromatography-matrix assisted laser desorption/ionization multidimensional protein identification technology. This extensive single-cell-type proteome includes 336 proteins not previously represented in transcriptome analyses of guard cells and 52 proteins classified as signaling proteins by Gene Ontology analysis, of which only two have been previously assessed in the context of guard cell function. THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1), a myrosinase that catalyzes the production of toxic isothiocyanates from glucosinolates, showed striking abundance in the guard cell proteome. tgg1 mutants were hyposensitive to abscisic acid (ABA) inhibition of guard cell inward K(+) channels and stomatal opening, revealing that the glucosinolate-myrosinase system, previously identified as a defense against biotic invaders, is required for key ABA responses of guard cells. Our results also suggest a mechanism whereby exposure to abiotic stresses may enhance plant defense against subsequent biotic stressors and exemplify how enhanced knowledge of the signaling networks of a specific cell type can be gained by proteomics approaches.
Collapse
Affiliation(s)
- Zhixin Zhao
- Biology Department, Pen State University, University Park, Pensylvania 16802, USA
| | | | | | | |
Collapse
|
159
|
Abstract
Is there a common mechanism of eukaryotic sex? Two recent reports highlight an ancient and widely distributed protein that is key to gamete fusion and is a potential target for malaria vaccines.
Collapse
|
160
|
Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD. Comparative transcriptomics of Arabidopsis sperm cells. PLANT PHYSIOLOGY 2008; 148:1168-81. [PMID: 18667720 PMCID: PMC2556834 DOI: 10.1104/pp.108.125229] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/27/2008] [Indexed: 05/19/2023]
Abstract
In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.
Collapse
Affiliation(s)
- Filipe Borges
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
161
|
Meinke D, Muralla R, Sweeney C, Dickerman A. Identifying essential genes in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2008; 13:483-91. [PMID: 18684657 DOI: 10.1016/j.tplants.2008.06.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/06/2008] [Accepted: 06/10/2008] [Indexed: 05/20/2023]
Abstract
Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.
Collapse
Affiliation(s)
- David Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
162
|
Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M. Sucrose synthase is associated with the cell wall of tobacco pollen tubes. PLANT PHYSIOLOGY 2008; 147:1603-18. [PMID: 18344420 PMCID: PMC2492599 DOI: 10.1104/pp.108.115956] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/09/2008] [Indexed: 05/20/2023]
Abstract
Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for defining the relationships between nutrients, growth, and cell morphogenesis. We used the pollen tube of tobacco (Nicotiana tabacum) as a cell model to characterize the main features of Sus with regard to cell growth and cell wall synthesis. Apart from its role during sexual reproduction, the pollen tube is a typical tip-growing cell, and the proper construction of its cell wall is essential for correct shaping and direction of growth. The outer cell wall layer of pollen tubes consists of pectins, but the inner layer is composed of cellulose and callose; both polymers require metabolic precursors in the form of UDP-glucose, which is synthesized by Sus. We identified an 88-kD polypeptide in the soluble, plasma membrane and Golgi fraction of pollen tubes. The protein was also found in association with the cell wall. After purification, the protein showed an enzyme activity similar to that of maize (Zea mays) Sus. Distribution of Sus was affected by brefeldin A and depended on the nutrition status of the pollen tube, because an absence of metabolic sugars in the growth medium caused Sus to distribute differently during tube elongation. Analysis by bidimensional electrophoresis indicated that Sus exists as two isoforms, one of which is phosphorylated and more abundant in the cytoplasm and cell wall and the other of which is not phosphorylated and is specific to the plasma membrane. Results indicate that the protein has a role in the construction of the extracellular matrix and thus in the morphogenesis of pollen tubes.
Collapse
Affiliation(s)
- Diana Persia
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
163
|
Alandete-Saez M, Ron M, McCormick S. GEX3, expressed in the male gametophyte and in the egg cell of Arabidopsis thaliana, is essential for micropylar pollen tube guidance and plays a role during early embryogenesis. MOLECULAR PLANT 2008; 1:586-98. [PMID: 19825564 DOI: 10.1093/mp/ssn015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Double fertilization in flowering plants occurs when the two sperm cells, carried by the pollen tube, are released in a synergid cell of the embryo sac and then fertilize the egg and the central cell. Proteins on the surfaces of the sperm, egg, central, and synergid cells might be important for guidance and recognition/fusion of the gametes. Here, we present functional analyses of Arabidopsis GEX3, which encodes a plasma membrane-localized protein that has homologs in other plants. GEX3 is expressed in both the vegetative and sperm cells of the male gametophyte and in the egg cell of the female gametophyte. Transgenic lines in which GEX3 was down-regulated or overexpressed, using the Arabidopsis GEX2 promoter, had reduced seed set. Reciprocal crosses and imaging after pollination with a reporter line showed that, in both cases, the defect causing reduced seed set occurred in the female. In the antisense lines, micropylar pollen tube guidance failed. In the overexpression lines, fertilization of mutant ovules was mostly blocked because pollen tube guidance failed, although, occasionally, non-viable embryos were formed. We conclude that properly regulated expression of GEX3 in the egg cell of Arabidopsis is essential for pollen tube guidance.
Collapse
Affiliation(s)
- Monica Alandete-Saez
- Department of Plant and Microbial Biology, USDA/ARS-UC-Berkeley, Albany, CA 94710, USA
| | | | | |
Collapse
|
164
|
Peng XB, Sun MX. Gamete recognition in higher plants: an abstruse but charming mystery. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:868-874. [PMID: 18713397 DOI: 10.1111/j.1744-7909.2008.00706.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although much effort has been made to uncover the mechanism underlying double fertilization, little knowledge has been acquired for understanding the molecular base of gamete recognition, mainly because of technical limitations. Still, progress has been made in terms of the mechanism, including the identification of candidate molecules that are involved in gamete recognition in angiosperms. New cues for gamete recognition have been found by the successful separation of the gametes and construction of gamete-specific cDNA libraries in several species, and the application of molecular approaches for studying this process by mutations. Thus, the topic is considered an abstruse but charming mystery.
Collapse
Affiliation(s)
- Xiong-Bo Peng
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
165
|
Sivitz AB, Reinders A, Ward JM. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. PLANT PHYSIOLOGY 2008; 147:92-100. [PMID: 18359840 PMCID: PMC2330317 DOI: 10.1104/pp.108.118992] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/17/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) sucrose transporter AtSUC1 (At1g71880) is highly expressed in pollen; however, its function has remained unknown. Here, we show that suc1 mutant pollen is defective in vivo, as evidenced by segregation distortion, and also has low rates of germination in vitro. AtSUC1-green fluorescent protein was localized to the plasma membrane in pollen tubes. AtSUC1 is also expressed in roots and external application of sucrose increased AtSUC1 expression in roots. AtSUC1 is important for sucrose-dependent signaling leading to anthocyanin accumulation in seedlings. suc1 mutants accumulated less anthocyanins in response to exogenous sucrose or maltose and microarray analysis revealed reduced expression of many genes important for anthocyanin biosynthesis. The results indicate that AtSUC1 is important for sugar signaling in vegetative tissue and for normal male gametophyte function.
Collapse
Affiliation(s)
- Alicia B Sivitz
- Department of Plant Biology, University of Minnesota Twin Cities, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
166
|
Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:284-98. [PMID: 18208516 DOI: 10.1111/j.1365-313x.2008.03420.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.
Collapse
Affiliation(s)
- Charles R Dietrich
- USDA-ARS Plant Genetics Research Unit, Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
167
|
Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 2008; 22:1051-68. [PMID: 18367645 DOI: 10.1101/gad.1656508] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
|
169
|
Doelling JH, Phillips AR, Soyler-Ogretim G, Wise J, Chandler J, Callis J, Otegui MS, Vierstra RD. The ubiquitin-specific protease subfamily UBP3/UBP4 is essential for pollen development and transmission in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:801-13. [PMID: 17905865 PMCID: PMC2048767 DOI: 10.1104/pp.106.095323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 09/25/2007] [Indexed: 05/17/2023]
Abstract
Deubiquitinating enzymes are essential to the ubiquitin (Ub)/26S proteasome system where they release Ub monomers from the primary translation products of poly-Ub and Ub extension genes, recycle Ubs from polyubiquitinated proteins, and reverse the effects of ubiquitination by releasing bound Ubs from individual targets. The Ub-specific proteases (UBPs) are one large family of deubiquitinating enzymes that bear signature cysteine and histidine motifs. Here, we genetically characterize a UBP subfamily in Arabidopsis (Arabidopsis thaliana) encoded by paralogous UBP3 and UBP4 genes. Whereas homozygous ubp3 and ubp4 single mutants do not display obvious phenotypic abnormalities, double-homozygous mutant individuals could not be created due to a defect in pollen development and/or transmission. This pollen defect was rescued with a transgene encoding wild-type UBP3 or UBP4, but not with a transgene encoding an active-site mutant of UBP3, indicating that deubiquitination activity of UBP3/UBP4 is required. Nuclear DNA staining revealed that ubp3 ubp4 pollen often fail to undergo mitosis II, which generates the two sperm cells needed for double fertilization. Substantial changes in vacuolar morphology were also evident in mutant grains at the time of pollen dehiscence, suggesting defects in vacuole and endomembrane organization. Even though some ubp3 ubp4 pollen could germinate in vitro, they failed to fertilize wild-type ovules even in the absence of competing wild-type pollen. These studies provide additional evidence that the Ub/26S proteasome system is important for male gametogenesis in plants and suggest that deubiquitination of one or more targets by UBP3/UBP4 is critical for the development of functional pollen.
Collapse
Affiliation(s)
- Jed H Doelling
- Division of Plant and Soil Sciences , West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 2007; 104:14531-6. [PMID: 17726111 PMCID: PMC1964830 DOI: 10.1073/pnas.0701781104] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
Ion signals are critical to regulating polarized growth in many cell types, including pollen in plants and neurons in animals. Genetic evidence presented here indicates that pollen tube growth requires cyclic nucleotide-gated channel (CNGC) 18. CNGCs are nonspecific cation channels found in plants and animals and have well established functions in excitatory signal transduction events in animals. In Arabidopsis, male sterility was observed for two cngc18 null mutations. CNGC18 is expressed primarily in pollen, as indicated from a promoter::GUS (beta-glucuronidase) reporter analysis and expression profiling. The underlying cause of sterility was identified as a defect in pollen tube growth, resulting in tubes that were kinky, short, often thin, and unable to grow into the transmitting tract. Expression of a GFP-tagged CNGC18 in mutant pollen provided complementation and evidence for asymmetric localization of CNGC18 to the plasma membrane at the growing tip, starting at the time of pollen grain germination. Heterologous expression of CNGC18 in Escherichia coli resulted in a time- and concentration-dependent accumulation of more Ca2+. Thus, CNGC18 provides a mechanism to directly transduce a cyclic nucleotide (cNMP) signal into an ion flux that can produce a localized signal capable of regulating the pollen tip-growth machinery. These results identify a CNGC that is essential to an organism's life cycle and raise the possibility that CNGCs have a widespread role in regulating cell-growth dynamics in both plant and animals.
Collapse
Affiliation(s)
- Sabine Frietsch
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| | - Yong-Fei Wang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116; and
| | - Chris Sladek
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| | - Lisbeth R. Poulsen
- Centre for Membrane Pumps in Cells and Disease (PUMPKIN), Department of Plant Biology, Copenhagen University, DK-1871 Frederiksberg C, Denmark
| | | | - Julian I. Schroeder
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116; and
| | - Jeffrey F. Harper
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| |
Collapse
|
171
|
Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL. The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1467-80. [PMID: 17468211 PMCID: PMC1914130 DOI: 10.1104/pp.107.099903] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.
Collapse
Affiliation(s)
- Steven Footitt
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | | | | | | | |
Collapse
|
172
|
Ranganath RM. Asymmetric cell division--how flowering plant cells get their unique identity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:39-60. [PMID: 17585495 DOI: 10.1007/978-3-540-69161-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A central question in biology is how cell fate is specified during development of a multicellular organism. Flowering plants use two major pathways of asymmetric cell divisions in a spatio-temporal manner to achieve required cellular differentiation. In the 'one mother--two different daughters' pathway, a mother cell mitotically divides to produce two daughter cells of different size and fate. By contrast, the 'coenocyte-cellularization' pathway involves formation of a coenocyte, nuclear migration to specific locations of the coenocyte and cellularization of these nuclei by unique wall forming processes. Given that cell fate determinants play a key role in establishing cell identity, their allocation to daughter cells in the two pathways needs to be understood in terms of the unique cell cycle regulatory mechanisms involved. Most of the information available on cell fate determination in flowering plants is in the form of genes identified from mutant analysis. Novel techniques of interrogating individual plant cells in vivo are necessary to advance the extant knowledge from genetics to functional genomics data bases.
Collapse
Affiliation(s)
- R M Ranganath
- Department of Botany, Bangalore University, Jnanabharathi Campus, Bangalore 560056, India.
| |
Collapse
|
173
|
Segregation distortion in Arabidopsis gametophytic factor 1 (gfa1) mutants is caused by a deficiency of an essential RNA splicing factor. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0046-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
174
|
Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 2007; 17:249-63. [PMID: 17339883 DOI: 10.1038/cr.2007.7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcl1 is male sterile as a result of the failure of pollen germination. We show that the bcl1 mutant allele cannot be transmitted by male gametophytes and no homozygous bcl1 mutants were obtained. Analysis of pollen developmental stages indicates that the bcl1 mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.
Collapse
Affiliation(s)
- Genji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
He C, Sommer H, Grosardt B, Huijser P, Saedler H. PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. Mol Biol Evol 2007; 24:1229-41. [PMID: 17339635 DOI: 10.1093/molbev/msm041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MADS-domain proteins serve as regulators of plant development and often form dimers and higher order complexes to function. Heterotopic expression of MPF2, a MADS-box gene, in reproductive tissues is a key component in the evolution of the inflated calyx syndrome in Physalis, but RNAi studies demonstrate that MPF2 has also acquired a role in male fertility in Physalis floridana. Using the yeast 2-hybrid system, we have now identified numerous MPF2-interacting MADS-domain proteins from Physalis, including homologs of SOC1, AP1, SEP1, SEP3, AG, and AGL6. Among the many non-MADS-domain proteins recovered was a homolog of MAGO NASHI, a highly conserved RNA-binding protein known to be involved in many developmental processes including germ cell differentiation. Two MAGO genes, termed P. floridana mago nashi1 (PFMAGO1) and PFMAGO2, were isolated from P. floridana. Both copies were found to be coexpressed in leaves, fruits, and, albeit at lower level, also in roots, stems, and flowers. DNA sequence analysis revealed that, although the coding sequences of the 2 genes are highly conserved, they differ substantially in their intron and promoter sequences. Two-hybrid screening of a Physalis expression library with both PFMAGO1 and PFMAGO2 as baits yielded numerous gene products, including an Y14-like protein. Y14 is an RNA-binding protein that forms part of various "gene expression machines." The function of MPF2 and 2 PFMAGO proteins in ensuring male fertility and evolution of calyx development in Physalis is discussed.
Collapse
Affiliation(s)
- Chaoying He
- Department of Molecular Plant Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | |
Collapse
|
176
|
Park NI, Muench DG. Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14. PLANTA 2007; 225:625-39. [PMID: 16953428 DOI: 10.1007/s00425-006-0385-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/14/2006] [Indexed: 05/05/2023]
Abstract
The exon junction complex (EJC) plays an important role in post-transcriptional control of gene expression. Mago nashi (Mago) and Y14 are core EJC proteins that operate as a functional unit in animal cells, and the Mago-Y14 heterodimer interacts with other EJC core and peripheral proteins. Little is known about the biochemical and cellular characteristics of the EJC and its orthologs in plants. Here, we demonstrate that Arabidopsis Mago and Y14 form a ternary complex with PYM, an RNA-binding protein that was previously shown to interact with the Mago-Y14 heterodimer in Drosophila. Fluorescence microscopy indicated that Arabidopsis Mago and Y14 are localized primarily in the nucleus, whereas PYM is mostly cytoplasmic. In vitro pull-down assays using recombinant proteins showed that the amino-terminal region of the Arabidopsis PYM interacts with the Mago-Y14 heterodimer, a similar observation to that previously reported for the animal versions of these proteins. However, we demonstrated also that Arabidopsis PYM has the ability to interact with monomeric Mago and monomeric Y14. Immunoprecipitation and tandem affinity purification from whole cell extracts detected a subtle interaction between the Arabidopsis Mago-Y14 heterodimer and PYM in flowers, indicating that the ternary complex is not abundant in plant cells. The regions of the polypeptide responsible for nuclear import and export were defined using protein truncations and site-directed mutagenesis. This study identifies unique characteristics of Arabidopsis Mago, Y14 and PYM compared to those observed in animal cells. These are predicted to have important functional implications associated with post-transcriptional regulation of gene expression in plant cells.
Collapse
Affiliation(s)
- Nam-il Park
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| | | |
Collapse
|
177
|
Singh MB, Bhalla PL. Control of male germ-cell development in flowering plants. Bioessays 2007; 29:1124-32. [DOI: 10.1002/bies.20660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
178
|
Heidstra R. Asymmetric Cell Division in Plant Development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:1-37. [PMID: 17585494 DOI: 10.1007/978-3-540-69161-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions.
Collapse
Affiliation(s)
- Renze Heidstra
- Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
| |
Collapse
|
179
|
Evans MMS. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. THE PLANT CELL 2007; 19:46-62. [PMID: 17209126 PMCID: PMC1820972 DOI: 10.1105/tpc.106.047506] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Angiosperm embryo sac development begins with a phase of free nuclear division followed by cellularization and differentiation of cell types. The indeterminate gametophyte1 (ig1) gene of maize (Zea mays) restricts the proliferative phase of female gametophyte development. ig1 mutant female gametophytes have a prolonged phase of free nuclear divisions leading to a variety of embryo sac abnormalities, including extra egg cells, extra polar nuclei, and extra synergids. Positional cloning of ig1 was performed based on the genome sequence of the orthologous region in rice. ig1 encodes a LATERAL ORGAN BOUNDARIES domain protein with high similarity to ASYMMETRIC LEAVES2 of Arabidopsis thaliana. A second mutant allele of ig1 was identified in a noncomplementation screen using active Mutator transposable element lines. Homozygous ig1 mutants have abnormal leaf morphology as well as abnormal embryo sac development. Affected leaves have disrupted abaxial-adaxial polarity and fail to repress the expression of meristem-specific knotted-like homeobox (knox) genes in leaf primordia, causing a proliferative, stem cell identity to persist in these cells. Despite the superficial similarity of ig1-O leaves and embryo sacs, ectopic knox gene expression cannot be detected in ig1-O embryo sacs.
Collapse
Affiliation(s)
- Matthew M S Evans
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA.
| |
Collapse
|
180
|
Bushart TJ, Roux SJ. Conserved features of germination and polarized cell growth: a few insights from a pollen-fern spore comparison. ANNALS OF BOTANY 2007; 99:9-17. [PMID: 16867999 PMCID: PMC2802967 DOI: 10.1093/aob/mcl159] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND The germination of both pollen and fern spores results in the emergence of a cell-pollen tube from pollen, rhizoid from spore-that grows in a polar fashion, primarily at its apical end. In both of these tip-growing cells, the delivery of secretory vesicles to the growing end is guided in part by a calcium gradient, with calcium entering at the tip where it is most highly concentrated. The similarities between the two systems extend beyond tip-focused calcium gradients to encompass signalling pathways and elements including calmodulin, nitric oxide, annexins and Rop-GTPases. SCOPE AND AIMS This review is limited to those pathways and elements that function similarly in fern and pollen systems based on currently available evidence. The aim is to illustrate the common mechanisms by which tip growth occurs, facilitate further investigations into this area, and examine the implications for the evolutionarily conserved control of tip growth. CONCLUSIONS The interplay of calcium, nitric oxide and other effectors in both pollen and fern spores suggests certain signalling pathways became important regulators of germination and growth early in the evolution of land plants. Both large- and small-scale comparative genomic methods have shown to be promising in their ability to find new and relevant comparisons for further research. Cross-species comparisons may serve to speed up this process by highlighting both basic pathways and system-specific deviations.
Collapse
Affiliation(s)
| | - Stanley J. Roux
- Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
181
|
Cole RA, Fowler JE. Polarized growth: maintaining focus on the tip. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:579-88. [PMID: 17010659 DOI: 10.1016/j.pbi.2006.09.014] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 09/19/2006] [Indexed: 05/04/2023]
Abstract
Tip growth, a spatially focused cell expansion, has been best characterized in two plant cell types: pollen tubes and root hairs. It has long been established that both cell types require three intracellular components for this process: a tip-high calcium gradient, a polarized actin cytoskeleton, and tip-directed vesicle trafficking. More recently, additional mechanistic parallels have been observed between the two cell types, including roles for ROP and Rab GTPase signaling, phosphoinositides, calcium-dependent protein kinases, and the exocyst. Uncovering pathways that control the three components is beginning to reveal a highly interconnected network, which we call the tip growth LENS (for localization enhancing network, self-sustaining), that coordinates the required cellular activities to allow regulated tip growth, and to maintain itself as the tip advances.
Collapse
Affiliation(s)
- Rex A Cole
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
182
|
Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 2006; 133:4211-8. [PMID: 17021043 DOI: 10.1242/dev.02602] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In flowering plants, diploid sporophytic tissues in ovules and anthers support meiosis and subsequent haploid gametophyte development. These analogous reproductive functions suggest that common mechanisms may regulate ovule and anther development. Two Arabidopsis Auxin Response Factors,ARF6 and ARF8, regulate gynoecium and stamen development in immature flowers. Wild-type pollen grew poorly in arf6 arf8 gynoecia, correlating with ARF6 and ARF8 expression in style and transmitting tract. ARF6 and ARF8 transcripts are cleavage targets of the microRNA miR167, and overexpressing miR167 mimicked arf6 arf8 phenotypes. Mutations in the miR167 target sites of ARF6 or ARF8 caused ectopic expression of these genes in domains of both ovules and anthers where miR167 was normally present. As a result, ovule integuments had arrested growth, and anthers grew abnormally and failed to release pollen. Thus, miR167 is essential for correct patterning of gene expression, and for fertility of both ovules and anthers. The essential patterning function of miR167 contrasts with cases from animals in which miRNAs reinforce or maintain transcriptionally established gene expression patterns.
Collapse
Affiliation(s)
- Miin-Feng Wu
- University of North Carolina at Chapel Hill, Department of Biology, CB #3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
183
|
von Besser K, Frank AC, Johnson MA, Preuss D. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 2006; 133:4761-9. [PMID: 17079265 DOI: 10.1242/dev.02683] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In flowering plants, sperm cells develop in the pollen cytoplasm and are transported through floral tissues to an ovule by a pollen tube, a highly polarized cellular extension. After targeting an ovule, the pollen tube bursts, releasing two sperm that fertilize an egg and a central cell. Here, we identified the gene encoding Arabidopsis HAP2, demonstrating that it is allelic to GCS1. HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to ovules. We identified an insertion (hap2-1) that disrupts the C-terminal portion of the protein and tags mutant pollen grains with the beta-glucuronidase reporter. By monitoring reporter expression, we showed that hap2-1 does not diminish pollen tube length in vitro or in the pistil, but it reduces ovule targeting by twofold. In addition, we show that the hap2 sperm that are delivered to ovules fail to initiate fertilization. HAP2 is predicted to encode a protein with an N-terminal secretion signal, a single transmembrane domain and a C-terminal histidine-rich domain. These results point to a dual role for HAP2, functioning in both pollen tube guidance and in fertilization. Moreover, our findings suggest that sperm, long considered to be passive cargo, are involved in directing the pollen tube to its target.
Collapse
Affiliation(s)
- Kiera von Besser
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Il 60637, USA
| | | | | | | |
Collapse
|
184
|
Han MJ, Jung KH, Yi G, Lee DY, An G. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. PLANT & CELL PHYSIOLOGY 2006; 47:1457-72. [PMID: 16990291 DOI: 10.1093/pcp/pcl013] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We isolated a pollen-preferential gene, RICE IMMATURE POLLEN 1 (RIP1), from a T-DNA insertional population of japonica rice that was trapped by a promoterless beta-glucuronidase (GUS) gene. Semi-quantitative reverse transcription-PCR (RT-PCR) analyses confirmed that the RIP1 transcript was abundant at the late stages of pollen development. Transgenic plants carrying a T-DNA insertion in the RIP1 gene displayed the phenotype of segregation distortion of the mutated rip1 gene. Moreover, rip1/rip1 homozygous progeny were not present. Reciprocal crosses between Rip1/rip1 heterozygous plants and the wild type showed that the rip1 allele could not be transmitted through the male. Microscopic analysis demonstrated that development in the rip1 pollen was delayed, starting at the early vacuolated stage. Close examination of that pollen by transmission electron microscopy also showed delayed formation of starch granules and the intine layer. In addition, development of the mitochondria, Golgi apparatus, lipid bodies, plastids and endoplasmic reticulum was deferred in the mutant pollen. Under in vitro conditions, germination of this mutant pollen did not occur, whereas the rate for wild-type pollen was >90%. These results indicate that RIP1 is necessary for pollen maturation and germination. This gene encodes a protein that shares significant homology with a group of proteins containing five WD40 repeat sequences. The green fluorescent protein (GFP)-RIP1 fusion protein is localized to the nucleus. Therefore, RIP1 is probably a nuclear protein that may form a functional complex with other proteins and carry out essential cellular and developmental roles during the late stage of pollen formation.
Collapse
Affiliation(s)
- Min-Jung Han
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Republic of Korea
| | | | | | | | | |
Collapse
|
185
|
Gutiérrez-Marcos JF, Costa LM, Evans MMS. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics 2006; 174:317-29. [PMID: 16849604 PMCID: PMC1569813 DOI: 10.1534/genetics.106.059709] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, double fertilization of an egg cell and a central cell with two sperm cells results in the formation of a seed containing a diploid embryo and a triploid endosperm. The extent to which the embryo sac controls postfertilization events in the seed is unknown. The novel gametophytic maternal-effect maize mutation, baseless1 (bsl1) affects central cell development within the embryo sac, frequently by altering the position of the two polar nuclei. Despite this irregularity, fertilization is as efficient as in wild type. The spatial expression of basal endosperm-specific transcripts is altered in free-nuclear and cellular mutant endosperms. At later stages of seed development, bsl1 predominantly affects development of the basal endosperm transfer layer (BETL). When bsl1/+ diploid plants were pollinated by wild-type tetraploid plants, the BETL abnormalities observed in bsl1/bsl1/+/+ tetraploid endosperms were diverse and of variable severity. Moreover, the frequency of kernels with severely perturbed BETL development correlated with the percentage of severely affected bsl1 central cells. Therefore, BSL1 is likely required in the central cell before fertilization for correct BETL patterning to occur. These findings provide new genetic evidence that a maternal gametophytic component is necessary for correct endosperm patterning.
Collapse
|
186
|
Palanivelu R, Preuss D. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC PLANT BIOLOGY 2006; 6:7. [PMID: 16595022 PMCID: PMC1489931 DOI: 10.1186/1471-2229-6-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 04/05/2006] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pollen tubes deliver sperm after navigating through flower tissues in response to attractive and repulsive cues. Genetic analyses in maize and Arabidopsis thaliana and cell ablation studies in Torenia fournieri have shown that the female gametophyte (the 7-celled haploid embryo sac within an ovule) and surrounding diploid tissues are essential for guiding pollen tubes to ovules. The variety and inaccessibility of these cells and tissues has made it challenging to characterize the sources of guidance signals and the dynamic responses they elicit in the pollen tubes. RESULTS Here we developed an in vitro assay to study pollen tube guidance to excised A. thaliana ovules. Using this assay we discerned the temporal and spatial regulation and species-specificity of late stage guidance signals and characterized the dynamics of pollen tube responses. We established that unfertilized A. thaliana ovules emit diffusible, developmentally regulated, species-specific attractants, and demonstrated that ovules penetrated by pollen tubes rapidly release diffusible pollen tube repellents. CONCLUSION These results demonstrate that in vitro pollen tube guidance to excised A. thaliana ovules efficiently recapitulates much of in vivo pollen tube behaviour during the final stages of pollen tube growth. This assay will aid in confirming the roles of candidate guidance molecules, exploring the phenotypes of A. thaliana pollen tube guidance mutants and characterizing interspecies pollination interactions.
Collapse
Affiliation(s)
- Ravishankar Palanivelu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Daphne Preuss
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
187
|
Muench DG, Park NI. Messages on the move: the role of the cytoskeleton in mRNA localization and translation in plant cellsThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoskeleton plays an important role in numerous cellular processes, including subcellular mRNA localization and translation. Several examples of mRNA localization have emerged in plant cells, and these appear to function in protein targeting, the establishment of polarity, and cell-to-cell trafficking. The identification of several cytoskeleton-associated RNA-binding proteins in plant cells has made available candidate proteins that mediate the interaction between mRNA and the cytoskeleton, and possibly play a role in mRNA localization and translational control. We propose a model that links mRNA–microtubule interactions to translational autoregulation, a process that may assist in the efficient and regulated binding of proteins to microtubules.
Collapse
Affiliation(s)
- Douglas G. Muench
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W, Calgary, AB T2N 1N4, Canada
| | - Nam-Il Park
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
188
|
Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H. Integrating membrane transport with male gametophyte development and function through transcriptomics. PLANT PHYSIOLOGY 2006; 140:1151-68. [PMID: 16607029 PMCID: PMC1435806 DOI: 10.1104/pp.105.074708] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/01/2005] [Accepted: 01/13/2006] [Indexed: 05/08/2023]
Abstract
Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::beta-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.
Collapse
Affiliation(s)
- Kevin W Bock
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Collapse
Affiliation(s)
- Nathaniel L Clark
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, USA
| | | | | |
Collapse
|
190
|
Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:866-78. [PMID: 16297076 DOI: 10.1111/j.1365-313x.2005.02580.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are required for translation in three different compartments of the plant cell: chloroplasts, mitochondria and the cytosol. Elimination of this basal function should result in lethality early in development. Phenotypes of individual mutants may vary considerably, depending on patterns of gene expression, functional redundancy, allele strength and protein localization. We describe here a reverse genetic screen of 50 insertion mutants disrupted in 21 of the 45 predicted AARSs in Arabidopsis. Our initial goal was to find additional EMB genes with a loss-of-function phenotype in the seed. Several different classes of knockouts were discovered, with defects in both gametogenesis and seed development. Three major trends were observed. Disruption of translation in chloroplasts often results in seed abortion at the transition stage of embryogenesis with minimal effects on gametophytes. Disruption of translation in mitochondria often results in ovule abortion before and immediately after fertilization. This early phenotype was frequently missed in prior screens for embryo-defective mutants. Knockout alleles of non-redundant cytosolic AARSs were in general not identified, consistent with the absolute requirement of cytosolic translation for development of male and female gametophytes. These results provide a framework for evaluating redundant functions of AARSs in Arabidopsis, a valuable data set of phenotypes resulting from multiple disruptions of a single basal process, and insights into which genes are required for both gametogenesis and embryo development and might therefore escape detection in screens for embryo-defective mutants.
Collapse
Affiliation(s)
- Michael Berg
- Department of Botany, Oklahoma State University, Stillwater, 74078, USA
| | | | | | | |
Collapse
|
191
|
Cole RA, Synek L, Zarsky V, Fowler JE. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. PLANT PHYSIOLOGY 2005; 138:2005-18. [PMID: 16040664 PMCID: PMC1183391 DOI: 10.1104/pp.105.062273] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
192
|
Gass N, Glagotskaia T, Mellema S, Stuurman J, Barone M, Mandel T, Roessner-Tunali U, Kuhlemeier C. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia. THE PLANT CELL 2005; 17:2355-68. [PMID: 15994907 PMCID: PMC1182494 DOI: 10.1105/tpc.105.033290] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.
Collapse
Affiliation(s)
- Nathalie Gass
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Tatiana Glagotskaia
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Stefan Mellema
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Jeroen Stuurman
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Mario Barone
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Ute Roessner-Tunali
- Max Planck Institute for Molecular Plant Physiology, D-14424 Potsdam, Germany
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
- To whom correspondence should be addressed. E-mail ; fax 41-31-631-49-42
| |
Collapse
|
193
|
Belostotsky DA, Rose AB. Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. TRENDS IN PLANT SCIENCE 2005; 10:347-53. [PMID: 15951220 DOI: 10.1016/j.tplants.2005.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/20/2005] [Accepted: 05/26/2005] [Indexed: 05/02/2023]
Abstract
The extensive mechanistic and regulatory interconnections between the various events of mRNA biogenesis are now recognized as a fundamental principle of eukaryotic gene expression, yet the specific details of the coupling between the various steps of mRNA biogenesis do differ, and sometimes dramatically, between the different kingdoms. In this review, we emphasize examples where plants must differ in this respect from other eukaryotes, and highlight a recurring trend of recruiting the conserved, versatile functional modules, which have evolved to support the general mRNA biogenesis reactions, for plant-specific functions. We also argue that elucidating the inner workings of the plant 'mRNA factory' is essential for accomplishing the ambitious goal of building the 'virtual plant'.
Collapse
Affiliation(s)
- Dmitry A Belostotsky
- Department of Biological Sciences, State University of New York at Albany, 1400 Washington Ave, Albany, NY 12222, USA.
| | | |
Collapse
|
194
|
Abstract
For pollination to succeed, pollen must carry sperm through a variety of different floral tissues to access the ovules within the pistil. The pistil provides everything the pollen requires for success in this endeavor including distinct guidance cues and essential nutrients that allow the pollen tube to traverse enormous distances along a complex path to the unfertilized ovule. Although the pistil is a great facilitator of pollen function, it can also be viewed as an elaborate barrier that shields ovules from access from inappropriate pollen, such as pollen from other species. Each discrete step taken by pollen tubes en route to the ovules is a potential barrier point to ovule access and waste by inappropriate mates. In this review, we survey the current molecular understanding of how pollination proceeds, and ask to what extent is each step important for mate discrimination. As this field progresses, this synthesis of functional biology and evolutionary studies will provide insight into the molecular basis of the species barriers that maintain the enormous diversity seen in flowering plants.
Collapse
Affiliation(s)
- Robert Swanson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|