151
|
Vaccaro LA, Porter TE, Ellestad LE. The Effect of Commercial Genetic Selection on Somatotropic Gene Expression in Broilers: A Potential Role for Insulin-Like Growth Factor Binding Proteins in Regulating Broiler Growth and Body Composition. Front Physiol 2022; 13:935311. [PMID: 35832481 PMCID: PMC9271853 DOI: 10.3389/fphys.2022.935311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The somatotropic axis influences growth and metabolism, and many of its effects are a result of insulin-like growth factor (IGF) signaling modulated by IGF-binding proteins (IGFBPs). Modern commercial meat-type (broiler) chickens exhibit rapid and efficient growth and muscle accretion resulting from decades of commercial genetic selection, and it is not known how alterations in the IGF system has contributed to these improvements. To determine the effect of commercial genetic selection on somatotropic axis activity, two experiments were conducted comparing legacy Athens Canadian Random Bred and modern Ross 308 male broiler lines, one between embryonic days 10 and 18 and the second between post-hatch days 10 and 40. Gene expression was evaluated in liver and breast muscle (pectoralis major) and circulating hormone concentrations were measured post-hatch. During embryogenesis, no differences in IGF expression were found that corresponded with difference in body weight between the lines beginning on embryonic day 14. While hepatic IGF expression and circulating IGF did not differ between the lines post-hatch, expression of both IGF1 and IGF2 mRNA was greater in breast muscle of modern broilers. Differential expression of select IGFBPs suggests their action is dependent on developmental stage and site of production. Hepatic IGFBP1 appears to promote embryonic growth but inhibit post-hatch growth at select ages. Results suggest that local IGFBP4 may prevent breast muscle growth during embryogenesis but promote it after hatch. Post-hatch, IGFBP2 produced in liver appears to inhibit body growth, but IGFBP2 produced locally in breast muscle facilitates development of this tissue. The opposite appears true for IGFBP3, which seems to promote overall body growth when produced in liver and restrict breast muscle growth when produced locally. Results presented here suggest that paracrine IGF signaling in breast muscle may contribute to overall growth and muscle accretion in chickens, and that this activity is regulated in developmentally distinct and tissue-specific contexts through combinatorial action of IGFBPs.
Collapse
Affiliation(s)
- Lauren A. Vaccaro
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Tom E. Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Laura E. Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: Laura E. Ellestad,
| |
Collapse
|
152
|
Webster AK, Chitrakar R, Powell M, Chen J, Fisher K, Tanny RE, Stevens L, Evans K, Wei A, Antoshechkin I, Andersen EC, Baugh LR. Using population selection and sequencing to characterize natural variation of starvation resistance in C. elegans. eLife 2022; 11:80204. [PMID: 35727141 PMCID: PMC9262388 DOI: 10.7554/elife.80204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach using molecular inversion probes (MIP-seq) to measure relative fitness during and after larval starvation in C. elegans. We applied this competitive assay to 100 genetically diverse, sequenced, wild strains, revealing natural variation in starvation resistance. We confirmed that the most starvation-resistant strains survive and recover from starvation better than the most starvation-sensitive strains using standard assays. We performed genome-wide association (GWA) with the MIP-seq trait data and identified three quantitative trait loci (QTL) for starvation resistance, and we created near isogenic lines (NILs) to validate the effect of these QTL on the trait. These QTL contain numerous candidate genes including several members of the Insulin/EGF Receptor-L Domain (irld) family. We used genome editing to show that four different irld genes have modest effects on starvation resistance. Natural variants of irld-39 and irld-52 affect starvation resistance, and increased resistance of the irld-39; irld-52 double mutant depends on daf-16/FoxO. DAF-16/FoxO is a widely conserved transcriptional effector of insulin/IGF signaling (IIS), and these results suggest that IRLD proteins modify IIS, though they may act through other mechanisms as well. This work demonstrates efficacy of using MIP-seq to dissect a complex trait and it suggests that irld genes are natural modifiers of starvation resistance in C. elegans.
Collapse
Affiliation(s)
- Amy K Webster
- Department of Biology, Duke University, Durham, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, United States
| | - Maya Powell
- Department of Biology, Duke University, Durham, United States
| | - Jingxian Chen
- Department of Biology, Duke University, Durham, United States
| | - Kinsey Fisher
- Department of Biology, Duke University, Durham, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Angela Wei
- Department of Biology, Duke University, Durham, United States
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, United States
| |
Collapse
|
153
|
Kheirollahi V, Khadim A, Kiliaris G, Korfei M, Barroso MM, Alexopoulos I, Vazquez-Armendariz AI, Wygrecka M, Ruppert C, Guenther A, Seeger W, Herold S, El Agha E. Transcriptional Profiling of Insulin-like Growth Factor Signaling Components in Embryonic Lung Development and Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11121973. [PMID: 35741102 PMCID: PMC9221724 DOI: 10.3390/cells11121973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin-like growth factor (IGF) signaling controls the development and growth of many organs, including the lung. Loss of function of Igf1 or its receptor Igf1r impairs lung development and leads to neonatal respiratory distress in mice. Although many components of the IGF signaling pathway have shown to be dysregulated in idiopathic pulmonary fibrosis (IPF), the expression pattern of such components in different cellular compartments of the developing and/or fibrotic lung has been elusive. In this study, we provide a comprehensive transcriptional profile for such signaling components during embryonic lung development in mice, bleomycin-induced pulmonary fibrosis in mice and in human IPF lung explants. During late gestation, we found that Igf1 is upregulated in parallel to Igf1r downregulation in the lung mesenchyme. Lung tissues derived from bleomycin-treated mice and explanted IPF lungs revealed upregulation of IGF1 in parallel to downregulation of IGF1R, in addition to upregulation of several IGF binding proteins (IGFBPs) in lung fibrosis. Finally, treatment of IPF lung fibroblasts with recombinant IGF1 led to myogenic differentiation. Our data serve as a resource for the transcriptional profile of IGF signaling components and warrant further research on the involvement of this pathway in both lung development and pulmonary disease.
Collapse
Affiliation(s)
- Vahid Kheirollahi
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ali Khadim
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Georgios Kiliaris
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Martina Korfei
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Margarida Maria Barroso
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Clemens Ruppert
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Guenther
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Susanne Herold
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Elie El Agha
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; (V.K.); (A.K.); (G.K.); (M.K.); (M.M.B.); (I.A.); (A.I.V.-A.); (M.W.); (C.R.); (A.G.); (W.S.); (S.H.)
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig University Giessen, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
154
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
155
|
Rauskolb S, Andreska T, Fries S, von Collenberg CR, Blum R, Monoranu CM, Villmann C, Sendtner M. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun 2022; 10:68. [PMID: 35513854 PMCID: PMC9074221 DOI: 10.1186/s40478-022-01352-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Risk factors such as dysregulation of Insulin-like growth factor (IGF) signaling have been linked to Alzheimer's disease. Here we show that Insulin-like Growth Factor Binding Protein 5 (Igfbp5), an inhibitory binding protein for insulin-like growth factor 1 (Igf-1) accumulates in hippocampal pyramidal neurons and in amyloid plaques in brains of Alzheimer patients. We investigated the pathogenic relevance of this finding with transgenic mice overexpressing Igfbp5 in pyramidal neurons of the brain. Neuronal overexpression of Igfbp5 prevents the training-induced increase of hippocampal and cortical Bdnf expression and reduces the effects of exercise on memory retention, but not on learning acquisition. Hence, elevated IGFBP5 expression could be responsible for some of the early cognitive deficits that occur during the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Stefanie Rauskolb
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Sophie Fries
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Cora Ruedt von Collenberg
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher-Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
156
|
Izutsu A, Tadokoro D, Habara S, Ugachi Y, Shimizu M. Evaluation of circulating insulin-like growth factor (IGF)-I and IGF-binding proteins as growth indices in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2022; 320:114008. [PMID: 35219685 DOI: 10.1016/j.ygcen.2022.114008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Circulating insulin-like growth factor (IGF)-I has been proposed as a growth index in several teleosts, including salmonids, and its level in circulation is stabilized by multiple IGF-binding proteins (IGFBPs). Three IGFBPs, IGFBP-2b, -1a, and -1b, are consistently detected in salmonid blood and are suggested to be indices of positive or negative growth, although their applicability to rainbow trout (Oncorhynchus mykiss) is unclear. The present study examined the usefulness of IGFBPs along with IGF-I as a physiological indicator of growth rate in rainbow trout through a rearing experiment. Two groups of underyearling rainbow trout were pit-tagged and either fed or fasted for 33 days. A third group was fasted for 22 days, followed by refeeding for 11 days. Serum IGF-I levels were reduced after fasting for 22 days, but refeeding did not retore its levels to those of the fed control. Nevertheless, there was a positive relationship between serum IGF-I levels and individual growth rates over 33 days of experimentation, confirming its validity as a growth index. Ligand blotting using labeled human IGF-I revealed two IGFBP bands at 43 and 32 kDa, which corresponded to IGFBP-2b and an unidentified form, respectively. In contrast, bands corresponding to IGFBP-1a and -1b, which usually increase after fasting, were hardly detected, even in the fasted fish. The responses of circulating IGFBP-2b to fasting and refeeding were similar to those of circulating IGF-I and positively correlated with growth rate and IGF-I levels. The intensity of the serum 32-kDa IGFBP band was higher in constantly fed fish than in the fasted fish; however, its correlation with growth rate was weaker than those of IGF-I and IGFBP-2b. The present study shows that IGF-I and IGFBP-2b can be used as growth indices for rainbow trout. In contrast, circulating IGFBP-1a and -1b may not serve as negative growth indices in rainbow trout under regular aquaculture conditions because they are rarely detected by ligand blotting or respond to fasting/refeeding.
Collapse
Affiliation(s)
- Ayaka Izutsu
- School of Fisheries Sciences, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Daiji Tadokoro
- FRD Japan, Co., Kazusa Kamatari 3-9-13, Kisarazu, Chiba 292-0818, Japan
| | - Shiori Habara
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
157
|
Paragliola RM, Carrozza C, Corsello SM, Salvatori R. The biochemical diagnosis of acromegaly: revising the role of measurement of IGF-I and GH after glucose load in 5 questions. Expert Rev Endocrinol Metab 2022; 17:205-224. [PMID: 35485763 DOI: 10.1080/17446651.2022.2069558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Acromegaly is a rare disorder characterized by the excessive secretion of growth hormone (GH), mostly caused by pituitary adenomas. While in full-blown cases the diagnosis is easy to establish, milder cases are more challenging. Additionally, establishing whether full cure after surgery is reached may be difficult. AREAS COVERED In this article, we will review the challenges posed by the variability in measurements of GH and its main effector insulin-like growth factor I (IGF-I) due to both biological changes, co-morbidities, and assays variability. EXPERT OPINION Interpretation of GH and IGF-I assays is important in establishing an early diagnosis of acromegaly, in avoiding misdiagnosis, and in establishing if cure is achieved by surgery. Physicians should be familiar with the variables that affect measurements of these 2 hormones, and with the performance of the assays available in their practice.
Collapse
Affiliation(s)
- Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery - Universita' Cattolica del Sacro Cuore, Fondazione Policlinico "Gemelli", IRCCS, Rome, Italy
| | - Cinzia Carrozza
- Unit of Chemistry, Biochemistry and Clinical Molecular Biology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli," IRCCS, Rome, Italy
| | - Salvatore M Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery - Universita' Cattolica del Sacro Cuore, Fondazione Policlinico "Gemelli", IRCCS, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Roberto Salvatori
- Division of Endocrinology Diabetes and Metabolism and Pituitary Center, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|
158
|
Wang J, Noguchi S, Takizawa T, Negishi Y, Morita R, Luo SS, Takizawa T. Placenta-specific lncRNA 1600012P17Rik is expressed in spongiotrophoblast and glycogen trophoblast cells of mouse placenta. Histochem Cell Biol 2022; 158:65-78. [PMID: 35486179 DOI: 10.1007/s00418-022-02109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
A few long noncoding RNAs (long ncRNAs, lncRNAs) exhibit trophoblast cell type-specific expression patterns and functional roles in mouse placenta. However, the cell- and stage-specific expression patterns and functions of most placenta-derived lncRNAs remain unclear. In this study, we explored mouse placenta-associated lncRNAs using a combined bioinformatic and experimental approach. We used the FANTOM5 database to survey lncRNA expression in mouse placenta and found that 1600012P17Rik (MGI: 1919275, designated P17Rik), a long intergenic ncRNA, was the most highly expressed lncRNA at gestational day 17. Polymerase chain reaction analysis confirmed that P17Rik was exclusively expressed in placenta and not in any of the adult organs examined in this study. In situ hybridization analysis revealed that it was highly expressed in spongiotrophoblast cells and to a lesser extent in glycogen trophoblast cells, including migratory glycogen trophoblast cells invading the decidua. Moreover, we found that it is a polyadenylated lncRNA localized mainly to the cytoplasm of these trophoblast cells. As these trophoblast cells also expressed the neighboring protein-coding gene, pappalysin 2 (Pappa2), we investigated the effects of P17Rik on Pappa2 expression using Pappa2-expressing MC3T3-E1 cells and found that P17Rik transfection increased the messenger RNA (mRNA) and protein levels of Pappa2. These results indicate that mouse placenta-specific lncRNA P17Rik modulates the expression of the neighboring protein-coding gene Pappa2 in spongiotrophoblast and glycogen trophoblast cells of mouse placenta during late gestation.
Collapse
Affiliation(s)
- Junxiao Wang
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Shan-Shun Luo
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo, 113-8602, Japan.
| |
Collapse
|
159
|
Charalambous C, Moon JC, Holly JMP, Chaturvedi N, Hughes AD, Captur G. Declining Levels and Bioavailability of IGF-I in Cardiovascular Aging Associate With QT Prolongation-Results From the 1946 British Birth Cohort. Front Cardiovasc Med 2022; 9:863988. [PMID: 35528832 PMCID: PMC9072634 DOI: 10.3389/fcvm.2022.863988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background As people age, circulating levels of insulin-like growth factors (IGFs) and IGF binding protein 3 (IGFBP-3) decline. In rat cardiomyocytes, IGF-I has been shown to regulate sarcolemmal potassium channel activity and late sodium current thus impacting cardiac repolarization and the heart rate-corrected QT (QTc). However, the relationship between IGFs and IGFBP-3 with the QTc interval in humans, is unknown. Objectives To examine the association of IGFs and IGFBP-3 with QTc interval in an older age population-based cohort. Methods Participants were from the 1946 Medical Research Council (MRC) National Survey of Health and Development (NSHD) British birth cohort. Biomarkers from blood samples at age 53 and 60-64 years (y, exposures) included IGF-I/II, IGFBP-3, IGF-I/IGFBP-3 ratio and the change (Δ) in marker levels between the 60-64 and 53y sampled timepoints. QTc (outcome) was recorded from electrocardiograms at the 60-64y timepoint. Generalized linear multivariable models with adjustments for relevant demographic and clinical factors, were used for complete-cases and repeated after multiple imputation. Results One thousand four hundred forty-eight participants were included (48.3% men; QTc mean 414 ms interquartile range 26 ms). Univariate analysis revealed an association between low IGF-I and IGF-I/IGFBP-3 ratio at 60-64y with QTc prolongation [respectively: β -0.30 ms/nmol/L, (95% confidence intervals -0.44, -0.17), p < 0.001; β-28.9 ms/unit (-41.93, -15.50), p < 0.001], but not with IGF-II or IGFBP-3. No association with QTc was found for IGF biomarkers sampled at 53y, however both ΔIGF-I and ΔIGF-I/IGFBP-3 ratio were negatively associated with QTc [β -0.04 ms/nmol/L (-0.08, -0.008), p = 0.019; β -2.44 ms/unit (-4.17, -0.67), p = 0.007] while ΔIGF-II and ΔIGFBP-3 showed no association. In fully adjusted complete case and imputed models (reporting latter) low IGF-I and IGF-I/IGFBP-3 ratio at 60-64y [β -0.21 ms/nmol/L (-0.39, -0.04), p = 0.017; β -20.14 ms/unit (-36.28, -3.99), p = 0.015], steeper decline in ΔIGF-I [β -0.05 ms/nmol/L/10 years (-0.10, -0.002), p = 0.042] and shallower rise in ΔIGF-I/IGFBP-3 ratio over a decade [β -2.16 ms/unit/10 years (-4.23, -0.09), p = 0.041], were all independently associated with QTc prolongation. Independent associations with QTc were also confirmed for other previously known covariates: female sex [β 9.65 ms (6.65, 12.65), p < 0.001], increased left ventricular mass [β 0.04 ms/g (0.02, 0.06), p < 0.001] and blood potassium levels [β -5.70 ms/mmol/L (-10.23, -1.18) p = 0.014]. Conclusion Over a decade, in an older age population-based cohort, declining levels and bioavailability of IGF-I associate with prolongation of the QTc interval. As QTc prolongation associates with increased risk for sudden death even in apparently healthy people, further research into the antiarrhythmic effects of IGF-I on cardiomyocytes is warranted.
Collapse
Affiliation(s)
- Christos Charalambous
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiac MRI Unit, Barts Heart Centre, London, United Kingdom
| | - Jeff M P Holly
- National Institute for Health Research (NIHR) Bristol Nutrition Biomedical Research Unit, Level 3, University Hospitals Bristol Education and Research Centre, Bristol, United Kingdom
- Faculty of Health Sciences, School of Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Nishi Chaturvedi
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Alun D Hughes
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
160
|
Liso A, Venuto S, Coda ARD, Giallongo C, Palumbo GA, Tibullo D. IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. Int J Mol Sci 2022; 23:ijms23084358. [PMID: 35457175 PMCID: PMC9030159 DOI: 10.3390/ijms23084358] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factors binding protein-6 (IGFBP-6) is involved in a relevant number of cellular activities and represents an important factor in the immune response, particularly in human dendritic cells (DCs). Over the past several years, significant insights into the IGF-independent effects of IGFBP-6 were discovered, such as the induction of chemotaxis, capacity to increase oxidative burst and neutrophils degranulation, ability to induce metabolic changes in DCs, and, more recently, the regulation of the Sonic Hedgehog (SHH) signaling pathway during fibrosis. IGFBP-6 has been implicated in different human diseases, and it plays a rather controversial role in the biology of tumors. Notably, well established relationships between immunity, stroma activity, and fibrosis are prognostic and predictive of response to cancer immunotherapy. This review aims at describing the current understanding of mechanisms that link IGFBP-6 and fibrosis development and at highlighting the multiple roles of IGFBP-6 to provide an insight into evolutionarily conserved mechanisms that can be relevant for inflammation, tumor immunity, and immunological diseases.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
- Correspondence:
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
| | - Anna Rita Daniela Coda
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (S.V.); (A.R.D.C.)
| | - Cesarina Giallongo
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.A.P.)
| | - Giuseppe Alberto Palumbo
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (C.G.); (G.A.P.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
161
|
IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis 2022; 13:340. [PMID: 35418167 PMCID: PMC9007962 DOI: 10.1038/s41419-022-04803-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Renal inflammation is a critical pathophysiological characteristic of diabetic kidney disease (DKD). The mechanism of the inflammatory response is complicated, and there are few effective treatments for renal inflammation that can be used clinically. Insulin-like growth factor-binding protein 5 (IGFBP5) is an important secretory protein that is related to inflammation and fibrosis in several tissues. Studies have shown that the IGFBP5 level is significantly upregulated in DKD. However, the function of IGFBP5 and its mechanism in DKD remain unclear. Here, we showed that IGFBP5 levels were significantly increased in the kidneys of diabetic mice. Ablation of IGFBP5 alleviated kidney inflammation in DKD mice. Mechanistically, IGFBP5 increased glycolysis, which was characterized by increases in lactic acid and the extracellular acidification rate, by activating the transcription factor early growth response 1 (EGR1) and enhancing the expression of PFKFB3 in endothelial cells. Furthermore, a mutation in PFKFB3 attenuated renal inflammation in DKD mice. Taken together, we provided evidence that IGFBP5 enhanced kidney inflammation through metabolic reprogramming of glomerular endothelial cells. Our results provide new mechanistic insights into the effect of IGFBP5 on kidney and highlight potential therapeutic opportunities for IGFBP5 and the metabolic regulators involved in DKD. ![]()
Collapse
|
162
|
Cohick WS. The role of the IGF system in mammary physiology of ruminants. Domest Anim Endocrinol 2022; 79:106709. [PMID: 35078102 DOI: 10.1016/j.domaniend.2021.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IGF system plays a central role in all stages of mammary development, lactation and involution. IGFs exert their effects on the mammary gland through both endocrine and paracrine/autocrine mechanisms and the importance of circulating versus local IGF action remains an open question, especially in ruminants. At the whole organ level, a critical role for IGFs in ductal morphogenesis and lobuloalveolar development has been established, while at the cellular level the ability of IGFs to stimulate cell proliferation and control cell survival contributes to the number of milk-secreting cells in the gland. Much of this work has been conducted in rodents which provide an affordable research model and allow for genetic manipulation of specific components of the IGF system. Research into the role of the IGF system in dairy cows has generally supported information obtained with rodents though large gaps in our knowledge remain and species differences are not well defined. Examples include whether exogenous somatotropin exerts its effects on the mammary gland through local IGF-1 synthesis which is accepted dogma in rodents, what the role of IGF-1 versus IGF-2 is in the mammary gland, and how the IGFBPs regulate IGF bioactivity. This last area is particularly under-investigated in ruminants both at the whole animal and the cellular and molecular levels. Given that the IGF system may underlie many management practices that could contribute to enhancing productive efficiency of lactation, more research into the basic biology of this important system is warranted.
Collapse
Affiliation(s)
- Wendie S Cohick
- Rutgers, The State University of New Jersey, Department of Animal Science, New Brunswick, NJ 08901, USA.
| |
Collapse
|
163
|
Rajeswari JJ, Vélez EJ, Unniappan S. Liver and muscle-specific effects of phoenixin-20 on the insulin-like growth factor system mRNAs in zebrafish. Growth Horm IGF Res 2022; 63:101456. [PMID: 35305530 DOI: 10.1016/j.ghir.2022.101456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Phoenixin-20 (Pnx-20) is a bioactive peptide with endocrine-like actions in vertebrates. Recent studies suggest Pnx-20 promotes growth hormone/insulin-like growth factors (Gh/Igf) axis, an important endocrine regulator of growth in mammals and fish. DESIGN In this research, we determined whether Pnx-20 affects the different members of the Igf family, its binding proteins and receptors (Igf-system) in zebrafish liver and muscle. RESULTS In vivo administration of Pnx-20 downregulated igfs, igf receptors (igfrs) and igf binding protein (igfbp) 5 mRNA expression in the liver of male and female zebrafish at both 1 and 6 h post-intraperitoneal (IP) injection. Interestingly, this effect occurred at a relatively earlier timepoint in female zebrafish suggesting sex-specific differences in Pnx-20 action. Besides, either 6 or 24 h in vitro incubations with Pnx-20 downregulated the expression of all igfs, igfrs and igfbp5 mRNAs (except igf2a) analyzed in a zebrafish liver cell (ZFL) line. Moreover, siRNA-mediated knockdown of Pnx-20 upregulated all Igf-system mRNAs analyzed in ZFL cells. Together, these results (both in vivo and in vitro) revealed a general suppressive action for both endogenous and exogenous Pnx-20 on the hepatic Igf-system of zebrafish. In contrast, a general sex-specific upregulation of the Igf-system mRNAs analyzed was found in the muscle of Pnx-20 injected fish. Future research should explore the sex- and time-differences observed in the present study. CONCLUSIONS Collectively, this research shows that Pnx-20 is a tissue-specific regulator of the liver (suppressor) and muscle (stimulant) Igf signaling in both male and female zebrafish.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Emilio J Vélez
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
164
|
Shao B, Snell-Bergeon JK, Pyle LL, Thomas KE, de Boer IH, Kothari V, Segrest J, Davidson WS, Bornfeldt KE, Heinecke JW. Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. J Lipid Res 2022; 63:100196. [PMID: 35300983 PMCID: PMC9010748 DOI: 10.1016/j.jlr.2022.100196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | - Laura L Pyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katie E Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vishal Kothari
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jere Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William S Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
165
|
Nies MK, Yang J, Griffiths M, Damico R, Zhu J, Vaydia D, Fu Z, Brandal S, Austin ED, Ivy DD, Hassoun PM, Van Eyk JE, Everett AD. Proteomics discovery of pulmonary hypertension biomarkers: Insulin-like growth factor binding proteins are associated with disease severity. Pulm Circ 2022; 12:e12039. [PMID: 35514776 PMCID: PMC9063962 DOI: 10.1002/pul2.12039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by sustained elevations of pulmonary artery pressure. To date, we lack circulating, diagnostic, and prognostic markers that correlate to clinical and functional parameters. In this study, we performed mass spectrometry-based proteomics analysis to identify circulating biomarkers of PAH. Plasma samples from patients with idiopathic pulmonary arterial hypertension (IPAH, N = 9) and matched normal controls (N = 9) were digested with trypsin and analyzed using data-dependent acquisition on an Orbitrap mass spectrometer. A total of 826 (false discovery rate [FDR] 0.047) and 461 (FDR 0.087) proteins were identified across all plasma samples obtained from IPAH and control subjects, respectively. Of these, 153 proteins showed >2 folds change (p < 0.05) between groups. Circulating levels of carbonic anhydrase 2 (CA2), plasma kallikrein (KLKB1), and the insulin-like growth factor binding proteins (IGFBP1-7) were quantified by immunoassay in an independent verification cohort (N = 36 PAH and N = 35 controls). CA2 and KLKB1 were significantly different in PAH versus control but were not associated with any functional or hemodynamic measurements. Whereas, IGFBP1 and 2 were associated with higher pulmonary vascular resistance, IGFBP2, 4, and 7 with decreased 6-min walk distance (6MWD), and IGFBP1, 2, 4, and 7 with worse survival. This plasma proteomic discovery analysis suggests the IGF axis may serve as important new biomarkers for PAH and play an important role in PAH pathogenesis.
Collapse
Affiliation(s)
- Melanie K. Nies
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yang
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Pediatrics, Division of Pediatric CardiologyColumbia UniversityNew YorkNew YorkUSA
| | - Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jie Zhu
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaydia
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Epidemiology, School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Zongming Fu
- Department of Pediatrics, Division of HematologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Stephanie Brandal
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | - Dunbar D. Ivy
- Department of Pediatric CardiologyChildren's Hospital ColoradoAuroraColoradoUSA
| | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jennifer E. Van Eyk
- Department of Internal Medicine, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Advanced Clinical Biosystems Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Allen D. Everett
- Department of Pediatrics, Division of CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
166
|
E Silva FB, Vaisman M, Ponce T, de Barros TR, E Silva CB, Salerno VP, Mainenti MRM. A systematic review of hormone levels, biomarkers of cellular injury and oxidative stress in multi-stressor military field training exercises. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:382-389. [PMID: 35289515 PMCID: PMC9832854 DOI: 10.20945/2359-3997000000443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
The fundamental objective of military field training exercises (FTX) is to prepare military personnel for real-life operations through simulated scenarios. These training sessions often require extreme physical efforts with prolonged, high-intensity exercises that can be combined with food restrictions and partial, or total, sleep deprivation. Such conditions can compromise an individual's physical performance and cause tissue damage, thus affecting their health. This study aimed to perform a systematic review of the literature to identify studies that measured the changes in hormone levels and biomarkers of cellular injury and oxidative stress resulting from FTX with high levels of energy expenditure combined with food and sleep restrictions. PubMed and the Scopus database were searched for articles that combined physical effort/food restriction/sleep deprivation with military training. The initial database search identified 158 articles that were reduced to 18 after confirmation. Significant reductions were reported in thyroid hormones, T3, T4, and anabolic hormones such as testosterone, insulin and androstenedione. An exception for GH was found, which increased throughout FTX. Less distinct responses to FTX were observed with cortisol, TSH and LH. The presence of biomarkers for cellular damage (myoglobin, TNF, and CRP) and increased immune response activities were also described. The scarcity of information on oxidative stress, analyses of cellular injury and biomarkers of inflammatory responses warrants the future study of these topics, which could be helpful in facilitating the safe and effective physical preparations of the members of the armed forces.
Collapse
Affiliation(s)
| | - Mario Vaisman
- Departamento de Medicina Interna - Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thalita Ponce
- Departamento de Medicina Interna - Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thiago Ramos de Barros
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Academia de Bombeiro Militar Dom Pedro II, Rio de Janeiro, RJ, Brasil
| | - Camila Brasil E Silva
- Companhia de Comando da 4ª Brigada de Infantaria Leve de Montanha - Exército Brasileiro, Juiz de Fora, MG, Brasil
| | - Verônica Pinto Salerno
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
167
|
IGF-1 as a Potential Therapy for Spinocerebellar Ataxia Type 3. Biomedicines 2022; 10:biomedicines10020505. [PMID: 35203722 PMCID: PMC8962315 DOI: 10.3390/biomedicines10020505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Although the effects of growth hormone (GH) therapy on spinocerebellar ataxia type 3 (SCA3) have been examined in transgenic SCA3 mice, it still poses a nonnegligible risk of cancer when used for a long term. This study investigated the efficacy of IGF-1, a downstream mediator of GH, in vivo for SCA3 treatment. IGF-1 (50 mg/kg) or saline, once a week, was intraperitoneally injected to SCA3 84Q transgenic mice harboring a human ATXN3 gene with a pathogenic expanded 84 cytosine–adenine–guanine (CAG) repeat motif at 9 months of age. Compared with the control mice harboring a 15 CAG repeat motif, the SCA3 84Q mice treated with IGF-1 for 9 months exhibited the improvement only in locomotor function and minimized degeneration of the cerebellar cortex as indicated by the survival of more Purkinje cells with a more favorable mitochondrial function along with a decrease in oxidative stress caused by DNA damage. These findings could be attributable to the inhibition of mitochondrial fission, resulting in mitochondrial fusion, and decreased immunofluorescence staining in aggresome formation and ataxin-3 mutant protein levels, possibly through the enhancement of autophagy. The findings of this study show the therapeutic potential effect of IGF-1 injection for SCA3 to prevent the exacerbation of disease progress.
Collapse
|
168
|
Pohlman AW, Moudgalya H, Jordano L, Lobato GC, Gerard D, Liptay MJ, Seder CW, Borgia JA. The role of IGF-pathway biomarkers in determining risks, screening, and prognosis in lung cancer. Oncotarget 2022; 13:393-407. [PMID: 35198099 PMCID: PMC8858079 DOI: 10.18632/oncotarget.28202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Detection rates of early-stage lung cancer are traditionally low, which contributes to inconsistent treatment responses and high rates of annual cancer deaths. Currently, low-dose computed tomography (LDCT) screening produces a high false discovery rate. This limitation has prompted research to identify biomarkers to more clearly define eligible patients for LDCT screening, differentiate indeterminate pulmonary nodules, and select individualized cancer therapy. Biomarkers within the Insulin-like Growth Factor (IGF) family have come to the forefront of this research. Main Body: Multiple biomarkers within the IGF family have been investigated, most notably IGF-I and IGF binding protein 3. However, newer studies seek to expand this search to other molecules within the IGF axis. Certain studies have demonstrated these biomarkers are useful when used in combination with lung cancer screening, but other findings were not as conclusive, possibly owing to measurement bias and non-standardized assay techniques. Research also has suggested IGF biomarkers may be beneficial in the prognostication and subsequent treatment via systemic therapy. Despite these advances, additional knowledge of complex regulatory mechanisms inherent to this system are necessary to more fully harness the potential clinical utility for diagnostic and therapeutic purposes. Conclusions: The IGF system likely plays a role in multiple phases of lung cancer; however, there is a surplus of conflicting data, especially prior to development of the disease and during early stages of detection. IGF biomarkers may be valuable in the screening, prognosis, and treatment of lung cancer, though their exact application requires further study.
Collapse
Affiliation(s)
| | - Hita Moudgalya
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lia Jordano
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gabriela C. Lobato
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - David Gerard
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michael J. Liptay
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey A. Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
169
|
Tsai CW, Chang WS, Xu Y, Huang M, Tamboli P, Wood CG, Bau DT, Gu J. Prognostic significance of circulating insulin growth-like factor 1 and insulin growth-like factor binding protein 3 in renal cell carcinoma patients. Am J Cancer Res 2022; 12:852-860. [PMID: 35261807 PMCID: PMC8899987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023] Open
Abstract
Insulin growth-like factor-1 (IGF-1) and its main binding protein insulin growth-like factor binding protein 3 (IGFBP-3) play important roles in cancer development and progression. We hypothesize that circulating IGF-1 and IGFBP-3 may have significant prognostic values in renal cell carcinoma (RCC) patients. We used 1,010 histologically confirmed RCC patients in this case series study to test this hypothesis. We constructed a weighted genetic risk score (GRS) using a large panel of genome-wide association study (GWAS)-identified single nucleotide polymorphisms (SNPs) to predict circulating IGF-1 and IGFBP-3 level, respectively. We analyzed the associations of the GRS with the prognosis of RCC patients using multivariate Cox proportional hazards model. We found significant associations between genetically predicted circulating IGF-1 level, but not IGFBP-3, and RCC prognosis. RCC patients with better prognosis had significantly higher baseline circulating IGF-1 level than those with worse prognosis. Dichotomized at the median value of GRS, patients with high IGF-1 exhibited significantly lower risks of recurrence (HR=0.81, 95% CI, 0.65-0.99, P=0.045) and death (HR=0.74, 95% CI, 0.60-0.91, P=0.004). If patients were dichotomized at the 75% value of GRS, those with the highest quarter of GRS had 27% lower risk of recurrence (OR=0.73, 95% CI, 0.55-0.96, P=0.025) and 34% lower risk of death (OR=0.66, 95% CI, 0.50-0.87, P=0.003) than the other three quarters of patients. High IGF-1/IGFBP-3 ratio was also associated with reduced risks of recurrence and survival. In conclusion, high circulating IGF-1 level and IGF-1/IGFBP-3 ratio at diagnosis is associated with better prognosis in RCC patients.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Christopher G Wood
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung 413305, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
170
|
Investigations into the In Vitro Metabolism of hGH and IGF-I Employing Stable-Isotope-Labelled Drugs and Monitoring Diagnostic Immonium Ions by High-Resolution/High-Accuracy Mass Spectrometry. Metabolites 2022; 12:metabo12020146. [PMID: 35208220 PMCID: PMC8877552 DOI: 10.3390/metabo12020146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
Studying the metabolism of prohibited substances is an essential element in anti-doping research in order to facilitate and improve detectability. Whilst pharmacokinetic studies on healthy volunteers are valuable, they are often difficult, not least due to safety reasons and ethical constraints, especially concerning peptidic substances, which must be administered parenterally. Hence, there is a growing need for suitable in vitro models and sophisticated analytical strategies to investigate the metabolism of protein- and peptide-derived drugs. These include human growth hormone (hGH) and its main mediator insulin-like growth factor-I (IGF-I), both prohibited in professional sports for their anabolic and lipolytic effects, while challenging in their detection, as they occur naturally in the human body.Within this study, the in vitro metabolism of hGH and IGF-I was investigated using a stable-isotope-labelled reporter ion screening strategy (IRIS). A combination of liquid chromatography, high-resolution mass spectrometry, and characteristic immonium ions generated by internal dissociation of the stable-isotope-labelled peptidic metabolites enabled the detection of specific fragments. Several degradation products for hGH and IGF-I were identified within this study. These metabolites, potentially even indicative for subcutaneous administration of the drugs, could serve as promising targets for the detection of hGH and IGF-I misuse in future anti-doping applications.
Collapse
|
171
|
Machnicki AL, White CA, Meadows CA, McCloud D, Evans S, Thomas D, Hurley JD, Crow D, Chirchir H, Serrat MA. Altered IGF-I activity and accelerated bone elongation in growth plates precede excess weight gain in a mouse model of juvenile obesity. J Appl Physiol (1985) 2022; 132:511-526. [PMID: 34989650 PMCID: PMC8836718 DOI: 10.1152/japplphysiol.00431.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nearly one-third of children in the United States are overweight or obese by their preteens. Tall stature and accelerated bone elongation are characteristic features of childhood obesity, which cooccur with conditions such as limb bowing, slipped epiphyses, and fractures. Children with obesity paradoxically have normal circulating IGF-I, the major growth-stimulating hormone. Here, we describe and validate a mouse model of excess dietary fat to examine mechanisms of growth acceleration in obesity. We used in vivo multiphoton imaging and immunostaining to test the hypothesis that high-fat diet increases IGF-I activity and alters growth plate structure before the onset of obesity. We tracked bone and body growth in male and female C57BL/6 mice (n = 114) on high-fat (60% kcal fat) or control (10% kcal fat) diets from weaning (3 wk) to skeletal maturity (12 wk). Tibial and tail elongation rates increased after brief (1-2 wk) high-fat diet exposure without altering serum IGF-I. Femoral bone density and growth plate size were increased, but growth plates were disorganized in not-yet-obese high-fat diet mice. Multiphoton imaging revealed more IGF-I in the vasculature surrounding growth plates of high-fat diet mice and increased uptake when vascular levels peaked. High-fat diet growth plates had more activated IGF-I receptors and fewer inhibitory binding proteins, suggesting increased IGF-I bioavailability in growth plates. These results, which parallel pediatric growth patterns, highlight the fundamental role of diet in the earliest stages of developing obesity-related skeletal complications and validate the utility of the model for future studies aimed at determining mechanisms of diet-enhanced bone lengthening.NEW & NOTEWORTHY This paper validates a mouse model of linear growth acceleration in juvenile obesity. We demonstrate that high-fat diet induces rapid increases in bone elongation rate that precede excess weight gain and parallel pediatric growth. By imaging IGF-I delivery to growth plates in vivo, we reveal novel diet-induced changes in IGF-I uptake and activity. These results are important for understanding the sequelae of musculoskeletal complications that accompany advanced bone age and obesity in children.
Collapse
Affiliation(s)
- Allison L. Machnicki
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Cassaundra A. White
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chad A. Meadows
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Darby McCloud
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Sarah Evans
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Dominic Thomas
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - John D. Hurley
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Daniel Crow
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Habiba Chirchir
- 2Department of Biological Sciences, Marshall University, Huntington, West Virginia,3Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Maria A. Serrat
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
172
|
Tidblad A. The history, physiology and treatment safety of growth hormone. Acta Paediatr 2022; 111:215-224. [PMID: 34028879 DOI: 10.1111/apa.15948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Growth hormone treatment was introduced in the 1950s to address growth disturbances and metabolic abnormalities. Hundreds of thousands of children have been treated, with gradual expansion of treatment indications. From initially being offered only to patients with severe growth hormone deficiency, today many children are treated for conditions in which the associated short stature is not primarily thought to be due to deficient endogenous growth hormone secretion. This review discusses the history, physiology and safety of growth hormone treatment, with focus on the long-term risks of mortality, cardiovascular morbidity and cancer. Conclusion: Continuous follow-up is needed to increase our knowledge of the long-term treatment safety.
Collapse
Affiliation(s)
- Anders Tidblad
- Division of Pediatric Endocrinology Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
173
|
Sia KC, Gan SU, Mohd Rodhi SH, Fu ZY, Kopchick JJ, Waters MJ, Lee KO. First use of gene therapy to treat growth hormone resistant dwarfism in a mouse model. Gene Ther 2022; 29:346-356. [PMID: 35105948 PMCID: PMC9203273 DOI: 10.1038/s41434-022-00313-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
The only treatment tested for growth hormone receptor (GHR) defective Laron Syndrome (LS) is injections of recombinant insulin-like-growth factor 1 (rhIGF1). The response is suboptimal and associated with progressive obesity. In this study, we treated 4–5-week-old Laron dwarf mice (GHR−/−) with an adeno-associated virus expressing murine GHR (AAV-GHR) injection at a dose of 4 × 1010 vector genome per mouse. Serum growth hormone (GH) levels decreased, and GH-responsive IGF1, IGF binding protein 3 (IGFBP3) and acid labile subunit (ALS) increased. There was a significant but limited increase in body weight and length, similar to the response to rhIGF1 treatment in LS patients. All the major organs increased in weight except the brain. Our study is the first to use gene therapy to treat GH-receptor deficiency. We propose that gene therapy with AAV-GHR may eventually be useful for the treatment of human LS.
Collapse
Affiliation(s)
- Kian Chuan Sia
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | | | - Zhen Ying Fu
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Kok Onn Lee
- Department of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
174
|
Gao S, Shi Q, Zhang Y, Liang G, Kang Z, Huang B, Ma D, Wang L, Jiao J, Fang X, Xu CR, Liu L, Xu X, Göttgens B, Li C, Liu F. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res 2022; 32:38-53. [PMID: 34341490 PMCID: PMC8724330 DOI: 10.1038/s41422-021-00540-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Limited knowledge of cellular and molecular mechanisms underlying hematopoietic stem cell and multipotent progenitor (HSC/MPP) expansion within their native niche has impeded the application of stem cell-based therapies for hematological malignancies. Here, we constructed a spatiotemporal transcriptome map of mouse fetal liver (FL) as a platform for hypothesis generation and subsequent experimental validation of novel regulatory mechanisms. Single-cell transcriptomics revealed three transcriptionally heterogeneous HSC/MPP subsets, among which a CD93-enriched subset exhibited enhanced stem cell properties. Moreover, by employing integrative analysis of single-cell and spatial transcriptomics, we identified novel HSC/MPP 'pocket-like' units (HSC PLUS), composed of niche cells (hepatoblasts, stromal cells, endothelial cells, and macrophages) and enriched with growth factors. Unexpectedly, macrophages showed an 11-fold enrichment in the HSC PLUS. Functionally, macrophage-HSC/MPP co-culture assay and candidate molecule testing, respectively, validated the supportive role of macrophages and growth factors (MDK, PTN, and IGFBP5) in HSC/MPP expansion. Finally, cross-species analysis and functional validation showed conserved cell-cell interactions and expansion mechanisms but divergent transcriptome signatures between mouse and human FL HSCs/MPPs. Taken together, these results provide an essential resource for understanding HSC/MPP development in FL, and novel insight into functional HSC/MPP expansion ex vivo.
Collapse
Affiliation(s)
- Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Shi
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guixian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Kang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baofeng Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianwei Jiao
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Science & Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xun Xu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Berthold Göttgens
- Department of Haematology, Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
175
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
176
|
Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif 2022; 55:e13167. [PMID: 34939255 PMCID: PMC8780926 DOI: 10.1111/cpr.13167] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid rafts are cholesterol- and sphingolipid-enriched specialized membrane domains within the plasma membrane. Lipid rafts regulate the density and activity of signal receptors by compartmentalizing them, promoting signalling cascades that play important roles in the survival, death and metastasis of cancer cells. In this review, we emphasize the current concept initially postulated by F. Mollinedo and C. Gajate on the importance of lipid rafts in cancer survival, death and metastasis by describing representative signalling pathways, including the IGF system and the PI3K/AKT, Fas/CD95, VEGF/VEGFR2 and CD44 signalling pathways, and we also discuss the concept of CASMER (cluster of apoptotic signalling molecule-enriched rafts), coined, originally introduced and further advanced by F. Mollinedo and C. Gajate in the period 2005-2010. Then, we summarize relevant research progress and suggest that lipid rafts play important roles in the survival, death and metastasis of cancer cells, making them promising targets for cancer therapy.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wenyan Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
177
|
Haddad F, Ataam JA, Amsallem M, Cauwenberghs N, Kuznetsova T, Rosenberg-Hasson Y, Zamanian RT, Karakikes I, Horne BD, Muhlestein JB, Kwee L, Shah S, Maecker H, Knight S, Knowlton K. Insulin Growth Factor Phenotypes in Heart Failure with Preserved Ejection Fraction, an INSPIRE Registry and CATHGEN Study: IGF axis in HFpEF. J Card Fail 2021; 28:935-946. [PMID: 34979242 DOI: 10.1016/j.cardfail.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The insulin like growth factor (IGF) axis emerged as an important pathway in heart failure with preserved ejection (HFpEF). We aimed to identify IGF phenotypes associated with HFpEF in the context high-dimensional proteomic profiling. METHODS From the Intermountain INSPIRE Registry, we identified 96 patients with HFpEF and matched controls. We performed targeted proteomics including IGF-1,2, IGF binding proteins (IGFBP) 1-7 and 111 other proteins (EMD Millipore and ELISA). We used partial least square discriminant analysis (PLS-DA) to identify a set of proteins associated with prevalent HFpEF, pulmonary hypertension (PH) and 5-year-all-cause mortality. K-mean clustering was used to identify IGF phenotypes. RESULTS Patients with HFpEF had a high prevalence of systemic hypertension (95%) and coronary artery disease (74%). Using PLS-DA, we identified a set of biomarkers including IGF1,2 and IGFBP-1,2,7 that provided a strong discrimination of HFPEF, PH and mortality with an AUC of 0.91, 0.77 and 0.83, respectively. Using K mean clustering, we identified three IGF phenotypes that were independently associated with all-cause 5-year mortality after adjustment for age, NT-proBNP and kidney disease (p=0.004). Multivariable analysis validated the prognostic value of IGFBP-1 and 2 in the CATHGEN biorepository. CONCLUSION IGF phenotypes were associated with PH and mortality in HFpEF.
Collapse
Affiliation(s)
- Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jennifer Arthur Ataam
- Division of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Myriam Amsallem
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Cauwenberghs
- Research Unit of Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Research Unit of Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Yael Rosenberg-Hasson
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Roham T Zamanian
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin D Horne
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| | | | - Lydia Kwee
- Department of Internal Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Svati Shah
- Department of Internal Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina and Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey Knight
- Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| | - Kirk Knowlton
- Intermountain Medical Center, Heart Institute, Salt Lake City, UT, USA
| |
Collapse
|
178
|
Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021; 10:cells10123576. [PMID: 34944082 PMCID: PMC8700087 DOI: 10.3390/cells10123576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays fundamental roles during development, maturation, and aging. Members of this axis, composed of various ligands, receptors, and binding proteins, are regulated in a tissue- and time-specific manner that requires precise control that is not completely understood. Some of the most recent advances in understanding the implications of this axis in human growth are derived from the identifications of new mutations in the gene encoding the pregnancy-associated plasma protein PAPP-A2 protease that liberates IGFs from their carrier proteins in a selective manner to allow binding to the IGF receptor 1. The identification of three nonrelated families with mutations in the PAPP-A2 gene has shed light on how this protease affects human physiology. This review summarizes our understanding of the implications of PAPP-A2 in growth physiology, obtained from studies in genetically modified animal models and the PAPP-A2 deficient patients known to date.
Collapse
|
179
|
Walsh HL, Rafferty SD, Gordon SE, Blazer VS. Reproductive health and endocrine disruption in smallmouth bass (Micropterus dolomieu) from the Lake Erie drainage, Pennsylvania, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:3. [PMID: 34862922 PMCID: PMC8643298 DOI: 10.1007/s10661-021-09654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Smallmouth bass Micropterus dolomieu were sampled from three sites within the Lake Erie drainage (Elk Creek, Twentymile Creek, and Misery Bay, an embayment in Presque Isle Bay). Plasma, tissues for histopathological analyses, and liver and testes preserved in RNALater® were sampled from 30 smallmouth bass (of both sexes) at each site. Liver and testes samples were analyzed for transcript abundance with Nanostring nCounter® technology. Evidence of estrogenic endocrine disruption was assessed by the presence and severity of intersex (testicular oocytes; TO) and concentrations of plasma vitellogenin in male fish. Abundance of 17 liver transcripts associated with reproductive function, endocrine activity, and contaminant detoxification pathways and 40 testes transcripts associated with male and female reproductive function, germ cell development, and steroid biosynthesis were also measured. Males with a high rate of TO (87-100%) and plasma vitellogenin were noted at all sites; however, TO severity was greatest at the site with the highest agricultural land cover. Numerous transcripts were differentially regulated among the sites and patterns of transcript abundance were used to better understand potential risk factors for estrogenic endocrine disruption. The results of this study suggest endocrine disruption is prevalent in this region and further research would benefit to identify the types of contaminants that may be associated with the observed biological effects.
Collapse
Affiliation(s)
- Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA.
| | - Sean D Rafferty
- Pennsylvania Sea Grant College Program, The Pennsylvania State University, Tom Ridge Environmental Center, 301 Peninsula Drive, Erie, PA, 16505, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
180
|
Rodríguez MJ, Sabaj M, Tolosa G, Herrera Vielma F, Zúñiga MJ, González DR, Zúñiga-Hernández J. Maresin-1 Prevents Liver Fibrosis by Targeting Nrf2 and NF-κB, Reducing Oxidative Stress and Inflammation. Cells 2021; 10:3406. [PMID: 34943914 PMCID: PMC8699629 DOI: 10.3390/cells10123406] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a complex process characterized by the excessive accumulation of extracellular matrix (ECM) and an alteration in liver architecture, as a result of most types of chronic liver diseases such as cirrhosis, hepatocellular carcinoma (HCC) and liver failure. Maresin-1 (MaR1) is derivative of ω-3 docosahexaenoic acid (DHA), which has been shown to have pro-resolutive and anti-inflammatory effects. We tested the hypothesis that the application of MaR1 could prevent the development of fibrosis in an animal model of chronic hepatic damage. Sprague-Dawley rats were induced with liver fibrosis by injections of diethylnitrosamine (DEN) and treated with or without MaR1 for four weeks. In the MaR1-treated animals, levels of AST and ALT were normalized in comparison with DEN alone, the hepatic architecture was improved, and inflammation and necrotic areas were reduced. Cell proliferation, assessed by the mitotic activity index and the expression of Ki-67, was increased in the MaR1-treated group. MaR1 attenuated liver fibrosis and oxidative stress was induced by DEN. Plasma levels of the pro-inflammatory mediators TNF-α and IL-1β were reduced in MaR1-treated animals, whereas the levels of IL-10, an anti-inflammatory cytokine, increased. Interestingly, MaR1 inhibited the translocation of the p65 subunit of NF-κB, while increasing the activation of Nrf2, a key regulator of the antioxidant response. Finally, MaR1 treatment reduced the levels of the pro-fibrotic mediator TGF-β and its receptor, while normalizing the hepatic levels of IGF-1, a proliferative agent. Taken together, these results suggest that MaR1 improves the parameters of DEN-induced liver fibrosis, activating hepatocyte proliferation and decreasing oxidative stress and inflammation. These results open the possibility of MaR1 as a potential therapeutic agent in fibrosis and other liver pathologies.
Collapse
Affiliation(s)
- María José Rodríguez
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Matías Sabaj
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Gerardo Tolosa
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.S.); (G.T.)
| | - Francisca Herrera Vielma
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
- Programa de Doctorado en Ciencias Mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - María José Zúñiga
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (F.H.V.); (M.J.Z.); (D.R.G.)
| |
Collapse
|
181
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
182
|
Hayashi M, Maruoka S, Oikawa J, Ugachi Y, Shimizu M. Effects of Acclimation to Diluted Seawater on Metabolic and Growth Parameters of Underyearling Masu Salmon ( Oncorhynchus masou). Zoolog Sci 2021; 38:513-522. [PMID: 34854283 DOI: 10.2108/zs210048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
We examined the effects of environmental salinity and feeding status on the growth and metabolic parameters of underyearling masu salmon. Fish were first acclimated to salinities of 0 (< 0.1), 11, or 22 psu for 10 days, after which time 50% of the fish in each group were fasted for 5 days followed by refeeding for 5 days. No effects on body length/weight were observed over the 20 days from the beginning of the experiment. Gill Na+, K+-ATPase (NKA) activity increased 20 and 10 days after transfer to water at 11 and 22 psu, respectively. Serum Na+ and Cl- levels were high in fish at 22 psu on day 20 but much lower than those in the environmental water, suggesting that fish at this salinity were able to hypo-osmoregulate. However, acclimation to 22 psu resulted in a reduction in feeding rate on day 20. Serum insulin-like growth factor (IGF)-I levels and liver glycogen content were reduced by fasting and restored after 5 days of refeeding, except in the fish at 22 psu. Intensities of serum IGFBP-1a and -1b bands were increased at higher salinities, whereas fasting/refeeding affected only IGFBP-1b. The present study suggests that acclimating masu salmon parr to 11 psu had no effect on metabolic and growth parameters, while 22 psu presumably suppressed their growth potential due to the possible energy cost or stress for osmoregulation. The disparate responses of circulating IGFBP-1a and -1b to higher salinity and fasting highlight their utility as indices of various catabolic statuses.
Collapse
Affiliation(s)
- Mizuki Hayashi
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Shu Maruoka
- School of Fisheries Sciences, Hakodate, Hokkaido 041-8611, Japan
| | - Jin Oikawa
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Ugachi
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan,
| |
Collapse
|
183
|
Kamei H, Duan C. Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. Gen Comp Endocrinol 2021; 314:113922. [PMID: 34606746 DOI: 10.1016/j.ygcen.2021.113922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
The size of an organ is proportional to the other body parts or the whole body. This relationship is known as allometry. Understanding how allometry is determined is a fundamental question in biology. Here we tested the hypothesis that local insulin-like growth factor (Igf) signaling is critical in regulating organ size and its allometric scaling by organ-specific expression of Igf binding protein (Igfbp). Overexpression of Igfbp2a or 5b in the developing zebrafish eye, heart, and inner ear resulted in a disproportional reduction in their growth relative to the body. Stable transgenic zebrafish with lens-specific Igfbp5b expression selectively reduced adult eye size. The action is Igf-dependent because an Igf-binding deficient Igfbp5b mutant had no effect. Targeted expression of a dominant-negative Igf1 receptor (dnIgf1r) in the lens caused a similar reduction in relative eye growth. Furthermore, co-expression of IGF-1 with an Igfbp restored the eye size. Finally, co-expression of a constitutively active form of Akt with Igfbp or dnIgf1r restored the relative eye growth. These data suggest that local Igf availability and Igf signaling activity are critical determinants of organ size and allometric scaling in zebrafish.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, United States
| |
Collapse
|
184
|
Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 2021; 26:419-453. [PMID: 35080749 DOI: 10.1007/s10911-021-09506-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins' long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.
Collapse
Affiliation(s)
- Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA.
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
| | - Ann L Macrina
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
185
|
Tin Tin S, Key TJ, Reeves GK. Alcohol Intake and Endogenous Hormones in Pre- and Postmenopausal Women: Findings from the UK Biobank. Cancer Epidemiol Biomarkers Prev 2021; 30:2294-2301. [PMID: 34607837 PMCID: PMC9398104 DOI: 10.1158/1055-9965.epi-21-0789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Alcohol intake may influence breast cancer risk in women through hormonal changes, but the evidence to date is inconclusive. We investigated cross-sectional associations between habitual alcohol intake and serum concentrations of testosterone, sex hormone binding globulin (SHBG), insulin-like growth factor-1 (IGF-1), and estradiol (premenopausal women only) in UK Biobank. METHODS We included 30,557 premenopausal and 134,029 postmenopausal women aged between 40 and 69 years when recruited between 2006 and 2010. At their initial assessment visit, habitual alcohol intake was assessed using a touchscreen questionnaire, and serum hormone concentrations were assayed. Multivariable linear regression analysis was performed. RESULTS Per 10 g/day increment in alcohol intake, testosterone concentration was 3.9% [95% confidence intervals (CI): 3.3%-4.5%] higher in premenopausal women and 2.3% (1.8%-2.7%) higher in postmenopausal women (P heterogeneity < 0.0001); SHBG concentration was 0.7% (0.2%-1.1%) higher in premenopausal women and 2.4% (2.2%-2.6%) lower in postmenopausal women (P heterogeneity < 0.0001); and IGF-1 concentration was 1.9% (1.7%-2.1%) lower in premenopausal women and 0.8% (0.6%-0.9%) lower in postmenopausal women (P heterogeneity < 0.0001). In premenopausal women, there was no significant overall association of alcohol with estradiol but a positive association was observed in the early and mid-luteal phases: 1.9% (95% CI: 0.2%-3.6%) and 2.4% (95% CI: 0.7%-4.2%) higher, respectively. CONCLUSIONS This study confirms significant but modest associations between alcohol intake and hormones, with evidence of heterogeneity by menopausal status. IMPACT The findings facilitate better understanding of whether alcohol intake influences hormone concentrations, but further work is necessary to fully understand the mechanisms linking alcohol with cancer risk.
Collapse
Affiliation(s)
- Sandar Tin Tin
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
186
|
A 150 kDa Protein Derived from Bull Seminal Plasma Extended the Survival Time of Kacang Goat Sperm Stored at 5°C. Vet Med Int 2021; 2021:1470209. [PMID: 34840715 PMCID: PMC8616707 DOI: 10.1155/2021/1470209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Artificial insemination has proven to be an effective method for increasing population size and genetic quality of Kacang goats. However, innovation is required to maintain the quality of Kacang goat semen in storage. This study aimed to examine the effects of supplementing the 150 kDa protein assumed as IGF-I complex derived from bull seminal plasma in skim milk-egg yolk extender on the quality of Kacang goat sperm stored at 5°C. Twelve ejaculates collected from three Kacang goats were divided into three groups. In the control group (T0), the ejaculates were extended with skim milk-egg yolk only. In the treatment groups (T1 and T2), the ejaculates were extended with skim milk-egg yolk supplemented with the IGF-I complex protein at 12 μg and 24 μg/100 mL, respectively. The extended semen was stored at 5°C, and the viability, motility, intactness of the plasma membrane, malondialdehyde concentration, and apoptotic sperm percentage were evaluated daily for five days. The results showed that the T1 was the most effective treatment for maintaining Kacang goat semen at a quality acceptable for artificial insemination over five days of storage at 5°C. However, the T0 and T2 groups retained acceptable qualities for only three days at 5°C. It could be concluded that supplementation of 12 μg of the 150 kDa protein derived from bull seminal plasma per 100 mL extender successfully extended the life span of Kacang goat sperm for five days.
Collapse
|
187
|
Kapszewicz M, Małecka-Wojciesko E. Simple Serum Pancreatic Ductal Adenocarcinoma (PDAC) Protein Biomarkers-Is There Anything in Sight? J Clin Med 2021; 10:jcm10225463. [PMID: 34830745 PMCID: PMC8619303 DOI: 10.3390/jcm10225463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023] Open
Abstract
A poor PDAC prognosis is due to a lack of effective treatment and late diagnosis. The early detection of PDAC could significantly decrease mortality and save lives. Idealbiomarkers for PDAC should be cost-effective, detectable in easily accessible biological material, and present in sufficient concentration in the earliest possible phase of the disease. This review addresses newly selected, simple protein biomarkers—new ones such as thrombospondin-2, insulin-linked binding protein 2, lysophosphatidic acid, and autotaxin and conventional ones such as Ca19-9, inflammatory factors, and coagulation factors. Their possible use in the early detection of PDAC, differentiation from benign diseases, prognosis, and treatment response prediction is discussed. We also address the usefulness of possible combinations of biomarkers in diagnostic panels.
Collapse
|
188
|
Li M, Rong X, Lu L, Li Y, Yao K, Ge W, Duan C. IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish. Gen Comp Endocrinol 2021; 313:113875. [PMID: 34352271 DOI: 10.1016/j.ygcen.2021.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein-2 (IGF2BP2 or IMP2) is a member of a conserved family of RNA binding proteins. These proteins bind to and regulate target mRNA localization, stability, and translation. Their structure, expression and functions in bony fish are not well understood. Here, we characterized the zebrafish igf2bp2 gene and investigated its functional role in early development. Zebrafish igf2bp2 gives rise to 4 alternatively spliced transcripts. When expressed in cultured cells, all 4 proteins were detected in the cytoplasm. Igf2bp2-A, the longest isoform, has a domain structure similar to its mammalian counterpart. Igf2bp2-B lacks one of the C-terminal KH domains, while Igf2bp2-C lacks the two N-terminal RRM domains. Igf2bp2-D lacks both regions. In adult fish, these igf2bp2 isoforms were detected exclusively in the oocyte. After fertilization, they disappeared within 6 h post fertilization (hpf). At 20 ~ 24 hpf, igf2bp2-A mRNA, but not other mRNAs, was re-expressed in the embryos including in primordial germ cells. Targeted knockdown of Igf2bp2s reduced the numbers of primordial germ cells but did not affect global patterning or growth. The effect was rescued by overexpression of Igf2bp2-A. Likewise, dominant-negative inhibition of Igf2bp2 resulted in a similar reduction in primordial germ cell number. These results not only provide new information about the structure and expression of zebrafish Igf2bp2, but also reveal a critical role of this conserved RNA binding protein in primordial germ cell development.
Collapse
Affiliation(s)
- Mingyu Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xiaozhi Rong
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ling Lu
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yun Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kai Yao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
189
|
Ma J, Chen J, Louro B, Martins RS, Canario AV. Somatostatin 3 loss of function impairs the innate immune response to intestinal inflammation. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
190
|
Yin G, Yang C, Wu G, Yu X, Tian Q, Chen D, Cao B, Zhao L, Xu N, Jin S, Zhang W, Wang J. The protein-protein interaction between connective tissue growth factor and annexin A2 is relevant to pannus formation in rheumatoid arthritis. Arthritis Res Ther 2021; 23:266. [PMID: 34702315 PMCID: PMC8547044 DOI: 10.1186/s13075-021-02656-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Connective tissue growth factor (CTGF)-induced angiogenesis is a crucial factor in rheumatoid arthritis (RA), but CTGF-interacting protein and related molecular mechanism of their interaction have not been fully elucidated. Methods CTGF-interacting proteins were identified through the LC-MS/MS analysis of the Co-IP products from fibroblast-like synoviocyte (FLS) lysates, and the interaction between CTGF and annexin A2 (ANXA2) was further confirmed through Co-IP and BiFC assay. The binding domain, mutant, mechanism, and angiogenesis function were assessed by homology modeling, molecular docking, MTT, cell scratch, tube formation, and chick chorioallantoic membrane (CAM) assays. Additionally, severe combined immunodeficiency (SCID) mouse co-implantation model was constructed to confirm the effect of ANXA2/CTGF-TSP1 in the process of RA in vivo. Results ANXA2 was identified and verified as an interaction partner of CTGF for the first time by Co-IP and LC-MS/MS analysis. Co-localization of CTGF and ANXA2 was observed in RA-FLS, and direct interaction of the TSP-1 domain of CTGF and ANXA2 was determined in HEK293T cells. The spatial conformation and stable combination of the ANXA2/CTGF-TSP1 complex were assessed by homology modeling in the biomimetic environment. The function of the ANXA2/CTGF-TSP1 complex was proved on promoting FLS proliferation, migration, and angiogenesis in vitro and deteriorating FLS invasion and joint damage in SCID mice. Conclusions TSP-1 is the essential domain in CTGF/ANXA2 interaction and contributes to FLS migration and pannus formation, inducing the process of RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02656-y.
Collapse
Affiliation(s)
- Guoyu Yin
- Department of Anesthesia and Critical Care, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Chenglin Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Gan Wu
- Department of Anesthesia and Critical Care, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinxin Yu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Qingqing Tian
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Daoxing Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ben Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Lin Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Nannan Xu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
191
|
The Rise of IGFBP4 in People with Obstructive Sleep Apnea and Multilevel Sleep Surgery Recovers Its Basal Levels. DISEASE MARKERS 2021; 2021:1219593. [PMID: 34646401 PMCID: PMC8505101 DOI: 10.1155/2021/1219593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
IGFBP4 is the smallest member of the insulin-like growth factor binding protein family (IGFBP). It is a hepatic protein that plays a role in modulating the activity and bioavailability of IGF-I. The expression of IGFBP4 was found to increase under conditions of hypoxia. Obstructive sleep apnea (OSA) is a common disorder, characterized by cyclic episodes of intermittent hypoxia and fragmented sleep. Our aim was to quantify levels of circulating IGFBP1, IGFBP2, IGFBP3, IGFBP4, and IGFBP7 in fasting plasma samples of 69 Kuwaiti participants and explore its correlation with indices of OSA. The quantification was performed using multiplexing assay. The study involved 28 controls and 41 patients with OSA. Levels of circulating IGFBP4 were significantly higher in people with OSA (289.74 ± 23.30 ng/ml) compared to the control group (217.60 ± 21.74 ng/ml, p = 0.028). The increase in IGFBP4 correlated significantly and positively with AHI (r = .574, p = .01) and AI (r = .794, p = .001) in people with moderate and severe OSA. There was a significant decline in circulating IGFBP4 after 3 months of surgery (225.89 ± 18.16 ng/ml, p = 0.012). This was accompanied by a prominent improvement in OSA (AHI 8.97 ± 2.37 events/h, p = 0.001). In this study, our data showed a significant increase in circulating IGFBP4 in people with OSA. We also report a significant positive correlation between IGFBP4 and indices of OSA at baseline, which suggests IGFBP4 as a potential diagnostic biomarker for OSA. There was a significant improvement in OSA after 3 months of surgical intervention, which concurred with a significant decline in IGFBP4 levels. Altogether, the detected change suggests a potential link between IGFBP4 and OSA or an OSA-related factor, whereby OSA might play a role in triggering the induction of IGFBP4 expression.
Collapse
|
192
|
Components of the insulin-like growth factor system in in vivo - and in vitro-derived fetuses of cattle, and the association with growth and development. Anim Reprod Sci 2021; 234:106856. [PMID: 34626867 DOI: 10.1016/j.anireprosci.2021.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022]
Abstract
This experiment was designed to study mechanisms affecting growth of in vivo-derived (IVD) and in vitro-produced (IVP) fetuses of cattle. Day-7 IVD or IVP cattle blastocysts were transferred to recipients, with pregnant females being slaughtered on Days 90 or 180 of gestation or allowed to undergo parturition. Uteri and contents were dissected and physically measured, and maternal and fetal plasma and amniotic and allantoic fluids were collected for IGF-1 and IGF-2 determinations, and IGFBP profile characterization. Transcripts for IGF-1 and IGF-2 mRNA in placental and fetal tissues, and IGF-1r and IGF-2r in placentomes were determined. There was a greater fetal weight in the IVP group, which was associated with greater IGF-1 and IGF-2 concentrations in maternal circulation, and changes in IGFBP profiles within fetal fluids. Day-90 IVP-derived fetuses were longer, had greater organ weights, larger placentomes, less placentome IGF-2r mRNA transcript, and greater maternal IGF-1 and IGF-2 concentrations than controls. On Day 180 and at parturition tissues from IVP-derived fetuses/calves were from larger uteri, with larger placentomes/fetal membranes, fetuses/calves weighed more, had greater fetal hepatic IGF-2 mRNA transcript, had less fetal plasma IGF-1 and greater allantoic IGF-2 concentrations, greater and lesser IGFBP activities in the allantoic and amniotic fluids, respectively, and greater glucose and fructose accumulation in fetal fluids. Components of the IGF system were differentially regulated not only according to the gestation period (Days 90 or 180) and fluid type (maternal or fetal plasma, amniotic or allantoic fluids), but also based on conceptus origin (IVP or IVD) in cattle.
Collapse
|
193
|
Naik AS, Wang SQ, Chowdhury M, Aqeel J, O'Connor CL, Wiggins JE, Bitzer M, Wiggins RC. Critical timing of ACEi initiation prevents compensatory glomerular hypertrophy in the remaining single kidney. Sci Rep 2021; 11:19605. [PMID: 34599260 PMCID: PMC8486841 DOI: 10.1038/s41598-021-99124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggests that single in kidney states (e.g., kidney transplantation and living donation) progressive glomerulosclerosis limits kidney lifespan. Modeling shows that post-nephrectomy compensatory glomerular volume (GV) increase drives podocyte depletion and hypertrophic stress resulting in proteinuria and glomerulosclerosis, implying that GV increase could serve as a therapeutic target to prevent progression. In this report we examine how Angiotensin Converting Enzyme inhibition (ACEi), started before uninephrectomy can reduce compensatory GV increase in wild-type Fischer344 rats. An unbiased computer-assisted method was used for morphometric analysis. Urine Insulin-like growth factor-1 (IGF-1), the major diver of body and kidney growth, was used as a readout. In long-term (40-week) studies of uni-nephrectomized versus sham-nephrectomized rats a 2.2-fold increase in GV was associated with reduced podocyte density, increased proteinuria and glomerulosclerosis. Compensatory GV increase was largely prevented by ACEi started a week before but not after uni-nephrectomy with no measurable impact on long-term eGFR. Similarly, in short-term (14-day) studies, ACEi started a week before uni-nephrectomy reduced both GV increase and urine IGF-1 excretion. Thus, timing of ACEi in relation to uni-nephrectomy had significant impact on post-nephrectomy "compensatory" glomerular growth and outcomes that could potentially be used to improve kidney transplantation and live kidney donation outcomes.
Collapse
Affiliation(s)
- Abhijit S Naik
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- , F6676 UHS, 1500 E Medical Center Dr, Ann Arbor, MI, 48109-5676, USA.
| | - Su Q Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mahboob Chowdhury
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jawad Aqeel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Jocelyn E Wiggins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roger C Wiggins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- , 1570B MSRB2, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5676, USA.
| |
Collapse
|
194
|
Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2475-2491. [PMID: 33757314 PMCID: PMC8504958 DOI: 10.1177/0271678x211000894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic strokes are highly prevalent in the elderly population and are a leading cause of mortality and morbidity worldwide. The risk of ischemic stroke increases in advanced age, corresponding with a noted decrease in circulating insulin growth factor-1 (IGF-1). IGF-1 is a known neuroprotectant involved in embryonic development, neurogenesis, neurotransmission, cognition, and lifespan. Clinically, several studies have shown that reduced levels of IGF-1 correlate with increased mortality rate, poorer functional outcomes, and increased morbidities following an ischemic stroke. In animal models of ischemia, administering exogenous IGF-1 using various routes of administration (intranasal, intravenous, subcutaneous, or topical) at various time points prior to and following insult attenuates neurological damage and accompanying behavioral changes caused by ischemia. However, there are some contrasting findings in select clinical and preclinical studies. This review discusses the role of IGF-1 as a determinant factor of ischemic stroke outcomes, both within the clinical settings and preclinical animal models. Furthermore, the review provides insight on the role of IGF-1 in mechanisms and cellular processes that contribute to stroke damage.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - M Noa Valcarcel-Ares
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
195
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Structural Lessons From the Mutant Proinsulin Syndrome. Front Endocrinol (Lausanne) 2021; 12:754693. [PMID: 34659132 PMCID: PMC8514764 DOI: 10.3389/fendo.2021.754693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Insight into folding mechanisms of proinsulin has been provided by analysis of dominant diabetes-associated mutations in the human insulin gene (INS). Such mutations cause pancreatic β-cell dysfunction due to toxic misfolding of a mutant proinsulin and impairment in trans of wild-type insulin secretion. Anticipated by the "Akita" mouse (a classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse clinical mutations directly or indirectly perturb native disulfide pairing leading to protein misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships, but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of non-syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of non-foldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
| | | | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
196
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
197
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
198
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
199
|
Susilowati S, Mustofa I, Wurlina W, Triana IN, Utama S, Rimayanti R. Effect of insulin-like growth factor-1 complex of Simmental bull seminal plasma on post-thawed Kacang buck semen fertility. Vet World 2021; 14:2073-2084. [PMID: 34566323 PMCID: PMC8448655 DOI: 10.14202/vetworld.2021.2073-2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Aim Kacang buck sperm is cryosensitive due to the seminal plasma of semen itself. Meanwhile, bull seminal plasma contains the insulin-like growth factor-1 (IGF-1) complex, which is cryoprotective. The addition of the crude protein of Simmental bull seminal plasma increased the quality of post-thawed semen of Kacang buck. The study was conducted to determine the effects of Simmental bull seminal plasma with IGF-1 on the fertility of post-thawed Kacang buck semen. Materials and Methods Buck semen was diluted in the following skim milk-egg yolk extender preparations: Without the addition of Simmental bull seminal plasma IGF-1 complex protein (T0); with the addition of 12-μg Simmental bull seminal plasma IGF-1 complex protein (T1); and with the addition of 24-μg Simmental bull seminal plasma IGF-1 complex protein (T2). The extended semen was packed in 0.25-mL straws and frozen. Post-thawed semen fertility was evaluated based on the following variables: Sperm motility, viability, intact plasma membrane (IPM), malondialdehyde (MDA) levels, capacitation status, and acrosome reaction. The difference in each variable among the groups was evaluated using analysis of variance, followed by Tukey's honestly significant difference test, at a 95% level of significance. Meanwhile, principal component analysis (PCA) was used to identify the principal component of semen fertility among the seven parameters. Results The T1 group showed the highest sperm motility, viability, IPM, and percentage of incapacitated sperm and the lowest MDA levels, percentage of capacitated sperm, and acrosome reaction. PCA revealed that sperm motility had a moderate to very robust correlation with other variables and is the most crucial parameter, accounting for 80.79% of all variables. Conclusion The IGF-1 complex in Simmental bull seminal plasma was useful for increasing the fertility of post-thawed Kacang buck semen, and sperm motility was the principal component of semen fertility.
Collapse
Affiliation(s)
- Suherni Susilowati
- Laboratory of Veterinary Artificial Insemination, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Imam Mustofa
- Laboratory of Veterinary Obstetrics, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Wurlina Wurlina
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Indah Norma Triana
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Suzanita Utama
- Laboratory of Veterinary Obstetrics, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Laboratory of Veterinary Infertility and Sterility, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
200
|
Mechanistic Target of Rapamycin Complex 1 Signaling Links Hypoxia to Increased IGFBP-1 Phosphorylation in Primary Human Decidualized Endometrial Stromal Cells. Biomolecules 2021; 11:biom11091382. [PMID: 34572595 PMCID: PMC8471256 DOI: 10.3390/biom11091382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/01/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) bioavailability in pregnancy is governed by IGF binding protein (IGFBP-1) and its phosphorylation, which enhances the affinity of IGFBP-1 for the growth factor. The decidua is the predominant source of maternal IGFBP-1; however, the mechanisms regulating decidual IGFBP-1 secretion/phosphorylation are poorly understood. Using decidualized primary human endometrial stromal cells (HESCs) from first-trimester placenta, we tested the hypothesis that mTORC1 signaling mechanistically links hypoxia to decidual IGFBP-1 secretion/phosphorylation. Hypoxia inhibited mechanistic target of rapamycin (mTORC1) (p-P70-S6K/Thr389, -47%, p = 0.038; p-4E-BP1/Thr70, -55%, p = 0.012) and increased IGFBP-1 (total, +35%, p = 0.005; phosphorylated, Ser101/+82%, p = 0.018; Ser119/+88%, p = 0.039; Ser 169/+157%, p = 0.019). Targeted parallel reaction monitoring-mass spectrometry (PRM-MS) additionally demonstrated markedly increased dual IGFBP-1 phosphorylation (pSer98+Ser101; pSer169+Ser174) in hypoxia. IGFBP-1 hyperphosphorylation inhibited IGF-1 receptor autophosphorylation/ Tyr1135 (-29%, p = 0.002). Furthermore, silencing of tuberous sclerosis complex 2 (TSC2) activated mTORC1 (p-P70-S6K/Thr389, +68%, p = 0.038; p-4E-BP1/Thr70, +30%, p = 0.002) and reduced total/site-specific IGFBP-1 phosphorylation. Importantly, TSC2 siRNA prevented inhibition of mTORC1 and the increase in secretion/site-specific IGFBP-1 phosphorylation in hypoxia. PRM-MS indicated concomitant changes in protein kinase autophosphorylation (CK2/Tyr182; PKC/Thr497; PKC/Ser657). Overall, mTORC1 signaling mechanistically links hypoxia to IGFBP-1 secretion/phosphorylation in primary HESC, implicating decidual mTORC1 inhibition as a novel mechanism linking uteroplacental hypoxia to fetal growth restriction.
Collapse
|