151
|
Köhl J. The role of complement in danger sensing and transmission. Immunol Res 2006; 34:157-76. [PMID: 16760575 DOI: 10.1385/ir:34:2:157] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
Self-non-self discrimination has long been considered the main function of the immune system. Increasing evidence supports the view of the immune system as a network of complex danger sensors and transmitters in which self-non-self discrimination is only one facet. To meet the challenge of danger sensing, the immune system carries a large stock of germline-encoded, highly conserved molecules that can recognize microbial as well as modified host structures. Among those are the Toll-like receptors (TLR), which comprise a dozen membrane-bound pattern-recognition receptors that directly link danger recognition to danger transmission through activation of several distinct cellular signaling pathways. Here, I discuss the function and biology of a complex, evolutionary ancient system, the complement system, which has long been considered critical to host defense. In contrast to TLRs, the complement system senses danger by a panel of soluble molecules that can directly bind to specific complement receptors and/or initiate a complex cascade of proteolytic events that lead to the generation of soluble complement fragments able to bind to another, distinct set of specific complement receptors. As I will outline in this review, complement- mediated danger sensing and the complex transition of this information into distinct cellular activation profiles is critical for tissue homeostasis under steady-state conditions and in response to infection and cell injury. Furthermore, I will discuss recent findings that support a concept of intense cross-talk between the complement system and TLRs, which defines the quality and the magnitude of immune responses in vivo.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
152
|
Dragon-Durey MA, Frémeaux-Bacchi V. Atypical haemolytic uraemic syndrome and mutations in complement regulator genes. ACTA ACUST UNITED AC 2005; 27:359-74. [PMID: 16189652 DOI: 10.1007/s00281-005-0003-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-related to shigatoxin) may be familial or sporadic, with frequent recurrences and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition of atypical HUS involving complement components factor H (FH), CD46 [or membrane co-factor protein (MCP)] and factor I. These three proteins are involved in the regulation of the alternative pathway of the complement system. Several series have reported mutations in the FH gene (called HF1) in between 10 and 22% of atypical HUS patients. At this time, four pedigrees corresponding to 13 cases have been reported with an MCP mutation and four cases with a sporadic disease presented factor I mutation. Whereas FH mutations were reported in both familial and sporadic forms of HUS, CD46 mutations were restricted to familial HUS, and factor I mutations were only observed in cases of sporadic HUS. We speculate that the penetrance of the disease may be variable regarding the identified susceptibility factors. Recently, the analysis of single nucleotide polymorphisms in both HF1 and MCP in three large cohorts of HUS patients identified significant association between atypical HUS and HF1 and MCP particular alleles. All these results, together with the finding of anti-FH antibodies in some atypical HUS patients, strongly suggest that an abnormality in the regulation of the alternative pathway participates in the patho-physiological mechanisms of atypical HUS. The recent progress made in the determination of susceptibility factors for atypical HUS has permitted the development of new diagnostic tests and may eventually lead to new specific treatments to block the pathological process.
Collapse
Affiliation(s)
- Marie-Agnès Dragon-Durey
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France
| | | |
Collapse
|
153
|
Abstract
Complement is part of the innate immune system, acting to protect the host from microorganisms such as bacteria, and other foreign and abnormal cells. Although primarily protective, complement activation can also cause damage to the host. In a number of inflammatory diseases, including rheumatoid arthritis and dermatitis, there is excessive and inappropriate complement activation. Many of the toxic effects seen in these conditions are attributable to the excessive production of the anaphylatoxin C5a, which may contribute to both the initiation and progression of the disease. Therefore, the regulation of C5a production and modulation of its function are good pharmacological targets in these disorders. As yet, there are no effective agents for the therapeutic regulation of C5a in routine clinical practice. This review describes the role of C5a in inflammatory disease, animal models used to study C5a-related effects, and current strategies aimed at regulating C5a. There is also a discussion of the strengths and weaknesses of these approaches, and an outline of the likely progress of this class of drugs in the future.
Collapse
Affiliation(s)
- Masashi Mizuno
- Department of Medical Biochemistry and Immunology, Cardiff University, School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
154
|
Zhang X, Wang JF, Chandran B, Persaud K, Pytowski B, Fingeroth J, Groopman JE. Kaposi's Sarcoma-associated Herpesvirus Activation of Vascular Endothelial Growth Factor Receptor 3 Alters Endothelial Function and Enhances Infection. J Biol Chem 2005; 280:26216-24. [PMID: 15878864 DOI: 10.1074/jbc.m411392200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, an endothelial neoplasm. This gamma-herpesvirus encodes for several unique proteins that alter target cell function, including the virion envelope-associated glycoprotein B (gB). Glycoprotein B has an RGD (Arg-Gly-Asp) motif at the extracellular amino terminus region and binds to the alpha3beta1 surface integrin, which enhances virus entry. We now report that gB can activate the vascular endothelial growth factor receptor 3 (VEGFR-3) on the surface of microvascular endothelial cells and trigger receptor signaling, which can modulate endothelial migration and proliferation. Furthermore, we observed that VEGFR-3 expression and activation enhance KSHV infection and participate in KSHV-mediated transformation. These functional changes in the endothelium may contribute to the pathogenesis of Kaposi's sarcoma and suggest that interventions that inhibit gB activation of VEGFR-3 could be useful in the treatment of this neoplasm.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Nelin LD, Chicoine LG, Reber KM, English BK, Young TL, Liu Y. Cytokine-induced endothelial arginase expression is dependent on epidermal growth factor receptor. Am J Respir Cell Mol Biol 2005; 33:394-401. [PMID: 15994432 PMCID: PMC2715346 DOI: 10.1165/rcmb.2005-0039oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
L-arginine is metabolized to nitric oxide (NO) by NO synthase (NOS), or to urea and L-ornithine by arginase. L-ornithine contributes to vascular remodeling in pulmonary hypertension via metabolism to polyamines and proline. Previously we found that cytokines upregulate both NOS and arginase in pulmonary arterial endothelial cells. We hypothesized that cytokine-induced arginase I and II expression depend on epidermal growth factor (EGF) receptor (EGFR) activity. Bovine pulmonary arterial endothelial cells were treated with lipopolysaccharide and tumor necrosis factor-alpha (L/T). L/T treatment resulted in a substantial increase in urea production, and this increase in urea production was potently inhibited by both genistein and AG1478, inhibitors of EGFR. Levels of arginase I protein and arginase II mRNA were increased in response to L/T treatment, and genistein prevented the L/T-induced elevations in both arginase I protein and arginase II mRNA levels. L/T treatment increased production of nitrites and inducible NOS mRNA accumulation, and genistein and AG1478 had little effect on these changes. EGF (50 ng/ml) treatment resulted in enhanced urea production. Finally, a 170-kD protein was phosphorylated upon treatment with either EGF or L/T. Our results indicate that arginase induction by L/T depends in part on EGFR activity. We speculate that EGFR inhibitors may attenuate vascular remodeling without affecting NO release, and thus may represent novel therapeutic modalities for pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Leif D Nelin
- Center for Developmental Pharmacology and Toxicology, Columbus Children's Research Institute, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
156
|
Abstract
Many bacterial cytotoxins act on eukaryotic cells by targeting the regulators that are involved in controlling the cytoskeleton or by directly modifying actin, with members of the Rho GTPase family being particularly important targets. The actin cytoskeleton, and especially the GTPase 'molecular switches' that are involved in its control, have crucial functions in innate and adaptive immunity, and have pivotal roles in the biology of infection. In this review, we briefly discuss the role of the actin cytoskeleton and the Rho GTPases in host-pathogen interactions, and review the mode of actions of bacterial protein toxins that target these components.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität, Otto-Krayer-Haus, Albert-Strasse 25, D-79104 Freiburg, Germany.
| | | |
Collapse
|
157
|
Serobyan N, Schraufstatter IU, Strongin A, Khaldoyanidi SK. Nicotinic acetylcholine receptor-mediated stimulation of endothelial cells results in the arrest of haematopoietic progenitor cells on endothelium. Br J Haematol 2005; 129:257-65. [PMID: 15813854 DOI: 10.1111/j.1365-2141.2005.05446.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The function of endothelial cells that contribute to the regulation of haematopoietic stem/progenitor cells (HSPC) migration from peripheral blood into bone marrow can be influenced by extrinsic factors including nicotine. Therefore, the effect of nicotine on HSPC extravasation was studied. Using a parallel laminar flow chamber, we demonstrated an increase in the number of HSPC adhering to the nicotine-exposed endothelium under conditions of physiological shear stress in vitro. Nicotine-induced adhesion of HSPC was inhibited by mecamylamine, a non-selective nicotinic acetylcholine receptor (nAchR) antagonist. The enhanced adhesive interactions of HSPC with nicotine-exposed endothelial monolayers coincided with the nicotine-induced activation of endothelial cells. Nicotine induced fast cytoskeletal reorganization and formation of filopodia in endothelial cells through interaction with the non-neuronal nAchR expressed by these cells. In addition, nicotine treatment stimulated rapid phosphorylation of Erk1/2 and p-38 in endothelial cells. Finally, nicotine inhibited the stroma derived factor-1-mediated transendothelial migration of HSPC. Decreased migration of HSPC correlated with diminished matrix metalloproteinase-9 activity secreted by bone marrow cells and decreased expression of CD44 on the surface of endothelial cells. Overall, our data suggest that exposure to nicotine causes endothelial cell dysfunction and leads to the pathological arrest of HSPC on endothelium, interfering with their proper migration process.
Collapse
Affiliation(s)
- Naira Serobyan
- Division of Vascular Biology, La Jolla Institute for Molecular Medicine, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
158
|
Mathieu MC, Sawyer N, Greig GM, Hamel M, Kargman S, Ducharme Y, Lau CK, Friesen RW, O'Neill GP, Gervais FG, Therien AG. The C3a receptor antagonist SB 290157 has agonist activity. Immunol Lett 2005; 100:139-45. [PMID: 16154494 DOI: 10.1016/j.imlet.2005.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/02/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
The anaphylatoxin C3a is an important immune regulator with a number of distinct functions in both innate and adaptive immunity. Many of these roles have been ascribed to C3a based on studies in mice genetically modified to lack its precursor, C3, or its receptor, C3aR. However, other presumed functions of C3a are based on results obtained with a recently described small molecule ligand of C3aR, SB 290157. Although this compound was originally described as an antagonist and appears to act as such in some systems, it has recently been shown to have effects that cannot be explained by simple antagonism of C3aR. In the current study, SB 290157 is shown to have full agonist activity on C3aR in a variety of cell systems, including a calcium mobilization assay in transfected RBL cells, a beta-lactamase assay in CHO-NFAT-bla-Galpha(16) cells and an enzyme-release assay in differentiated U-937 cells. On the other hand, the compound lacks agonist activity in guinea pig platelets, cells known to express C3aR at very low levels. SB 290157 agonism of C3aR is consistent with recent discrepant data obtained using this molecule. These results caution against attributing novel roles to C3a based on data obtained with SB 290157 and highlight a continuing need for the identification of true small molecule C3aR antagonists.
Collapse
Affiliation(s)
- Marie-Claude Mathieu
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Kirkland, Quebec, Canada H9H 3L1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Zardi EM, Zardi DM, Cacciapaglia F, Dobrina A, Amoroso A, Picardi A, Afeltra A. Endothelial dysfunction and activation as an expression of disease: role of prostacyclin analogs. Int Immunopharmacol 2005; 5:437-459. [PMID: 15683843 DOI: 10.1016/j.intimp.2004.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 10/27/2004] [Indexed: 02/02/2023]
Abstract
The endothelium is now considered a real endocrine-paracrine organ, important not only as a structural barrier between the circulation and surrounding tissue, but also because it plays an essential role for local hemodynamics, releasing substances that modulate the vascular calibre and blood cell activation. Here, after a brief but detailed analysis of the importance of the endothelium in vascular homeostasis, in the control of coagulation and in the relations with the different blood cells, we will explain the concept of endothelial dysfunction (altered NO release) and activation (amplified adhesion molecule expression) in inflammatory, connective tissue and post-trasplantation diseases. Furthermore, this review will focus on the activity of prostacyclin and synthetic analogs, especially their ability to interact with the vasodilatation system and their role in modulating cell interaction by surface adhesion molecule expression, cytokines and growth factors release as well as gene transcription factors. Finally, we will consider the therapeutic role of prostacyclin analogs in the prevention and treatment of connective tissue diseases.
Collapse
Affiliation(s)
- Enrico Maria Zardi
- Interdisciplinary Center for Biomedical Research (CIR), Laboratory of Internal Medicine and Hepatology, Campus Bio-Medico University, School of Medicine, Via Emilio Longoni, 83-00155 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
160
|
Ota H, Fox-Talbot K, Hu W, Qian Z, Sanfilippo F, Hruban RH, Baldwin WM. Terminal Complement Components Mediate Release of von Willebrand Factor and Adhesion of Platelets in Arteries of Allografts. Transplantation 2005; 79:276-81. [PMID: 15699756 DOI: 10.1097/01.tp.0000146195.76904.d3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Both humoral and cellular immune responses can cause arterial injury in organ transplants, but the manifestations of these different inflammatory mechanisms have not been dissected fully. The present study was designed to define the effects of the terminal complement components on arterial injury in vivo. METHODS The authors have developed congenic rat strains with a C6 deficiency. The absence of C6 terminates the cascade of complement after C5 cleavage and prevents the assembly of the membrane attack complex. Hearts were transplanted from PVG.1A (RT1) rats to major histocompatibility complex-incompatible C6-deficient (C6-) or C6-sufficient (C6+) PVG.1U (RT1) rats. RESULTS PVG.1A (C6-) cardiac grafts were rejected acutely (6-7 days) by untreated PVG.1U (C6+) recipients but survived significantly longer in PVG.1U (C6-) recipients (8 to >30 days). Arteries of cardiac allografts in C6+ recipients demonstrated extensive endothelial injury evidenced by release of von Willebrand factor (vWF) and accompanied by platelet aggregation. In contrast, vWF was retained in Weibel-Palade storage granules of arterial endothelial cells in cardiac allografts that were rejected by C6- recipients. In the absence of C6, intimal alterations were limited to lifting of endothelial cells from supporting stroma by infiltrating mononuclear cells, duplicating the clinical lesion described as endotheliitis or intimal arteritis. Delaying graft rejection with a short course of cyclosporine did not decrease vWF release and platelet aggregation in PVG.1U (C6+) recipients. CONCLUSIONS Mononuclear cell infiltration of the arterial intima occurs in the absence of C6, but C6 deficiency limits the release of vWF from arterial endothelial cells.
Collapse
Affiliation(s)
- Hirofumi Ota
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Boos L, Campbell IL, Ames R, Wetsel RA, Barnum SR. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2004; 173:4708-14. [PMID: 15383607 DOI: 10.4049/jimmunol.173.7.4708] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C3aR is expressed throughout the CNS and is increased in expression on glial cells during CNS inflammation. However, the role that C3a and the C3aR play in chronic inflammation, such as in the demyelinating disease experimental autoimmune encephalomyelitis (EAE), remains unclear. We show in this study that deletion of the C3aR is protective in myelin oligodendrocyte glycoprotein-induced EAE in C57BL/6 mice. C3aR-deficient (C3aR(-/-)) mice had a significantly attenuated course of EAE compared with control mice during the chronic phase of the disease. Immunohistochemical analysis demonstrated modestly reduced macrophage and T cell infiltration in the spinal cords of C3aR(-/-) mice. To examine the role of C3a in EAE, we developed a transgenic mouse that expresses C3a exclusively in the CNS using the glial fibrillary acidic protein (GFAP) promoter. We observed that C3a/GFAP mice had exacerbated EAE during the chronic phase of the disease, with significant mortality compared with nontransgenic littermates. C3a/GFAP mice had massive meningeal and perivascular infiltration of macrophages and CD4(+) T cells. These studies indicate that C3a may contribute to the pathogenesis of demyelinating disease by directly or indirectly chemoattracting encephalitogenic cells to the CNS.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Complement C3a/biosynthesis
- Complement C3a/genetics
- Complement C3a/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Gene Deletion
- Glial Fibrillary Acidic Protein/genetics
- Glycoproteins/administration & dosage
- Humans
- Membrane Proteins/biosynthesis
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin Sheath/pathology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Receptors, Complement/biosynthesis
- Receptors, Complement/deficiency
- Receptors, Complement/genetics
- Receptors, Complement/physiology
Collapse
Affiliation(s)
- Laura Boos
- Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
162
|
Braun MC, Reins RY, Li TB, Hollmann TJ, Dutta R, Rick WA, Teng BB, Ke B. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:4190-6. [PMID: 15356170 DOI: 10.4049/jimmunol.173.6.4190] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although complement activation and deposition have been associated with a variety of glomerulopathies, the pathogenic mechanisms by which complement directly mediates renal injury remain to be fully elucidated. Renal parenchymal tissues express a limited repertoire of receptors that directly bind activated complement proteins. We report the renal expression of the receptor for the C3 cleavage product C3a, a member of the anaphylatoxin family. C3aR is highly expressed in normal human and murine kidney, as demonstrated by immunohistochemistry and in situ hybridization. Its distribution is limited to epithelial cells only, as glomerular endothelial and mesangial cells showed no evidence of C3aR expression. The C3aR is also expressed by primary renal proximal tubular epithelial cells in vitro as demonstrated by FACS, Western blot, and RT-PCR. In vitro C3aR is functional in terms of its capacity to bind 125I-labeled C3a and generate inositol triphosphate. Finally, using microarray analysis, four novel genes were identified and confirmed as transcriptionally regulated by C3aR activation in proximal tubular cells. These studies define a new pathway by which complement activation may directly modulate the renal response to immunologic injury.
Collapse
MESH Headings
- Animals
- Complement Activation/genetics
- Complement Activation/immunology
- Complement C3a/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epithelial Cells/physiology
- Expressed Sequence Tags
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Kidney Glomerulus/cytology
- Kidney Glomerulus/immunology
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/physiology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiology
- Membrane Proteins/biosynthesis
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- Receptors, Complement/biosynthesis
- Receptors, Complement/deficiency
- Receptors, Complement/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Michael C Braun
- Center for Immunology, Brown Foundation Institute of Molecular Medicine, University of Texas, Houston 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ, Ratajczak J, Ross GD. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18:1482-1490. [PMID: 15284858 DOI: 10.1038/sj.leu.2403446] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 06/17/2004] [Indexed: 12/16/2022]
Abstract
Mice deficient in complement C3 (C3(-/-)) are hematologically normal under steady-state conditions, and yet displayed a significant delay in hematopoietic recovery from either irradiation or transplantation of wild-type (WT) hematopoietic stem/progenitor cells (HSPC). Transplantation of histocompatible WT Sca-1(+) cells into C3(-/-) mice resulted in a (i) decrease in day 12 CFU-S, (ii) 5-7-day delay in platelet and leukocyte recovery, and (iii) reduced number of BM CFU-GM progenitors at day 16 after transplantation. Nevertheless, HSPC from C3(-/-) mice engrafted normally into irradiated WT mice, suggesting that there was a defect in the hematopoietic environment of C3(-/-) mice. Since C3(-/-) mice cannot activate/cleave C3, the C3 fragments C3a, C3a(des-Arg), and iC3b were examined for a role in HSPC engraftment. Liquid-phase C3a and C3a(des-Arg) increased CXCR4 incorporation into membrane lipid rafts (thus potentiating HSPC responses to SDF-1 gradients), whereas iC3b was deposited onto irradiated BM cells and functioned to tether CR3(CD11b/CD18)(+)HSPC to damaged stroma. The activity of C3a(des-Arg) suggested that C3aR(+)HSPC also expressed the C5L2 (receptor for C3a and C3a(des-Arg)) and this was confirmed. In conclusion, a novel mechanism for HSC engraftment was identified, which involves complement activation and specific C3 fragments that promote conditioning for transplantation and enhance HSPC engraftment.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Sepsis is a major clinical problem for which therapeutic interventions have been largely unsuccessful, in spite of promising strategies that were successful in animals, especially rodents. There is new evidence that sepsis causes excessive activation of the complement system and that this induces paralysis of innate immune functions in phagocytic cells due to effects of the powerful complement-activation product, C5a. This review describes our present understanding of how and why sepsis is a life-threatening condition and how it might be more effectively treated.
Collapse
Affiliation(s)
- Peter A Ward
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
165
|
Abstract
The complement system plays a complex role in transplantation, beginning with effects on reperfusion injury and continuing with stimulation of the adaptive immune response. Recent evidence has emphasised the importance of the late components of the complement cascade in the mediation of post-ischaemic damage, which are apparently triggered by the classical, alternative or lectin pathways of complement activation, depending on the organ affected. In studies of renal allograft rejection, the local synthesis of complement component C3 seems to influence the T-cell response more strongly than circulating complement protein, raising the possibility that there is co-operation between locally derived C3 and antigen presentation in the graft. Class switching of alloantibody to a high-affinity IgG response is also highly dependent on C3. In addition, the finding that capillary-bound C4d is a robust marker for humoral rejection has started a new investigation into the significance of alloantibodies in acute and chronic allograft rejection. There are several selective and nonselective inhibitors suitable for clinical development; clearly it is time for more concerted effort to evaluate their role in clinical transplantation.
Collapse
Affiliation(s)
- Steven H Sacks
- Department of Nephrology and Transplantation, 5th Floor, Thomas Guy House, Guy's Hospital, King's College London, University of London, SE1 9RT, London, UK.
| | | | | |
Collapse
|
166
|
Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, Lambris JD. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198:913-23. [PMID: 12975457 PMCID: PMC2194207 DOI: 10.1084/jem.20030374] [Citation(s) in RCA: 325] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complement has been implicated in liver repair after toxic injury. Here, we demonstrate that complement components are essential for liver regeneration, and mediate their effect by interacting with key signaling networks that promote hepatocyte proliferation. C3- or C5-deficient mice exhibited high mortality, parenchymal damage, and impaired liver regeneration after partial hepatectomy. Mice with dual C3 and C5 deficiency had a more exacerbated phenotype that was reversed by combined C3a and C5a reconstitution. Interception of C5a receptor signaling resulted in suppression of IL-6/TNFalpha induction and lack of C3 and C5a receptor stimulation attenuated nuclear factor-kappaB/STAT-3 activation after hepatectomy. These data indicate that C3a and C5a, two potent inflammatory mediators of the innate immune response, contribute essentially to the early priming stages of hepatocyte regeneration.
Collapse
Affiliation(s)
- Christoph W Strey
- Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
The role of innate immunity in allograft injury is just beginning to become clear, and complement is probably one of a number of factors that are activated very early in the course of transplantation. Kidney transplantation into complement-inhibited rats reduces subsequent inflammation of the graft, probably as a result of reduction of ischemia reperfusion damage as well as diminution of immune mediated damage. Closer analysis of the role of locally synthesised components in mice has suggested that regional synthesis of complement proteins, in particular by the renal tubule, may play a more important role than circulating components. A marked effect on the antidonor T cell response may be explained by the triggering of complement receptors present on antigen presenting cells or T cells infiltrating the graft, or by a more direct effect of complement on the liaison between proximal tubule cells and T cells. Therapeutic control is likely to require a shift to a more targeted approach, directed at complement components produced in the extravascular tissue compartment.
Collapse
Affiliation(s)
- Steven H Sacks
- Guy's Hospital, King's College, London, Nephrology and Transplantation, London, United Kingdom.
| | | |
Collapse
|
168
|
Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 2003; 17:1003-14. [PMID: 12773483 DOI: 10.1096/fj.02-0737com] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C3a and C5a anaphylatoxins are cytokine-like polypeptides generated during complement (C) system activation and released at the inflammatory site. They exert several biological activities through binding to the G-protein-coupled receptors C3aR and C5aR, respectively. Cloning and Northern blot experiments have indicated that both receptors are expressed by myeloid as well as nonmyeloid cells (e.g., endothelial and epithelial cells). To better understand the roles of C anaphylatoxins during inflammation, we investigated their effects on the expression of cytokine and chemokine genes by cultured human umbilical cord endothelial cells (HUVEC). HUVEC constitutively expressed both anaphylatoxin receptors, and addition of physiological concentrations of C3a or C5a (nM range) caused a strong up-regulation of IL-8, IL-1beta, and RANTES mRNA in a time- and dose-dependent manner. Conversely, a decrease in IL-6 mRNA was observed, but only with C5a stimulation. These variations in mRNA levels were inhibited by pretreatment with anti-C5aR and anti-C3aR antibodies as well as pertussis toxin, indicating that G-proteins are involved in anaphylatoxin-activated signal transduction pathways. Finally, we showed that C3a and C5a both strongly activate downstream MAP kinase signaling pathways (p44 and p42 Erk kinases).
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- Laboratory of Immunology, INSERM U519, IFRMP23, University of Rouen, France.
| | | | | | | | | | | |
Collapse
|
169
|
Abstract
The complement system is a vital link between innate and adaptive immunity. Recently, several investigators have implicated the complement anaphylatoxins C3a and C5a as potential effectors in Type 1 hypersensitivity reactions, including urticaria, rhinitis and asthma. Thus, complement activation may synergize with classical IgE mediated responses, and inhibition of complement may prove therapeutic.
Collapse
Affiliation(s)
- Norma P Gerard
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
170
|
Abstract
Endothelial permeability depends on the integrity of intercellular junctions as well as actomyosin-based cell contractility. Rho GTPases have been implicated in signalling by many vasoactive substances including thrombin, tumour necrosis factor alpha (TNF-alpha), bradykinin, histamine, lysophosphatidic acid (LPA), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF). Two Rho family GTPases, Rho and Rac, have emerged as key regulators acting antagonistically to regulate endothelial barrier function: Rho increases actomyosin contractility, which facilitates breakdown of intercellular junctions, whereas Rac stabilizes endothelial junctions and counteracts the effects of Rho. In this review, we present evidence for the opposing effects of these two regulatory proteins and discuss links between them and other key signalling molecules such as cyclic AMP (cAMP), cyclic GMP (cGMP), phosphatidylinositide 3-kinases (PI3Ks), mitogen-activated protein kinases (MAPKs), and protein kinases C (PKCs). We also discuss strategies for targeting Rho GTPase signalling in therapies for diseases involving altered endothelial permeability.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine Branch, 91 Riding House Street, London W1W 7BS, UK.
| | | |
Collapse
|