151
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
152
|
Bakhrushina EO, Mikhel IB, Buraya LM, Moiseev ED, Zubareva IM, Belyatskaya AV, Evzikov GY, Bondarenko AP, Krasnyuk II, Krasnyuk II. Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents. Gels 2024; 10:44. [PMID: 38247767 PMCID: PMC10815592 DOI: 10.3390/gels10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants-systems formed in the tumor due to a phase transition (sol-gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents.
Collapse
Affiliation(s)
- Elena O. Bakhrushina
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Iosif B. Mikhel
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Liliya M. Buraya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Egor D. Moiseev
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Irina M. Zubareva
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
- Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Anastasia V. Belyatskaya
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| | - Grigory Y. Evzikov
- Department of Nervous Diseases and Neurosurgery, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | | | - Ivan I. Krasnyuk
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Ivan I. Krasnyuk
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (L.M.B.); (E.D.M.); (I.M.Z.); (A.V.B.); (I.I.K.)
| |
Collapse
|
153
|
Pawar K, Shaikh K. Design and Development of Ophthalmic Liposomes from the QbD Perspective. Curr Pharm Des 2024; 30:2364-2377. [PMID: 39021195 DOI: 10.2174/0113816128302570240627113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Due to significant lachrymation, drug washing out, and poor adhesion to the lipophilic outer layer of the precorneal and cornea membrane, topical ophthalmic solution drops have poor ocular bioavailability. The rate of transcorneal absorption is impacted in the case of hydrophilic drug molecules as brimonidine tartrate, timolol maleate, cyclosporine, etc. Ophthalmic solution administered in many doses is less patient-compliant. The limitation of multiple-dose and its negative effects can be overcome by the development of delayed- release liposomes. Liposomes are regulatory-approved novel drug delivery systems. Its vesicular form aids in delaying medication release, and its lipidic makeup enables it to stick to the cornea's lipophilic layer. As a result, it will prevent precorneal clearing, extend corneal contact time, and provide sufficient transcorneal absorption. The aim of this review article is to portray the benefits of liposomes for ophthalmic drug delivery and its formulation development in the light of QbD. The review discusses the composition, preparatory methods and quality aspects of ophthalmic liposomes. It then accordingly reasonably proposes the quality target product profile, critical quality attributes, critical material attributes and critical process parameters, involved in liposome development for ophthalmic drug delivery. This review shall help formulation scientists to formulate ophthalmic liposomes of desirable quality.
Collapse
Affiliation(s)
- Kaustubh Pawar
- Progressive Education Society's Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Karimunnisa Shaikh
- Progressive Education Society's Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
154
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
155
|
Hirulkar R, Chaurawal N, Alhodieb FS, Barkat H, Preet S, Raza K. Nanotheranostics: Clinical Status, Toxicity, Regulatory Consideration, and Future Prospects. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:249-285. [DOI: 10.1007/978-981-97-3115-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
156
|
Garg A, Agrawal R, Chopra H, Singh T, Chaudhary R, Tankara A. A Glance on Nanovaccine: A Potential Approach for Disease Prevention. Curr Pharm Biotechnol 2024; 25:1406-1418. [PMID: 37861010 DOI: 10.2174/0113892010254221231006100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
There are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as acquired immuno deficiency syndrome, cancer, tuberculosis, malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.
Collapse
Affiliation(s)
- Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Talever Singh
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Ramkumar Chaudhary
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Abhishek Tankara
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| |
Collapse
|
157
|
Priya V, Samridhi, Singh N, Dash D, Muthu MS. Nattokinase Encapsulated Nanomedicine for Targeted Thrombolysis: Development, Improved in Vivo Thrombolytic Effects, and Ultrasound/Photoacoustic Imaging. Mol Pharm 2024; 21:283-302. [PMID: 38126777 DOI: 10.1021/acs.molpharmaceut.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nattokinase (NK), a potent thrombolytic enzyme that dissolves blood clots, is highly used in the treatment of cardiovascular disorders. However, its effective delivery remains demanding because of stability and bioavailability problems owing to its high molecular weight and proteineous nature. In this research, we have developed novel NK-loaded nontargeted liposomes (NK-LS) and targeted liposomes (RGD-NK-LS and AM-NK-LS) by the reverse phase evaporation method. The physiochemical characterizations (particle size, polydispersity index, zeta potential, and morphology) were performed by a Zetasizer, SEM, TEM, and AFM. The Bradford assay and XPS analysis confirmed the successful surface conjugation of the targeting ligands. Platelet interaction studies by CLSM, photon imager optima, and flow cytometry showed significantly higher (P < 0.05) platelet binding affinity of targeted liposomes. In vitro evaluations were performed using human blood and a fibrinolysis study by CLSM imaging demonstrating the potent antithrombotic efficacy of AM-NK-LS. Furthermore, bleeding and clotting time studies revealed that the targeted liposomes were free from any bleeding complications. Moreover, the in vivo FeCl3 model on Sprague-Dawley (SD) rats using a Doppler flow meter and ultrasound/photoacoustic imaging indicated the increased % thrombolysis and potent affinity of targeted liposomes toward the thrombus site. Additionally, in vitro hemocompatibility and histopathology studies demonstrated the safety and biocompatibility of the nanoformulations.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Samridhi
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
158
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
159
|
Schlosser CS, Williams GR, Dziemidowicz K. Advanced Formulation Approaches for Proteins. Handb Exp Pharmacol 2024; 284:69-91. [PMID: 37059912 DOI: 10.1007/164_2023_647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Proteins and peptides are highly desirable as therapeutic agents, being highly potent and specific. However, there are myriad challenges with processing them into patient-friendly formulations: they are often unstable and have a tendency to aggregate or degrade upon storage. As a result, the vast majority of protein actives are delivered parenterally as solutions, which has a number of disadvantages in terms of cost, accessibility, and patient experience. Much work has been undertaken to develop new delivery systems for biologics, but to date this has led to relatively few products on the market. In this chapter, we review the challenges faced when developing biologic formulations, discuss the technologies that have been explored to try to overcome these, and consider the different delivery routes that can be applied. We further present an overview of the currently marketed products and assess the likely direction of travel in the next decade.
Collapse
|
160
|
Navaratnarajah A, Daniel C, Bhakta S. Modified HT-SPOTi: An Antimicrobial Susceptibility Testing to Evaluate Formulated Therapeutic Combinations Against Bacterial Growth and Viability. Methods Mol Biol 2024; 2833:35-42. [PMID: 38949698 DOI: 10.1007/978-1-0716-3981-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to global health, potentially causing 10 million deaths per year globally by 2050. To tackle AMR, researchers from all around the world have generated a selection of various formulated (viz. nanoparticulate, liposomal) therapeutic combinations to be evaluated for new antimicrobial drug discovery. To meet the urgent need for accelerating new antibacterial drug development, we need rapid but reliable whole-cell assay methods and models to test formulated therapeutic combinations against several pathogens in different in vitro conditions as models of actual infections.Over the past two decades, high-throughput spot-culture growth inhibition assay (HT-SPOTi) has been demonstrated to be a gold-standard drug susceptibility method for evaluating novel chemotherapeutic entities and existing drugs against various microbes of global concern. Our modified HT-SPOTi method serves the purpose of evaluating drug combinations against Gram-positive/negative microorganisms as well as acid-fast bacilli. The newly developed and modified HT-SPOTi assay builds upon the limitations of our previously published method to incorporate antimicrobial susceptibility testing with formulated therapeutic combinations. The modified HT-SPOTi is compared with a range of other antimicrobial susceptibility testing methods and validated using a library of existing antibiotics as well as formulated therapeutic combinations. The modified HT-SPOTi assay can serve as an efficient and reliable high-throughput drug screening platform to discover new potential antimicrobial molecules, including as part of therapeutic formulations.This chapter describes the generation of drug susceptibility profile for formulated therapeutic combinations using modified HT-SPOTi in a semi-automated system.
Collapse
Affiliation(s)
- Anushandan Navaratnarajah
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, UK
| | - Chris Daniel
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
161
|
Abstract
Natural killer T (NKT) cells are a population of innate-like T cells capable of enhancing both innate and adaptive immune responses. Co-delivering an NKT cell agonist and antigen can provide molecular signals to antigen-presenting cells, such as dendritic and B cells, that facilitate strong antigen-specific adaptive immune responses. Accordingly, there has been a significant number of developmental NKT cell-dependent vaccine therapies developed, particularly in the last decade, with many incorporating cancer antigens. In this review, we summarize studies that chemically conjugate the NKT cell agonist and antigen as an effective strategy for agonist-antigen co-delivery to drive antitumor responses.
Collapse
Affiliation(s)
- Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
162
|
Rabienezhad Ganji N, Urzì O, Tinnirello V, Costanzo E, Polito G, Palumbo Piccionello A, Manno M, Raccosta S, Gallo A, Lo Pinto M, Calligaris M, Scilabra SD, Di Bella MA, Conigliaro A, Fontana S, Raimondo S, Alessandro R. Proof-of-Concept Study on the Use of Tangerine-Derived Nanovesicles as siRNA Delivery Vehicles toward Colorectal Cancer Cell Line SW480. Int J Mol Sci 2023; 25:546. [PMID: 38203716 PMCID: PMC10779162 DOI: 10.3390/ijms25010546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.
Collapse
Affiliation(s)
- Nima Rabienezhad Ganji
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Ornella Urzì
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Vincenza Tinnirello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Elisa Costanzo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Giulia Polito
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90128 Palermo, Italy; (G.P.); (A.P.P.)
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90128 Palermo, Italy; (G.P.); (A.P.P.)
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Alessia Gallo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Margot Lo Pinto
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Maria Antonietta Di Bella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Alice Conigliaro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Simona Fontana
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Riccardo Alessandro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| |
Collapse
|
163
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
164
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
165
|
Pashirova TN, Nemtarev AV, Buzyurova DN, Shaihutdinova ZM, Dimukhametov MN, Babaev VM, Voloshina AD, Mironov VF. Terpenes-Modified Lipid Nanosystems for Temozolomide, Improving Cytotoxicity against Glioblastoma Human Cancer Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:55. [PMID: 38202510 PMCID: PMC10780480 DOI: 10.3390/nano14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Currently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% w/w), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% w/w) abietic acid and Abies sibirica Ledeb. resin (A. sibirica). Different concentrations and combinations of terpene-lipid systems were employed to treat human cancer cell lines T 98G (glioblastoma), M-Hela (carcinoma of the cervix) and human liver cell lines (Chang liver). The terpene-lipid systems appeared to be unilamellar and of spherical shape under transmission electron microscopy (TEM). The creation of a TMZ-loaded terpene-lipid nanosystem was about 100 nm in diameter with a negative surface charge found by dynamic light scattering. The 74% encapsulation efficiency allowed the release time of TMZ to be prolonged. The modification by terpenes of TMZ-loaded lipid nanoparticles improved by four times the cytotoxicity against human cancer T 98G cells and decreased the cytotoxicity against human normal liver cells. Terpene-modified delivery lipid systems are of potential interest as a combination therapy.
Collapse
Affiliation(s)
- Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daina N. Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Zukhra M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| |
Collapse
|
166
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
167
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 PMCID: PMC11407177 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
168
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
169
|
Ubeda Gutierrez AM, Remant Bahadur KC, Brandwein J, Uludağ H. Exploring the Potential of siRNA Delivery in Acute Myeloid Leukemia for Therapeutic Silencing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3167. [PMID: 38133064 PMCID: PMC10745893 DOI: 10.3390/nano13243167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
We investigated the feasibility of using siRNA therapy for acute myeloid leukemia (AML) by developing macromolecular carriers that facilitated intracellular delivery of siRNA. The carriers were derived from low-molecular-weight (<2 kDa) polyethyleneimine (PEI) and modified with a range of aliphatic lipids. We identified linoleic acid and lauric acid-modified PEI as optimal carriers for siRNA delivery to AML cell lines KG1 and KG1a, as well as AML patient-derived mononuclear cells. As they have been proven to be potent targets in the treatment of AML, we examined the silencing of BCL2L12 and survivin and showed how it leads to the decrease in proliferation of KG1 and stem-cell-like KG1a cells. By optimizing the transfection schedule, we were able to enhance the effect of the siRNAs on proliferation over a period of 10 days. We additionally showed that with proper modifications of PEI, other genes, including MAP2K3, CDC20, and SOD-1, could be targeted to decrease the proliferation of AML cells. Our studies demonstrated the versatility of siRNA delivery with modified PEI to elicit an effect in leukemic cells that are difficult to transfect, offering an alternative to conventional drugs for more precise and targeted treatment options.
Collapse
Affiliation(s)
- Anyeld M. Ubeda Gutierrez
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K. C. Remant Bahadur
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Joseph Brandwein
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
170
|
Yang H, Yan R, Chen Q, Wang Y, Zhong X, Liu S, Xie R, Ren L. Functional nano drug delivery system with dual lubrication and immune escape for treating osteoarthritis. J Colloid Interface Sci 2023; 652:2167-2179. [PMID: 37730470 DOI: 10.1016/j.jcis.2023.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Local drug delivery via inter-articular injection offers a promising scenario to treat the most common joint disease, osteoarthritis (OA), which is closely associated with the increased friction or cartilage degeneration and the inflammatory syndrome of synovium. Therefore, it is quite necessary to improve the retention of drug delivery system within synovial joint, simultaneously restore the lubrication of degraded cartilage and meanwhile alleviate the inflammation. In this study, we propose a hydrophilic coating modified nano-liposome drug carrier (PMPC-Lipo) to achieve these functions. A modified chain transfer agent was utilized to polymerize 2-methacryloyloxyethyl phosphorylcholine (MPC), the obtained polymer, combined with lecithin and cholesterol, formed a liposome (PMPC-Lipo) where poly (MPC) acted as hydrophilic coating. PMPC-Lipo was found to restore the lubrication of mechanically damage cartilage (mimicking OA conditions) to the level like healthy cartilage due to the hydration lubrication. Additionally, due to the presence of poly (MPC), we also found PMPC-Lipo avoid the recognition of macrophage and thus escape from the phagocytosis to prolong its retention in synovial joint. Furthermore, after encapsulating gallic acid (GA) into PMPC-Lipo, the obtained GA-PMPC-Lipo can effectively scavenge reactive oxygen species and restore the imbalance of matrix secretion in inflammatory chondrocytes. Collectively, the proposed GA-PMPC-Lipo may provide a new idea for osteoarthritis treatment by providing both long-term effective drug action and excellent lubrication properties.
Collapse
Affiliation(s)
- Hai Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ruyu Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Qiuyi Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - XiuPeng Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China; School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
171
|
Zhang X, Yi Y, Jiang Y, Liao J, Yang R, Deng X, Zhang L. Targeted Therapy of Acute Liver Injury via Cryptotanshinone-Loaded Biomimetic Nanoparticles Derived from Mesenchymal Stromal Cells Driven by Homing. Pharmaceutics 2023; 15:2764. [PMID: 38140104 PMCID: PMC10747007 DOI: 10.3390/pharmaceutics15122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Acute liver injury (ALI) has the potential to compromise hepatic function rapidly, with severe cases posing a considerable threat to human health and wellbeing. Conventional treatments, such as the oral administration of antioxidants, can inadvertently lead to liver toxicity and other unwanted side effects. Mesenchymal stromal cells (MSCs) can target therapeutic agents directly to inflammatory sites owing to their homing effect, and they offer a promising avenue for the treatment of ALI. However, the efficacy and feasibility of these live cell products are hampered by challenges associated with delivery pathways and safety concerns. Therefore, in this work, MSC membranes were ingeniously harnessed as protective shells to encapsulate synthesized PLGA nanoparticle cores (PLGA/MSCs). This strategic approach enabled nanoparticles to simulate endogenous substances and yielded a core-shell nano-biomimetic structure. The biomimetic nanocarrier remarkably maintained the homing ability of MSCs to inflammatory sites. In this study, cryptotanshinone (CPT)-loaded PLGA/MSCs (CPT@PLGA/MSC) were prepared. These nanoparticles can be effectively internalized by LO2 cells. They reduced cellular oxidative stress and elevated inflammatory levels. In vivo results suggested that, after intravenous administration, CPT@PLGA/MSCs significantly reduced uptake by the reticuloendothelial system and immune recognition compared to PLGA nanoparticles without MSC membrane coatings, subsequently resulting in their targeted and enhanced accumulation in the liver. The effectiveness of CPT@PLGA/MSCs in alleviating carbon tetrachloride-induced oxidative stress and inflammation in a mouse model was unequivocally demonstrated through comprehensive histological examination and liver function tests. This study introduces a pioneering strategy with substantial potential for ALI treatment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yao Yi
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (J.L.); (R.Y.)
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an 625014, China; (X.Z.); (Y.Y.); (Y.J.); (X.D.)
| |
Collapse
|
172
|
Abawi A, Thomann C, Lollo G, Granjon T, Petiot E, Bérot A, Oger C, Bultel-Poncé V, Guy A, Galano JM, Durand T, Girard-Egrot A, Maniti O. Carrier-Tumor Cell Membrane Interactions for Optimized Delivery of a Promising Drug, 4( RS)-4-F 4t-Neuroprostane. Pharmaceutics 2023; 15:2739. [PMID: 38140081 PMCID: PMC10748318 DOI: 10.3390/pharmaceutics15122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.
Collapse
Affiliation(s)
- Ariana Abawi
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Céline Thomann
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France;
| | - Thierry Granjon
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Emma Petiot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Anna Bérot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Camille Oger
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Valérie Bultel-Poncé
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Alexandre Guy
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Agnès Girard-Egrot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Ofelia Maniti
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| |
Collapse
|
173
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
174
|
Salama MM, Aborehab NM, El Mahdy NM, Zayed A, Ezzat SM. Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur J Med Res 2023; 28:566. [PMID: 38053150 DOI: 10.1186/s40001-023-01539-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.
Collapse
Affiliation(s)
- Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Nihal M El Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
175
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
176
|
Shimoyama S, Okada K, Kimura T, Morohashi Y, Nakayama S, Kemmochi S, Makita-Suzuki K, Matulonis UA, Mori M. FF-10850, a Novel Liposomal Topotecan Achieves Superior Antitumor Activity via Macrophage- and Ammonia-Mediated Payload Release in the Tumor Microenvironment. Mol Cancer Ther 2023; 22:1454-1464. [PMID: 37683276 PMCID: PMC10690090 DOI: 10.1158/1535-7163.mct-23-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Topotecan, an approved treatment for refractory or recurrent ovarian cancer, has clinical limitations such as rapid clearance and hematologic toxicity. To overcome these limitations and maximize clinical benefit, we designed FF-10850, a dihydrosphingomyelin-based liposomal topotecan. FF-10850 demonstrated superior antitumor activity to topotecan in ovarian cancer cell line-based xenograft models, as well as in a clinically relevant DF181 platinum-refractory ovarian cancer patient-derived xenograft model. The safety profile was also improved with mitigation of hematologic toxicity. The improved antitumor activity and safety profile are achieved via its preferential accumulation and payload release triggered in the tumor microenvironment. Our data indicate that tumor-associated macrophages internalize FF-10850, resulting in complete payload release. The release mechanism also appears to be mediated by high ammonia concentration resulting from glutaminolysis, which is activated by tumor metabolic reprogramming. In ammonia-rich conditions, FF-10850 released payload more rapidly and to a greater extent than liposomal doxorubicin, a currently approved treatment for ovarian cancer. FF-10850 significantly enhanced antitumor activity in combination with carboplatin or PARP inhibitor without detrimental effects on body weight in murine xenograft models, and demonstrated synergistic antitumor activity combined with anti-PD-1 antibody with the development of tumor antigen-specific immunity. These results support phase I investigation of FF-10850 for the treatment of solid tumors including ovarian cancer (NCT04047251), and further evaluation in combination settings.
Collapse
Affiliation(s)
| | - Ken Okada
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Toshifumi Kimura
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Yasushi Morohashi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Shinji Nakayama
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Sayaka Kemmochi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Keiko Makita-Suzuki
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mikinaga Mori
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| |
Collapse
|
177
|
Tang H, Cao C, Zhang G, Sun Z. Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor. Drug Deliv 2023; 30:1-16. [PMID: 36644796 PMCID: PMC9987747 DOI: 10.1080/10717544.2022.2157519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (Tm) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.
Collapse
Affiliation(s)
- Hailing Tang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Changhui Cao
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Guangyuan Zhang
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhengkao Sun
- Department of Orthopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShangDong University, Qingdao, China
| |
Collapse
|
178
|
Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:428-440. [PMID: 37594208 DOI: 10.1080/21691401.2023.2247036] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Liposomes are considered among the most versatile and advanced nanoparticle delivery systems used to target drugs to specific cells and tissues. Structurally, liposomes are sphere-like vesicles of phospholipid molecules that are surrounded by equal number of aqueous compartments. The spherical shell encapsulates an aqueous interior which contains substances such as peptides and proteins, hormones, enzymes, antibiotics, antifungal and anticancer agents. This structural property of liposomes makes it an important nano-carrier for drug delivery. Extrusion is one of the most frequently used technique for preparing monodisperse uni-lamellar liposomes as the technique is used to control vesicle size. The process involves passage of lipid suspension through polycarbonate membrane with a fixed pore size to produce vesicles with a diameter near the pore size of the membrane used in preparing them. An advantage of this technique is that there is no need to remove the organic solvent or detergent from the final preparation. This review focuses on composition of liposome formulation with special emphasis on factors affecting drug release and drug-loading.
Collapse
Affiliation(s)
- Shantanu Pande
- Drug Product Technical Services, Wave Life Sciences, Lexington, MA, USA
| |
Collapse
|
179
|
Rukavina Z, Jøraholmen MW, Božić D, Frankol I, Gašparović PG, Škalko-Basnet N, Klarić MŠ, Vanić Ž. Azithromycin-loaded liposomal hydrogel: a step forward for enhanced treatment of MRSA-related skin infections. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:559-579. [PMID: 38147473 DOI: 10.2478/acph-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Azithromycin (AZT) encapsulated into various types of liposomes (AZT-liposomes) displayed pronounced in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) (1). The present study represents a follow-up to this previous work, attempting to further explore the anti-MRSA potential of AZT-liposomes when incorporated into chitosan hydrogel (CHG). Incorporation of AZT-liposomes into CHG (liposomal CHGs) was intended to ensure proper viscosity and texture properties of the formulation, modification of antibiotic release, and enhanced antibacterial activity, aiming to upgrade the therapeutical potential of AZT-liposomes in localized treatment of MRSA-related skin infections. Four different liposomal CHGs were evaluated and compared on the grounds of antibacterial activity against MRSA, AZT release profiles, cytotoxicity, as well as texture, and rheological properties. To our knowledge, this study is the first to investigate the potential of liposomal CHGs for the topical localized treatment of MRSA-related skin infections. CHG ensured proper viscoelastic and texture properties to achieve prolonged retention and prolonged release of AZT at the application site, which resulted in a boosted anti-MRSA effect of the entrapped AZT-liposomes. With respect to anti-MRSA activity and biocompatibility, formulation CATL-CHG (cationic liposomes in CHG) is considered to be the most promising formulation for the treatment of MRSA-related skin infections.
Collapse
Affiliation(s)
- Zora Rukavina
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - May Wenche Jøraholmen
- 2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø Norway
| | - Dunja Božić
- 3R&D, PLIVA Croatia Ltd. 10000 Zagreb, Croatia
| | - Ivana Frankol
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | - Nataša Škalko-Basnet
- 2Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø Norway
| | - Maja Šegvić Klarić
- 4Department of Microbiology, University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Željka Vanić
- 1Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| |
Collapse
|
180
|
Pebam M, Ali MS, Khatun S, Rengan AK. IR-775 - Hyptis loaded bioactive nanoparticles for enhanced phyto-photothermal therapy of breast cancer cells. Photodiagnosis Photodyn Ther 2023; 44:103872. [PMID: 37926327 DOI: 10.1016/j.pdpdt.2023.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Photo-responsive therapy is an emerging treatment modality due to its bioimaging and therapeutic properties. Phototherapy induces localized hyperthermia and selectively eradicates cancer cells. The current study showed that multifunctional biodegradable liposome nanosystem (HIL NPs) containing Hyptis suaveolens bioactive molecules and IR-775, a NIR dye showed efficient bioavailability to cancer ells and allowed tumor ablation upon NIR laser irradiation. The resulting entities present in the nanosystem, i.e., bioactive molecules of Hyptis, serve as an anticancer agent, and IR-775 helps in the photothermal ablation of highly metastatic breast cancer cells. Hyptis suaveolens is a weed that grows rampantly, impeding the growth of neighboring plants; nonetheless, its bioactive compounds have demonstrated therapeutic benefits. The obtained HIL NPs, photothermally active liposome nanosystem showed a high fluorescence absorption peak in the NIR range and delivered a photothermal conversion efficiency of 55.20 % upon NIR laser irradiation. TEM and particle size analyzer revealed that HIL NPs have a size of 141 ± 30 nm with a spherical shape. The results of in-ovo (zebrafish) experiments have shown efficient bioimaging capabilities with minimal concentrations of HIL NPs compared to respective controls. Furthermore, in-vitro studies of HIL NPs against triple-negative breast cancer (4T1) indicated effective anticancer activity by a combined cytotoxic effect and hyperthermia. Tumor ablation was facilitated by reactive oxygen species production and hyperthermia, leading to DNA damage and apoptosis due to overexpression of ɣ-H2AX, Cathepsin B, and p53, which halted cancer cell proliferation. Therefore, HIL NPs demonstrated effective anticancer effects induced by combined phyto-photothermal therapy when evaluated against an in-vitro breast cancer model.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502284, India.
| |
Collapse
|
181
|
Su Z, Li L, Hao F, Zhao J, Li M, Zhao X, Zhao D. A Stable Irinotecan Liposome with Enhanced Antitumor Activity in a Range of Tumor Models. Pharm Res 2023; 40:3043-3058. [PMID: 37914843 DOI: 10.1007/s11095-023-03622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE This study aimed to prepare a stable irinotecan liposome (CPT-11 liposome) and evaluate its antitumor efficacy in a range of tumor models. METHODS CPT-11 liposome was prepared with a Z-average particle size of 110 ~ 120 nm and high entrapment efficiency (> 95%) and had a good stability within 18 months. Then the antitumor efficacy was studied in human colon (Ls-174t), gastric (NCI-N87), pancreatic (BxPC-3) and small cell lung (NCI-H526) cancer xenograft models. The toxicity of high-dose CPT-11 liposome was also evaluated in Beagle dogs. RESULTS The results showed that the anti-tumor effects of CPT-11 liposome were markedly superior (at least 10 times higher) to those of the CPT-11 injection group in all four xenograft models. The tissue distribution test in the Ls-174t model further demonstrated that the CPT-11 liposome could alter the plasma and tissue distribution of CPT-11, increase the exposure level of its active metabolite SN-38 in tumor, and ultimately improve antitumor efficiency. Meanwhile, CPT-11 liposome showed a much less toxicity than CPT-11 injection in beagle dogs. CONCLUSIONS Overall, the CPT-11 liposome may be developed as a new clinical alternative for the cancer patients.
Collapse
Affiliation(s)
- Zhengxing Su
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu, 611130, China
- Hunan Kelun Pharmaceutical Institute Co. Ltd., Yueyang, 414199, China
| | - Li Li
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Fei Hao
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu, 611130, China
| | - Jinlong Zhao
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu, 611130, China
- Hunan Kelun Pharmaceutical Institute Co. Ltd., Yueyang, 414199, China
| | - Ming Li
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu, 611130, China
| | - Xi Zhao
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, 611130, China
| | - Dong Zhao
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu, 611130, China.
| |
Collapse
|
182
|
Go S, Jung M, Lee S, Moon S, Hong J, Kim C, Chung Y, Kim BS. A Personalized Cancer Nanovaccine that Enhances T-Cell Responses and Efficacy Through Dual Interactions with Dendritic Cells and T Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303979. [PMID: 37515819 DOI: 10.1002/adma.202303979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Conventional approaches to developing therapeutic cancer vaccines that primarily activate tumor-specific T cells via dendritic cells (DCs) often demonstrate limited efficacy due to the suboptimal activation of these T cells. To address this limitation, here a therapeutic cancer nanovaccine is developed that enhances T cell responses by interacting with both DCs and T cells. The nanovaccine is based on a cancer cell membrane nanoparticle (CCM-MPLA) that utilizes monophosphoryl lipid A (MPLA) as an adjuvant. To allow direct interaction between the nanovaccine and tumor-specific T cells, anti-CD28 antibodies (aCD28) are conjugated onto CCM-MPLA, resulting in CCM-MPLA-aCD28. This nanovaccine activates tumor-specific CD8+ T cells in both the presence and absence of DCs. Compared with nanovaccines that interact with either DCs (CCM-MPLA) or T cells (CCM-aCD28), CCM-MPLA-aCD28 induces more potent responses of tumor-specific CD8+ T cells and exhibits a higher antitumor efficacy in tumor-bearing mice. No differences in T cell activation efficiency and therapeutic efficacy are observed between CCM-MPLA and CCM-aCD28. This approach may lead to the development of effective personalized therapeutic cancer vaccines prepared from autologous cancer cells.
Collapse
Affiliation(s)
- Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
183
|
Adler A, Fritsch M, Fromell K, Leneweit G, Ekdahl KN, Nilsson B, Teramura Y. Regulation of the innate immune system by fragmented heparin-conjugated lipids on lipid bilayered membranes in vitro. J Mater Chem B 2023; 11:11121-11134. [PMID: 37953734 DOI: 10.1039/d3tb01721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Surface modification with heparin is a powerful biomaterial coating strategy that protects against innate immunity activation since heparin is a part of the proteoglycan heparan sulfate on cell surfaces in the body. We studied the heparinization of cellular and material surfaces via lipid conjugation to a heparin-binding peptide. In the present study, we synthesized fragmented heparin (fHep)-conjugated phospholipids and studied their regulation of the innate immune system on a lipid bilayered surface using liposomes. Liposomes have versatile applications, such as drug-delivery systems, due to their ability to carry a wide range of molecules. Owing to their morphological similarity to cell membranes, they can also be used to mimic a simple cell-membrane to study protein-lipid interactions. We investigated the interaction of complement-regulators, factor H and C4b-binding protein (C4BP), as well as the coagulation inhibitor antithrombin (AT), with fHep-lipids on the liposomal surface. Herein, we studied the ability of fHep-lipids to recruit factor H, C4BP, and AT using a quartz crystal microbalance with dissipation monitoring. With dynamic light scattering, we demonstrated that liposomes could be modified with fHep-lipids and were stable up to 60 days at 4 °C. Using a capillary western blot-based method (Wes), we showed that fHep-liposomes could recruit factor H in a model system using purified proteins and assist in the degradation of the active complement protein C3b to iC3b. Furthermore, we found that fHep-liposomes could recruit factor H and AT from human plasma. Therefore, the use of fHep-lipids could be a potential coating for liposomes and cell surfaces to regulate the immune system on the lipid surface.
Collapse
Affiliation(s)
- Anna Adler
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Marlene Fritsch
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Gero Leneweit
- ABNOBA GmbH, Pforzheim, Germany
- Carl Gustav Carus-Institute, Association for the Promotion of Cancer Therapy, Niefern-Öschelbronn, Germany
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central Fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
184
|
Bonechi C, Mahdizadeh FF, Talarico L, Pepi S, Tamasi G, Leone G, Consumi M, Donati A, Magnani A. Liposomal Encapsulation of Citicoline for Ocular Drug Delivery. Int J Mol Sci 2023; 24:16864. [PMID: 38069187 PMCID: PMC10706088 DOI: 10.3390/ijms242316864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glaucoma represents a group of neurodegenerative diseases characterized by optic nerve damage and the slowly progressive death of retinal ganglion cells. Glaucoma is considered the second leading cause of irreversible blindness worldwide. Pharmaceutical treatment of glaucoma is critical because of the properties of the ocular barrier that limit the penetration of drugs, resulting in lower systemic bioavailability. This behavior causes the need of frequent drug administration, which leads to deposition of concentrated solutions on the eye, causing toxic effects and cellular damage to the eye. To overcome these drawbacks, novel drug-delivery systems, such as liposomes, can play an important role in improving the therapeutic efficacy of antiglaucomatous drugs. In this work, liposomes were synthesized to improve various aspects, such as ocular barrier penetration, bioavailability, sustained release of the drug, targeting of the tissue, and reduction in intraocular pressure. Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids, with neuroprotective and neuroenhancement properties, and it was used in the treatment on retinal function and neural conduction in the visual pathways of glaucoma patients. In this study, citicoline was loaded into the 1,2-dioleoyl-sn-glycerol-3-phosphocholine and cholesterol liposomal carrier to enhance its therapeutic effect. The citicoline encapsulation efficiency, drug release, and size analysis of the different liposome systems were investigated using dynamic light scattering, nuclear magnetic resonance, infrared spectroscopy, and ToF-SIMS experiments.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fariba Fahmideh Mahdizadeh
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
| | - Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
185
|
Youness RA, Mohamed AH, Efthimiadou EK, Mekky RY, Braoudaki M, Fahmy SA. A Snapshot of Photoresponsive Liposomes in Cancer Chemotherapy and Immunotherapy: Opportunities and Challenges. ACS OMEGA 2023; 8:44424-44436. [PMID: 38046305 PMCID: PMC10688172 DOI: 10.1021/acsomega.3c04134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 12/05/2023]
Abstract
To provide precise medical regimens, photonics technologies have been involved in the field of nanomedicine. Phototriggered liposomes have been cast as promising nanosystems that achieve controlled release of payloads in several pathological conditions such as cancer, autoimmune, and infectious diseases. In contrast to the conventional liposomes, this photoresponsive element greatly improves therapeutic efficacy and reduces the adverse effects of gene/drug therapy during treatment. Recently, cancer immunotherpay has been one of the hot topics in the field of oncology due to the great success and therapeutic benefits that were well-recognized by the patients. However, several side effects have been encountered due to the unmonitored augmentation of the immune system. This Review highlights the most recent advancements in the development of photoresponsive liposome nanosystems in the field of oncology, with a specific emphasis on challenges and opportunities in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Rana A. Youness
- Biology
and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 4824201, Egrypt
- Biology
and Biochemistry Department, Molecular Genetics Research Team (MGRT),
School of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Adham H. Mohamed
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Eleni K. Efthimiadou
- Inorganic
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Radwa Y. Mekky
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Maria Braoudaki
- Clinical,
Pharmaceutical, and Biological Science Department, School of Life
and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K.
| | - Sherif Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
186
|
Hani U, Gowda BHJ, Haider N, Ramesh K, Paul K, Ashique S, Ahmed MG, Narayana S, Mohanto S, Kesharwani P. Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review. AAPS PharmSciTech 2023; 24:233. [PMID: 37973643 DOI: 10.1208/s12249-023-02670-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy. In addition, immunotherapies and targeted therapies can be prohibitively expensive. Over the past two decades, scientists have devised a few nanoparticle-based drug delivery systems aimed at overcoming this challenge. These therapeutic strategies are engineered to augment the cellular uptake, pharmacokinetics, and effectiveness of anticancer drugs. However, there are still numerous types of nanoparticles that could potentially improve the efficacy of blood cancer treatment, while also reducing treatment costs and mitigating drug-related side effects. To the best of our knowledge, there has been limited reviews published on the use of nano-based drug delivery systems for the treatment of hematological malignancies. Therefore, we have made a concerted effort to provide a comprehensive review that draws upon recent literature and patents, with a focus on the most promising results regarding the use of nanoparticle-based approaches for the treatment of hematological malignancies. All these crucial points covered under a common title would significantly help researchers and scientists working in the area.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, 61421, Abha, Saudi Arabia.
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, 61421, Abha, Saudi Arabia
| | - Kvrns Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, United Arab Emirates
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713378, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India.
| |
Collapse
|
187
|
Moreira D, Regev O, Basílio N, Marques EF. Light and pH responsive catanionic vesicles based on a chalcone/flavylium photoswitch for smart drug delivery: From molecular design to the controlled release of doxorubicin. J Colloid Interface Sci 2023; 650:2024-2034. [PMID: 37536006 DOI: 10.1016/j.jcis.2023.07.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Spatially and temporally localized delivery is a promising strategy to circumvent adverse effects of traditional drug therapy such as drug toxicity and prolonged treatments. Stimuli-responsive colloidal nanocarriers can be crucial to attain such goals. Here, we develop a delivery system based on dual light and pH responsive vesicles having a cationic bis-quat gemini surfactant, 12-2-12, and a negatively charged amphiphilic chalcone, C4SCh. The premise is to exploit the chalcone/flavylium interconversion to elicit a morphological change of the vesicles leading to the controlled release of an encapsulated drug. First, the phase behavior of the catanionic system is studied and the desirable composition yielding stable unilamellar vesicles identified and selected for further studies. The solutions containing vesicles (Dh ≈ 200 nm, ζ-potential ≈ 80 mV) are in-depth characterized by light microscopy, cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and surface tension measurements. Upon subjecting the vesicles to UV irradiation (λ = 365 nm) at near neutral pH (≈ 6.0), no morphological effects are observed, yet when irradiation is coupled with pH = 3.0, the majority of the vesicles are disrupted into bilayer fragments. The anticancer drug doxorubicin (DOX) is successfully entrapped in the non-irradiated vesicles, yielding an encapsulation efficiency of ≈ 25% and a loading capacity of ≈ 3%. The release profile of the drug-loaded vesicles is then studied in vitro in four conditions: i) no stimuli (pH = 6.0); ii) irradiation, pH = 6.0; iii) no irradiation and adjusted pH = 3.0; iv) irradiation and adjusted pH = 3.0 Crucially, irradiation at pH = 3.0 leads to a sustained release of DOX to ca. 80% (within 4 h), whereas cases i) and ii) lead to only ≈ 25 % release and case iii) to 50% release but precipitation of the vesicles. Thus, our initial hypothesis is confirmed: we present a proof of concept delivery system where light and pH act as inputs of an AND logic gate mechanism for the controlled release of a relevant biomedical drug (output). This may prove useful if the irradiated nanocarriers meet acidified physiological environments such as tumors sites, endosomes or lysosomes.
Collapse
Affiliation(s)
- Dmitriy Moreira
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Oren Regev
- Department of Chemical Engineering and (d)Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nuno Basílio
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Eduardo F Marques
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
188
|
Fadaka AO, Akinsoji T, Klein A, Madiehe AM, Meyer M, Keyster M, Sikhwivhilu LM, Sibuyi NRS. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach. J Pharm Anal 2023; 13:1235-1251. [PMID: 38174117 PMCID: PMC10759263 DOI: 10.1016/j.jpha.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Taiwo Akinsoji
- School of Medicine, Southern Illinois University, Springfield, IL, 62702, USA
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Lucky Mashudu Sikhwivhilu
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
| |
Collapse
|
189
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
190
|
Suman SK, Mukherjee A, Sharma RK. A liposomal radionanoformulation for targeted drug delivery and real time monitoring by radionuclide imaging for HER2 overexpressing cancers. Drug Dev Res 2023; 84:1553-1563. [PMID: 37578143 DOI: 10.1002/ddr.22106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Liposomal formulations carrying chemotherapeutic drugs have demonstrated great potential as effective drug delivery systems. Smart nanoformulations decorated with targeting agents and probes are desired for site specific delivery of drugs and real time monitoring. In this study, we aimed to develop liposomal formulation loaded with doxorubicin and tagged with trastuzumab antibody (Ab) for targeting human epidermal growth factor receptor 2 (HER2) positive tumors. Liposomes were prepared by ethanol injection method using modified lipids to conjugate trastuzumab and radiolabel with Tc-99m radioisotope using DTPA for imaging by single photon emission computed tomography (SPECT). Doxorubicin was loaded using the active pH gradient method. The conjugation of Ab to liposomes was validated by SDS-PAGE and MALDI-MS. 99m Tc labeled liposomes encapsulating doxorubicin conjugated with antibody (99m Tc-Lip-Ab-Dox) and 99m Tc labeled liposomes encapsulating doxorubicin (99m Tc-Lip-Dox) were found to be stable in blood plasma and saline using chromatography method. The specificity of 99m Tc-Lip-Ab-Dox against HER2 receptor was evident from cell uptake and inhibition studies. Results also corroborated with confocal microscopy studies. In vivo studies in tumor bearing severe combined immunodeficient mice by SPECT imaging and biodistribution studies revealed higher uptake of 99m Tc-Lip-Ab-Dox in tumor and less accumulation in the liver compared to 99m Tc-Lip-Dox. In conclusion, liposomal nanoformulation for immunotargeting and monitoring of drug delivery was successfully formulated and evaluated. Encouraging results in preclinical studies were obtained with the radioformulation. Such smart radioformulations will not only serve the purpose of site-specific controlled release of drugs at the target site but also aid in optimizing the drug doses and schedule of cancer treatment by monitoring pharmacokinetics.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Kumar Sharma
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, India
| |
Collapse
|
191
|
Kirla H, Henry DJ, Jansen S, Thompson PL, Hamzah J. Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease. Clin Ther 2023; 45:1060-1068. [PMID: 37783646 DOI: 10.1016/j.clinthera.2023.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. The current CVD therapeutic drugs require long-term treatment with high doses, which increases the risk of adverse effects while offering only marginal treatment efficacy. Silica nanoparticles (SNPs) have been proven to be an efficient drug delivery vehicle for numerous diseases, including CVD. This article reviews recent progress and advancement in targeted delivery for drugs and diagnostic and theranostic agents using silica nanoparticles to achieve therapeutic efficacy and improved detection of CVD in clinical and preclinical settings. METHODS A search of PubMed, Scopus, and Google Scholar databases from 1990 to 2023 was conducted. Current clinical trials on silica nanoparticles were identified through ClinicalTrials.gov. Search terms include silica nanoparticles, cardiovascular diseases, drug delivery, and therapy. FINDINGS Silica nanoparticles exhibit biocompatibility in biological systems, and their shape, size, surface area, and surface functionalization can be customized for the safe transport and protection of drugs in blood circulation. These properties also enable effective drug uptake in specific tissues and controlled drug release after systemic, localized, or oral delivery. A range of silica nanoparticles have been used as nanocarrier for drug delivery to treat conditions such as atherosclerosis, hypertension, ischemia, thrombosis, and myocardial infarction. IMPLICATIONS The use of silica nanoparticles for drug delivery and their ongoing development has emerged as a promising strategy to improve the effectiveness of drugs, imaging agents, and theranostics with the potential to revolutionize the treatment of CVD.
Collapse
Affiliation(s)
- Haritha Kirla
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia.
| | - David J Henry
- Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Shirley Jansen
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
192
|
Li Y, Shao R, Ostertag-Hill CA, Torre M, Yan R, Kohane DS. Methyl-Branched Liposomes as a Depot for Sustained Drug Delivery. NANO LETTERS 2023; 23:9250-9256. [PMID: 37787444 PMCID: PMC11375454 DOI: 10.1021/acs.nanolett.3c02137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Inadequate drug loading and control of payload leakage limit the duration of the effect of liposomal drug carriers and may cause toxicity. Here, we report a liposome system as a depot for sustained drug delivery whose design is inspired by the low permeability of Archaeal membranes to protons and solutes. Incorporating methyl-branched phospholipids into lipid bilayers decreased payload diffusion across liposomal membranes, thereby enhancing the drug load capacity by 10-16% and reducing the release of small molecules in the first 24 h by 40-48%. The in vivo impact of this approach was demonstrated by injection at the sciatic nerve. Methyl-branched liposomes encapsulating the anesthetic tetrodotoxin (TTX) achieved markedly prolonged local anesthesia lasting up to 70 h, in comparison to the 16 h achieved with liposomes containing conventional lipids. The present work demonstrates the usefulness of methyl-branched liposomes to enhance liposomal depot systems for sustained drug delivery.
Collapse
Affiliation(s)
- Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Claire A Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ran Yan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
193
|
Li Y, Ji T, Torre M, Shao R, Zheng Y, Wang D, Li X, Liu A, Zhang W, Deng X, Yan R, Kohane DS. Aromatized liposomes for sustained drug delivery. Nat Commun 2023; 14:6659. [PMID: 37863880 PMCID: PMC10589217 DOI: 10.1038/s41467-023-41946-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Insufficient drug loading and leakage of payload remain major challenges in designing liposome-based drug delivery systems. These phenomena can limit duration of effect and cause toxicity. Targeting the rate-limiting step in drug release from liposomes, we modify (aromatized) them to have aromatic groups within their lipid bilayers. Aromatized liposomes are designed with synthetic phospholipids with aromatic groups covalently conjugated onto acyl chains. The optimized aromatized liposome increases drug loading and significantly decreases the burst release of a broad range of payloads (small molecules and macromolecules, different degrees of hydrophilicity) and extends their duration of release. Aromatized liposomes encapsulating the anesthetic tetrodotoxin (TTX) achieve markedly prolonged effect and decreased toxicity in an application where liposomes are used clinically: local anesthesia, even though TTX is a hydrophilic small molecule which is typically difficult to encapsulate. Aromatization of lipid bilayers can improve the performance of liposomal drug delivery systems.
Collapse
Affiliation(s)
- Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, US
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Dali Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Ran Yan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US.
| |
Collapse
|
194
|
Frigaard J, Liaaen Jensen J, Kanli Galtung H, Hiorth M. Stability and cytotoxicity of biopolymer-coated liposomes for use in the oral cavity. Int J Pharm 2023; 645:123407. [PMID: 37708999 DOI: 10.1016/j.ijpharm.2023.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
This study investigates the stability and cytotoxicity of biopolymer-coated liposomes for use in the oral cavity. Liposomes (3 mM and 6 mM) were prepared by the thin film method and hydrated with phosphate buffer (PB) or glycerol phosphate buffer (G-PB). For coating, liposomes were added to a biopolymer solution of opposite charge. Particle stability was evaluated by measuring the size, polydispersity index, and zeta potential for up to 60 weeks. In vitro interaction of fluorescent-labelled biopolymer-coated liposomes and dysplastic oral keratinocytes was analyzed by confocal microscopy. Potential cytotoxicity was assessed in dysplastic oral keratinocytes by cell proliferation and cell viability. All three biopolymers showed good coating abilities for both concentrations and hydration media. The alginate coated liposomes in PB, 3 mM chitosan-coated liposomes in PB, and chitosan-coated liposomes in G-PB were stable for up to 60 weeks. In vitro studies demonstrated low cytotoxicity for all coated liposomes and non-specific cellular uptake of biopolymer-coated liposomes, independent of biopolymer, surface charge, lipid concentration and hydration media. All three formulations demonstrated low cytotoxicity and were considered safe. Alginate- and chitosan-coated liposomes demonstrated good stability over time and may be promising agents for use in the oral cavity and should be investigated further.
Collapse
Affiliation(s)
- Julie Frigaard
- Department of Oral Surgery and Oral Medicine, University of Oslo, Norway, Institute of Clinical Dentistry, Faculty of Dentistry, Box 1109 Blindern, 0317 Oslo, Norway.
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, University of Oslo, Norway, Institute of Clinical Dentistry, Faculty of Dentistry, Box 1109 Blindern, 0317 Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Norway, Box 1052 Blindern, 0316 Oslo, Norway
| | - Marianne Hiorth
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Norway, Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
195
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
196
|
Li Y, Ling Y, Loehr MO, Chaabane S, Cheng OW, Zhao K, Wu C, Büscher M, Weber J, Stomakhine D, Munker M, Pientka R, Christ SB, Dobbelstein M, Luedtke NW. DNA templated Click Chemistry via 5-vinyl-2'-deoxyuridine and an acridine-tetrazine conjugate induces DNA damage and apoptosis in cancer cells. Life Sci 2023; 330:122000. [PMID: 37541577 DOI: 10.1016/j.lfs.2023.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
AIMS Click Chemistry is providing valuable tools to biomedical research, but its direct use in therapies remains nearly unexplored. For cancer treatment, nucleoside analogues (NA) such as 5-vinyl-2'-deoxyuridine (VdU) can be metabolically incorporated into cancer cell DNA and subsequently "clicked" to form a toxic product. The inverse electron-demand Diels-Alder (IEDDA) reaction between VdU and an acridine-tetrazine conjugate (PINK) has previously been used to label cell nuclei of cultured cells. Here, we report tandem usage of VdU and PINK to induce cytotoxicity. MAIN METHODS Cell lines were subsequently treated with VdU and PINK, and cell viability was measured via well confluency and 3D tumor spheroid assays. DNA damage and apoptosis were evaluated using Western Blotting and cell cycle analysis by flow cytometry. Double stranded DNA break (DSB) formation was measured using the comet assay. Apoptosis was assessed by fluorescent detection of externalized phosphatidylserine residues. KEY FINDINGS We report that the combination of VdU and PINK synergistically induces cytotoxicity in cultured human cells. The combination of VdU and PINK strongly reduced cell viability in 2D and 3D cultured cancer cells. Mechanistically, the compounds induced DNA damage through DSB formation, which leads to S-phase accumulation and apoptosis. SIGNIFICANCE The combination of VdU and PINK represents a novel and promising DNA-templated "click" approach for cancer treatment via selective induction of DNA damage.
Collapse
Affiliation(s)
- Yizhu Li
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany.
| | - Yurong Ling
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Morten O Loehr
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Sabrina Chaabane
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Oh Wan Cheng
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Kaifeng Zhao
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Chao Wu
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Moritz Büscher
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Jana Weber
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Daria Stomakhine
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Marina Munker
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Ronja Pientka
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Sarah B Christ
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
197
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
198
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
199
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
200
|
Dittmar JW, Teplensky MH, Evangelopoulos M, Qin L, Zhang B, Mirkin CA. Tuning DNA Dissociation from Spherical Nucleic Acids for Enhanced Immunostimulation. ACS NANO 2023; 17:17996-18007. [PMID: 37713675 PMCID: PMC10801821 DOI: 10.1021/acsnano.3c04333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The stability of the core can significantly impact the therapeutic effectiveness of liposome-based drugs. While the spherical nucleic acid (SNA) architecture has elevated liposomal stability to increase therapeutic efficacy, the chemistry used to anchor the DNA to the liposome core is an underexplored design parameter with a potentially widespread biological impact. Herein, we explore the impact of SNA anchoring chemistry on immunotherapeutic function by systematically studying the importance of hydrophobic dodecane anchoring groups in attaching DNA strands to the liposome core. By deliberately modulating the size of the oligomer that defines the anchor, a library of structures has been established. These structures, combined with in vitro and in vivo immune stimulation analyses, elucidate the relationships between and importance of anchoring strength and dissociation of DNA from the SNA shell on its biological properties. Importantly, the most stable dodecane anchor, (C12)9, is superior to the n = 4-8 and 10 structures and quadruples immune stimulation compared to conventional cholesterol-anchored SNAs. When the OVA1 peptide antigen is encapsulated by the (C12)9 SNA and used as a therapeutic vaccine in an E.G7-OVA tumor model, 50% of the mice survived the initial tumor, and all of those survived tumor rechallenge. Importantly, the strong innate immune stimulation does not cause a cytokine storm compared to linear immunostimulatory DNA. Moreover, a (C12)9 SNA that encapsulates a peptide targeting SARS-CoV-2 generates a robust T cell response; T cells raised from SNA treatment kill >40% of target cells pulsed with the same peptide and ca. 45% of target cells expressing the entire spike protein. This work highlights the importance of using anchor chemistry to elevate SNA stability to achieve more potent and safer immunotherapeutics in the context of both cancer and infectious disease.
Collapse
Affiliation(s)
- Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lei Qin
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Chad A Mirkin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|