151
|
Tanaka Y, Watari M, Saito T, Morishita Y, Ishibashi K. Enhanced Autophagy in Polycystic Kidneys of AQP11 Null Mice. Int J Mol Sci 2016; 17:ijms17121993. [PMID: 27916883 PMCID: PMC5187793 DOI: 10.3390/ijms17121993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/28/2022] Open
Abstract
Aquaporin-11 (AQP11) is an intracellular water channel expressed at the endoplasmic reticulum (ER) of the proximal tubule. Its gene disruption in mice leads to intracellular vacuole formation at one week and the subsequent development of polycystic kidneys by three weeks. As the damaged proximal tubular cells with intracellular vacuoles form cysts later, we postulated that autophagy may play a role in the cyst formation and examined autophagy activity before and after cyst development in AQP11(−/−) kidneys. PCR analysis showed the increased expression of the transcript encoding LC3 (Map1lc3b) as well as other autophagy-related genes in AQP11(−/−) mice. Using green fluorescent protein (GFP)-LC3 transgenic mice and AQP11(−/−) mice, we found that the number of GFP-LC3–positive puncta was increased in the proximal tubule of AQP11(−/−) mice before the cyst formation. Interestingly, they were also observed in the cyst-lining epithelial cell. Further PCR analyses revealed the enhanced expression of apoptosis-related and ER stress–related caspase genes before and after the cyst formation, which may cause the enhanced autophagy. These results suggest the involvement of autophagy in the development and maintenance of kidney cysts in AQP11(−/−) mice.
Collapse
Affiliation(s)
- Yasuko Tanaka
- Department of Pathophysiology, Faculty of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Mayumi Watari
- Department of Pathophysiology, Faculty of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Tatsuya Saito
- Department of Pathophysiology, Faculty of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Yoshiyuki Morishita
- Department of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama 330-8503, Japan.
| | - Kenichi Ishibashi
- Department of Pathophysiology, Faculty of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
152
|
Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 2016; 90:950-964. [DOI: 10.1016/j.kint.2016.04.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
153
|
Denic A, Glassock RJ, Rule AD. Structural and Functional Changes With the Aging Kidney. Adv Chronic Kidney Dis 2016. [PMID: 26709059 DOI: 10.1053/h.ackd.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Senescence or normal physiologic aging portrays the expected age-related changes in the kidney as compared to a disease that occurs in some but not all individuals. The microanatomical structural changes of the kidney with older age include a decreased number of functional glomeruli from an increased prevalence of nephrosclerosis (arteriosclerosis, glomerulosclerosis, and tubular atrophy with interstitial fibrosis), and to some extent, compensatory hypertrophy of remaining nephrons. Among the macroanatomical structural changes, older age associates with smaller cortical volume, larger medullary volume until middle age, and larger and more numerous kidney cysts. Among carefully screened healthy kidney donors, glomerular filtration rate (GFR) declines at a rate of 6.3 mL/min/1.73 m(2) per decade. There is reason to be concerned that the elderly are being misdiagnosed with CKD. Besides this expected kidney function decline, the lowest risk of mortality is at a GFR of ≥75 mL/min/1.73 m(2) for age <55 years but at a lower GFR of 45 to 104 mL/min/1.73 m(2) for age ≥65 years. Changes with normal aging are still of clinical significance. The elderly have less kidney functional reserve when they do actually develop CKD, and they are at higher risk for acute kidney injury.
Collapse
Affiliation(s)
- Aleksandar Denic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA; and Division of Nephrology and Hypertension, Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Richard J Glassock
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA; and Division of Nephrology and Hypertension, Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA; and Division of Nephrology and Hypertension, Division of Epidemiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
154
|
Nolin AC, Mulhern RM, Panchenko MV, Pisarek-Horowitz A, Wang Z, Shirihai O, Borkan SC, Havasi A. Proteinuria causes dysfunctional autophagy in the proximal tubule. Am J Physiol Renal Physiol 2016; 311:F1271-F1279. [PMID: 27582098 DOI: 10.1152/ajprenal.00125.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Proteinuria is a major risk factor for chronic kidney disease progression. Furthermore, exposure of proximal tubular epithelial cells to excess albumin promotes tubular atrophy and fibrosis, key predictors of progressive organ dysfunction. However, the link between proteinuria and tubular damage is unclear. We propose that pathological albumin exposure impairs proximal tubular autophagy, an essential process for recycling damaged organelles and toxic intracellular macromolecules. In both mouse primary proximal tubule and immortalized human kidney cells, albumin exposure decreased the number of autophagosomes, visualized by the autophagosome-specific fluorescent markers monodansylcadaverine and GFP-LC3, respectively. Similarly, renal cortical tissue harvested from proteinuric mice contained reduced numbers of autophagosomes on electron micrographs, and immunoblots showed reduced steady-state LC3-II content. Albumin exposure decreased autophagic flux in vitro in a concentration-dependent manner as assessed by LC3-II accumulation rate in the presence of bafilomycin, an H+-ATPase inhibitor that prevents lysosomal LC3-II degradation. In addition, albumin treatment significantly increased the half-life of radiolabeled long-lived proteins, indicating that the primary mechanism of degradation, autophagy, is dysfunctional. In vitro, mammalian target of rapamycin (mTOR) activation, a potent autophagy inhibitor, suppressed autophagy as a result of intracellular amino acid accumulation from lysosomal albumin degradation. mTOR activation was demonstrated by the increased phosphorylation of its downstream target, S6K, with free amino acid or albumin exposure. We propose that excess albumin uptake and degradation inhibit proximal tubule autophagy via an mTOR-mediated mechanism and contribute to progressive tubular injury.
Collapse
Affiliation(s)
- Angela C Nolin
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ryan M Mulhern
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Maria V Panchenko
- Department of Pathology, Boston University, Boston, Massachusetts; and
| | | | - Zhiyong Wang
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Orian Shirihai
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts;
| |
Collapse
|
155
|
Yuan Y, Ma S, Qi Y, Wei X, Cai H, Dong L, Lu Y, Zhang Y, Guo Q. Quercetin inhibited cadmium-induced autophagy in the mouse kidney via inhibition of oxidative stress. J Toxicol Pathol 2016; 29:247-252. [PMID: 27821909 PMCID: PMC5097967 DOI: 10.1293/tox.2016-0026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022] Open
Abstract
The objective of the current study was to explore the inhibitory effects of quercetin on cadmium-induced autophagy in mouse kidneys. Mice were intraperitoneally injected with cadmium and quercetin once daily for 3 days. The LC3-II/β-actin ratio was used as the autophagy marker, and autophagy was observed by transmission electron microscopy. Oxidative stress was investigated in terms of reactive oxygen species, total antioxidant capacity, and malondialdehyde. Cadmium significantly induced typical autophagosome formation, increased the LC3-II/β-actin ratio, reactive oxygen species level, and malondialdehyde content, and decreased total antioxidant capacity. Interestingly, quercetin markedly decreased the cadmium-induced LC3-II/β-actin ratio, reactive oxygen species levels, and malondialdehyde content, and simultaneously increased total antioxidant capacity. Cadmium can inhibit total antioxidant capacity, produce a large amount of reactive oxygen species, lead to oxidative stress, and promote lipid peroxidation, eventually inducing autophagy in mouse kidneys. Quercetin could inhibit cadmium-induced autophagy via inhibition of oxidative stress. This study may provide a theoretical basis for the treatment of cadmium injury.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Intensive Medicine, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Shixun Ma
- Department of General Surgery 1, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu Province, 730000, China
| | - Xue Wei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, Gansu Province, 730000, China
| | - Hui Cai
- Medical Department, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Li Dong
- Department of Centrol Laboratory, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yufeng Lu
- Department of Obstetrics, Gansu Provincial Hospital, 204 West Donggang Rd, Lanzhou, Gansu Province, 730000, China
| | - Yupeng Zhang
- Department of Oncological Surgery, Ningxia Medical University, 1160 South Shengli Rd, Yinchuan, Ningxia Province, 750000, China
| | - Qingjin Guo
- Department of Oncological Surgery, Ningxia Medical University, 1160 South Shengli Rd, Yinchuan, Ningxia Province, 750000, China
| |
Collapse
|
156
|
Mao N, Tan RZ, Wang SQ, Wei C, Shi XL, Fan JM, Wang L. Ginsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3K pathway. Cell Biol Int 2016; 40:917-25. [PMID: 27296076 DOI: 10.1002/cbin.10634] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/09/2016] [Indexed: 01/07/2023]
Abstract
Recent researches have reported the extensive pharmacological activities of Ginsenoside Rg1 including antioxidant, anti-inflammatory, and anticancer properties. Furthermore Rg1 was also shown to protect various kinds of cells from self-digestion by its anti-autophagy activity. In previous studies, angiotensin II (Ang II), a key mediator of renin-angiotensin system, has been demonstrated to contribute to the progression of renal injury including abnormal autophagy. However, whether Rg1 can relieve Ang II-induced autophagy in podocyte as well as the underlying molecular mechanism remains to be elucidated. Here, we employed Ang II-treated podocyte as a model to investigate the effect of Rg1 on autophagy and the involved signal pathways. In the present study, we found that Ang II strongly promoted autophagy in immortalized mouse podocyte cells by observing the formation of autophagosomes and detecting the expression of autophagic marker, for example, LC3-II. Notably, compared to the Ang II-treated cells, treatment with Rg1 significantly inhibited the formation of autophagosomes and expression of autophagy-related proteins in Ang II pre-treated podocyte. Meanwhile, Rg1 downregulated the activity of AMPK and GSK-3β and upregulated the activity of P70S6K in Ang II-treated podocyte. In conclusion, these findings demonstrate that Ang II promotes autophagy in podocyte, and Rg1 effectively attenuates this process through AMPK/mTOR/PI3K pathway, suggesting that Rg1 may be beneficial to alleviate podocyte injury.
Collapse
Affiliation(s)
- Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Rui-Zhi Tan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shao-Qing Wang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Cong Wei
- Clinical Laboratory, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin-Li Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, 050200, China
| | - Jun-Ming Fan
- Department of Nephrology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
157
|
Kajiwara M, Masuda S. Role of mTOR Inhibitors in Kidney Disease. Int J Mol Sci 2016; 17:ijms17060975. [PMID: 27338360 PMCID: PMC4926507 DOI: 10.3390/ijms17060975] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The first compound that inhibited the mammalian target of rapamycin (mTOR), sirolimus (rapamycin) was discovered in the 1970s as a soil bacterium metabolite collected on Easter Island (Rapa Nui). Because sirolimus showed antiproliferative activity, researchers investigated its molecular target and identified the TOR1 and TOR2. The mTOR consists of mTOR complex 1 (mTORC1) and mTORC2. Rapalogues including sirolimus, everolimus, and temsirolimus exert their effect mainly on mTORC1, whereas their inhibitory effect on mTORC2 is mild. To obtain compounds with more potent antiproliferative effects, ATP-competitive inhibitors of mTOR targeting both mTORC1 and mTORC2 have been developed and tested in clinical trials as anticancer drugs. Currently, mTOR inhibitors are used as anticancer drugs against several solid tumors, and immunosuppressive agents for transplantation of various organs. This review discusses the role of mTOR inhibitors in renal disease with a particular focus on renal cancer, diabetic nephropathy, and kidney transplantation.
Collapse
Affiliation(s)
- Moto Kajiwara
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
158
|
Calvo‐Rubio M, Burón MI, López‐Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM, González‐Reyes JA. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 2016; 15:477-87. [PMID: 26853994 PMCID: PMC4854917 DOI: 10.1111/acel.12451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 01/09/2023] Open
Abstract
Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.
Collapse
Affiliation(s)
- Miguel Calvo‐Rubio
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - Mª Isabel Burón
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - Guillermo López‐Lluch
- Centro Andaluz de Biología del DesarrolloCIBERERInstituto de Salud Carlos IIIUniversidad Pablo de Olavide‐CSICSevillaSpain
| | - Plácido Navas
- Centro Andaluz de Biología del DesarrolloCIBERERInstituto de Salud Carlos IIIUniversidad Pablo de Olavide‐CSICSevillaSpain
| | - Rafael de Cabo
- Translational Gerontology BranchNational Institute of AgingNational Institutes of HealthBaltimoreMDUSA
| | - Jon J. Ramsey
- VM Molecular BiosciencesUniversity of CaliforniaDavisCAUSA
| | - José M. Villalba
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| | - José A. González‐Reyes
- Departamento de Biología Celular, Fisiología e InmunologíaCampus de Excelencia Internacional AgroalimentarioceiA3Universidad de CórdobaCórdobaSpain
| |
Collapse
|
159
|
Audzeyenka I, Rogacka D, Piwkowska A, Rychlowski M, Bierla JB, Czarnowska E, Angielski S, Jankowski M. Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes. Int J Biochem Cell Biol 2016; 75:23-33. [DOI: 10.1016/j.biocel.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/10/2016] [Accepted: 03/25/2016] [Indexed: 01/09/2023]
|
160
|
Orhon I, Dupont N, Zaidan M, Boitez V, Burtin M, Schmitt A, Capiod T, Viau A, Beau I, Kuehn EW, Friedlander G, Terzi F, Codogno P. Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nat Cell Biol 2016; 18:657-67. [PMID: 27214279 DOI: 10.1038/ncb3360] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Autophagy is an adaptation mechanism that is vital for cellular homeostasis in response to various stress conditions. Previous reports indicate that there is a functional interaction between the primary cilium (PC) and autophagy. The PC, a microtubule-based structure present at the surface of numerous cell types, is a mechanical sensor. Here we show that autophagy induced by fluid flow regulates kidney epithelial cell volume in vitro and in vivo. PC ablation blocked autophagy induction and cell-volume regulation. In addition, inhibition of autophagy in ciliated cells impaired the flow-dependent regulation of cell volume. PC-dependent autophagy can be triggered either by mTOR inhibition or a mechanism dependent on the polycystin 2 channel. Only the LKB1-AMPK-mTOR signalling pathway was required for the flow-dependent regulation of cell volume by autophagy. These findings suggest that therapies regulating autophagy should be considered in developing treatments for PC-related diseases.
Collapse
Affiliation(s)
- Idil Orhon
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Mohamad Zaidan
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Valérie Boitez
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Martine Burtin
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Thierry Capiod
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Amandine Viau
- Department of Nephrology, University Medical Center, Albert-Ludwig-University of Freiburg, D-79106 Freiburg, Germany
| | - Isabelle Beau
- INSERM UMR 1185, Université Paris-Sud 11, Kremlin-Bicêtre F-94276, France
| | - E Wolfgang Kuehn
- Department of Nephrology, University Medical Center, Albert-Ludwig-University of Freiburg, D-79106 Freiburg, Germany.,Center for Biological Signaling Studies (bioss), Albert-Ludwig-University, D-79104 Freiburg, Germany
| | - Gérard Friedlander
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Fabiola Terzi
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| | - Patrice Codogno
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75993, France
| |
Collapse
|
161
|
Elimam H, Papillon J, Kaufman DR, Guillemette J, Aoudjit L, Gross RW, Takano T, Cybulsky AV. Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice. J Biol Chem 2016; 291:14468-82. [PMID: 27226532 DOI: 10.1074/jbc.m115.696781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria.
Collapse
Affiliation(s)
- Hanan Elimam
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Joan Papillon
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Daniel R Kaufman
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Julie Guillemette
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Lamine Aoudjit
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Richard W Gross
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tomoko Takano
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| | - Andrey V Cybulsky
- From the Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada and
| |
Collapse
|
162
|
Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 2016; 12:426-39. [PMID: 27140856 DOI: 10.1038/nrneph.2016.54] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kidney fibrosis is a common histological manifestation of functional decline in the kidney. Fibrosis is a reactive process that develops in response to excessive epithelial injury and inflammation, leading to myofibroblast activation and an accumulation of extracellular matrix. Here, we describe how three key developmental signalling pathways - Notch, Wnt and Hedgehog (Hh) - are reactivated in response to kidney injury and contribute to the fibrotic response. Although transient activation of these pathways is needed for repair of injured tissue, their sustained activation is thought to promote fibrosis. Excessive Wnt and Notch expression prohibit epithelial differentiation, whereas increased Wnt and Hh expression induce fibroblast proliferation and myofibroblastic transdifferentiation. Notch, Wnt and Hh are fundamentally different signalling pathways, but their choreographed activation seems to be just as important for fibrosis as it is for embryonic kidney development. Decreasing the activity of Notch, Wnt or Hh signalling could potentially provide a new therapeutic strategy to ameliorate the development of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Edeling
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA.,Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Grace Ragi
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | - Hermann Pavenstädt
- Department of Molecular Nephrology, Internal Medicine D, University Hospital Albert-Schweitzer-Straße 33, Münster 48149, Germany
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, 415 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
163
|
Abstract
Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development.
Collapse
Affiliation(s)
- Andrea Havasi
- Department of Nephrology, Boston University Medical Center, Boston, MA.
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, GA
| |
Collapse
|
164
|
De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H, Levtchenko E, Mekahli D. Autophagy in renal diseases. Pediatr Nephrol 2016; 31:737-52. [PMID: 26141928 DOI: 10.1007/s00467-015-3134-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Autophagy is the cell biology process in which cytoplasmic components are degraded in lysosomes to maintain cellular homeostasis and energy production. In the healthy kidney, autophagy plays an important role in the homeostasis and viability of renal cells such as podocytes and tubular epithelial cells and of immune cells. Recently, evidence is mounting that (dys)regulation of autophagy is implicated in the pathogenesis of various renal diseases, and might be an attractive target for new renoprotective therapies. In this review, we provide an overview of the role of autophagy in kidney physiology and kidney diseases.
Collapse
Affiliation(s)
- Stéphanie De Rechter
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.
| | - Jean-Paul Decuypere
- Laboratory of Abdominal Transplantation, Department of Microbiology and Immunology Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Lambertus P van den Heuvel
- Laboratory of Paediatrics, KU Leuven, Leuven, Belgium.,Translational Metabolic Laboratory and Department of Paediatric Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Paediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Paediatrics, KU Leuven, Leuven, Belgium
| |
Collapse
|
165
|
Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 2016; 12:976-98. [PMID: 27123926 DOI: 10.1080/15548627.2016.1166317] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors.
Collapse
Affiliation(s)
- Man J Livingston
- a Department of Cellular Biology and Anatomy , Medical College of Georgia and Charlie Norwood VA Medical Center , Augusta , GA , USA
| | - Han-Fei Ding
- b Cancer Center, Medical College of Georgia and Charlie Norwood VA Medical Center , Augusta , GA , USA
| | - Shuang Huang
- c Department of Anatomy and Cell Biology , University of Florida College of Medicine , Gainesville , FL USA
| | - Joseph A Hill
- d Division of Cardiology, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Xiao-Ming Yin
- e Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Zheng Dong
- a Department of Cellular Biology and Anatomy , Medical College of Georgia and Charlie Norwood VA Medical Center , Augusta , GA , USA.,f Department of Nephrology , The Second Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
166
|
Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2016; 11:1130-45. [PMID: 26039325 DOI: 10.1080/15548627.2015.1049799] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.
Collapse
Key Words
- BUN, blood urea nitrogen
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- Cdh5, cadherin 5
- DM, diabetes mellitus
- DN, diabetic nephropathy
- ESRD, end-stage renal disease
- GBM, glomerular basement membrane
- GEC, glomerular endothelial cells
- GFB, glomerular filtration barrier
- MAP1LC3A/B/LC3A/B), microtubule-associated protein 1 light chain 3 α/β
- MTOR, mechanistic target of rapamycin
- Nphs2, nephrosis 2, podocin
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TEM, transmission electron microscopy
- TUBA, tubulin
- autophagy
- diabetic nephropathy
- endothelial cells
- podocytes
- proteinuria
- sclerosis
- α, WT1, Wilms tumor 1
Collapse
Affiliation(s)
- Olivia Lenoir
- a Paris Cardiovascular Research Center; Institut National de la Santé et de la Recherche Médicale (INSERM) ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, Zhang Y, Yu X, Li NJ, Sun JP, Yi F. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 2016; 7:e2183. [PMID: 27054338 PMCID: PMC4855668 DOI: 10.1038/cddis.2016.89] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
β-Arrestins are multifunctional proteins originally identified as negative adaptors of G protein-coupled receptors (GPCRs). Emerging evidence has also indicated that β-arrestins can activate signaling pathways independent of GPCR activation. This study was to elucidate the role of β-arrestins in diabetic nephropathy (DN) and hypothesized that β-arrestins contribute to diabetic renal injury by mediating podocyte autophagic process. We first found that both β-arrestin-1 and β-arrestin-2 were upregulated in the kidney from streptozotocin-induced diabetic mice, diabetic db/db mice and kidney biopsies from diabetic patients. We further revealed that either β-arrestin-1 or β-arrestin-2 deficiency (Arrb1−/− or Arrb2−/−) ameliorated renal injury in diabetic mice. In vitro, we observed that podocytes increased both β-arrestin-1 and β-arrestin-2 expression levels under hyperglycemia condition and further demonstrated that β-arrestin-1 and β-arrestin-2 shared common mechanisms to suppress podocyte autophagy by negative regulation of ATG12–ATG5 conjugation. Collectively, this study for the first time demonstrates that β-arrestin-1 and β-arrestin-2 mediate podocyte autophagic activity, indicating that β-arrestins are critical components of signal transduction pathways that link renal injury to reduce autophagy in DN. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with DN.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Q X Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X J Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - C Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Q Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Z Y Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Y Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X Yu
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, China
| | - N J Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J P Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - F Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.,Institute of Nephrology, Shandong University, Jinan 250012, China
| |
Collapse
|
168
|
Wang S, Livingston MJ, Su Y, Dong Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 2016; 11:607-16. [PMID: 25906314 DOI: 10.1080/15548627.2015.1023983] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 70kDa, polypeptide 1
- ANKS6, ankyrin repeat and sterile α motif domain containing 6
- ATG/atg, autophagy-related
- Ac-TUBA, acetylated-tubulin α
- Baf, bafilomycin A1
- CF, confluence
- CQ, chloroquine
- DAPI, 4′-6-diamidino-2-phenylindole
- FBS, fetal bovine serum
- HK2, human kidney proximal tubular cells
- IFT, intraflagellar transport
- KAP3, kinesin family-associated protein 3
- KD, knockdown
- KIF3A/3B, kinesin family member 3A/3B
- KO, knockout
- LTA, lotus tetragonolobus agglutinin
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- MEF, mouse embryonic fibroblast
- MTOR
- MTOR, mechanistic target of rapamycin
- OFD1, oral-ficial-digital syndrome 1
- PBS, phosphate-buffered saline
- PKD, polycystic kidney disease
- RKRB, Krebs-Henseleit saline containing 25 mM NaHCO3
- RPS6KB1, ribosomal protein S6 kinase
- Rapa, rapamycin
- SD, standard deviation
- autophagy
- cilia
- polycystic kidney disease
- proteasome
Collapse
Affiliation(s)
- Shixuan Wang
- a Department of Cellular Biology and Anatomy ; Medical College of Georgia; Georgia Reagents University and Charlie Norwood VA Medical Center ; Augusta , GA USA
| | | | | | | |
Collapse
|
169
|
Tharaux PL, Huber TB. How Is Proteinuric Diabetic Nephropathy Caused by Disturbed Proteostasis and Autophagy in Podocytes? Diabetes 2016; 65:539-41. [PMID: 26908902 DOI: 10.2337/dbi15-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Pierre-Louis Tharaux
- Paris Cardiovascular Centre, INSERM, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France Nephrology Service, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis-ZBSA, Freiburg, Germany
| | - Tobias B Huber
- FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis-ZBSA, Freiburg, Germany Renal Division, University Hospital Freiburg, Freiburg, Germany BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
170
|
Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki SI, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy. Diabetes 2016; 65:755-67. [PMID: 26384385 DOI: 10.2337/db15-0473] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022]
Abstract
Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue samples and animal models. Insufficient podocyte autophagy was observed histologically in patients and rats with diabetes and massive proteinuria accompanied by podocyte loss, but not in those with no or minimal proteinuria. Podocyte-specific autophagy-deficient mice developed podocyte loss and massive proteinuria in a high-fat diet (HFD)-induced diabetic model for inducing minimal proteinuria. Interestingly, huge damaged lysosomes were found in the podocytes of diabetic rats with massive proteinuria and HFD-fed, podocyte-specific autophagy-deficient mice. Furthermore, stimulation of cultured podocytes with sera from patients and rats with diabetes and massive proteinuria impaired autophagy, resulting in lysosome dysfunction and apoptosis. These results suggest that autophagy plays a pivotal role in maintaining lysosome homeostasis in podocytes under diabetic conditions, and that its impairment is involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy. These results may contribute to the development of a new therapeutic strategy for advanced diabetic nephropathy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Autophagy
- Autophagy-Related Protein 5
- Autophagy-Related Protein 7
- Blotting, Western
- Cell Line
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diet, High-Fat
- Female
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Intravital Microscopy
- Kidney/metabolism
- Kidney/pathology
- Lysosomes/metabolism
- Lysosomes/pathology
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/genetics
- Middle Aged
- Podocytes/metabolism
- Proteinuria/etiology
- Proteinuria/metabolism
- Proteinuria/pathology
- RNA-Binding Proteins/blood
- Rats
- Rats, Long-Evans
- Severity of Illness Index
- Young Adult
Collapse
Affiliation(s)
- Atsuko Tagawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mako Yasuda
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Nakazawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Hisazumi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Koya
- Division of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-gun, Ishikawa, Japan
| | - Katsuhiko Asanuma
- Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan Division of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Eun-Hee Kim
- Division of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan Osong Medical Innovation Foundation, Laboratory Animal Center, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Hokkaido, Japan
| | | | - Kazuyuki Hayashi
- Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Hiroshi Ohashi
- Department of Pathology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
171
|
Autophagy is activated to protect against endotoxic acute kidney injury. Sci Rep 2016; 6:22171. [PMID: 26916346 PMCID: PMC4768171 DOI: 10.1038/srep22171] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 01/19/2023] Open
Abstract
Endotoxemia in sepsis, characterized by systemic inflammation, is a major cause of acute kidney injury (AKI) in hospitalized patients, especially in intensive care unit; however the underlying pathogenesis is poorly understood. Autophagy is a conserved, cellular catabolic pathway that plays crucial roles in cellular homeostasis including the maintenance of cellular function and viability. The regulation and role of autophagy in septic or endotoxic AKI remains unclear. Here we show that autophagy was induced in kidney tubular cells in mice by the endotoxin lipopolysaccharide (LPS). Pharmacological inhibition of autophagy with chloroquine enhanced LPS-induced AKI. Moreover, specific ablation of autophagy gene 7 (Atg7) from kidney proximal tubules worsened LPS-induced AKI. Together, the results demonstrate convincing evidence of autophagy activation in endotoxic kidney injury and support a renoprotective role of autophagy in kidney tubules.
Collapse
|
172
|
Leierer J, Rudnicki M, Braniff SJ, Perco P, Koppelstaetter C, Mühlberger I, Eder S, Kerschbaum J, Schwarzer C, Schroll A, Weiss G, Schneeberger S, Wagner S, Königsrainer A, Böhmig GA, Mayer G. Metallothioneins and renal ageing. Nephrol Dial Transplant 2016; 31:1444-52. [PMID: 26908771 DOI: 10.1093/ndt/gfv451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/16/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Human lifespan is increasing continuously and about one-third of the population >70 years of age suffers from chronic kidney disease. The pathophysiology of the loss of renal function with ageing is unclear. METHODS We determined age-associated gene expression changes in zero-hour biopsies of deceased donor kidneys without laboratory signs of impaired renal function, defined as a last serum creatinine >0.96 mg/dL in females and >1.18 mg/dL in males, using microarray technology and the Significance Analysis of Microarrays routine. Expression changes of selected genes were confirmed by quantitative polymerase chain reaction and in situ hybridization and immunohistochemistry for localization of respective mRNA and protein. Functional aspects were examined in vitro. RESULTS Donors were classified into three age groups (<40, 40-59 and >59 years; Groups 1, 2 and 3, respectively). In Group 3 especially, genes encoding for metallothionein (MT) isoforms were more significantly expressed when compared with Group 1; localization studies revealed predominant staining in renal proximal tubular cells. RPTEC/TERT1 cells overexpressing MT2A were less susceptible towards cadmium chloride-induced cytotoxicity and hypoxia-induced apoptosis, both models for increased generation of reactive oxygen species. CONCLUSIONS Increased expression of MTs in the kidney with ageing might be a protective mechanism against increased oxidative stress, which is closely related to the ageing process. Our findings indicate that MTs are functionally involved in the pathophysiology of ageing-related processes.
Collapse
Affiliation(s)
- Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Susie-Jane Braniff
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Paul Perco
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | - Christian Koppelstaetter
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Julia Kerschbaum
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University, Innsbruck, Austria
| | - Stefan Schneeberger
- Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University of Tübingen, Tübingen, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
173
|
Turco AE, Lam W, Rule AD, Denic A, Lieske JC, Miller VM, Larson JJ, Kremers WK, Jayachandran M. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys. J Extracell Vesicles 2016; 5:29642. [PMID: 26837814 PMCID: PMC4737715 DOI: 10.3402/jev.v5.29642] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Non-invasive tests to identify age and early disease-associated pathology within the kidney are needed. Specific populations of urinary extracellular vesicles (EVs) could potentially be used for such a diagnostic test. Random urine samples were obtained from age- and sex-stratified living kidney donors before kidney donation. A biopsy of the donor kidney was obtained at the time of transplantation to identify nephron hypertrophy (larger glomerular volume, cortex per glomerulus and mean profile tubular area) and nephrosclerosis (% fibrosis, % glomerulosclerosis and arteriosclerosis). Renal parenchymal-derived EVs in cell-free urine were quantified by digital flow cytometry. The relationship between these EV populations and structural pathology on the kidney biopsy was assessed. Clinical characteristics of the kidney donors (n=138, age range: 20–70 years, 50% women) were within the normative range. Overall, urine from women contained more EVs than that from men. The number of exosomes, juxtaglomerular cells and podocyte marker–positive EVs decreased (p<0.05) with increasing age. There were fewer total EVs as well as EVs positive for mesangial cell, parietal cell, descending limb of Henle's loop (simple squamous epithelium), collecting tubule-intercalated cell and monocyte chemoattractant protein-1 markers (p<0.05) in persons with nephron hypertrophy. The number of EVs positive for intercellular adhesion molecule-1, juxtaglomerular cell, podocyte, parietal cell, proximal tubular epithelial cell, distal tubular epithelial cell and collecting duct cells were fewer (p<0.05) in persons with nephrosclerosis. EVs carrying markers of cells from the renal pelvis epithelium did not associate with any indices of nephron hypertrophy or nephrosclerosis. Therefore, specific populations of EVs derived from cells of the glomerulus and nephron associate with underlying kidney structural changes. Further validation of these findings in other cohorts is needed to determine their clinical utility.
Collapse
Affiliation(s)
- Anne E Turco
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wing Lam
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aleksandar Denic
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Virginia M Miller
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph J Larson
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Walter K Kremers
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Muthuvel Jayachandran
- Department of Physiology & Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, College of Medicine, Mayo Clinic, Rochester, MN, USA;
| |
Collapse
|
174
|
Denic A, Glassock RJ, Rule AD. Structural and Functional Changes With the Aging Kidney. Adv Chronic Kidney Dis 2016; 23:19-28. [PMID: 26709059 DOI: 10.1053/j.ackd.2015.08.004] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Abstract
Senescence or normal physiologic aging portrays the expected age-related changes in the kidney as compared to a disease that occurs in some but not all individuals. The microanatomical structural changes of the kidney with older age include a decreased number of functional glomeruli from an increased prevalence of nephrosclerosis (arteriosclerosis, glomerulosclerosis, and tubular atrophy with interstitial fibrosis), and to some extent, compensatory hypertrophy of remaining nephrons. Among the macroanatomical structural changes, older age associates with smaller cortical volume, larger medullary volume until middle age, and larger and more numerous kidney cysts. Among carefully screened healthy kidney donors, glomerular filtration rate (GFR) declines at a rate of 6.3 mL/min/1.73 m(2) per decade. There is reason to be concerned that the elderly are being misdiagnosed with CKD. Besides this expected kidney function decline, the lowest risk of mortality is at a GFR of ≥75 mL/min/1.73 m(2) for age <55 years but at a lower GFR of 45 to 104 mL/min/1.73 m(2) for age ≥65 years. Changes with normal aging are still of clinical significance. The elderly have less kidney functional reserve when they do actually develop CKD, and they are at higher risk for acute kidney injury.
Collapse
|
175
|
The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. J Transl Med 2015; 95:1374-86. [PMID: 26414307 DOI: 10.1038/labinvest.2015.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023] Open
Abstract
Podocytes play an important role in the pathogenesis and progression of glomerulosclerosis. Recent studies indicate that aldosterone/mineralocorticoid receptor (MR) is a major contributor of chronic kidney disease (CKD) progression. Aldosterone/MR induces glomerular podocyte injury, causing the disruption of the glomerular filtration barrier and proteinuria. The present study investigated the mechanisms by which aldosterone/MR mediated podocyte injury, focusing on the involvement of oxidative stress, endoplasmic reticulum (ER) stress, and autophagy. We observed that aldosterone/MR induced ER stress and podocyte injury both in vivo and in vitro. Blockade of ER stress significantly reduced aldosterone/MR-induced podocyte injury. In addition, we found that ER stress-induced podocyte injury was mediated by CCAAT/enhancer-binding protein (C/EBP) homologous protein (Chop). Interestingly, autophagy was also enhanced by aldosterone/MR. Pharmacological inhibition of autophagy resulted in increased apoptosis. Inhibition of ER stress significantly reduced aldosterone/MR-induced autophagy. In addition, the activation of ER stress increased the formation of autophagy, which protected podocytes from apoptosis. Moreover, we observed that the addition of ROS scavenger, N-acetyl cystein (NAC), blocked both ER stress and autophagy by aldosterone/MR. Collectively, these results suggest that oxidant stress-mediated aldosterone/MR-induced podocyte injury via activating ER stress, which then triggers both Chop-dependent apoptosis and autophagy to cope with the injury. These findings may guide us to therapeutic strategies for glomerular diseases.
Collapse
|
176
|
Kume S, Koya D. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy. Diabetes Metab J 2015; 39:451-60. [PMID: 26706914 PMCID: PMC4696980 DOI: 10.4093/dmj.2015.39.6.451] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/24/2015] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Kahoku, Japan.
| |
Collapse
|
177
|
The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 2015; 39:347-356. [DOI: 10.1007/s10753-015-0255-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
178
|
MOF maintains transcriptional programs regulating cellular stress response. Oncogene 2015; 35:2698-710. [PMID: 26387537 PMCID: PMC4893634 DOI: 10.1038/onc.2015.335] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 07/09/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022]
Abstract
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
Collapse
|
179
|
Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett 2015; 10:2055-2062. [PMID: 26622795 PMCID: PMC4579868 DOI: 10.3892/ol.2015.3551] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/11/2015] [Indexed: 12/21/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs/miRs) has been found in numerous cancer types. miR-32 is an oncomiR in prostate cancer (PCa), however, the mechanisms by which miR-32 functions as a regulator of radiotherapy response and resistance in PCa are largely unknown. In the present study, it was found that DAB2 interacting protein (DAB2IP), the miR-32-dependent tumor-suppressor gene, was downregulated and induced autophagy and inhibited radiotherapy-induced apoptosis in PCa cells. miR-32 expression was upregulated or overexpressed in PCa, and miR-32 inhibited DAB2IP expression through a direct binding site within the DAB2IP 3′ untranslated region. miR-32 mimics enhanced tumor cell survival and decreased radiosensitivity in the PCa cells, which were reversed by miR-32 inhibitor. Flow cytometric analysis revealed that overexpressed miR-32, consistent with the DAB2IP-knockdown results, reduced ionizing radiation (IR)-induced cell apoptosis, which was restored by 4 nM brefeldin A treatment. More significantly, the overexpression of miR-32 and the knockdown of DAB2IP enhanced autophagy in the IR-treated PCa cells. miR-32 regulated the expression of autophagy-related proteins, such as DAB2IP, Beclin 1 and Light chain 3β I/II, as well as phosphorylation of S6 kinase and mammalian target of rapamycin. In conclusion, these data provide novel insights into the mechanisms governing the regulation of DAB2IP expression by miR-32 and their possible contribution to autophagy and radioresistance in PCa.
Collapse
Affiliation(s)
- Haiqiu Liao
- Department of Urology, Loudi Central Hospital of Hunan, Loudi, Hunan 417000, P.R. China
| | - Yang Xiao
- Department of Orthopaedics, Loudi Central Hospital of Hunan, Loudi, Hunan 417000, P.R. China
| | - Yingbin Hu
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yangming Xiao
- Department of Urology, Loudi Central Hospital of Hunan, Loudi, Hunan 417000, P.R. China
| | - Zhaofa Yin
- Department of Urology, Loudi Central Hospital of Hunan, Loudi, Hunan 417000, P.R. China
| | - Liang Liu
- Department of Oncology, Loudi Central Hospital of Hunan, Loudi, Hunan 417000, P.R. China
| |
Collapse
|
180
|
Shin JH, Bae DJ, Kim ES, Kim HB, Park SJ, Jo YK, Jo DS, Jo DG, Kim SY, Cho DH. Autophagy Regulates Formation of Primary Cilia in Mefloquine-Treated Cells. Biomol Ther (Seoul) 2015; 23:327-32. [PMID: 26157548 PMCID: PMC4489826 DOI: 10.4062/biomolther.2015.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
Primary cilia have critical roles in coordinating multiple cellular signaling pathways. Dysregulation of primary cilia is implicated in various ciliopathies. To identify specific regulators of autophagy, we screened chemical libraries and identified mefloquine, an anti-malaria medicine, as a potent regulator of primary cilia in human retinal pigmented epithelial (RPE) cells. Not only ciliated cells but also primary cilium length was increased in mefloquine-treated RPE cells. Treatment with mefloquine strongly induced the elongation of primary cilia by blocking disassembly of primary cilium. In addition, we found that autophagy was increased in mefloquine-treated cells by enhancing autophagic flux. Both chemical and genetic inhibition of autophagy suppressed ciliogenesis in mefloquine-treated RPE cells. Taken together, these results suggest that autophagy induced by mefloquine positively regulates the elongation of primary cilia in RPE cells.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Dong-Jun Bae
- ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 138-736
| | - Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Han Byeol Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 138-736
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| |
Collapse
|
181
|
Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep 2015; 5:11256. [PMID: 26052900 PMCID: PMC4459224 DOI: 10.1038/srep11256] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Gentamicin may cause acute kidney injury. The pathogenesis of gentamicin nephrotoxicity is unclear. Autophagy is a highly conserved physiological process involved in removing damaged or aged biological macromolecules and organelles from the cytoplasm. The role of autophagy in the pathogenesis of gentamicin nephrotoxicity is unclear. The miniature pigs are more similar to humans than are those of rodents, and thus they are more suitable as human disease models. Here we established the first gentamicin nephrotoxicity model in miniature pigs, investigated the role of autophagy in gentamicin-induced acute kidney injury, and determined the prevention potential of rapamycin against gentamicin-induced oxidative stress and renal dysfunction. At 0, 1, 3, 5, 7 and 10 days after gentamicin administration, changes in autophagy, oxidative damage, apoptosis and inflammation were assessed in the model group. Compared to the 0-day group, gentamicin administration caused marked nephrotoxicity in the 10-day group. In the kidneys of the 10-day group, the level of autophagy decreased, and oxidative damage and apoptosis were aggravated. After rapamycin intervention, autophagy activity was activated, renal damage in proximal tubules was markedly alleviated, and interstitium infiltration of inflammatory cells was decreased. These results suggest that rapamycin may ameliorate gentamicin-induced nephrotoxicity by enhancing autophagy.
Collapse
|
182
|
Roeder SS, Stefanska A, Eng DG, Kaverina N, Sunseri MW, McNicholas BA, Rabinovitch P, Engel FB, Daniel C, Amann K, Lichtnekert J, Pippin JW, Shankland SJ. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age. Am J Physiol Renal Physiol 2015; 309:F164-78. [PMID: 26017974 DOI: 10.1152/ajprenal.00144.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Division of Nephrology, University of Washington, Seattle, Washington; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ania Stefanska
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Maria W Sunseri
- Division of Nephrology, University of Washington, Seattle, Washington
| | | | - Peter Rabinovitch
- Department of Pathology, University of Washington, Seattle, Washington
| | - Felix B Engel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Julia Lichtnekert
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
183
|
Krones E, Wagner M, Eller K, Rosenkranz AR, Trauner M, Fickert P. Bile acid-induced cholemic nephropathy. Dig Dis 2015; 33:367-75. [PMID: 26045271 DOI: 10.1159/000371689] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kidney injury in deeply jaundiced patients became known as cholemic nephropathy. This umbrella term covers impaired renal function in cholestatic patients with characteristic histomorphological changes including intratubular cast formation and tubular epithelial cell injury. Cholemic nephropathy represents a widely underestimated but important cause of kidney dysfunction in patients with cholestasis and advanced liver disease. However, the nomenclature is inconsistent since there are numerous synonyms used; the underlying mechanisms of cholemic nephropathy are not entirely clear, and widely accepted diagnostic criteria are still missing. Consequently, the current article aims to summarize the present knowledge on the clinical and morphological characteristics, available preclinical models, derived potential pathomechanisms, and future diagnostic and therapeutic strategies in cholemic nephropathy. Furthermore, we provide a potential research agenda for this evolving field.
Collapse
Affiliation(s)
- Elisabeth Krones
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
184
|
Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada-Ode K, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Taguchi T, Horino T, Fujimoto S, Terada Y. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS One 2015; 10:e0126229. [PMID: 25962073 PMCID: PMC4427334 DOI: 10.1371/journal.pone.0126229] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
Background Heat shock protein beta-1 (HSPB1, also known as HSP27) is a small heat shock protein involved in many cellular processes and reportedly protects cells against oxidative stress. Autophagy protects cells from many types of stress and is thought to play a key role in preventing stress in acute kidney injury (AKI). However, little is known about the role of HSPB1 in autophagy and apoptosis in the pathogenesis of AKI. Methods We used a rat ischemia/reperfusion AKI model and cultured renal tubular cells as an in vitro model. To elucidate the regulation of HSPB1, we evaluated the promoter activity and expression of HSPB1 in normal rat kidney (NRK)-52E cells in the presence of H2O2. To examine the regulation of autophagy by HSPB1, we established NRK-light chain 3 (NRK-LC3) cells that were stably transfected with a fusion protein of green fluorescent protein and LC3. Results The results of immunohistological examination showed that HSPB1 was expressed in proximal tubule cells after AKI. Real-time quantitative reverse transcription-polymerase chain reaction and western blot analysis showed that HSPB1 messenger RNA and protein expression were upregulated 6–72 h and 12–72 h, respectively, after ischemia/reperfusion injury. HSPB1 promoter activity as well as messenger RNA and protein expression indicated dose-dependent induction by H2O2. HSPB1 overexpression-induced autophagy in NRK-LC3 cells under normoxic conditions was confirmed with confocal microscopy, which revealed the presence of LC3-positive granules. Furthermore, H2O2-induced autophagy was inhibited by the transfection of small interfering RNAs for HSPB1. Overexpression of HSPB1 reduced BAX activation and H2O2-induced apoptosis, as measured by caspase 3 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Conclusions We showed that HSPB1 expression increased during oxidative stress in AKI. Incremental HSPB1 expression increased autophagic flux and inhibited apoptosis in renal tubular cells. These results indicate that HSPB1 upregulation plays a role in the pathophysiology of AKI.
Collapse
Affiliation(s)
- Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Madoka Urushido
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Haruna Ide
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Masayuki Ishihara
- Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Japan
| | - Kazu Hamada-Ode
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshiko Shimamura
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Koji Ogata
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Kosuke Inoue
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Takafumi Taguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan
- * E-mail:
| |
Collapse
|
185
|
Khatua AK, Cheatham AM, Kruzel ED, Singhal PC, Skorecki K, Popik W. Exon 4-encoded sequence is a major determinant of cytotoxicity of apolipoprotein L1. Am J Physiol Cell Physiol 2015; 309:C22-37. [PMID: 25924622 DOI: 10.1152/ajpcell.00384.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
The apolipoprotein L1 (APOL1) gene (APOL1) product is toxic to kidney cells, and its G1 and G2 alleles are strongly associated with increased risk for kidney disease progression in African Americans. Variable penetrance of the G1 and G2 risk alleles highlights the significance of additional factors that trigger or modify the progression of disease. In this regard, the effect of alternative splicing in the absence or presence of G1 or G2 alleles is unknown. In this study we investigated whether alternative splicing of non-G1, non-G2 APOL1 (APOL1 G0) affects its biological activity. Among seven APOL1 exons, exons 2 and 4 are differentially expressed in major transcripts. We found that, in contrast to APOL1 splice variants B3 or C, variants A and B1 demonstrate strong toxicity in human embryonic kidney (HEK293T) cells. Subsequently, we established that exon 4 is a major determinant of toxicity of variants A and B1 and that extracellular release of these variants is dispensable for their cytotoxicity. Although only variants A and B1 induced nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, exon 4-positive and -negative APOL1 variants stimulated perinuclear accumulation of unprocessed autophagosomes. Knockdown of endogenous TFEB did not attenuate APOL1 cytotoxicity, indicating that nuclear translocation of TFEB is dispensable for APOL1 toxicity. Our findings that a human podocyte cell line expresses exon 4-positive and -negative APOL1 transcripts suggest that these variants may play a differential role in podocyte pathology. In summary, we have identified exon 4 as a major determinant of APOL1 G0 cytotoxicity.
Collapse
Affiliation(s)
- Atanu K Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, Tennessee
| | - Amber M Cheatham
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, Tennessee
| | - Etty D Kruzel
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Rambam Medical Center, Haifa, Israel; and
| | | | - Karl Skorecki
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Rambam Medical Center, Haifa, Israel; and
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Nashville, Tennessee;
| |
Collapse
|
186
|
Cunard R. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J Clin Med 2015; 4:715-40. [PMID: 26239352 PMCID: PMC4470163 DOI: 10.3390/jcm4040715] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.
Collapse
Affiliation(s)
- Robyn Cunard
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
187
|
Thévenod F, Lee WK. Live and Let Die: Roles of Autophagy in Cadmium Nephrotoxicity. TOXICS 2015; 3:130-151. [PMID: 29056654 PMCID: PMC5634690 DOI: 10.3390/toxics3020130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/07/2023]
Abstract
The transition metal ion cadmium (Cd2+) is a significant environmental contaminant. With a biological half-life of ~20 years, Cd2+ accumulates in the kidney cortex, where it particularly damages proximal tubule (PT) cells and can result in renal fibrosis, failure, or cancer. Because death represents a powerful means by which cells avoid malignant transformation, it is crucial to clearly identify and understand the pathways that determine cell fate in chronic Cd2+ nephrotoxicity. When cells are subjected to stress, they make a decision to adapt and survive, or—depending on the magnitude and duration of stress—to die by several modes of death (programmed cell death), including autophagic cell death (ACD). Autophagy is part of a larger system of intracellular protein degradation and represents the channel by which organelles and long-lived proteins are delivered to the lysosome for degradation. Basal autophagy levels in all eukaryotic cells serve as a dynamic physiological recycling system, but they can also be induced by intra- or extracellular stress and pathological processes, such as endoplasmic reticulum (ER) stress. In a context-dependent manner, autophagy can either be protective and hence contribute to survival, or promote death by non-apoptotic or apoptotic pathways. So far, the role of autophagy in Cd2+-induced nephrotoxicity has remained unsettled due to contradictory results. In this review, we critically survey the current literature on autophagy in Cd2+-induced nephrotoxicity in light of our own ongoing studies. Data obtained in kidney cells illustrate a dual and complex function of autophagy in a stimulus- and time-dependent manner that possibly reflects distinct outcomes in vitro and in vivo. A better understanding of the context-specific regulation of cell fate by autophagy may ultimately contribute to the development of preventive and novel therapeutic strategies for acute and chronic Cd2+ nephrotoxicity.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), Stockumer Str. 12, University of Witten/Herdecke, 58453 Witten, Germany.
| | - Wing-Kee Lee
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), Stockumer Str. 12, University of Witten/Herdecke, 58453 Witten, Germany.
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA.
| |
Collapse
|
188
|
Limou S, Dummer PD, Nelson GW, Kopp JB, Winkler CA. APOL1 toxin, innate immunity, and kidney injury. Kidney Int 2015; 88:28-34. [PMID: 25853332 PMCID: PMC4490079 DOI: 10.1038/ki.2015.109] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/02/2015] [Accepted: 02/20/2015] [Indexed: 12/19/2022]
Abstract
The discovery that two common APOL1 alleles were strongly associated with non-diabetic kidney diseases in African descent populations led to hope for improved diagnosis and treatment. Unfortunately, we still do not have a clear understanding of the biological function played by APOL1 in podocytes or other kidney cells, nor how the renal risk alleles initiate the development of nephropathies. Important clues for APOL1 function may be gleaned from the natural defense mechanism of APOL1 against trypanosome infections and from similar proteins (e.g. diphtheria toxin, mammalian Bcl-2 family members). This review provides an update on the biological functions for circulating (trypanosome resistance) and intracellular (emerging role for autophagy) APOL1. Further, we introduce a multimer model for APOL1 in kidney cells that reconciles the gain-of-function variants with the recessive inheritance pattern of APOL1 renal risk alleles.
Collapse
Affiliation(s)
- Sophie Limou
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Basic Science Program, Center for Cancer Research, NCI, NIH, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland, USA
| | | | - George W Nelson
- Center for Cancer Research Informatics Core, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, Maryland, USA
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Basic Science Program, Center for Cancer Research, NCI, NIH, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland, USA
| |
Collapse
|
189
|
Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int 2015; 88:85-94. [PMID: 25760322 PMCID: PMC4490111 DOI: 10.1038/ki.2015.69] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
The aged population suffers increased morbidity and higher mortality in response to episodes of acute kidney injury (AKI). Aging is associated with telomere shortening, and both telomerase reverse transcriptase (TerT) and RNA (TerC) are essential to maintain telomere length. To define a role of telomerase deficiency in susceptibility to AKI, we used ischemia/reperfusion injury in wild type mice or mice with either TerC or TerT deletion. Injury induced similar renal impairment at day 1 in each genotype, as assessed by azotemia, proteinuria, acute tubular injury score and apoptotic tubular epithelial cell index. However, either TerC or TerT knockout significantly delayed recovery compared to wild type mice. Electron microscopy showed increased autophagosome formation in renal tubular epithelial cells in wild type mice but a significant delay of their development in TerC and TerT knockout mice. There were also impeded increases in the expression of the autophagosome marker LC3 II, prolonged accumulation of the autophagosome protein P62, an increase of the cell cycle regulator p16, and greater activation of the mTOR pathway. The mTORC1 inhibitor, rapamycin, partially restored the ischemia/reperfusion-induced autophagy response, without a significant effect on either p16 induction or tubule epithelial cell proliferation. Thus, muting the maintenance of normal telomere length in mice impaired recovery from AKI, due to an increase in tubule cell senescence and impairment of mTOR-mediated autophagy.
Collapse
|
190
|
Madhavan SM, O'Toole JF. The biology of APOL1 with insights into the association between APOL1 variants and chronic kidney disease. Clin Exp Nephrol 2014; 18:238-42. [PMID: 24233469 DOI: 10.1007/s10157-013-0907-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
Recent studies have identified genetic variants in APOL1 that may contribute to the increased incidence of kidney disease in populations with African ancestry. Here, we review the biology of APOL1 present in the circulation and localized to the kidney as it may contribute to the pathogenesis of APOL1-associated kidney disease.
Collapse
|
191
|
Bi L, Hou R, Yang D, Li S, Zhao D. Erythropoietin protects lipopolysaccharide-induced renal mesangial cells from autophagy. Exp Ther Med 2014; 9:559-562. [PMID: 25574234 PMCID: PMC4280982 DOI: 10.3892/etm.2014.2124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/28/2014] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the effects of erythropoietin (EPO) on the impairment of autophagy induced by lipopolysaccharide (LPS) in primary cultured rat glomerular mesangial cells (GMCs). Rat GMCs were isolated and cultured in normal glucose, high-glucose, LPS or LPS + EPO medium. At 24 and 72 h of culture, the cells were examined for expression levels of the autophagy markers LC3 and p62/sequestosome-1 (SQSTM1) using western blot analysis. At 24 h, no significant difference in the expression of LC3 and p62/SQSTM1 was observed among the groups; however, the cells exposed to high-glucose medium for 72 h showed downregulated LC3 expression and upregulated p62/SQSTM1 expression. The cells exposed to LPS (10 ng/ml) for 72 h showed upregulated LC3 expression and upregulated p62/SQSTM1 expression. These changes were reversed in the LPS + EPO group at 72 h. In conclusion, EPO can inhibit LPS-induced autophagy in rat GMCs.
Collapse
Affiliation(s)
- Lingyun Bi
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ruanling Hou
- Physiology Laboratory, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Dasheng Yang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shujun Li
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Dean Zhao
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
192
|
Abstract
Focal segmental glomerulosclerosis (FSGS) describes both a common lesion in progressive kidney disease, and a disease characterized by marked proteinuria and podocyte injury. The initial injuries vary widely. Monogenetic forms of FSGS are largely due to alterations in structural genes of the podocyte, many of which result in early onset of disease. Genetic risk alleles in apolipoprotein L1 are especially prevalent in African Americans, and are linked not only to adult-onset FSGS but also to progression of some other kidney diseases. The recurrence of FSGS in some transplant recipients whose end-stage renal disease was caused by FSGS points to circulating factors in disease pathogenesis, which remain incompletely understood. In addition, infection, drug use, and secondary maladaptive responses after loss of nephrons from any cause may also cause FSGS. Varying phenotypes of the sclerosis are also manifest, with varying prognosis. The so-called tip lesion has the best prognosis, whereas the collapsing type of FSGS has the worst prognosis. New insights into glomerular cell injury response and repair may pave the way for possible therapeutic strategies.
Collapse
|
193
|
Dong G, Liu Y, Zhang L, Huang S, Ding HF, Dong Z. mTOR contributes to ER stress and associated apoptosis in renal tubular cells. Am J Physiol Renal Physiol 2014; 308:F267-74. [PMID: 25428129 DOI: 10.1152/ajprenal.00629.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ER stress has been implicated in the pathogenesis of both acute and chronic kidney diseases. However, the molecular regulation of ER stress in kidney cells and tissues remains poorly understood. In this study, we examined tunicamycin-induced ER stress in renal proximal tubular cells (RPTC). Tunicamycin induced the phosphorylation and activation of PERK and eIF2α within 2 h in RPTC, which was followed by the induction of GRP78 and CHOP. Consistently, tunicamycin also induced apoptosis in RPTC. Interestingly, mTOR was activated rapidly during tunicamycin treatment, as indicated by phosphorylation of both mTOR and p70S6K. Inhibition of mTOR with rapamycin partially suppressed the phosphorylation of PERK and eIF2a and the induction of CHOP and GRP78 induction during tunicamycin treatment. Rapamycin also inhibited apoptosis during tunicamycin treatment and increased cell survival. Collectively, the results suggest that mTOR plays a regulatory role in ER stress, and inhibition of mTOR may have potential therapeutic effects in ER stress-related renal diseases.
Collapse
Affiliation(s)
- Guie Dong
- Department of Cellular Biology and Anatomy, Georgia Reagents University and Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, Georgia
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Huang
- Department of Biochemistry and Molecular Biology, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, Georgia; and
| | - Han-Fei Ding
- Cancer Center, Georgia Reagents University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Georgia Reagents University and Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China;
| |
Collapse
|
194
|
Orhon I, Dupont N, Pampliega O, Cuervo AM, Codogno P. Autophagy and regulation of cilia function and assembly. Cell Death Differ 2014; 22:389-97. [PMID: 25361082 DOI: 10.1038/cdd.2014.171] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022] Open
Abstract
Motile and primary cilia (PC) are microtubule-based structures located at the cell surface of many cell types. Cilia govern cellular functions ranging from motility to integration of mechanical and chemical signaling from the environment. Recent studies highlight the interplay between cilia and autophagy, a conserved cellular process responsible for intracellular degradation. Signaling from the PC recruits the autophagic machinery to trigger autophagosome formation. Conversely, autophagy regulates ciliogenesis by controlling the levels of ciliary proteins. The cross talk between autophagy and ciliated structures is a novel aspect of cell biology with major implications in development, physiology and human pathologies related to defects in cilium function.
Collapse
Affiliation(s)
- I Orhon
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - N Dupont
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - O Pampliega
- 1] Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A M Cuervo
- 1] Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P Codogno
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
195
|
He L, Livingston MJ, Dong Z. Autophagy in acute kidney injury and repair. Nephron Clin Pract 2014; 127:56-60. [PMID: 25343822 DOI: 10.1159/000363677] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease associated with a poor clinical outcome both in the short and long term. Autophagy is a cellular stress response that plays important roles in the pathogenesis of various diseases. Autophagy is induced in proximal tubules during AKI. A renoprotective role of autophagy in AKI has been demonstrated by pharmacological and genetic inhibition studies. The role of autophagy in kidney recovery and repair from AKI, however, remains largely unknown. A dynamic change in autophagy during the recovery phase of AKI seems to be important for tubular proliferation and repair. In renal fibrosis, autophagy may either promote this via the induction of tubular atrophy and decomposition, or prevent it via effects on the intracellular degradation of excessive collagen. Further research is expected to improve the understanding of the regulation of autophagy in kidney injury and repair, elucidate the pathological roles of autophagy in renal fibrosis, and discover therapeutic targets for treating AKI and preventing its progression to chronic kidney disease.
Collapse
Affiliation(s)
- Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
196
|
Shengyou Y, Li Y. The effects of siRNA-silenced TRPC6 on podocyte autophagy and apoptosis induced by AngII. J Renin Angiotensin Aldosterone Syst 2014; 16:1266-73. [PMID: 25143325 DOI: 10.1177/1470320314543724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yu Shengyou
- Department of Pediatrics, Guangzhou First People’s Hospital, affiliate to Guangzhou Medical University, China
| | - Yu Li
- Department of Pediatrics, Guangzhou First People’s Hospital, affiliate to Guangzhou Medical University, China
| |
Collapse
|
197
|
Zhang X, Howell GM, Guo L, Collage RD, Loughran PA, Zuckerbraun BS, Rosengart MR. CaMKIV-dependent preservation of mTOR expression is required for autophagy during lipopolysaccharide-induced inflammation and acute kidney injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:2405-15. [PMID: 25070845 DOI: 10.4049/jimmunol.1302798] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autophagy, an evolutionarily conserved homeostasis process regulating biomass quantity and quality, plays a critical role in the host response to sepsis. Recent studies show its calcium dependence, but the calcium-sensitive regulatory cascades have not been defined. In this study, we describe a novel mechanism in which calcium/calmodulin-dependent protein kinase IV (CaMKIV), through inhibitory serine phosphorylation of GSK-3β and inhibition of FBXW7 recruitment, prevents ubiquitin proteosomal degradation of mammalian target of rapamycin (mTOR) and thereby augments autophagy in both the macrophage and the kidney. Under the conditions of sepsis studied, mTOR expression and activity were requisite for autophagy, a paradigm countering the current perspective that prototypically, mTOR inhibition induces autophagy. CaMKIV-mTOR-dependent autophagy was fundamentally important for IL-6 production in vitro and in vivo. Similar mechanisms were operant in the kidney during endotoxemia and served a cytoprotective role in mitigating acute kidney injury. Thus, CaMKIV-mTOR-dependent autophagy is conserved in both immune and nonimmune/parenchymal cells and is fundamental for the respective functional and adaptive responses to septic insult.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gina M Howell
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Lanping Guo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Richard D Collage
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | | | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
198
|
Pendergraft WF, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL. Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol 2014; 9:1996-2005. [PMID: 25035273 DOI: 10.2215/cjn.00360114] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The kidneys can be injured in diverse ways by many drugs, both legal and illegal. Novel associations and descriptions of nephrotoxic effects of common and emerging drugs of abuse have appeared over the past several years. Anabolic androgenic steroids, illicitly used by athletes and others for decades to increase muscle mass and decrease body fat, are emerging as podocyte toxins given recent descriptions of severe forms of FSGS in long-term abusers. Synthetic cannabinoids, a new group of compounds with marijuana-like effects, recently became popular as recreational drugs and have been associated with an atypical form of AKI. 3,4-Methylenedioxymethamphetamine, commonly known as ecstasy, is a widely used synthetic recreational drug with mood-enhancing properties and a constellation of toxicities that can result in death. These toxic effects include hyperthermia, hypotonic hyponatremia due to its arginine vasopressin secretagogue-like effects, rhabdomyolysis, and cardiovascular collapse. Cocaine, a serotonin-norepinephrine-dopamine reuptake inhibitor that serves as an illegal stimulant, appetite suppressant, and anesthetic, also causes vasoconstriction and rhabdomyolysis. Recent adulteration of much of the world's supply of cocaine with levamisole, an antihelminthic agent with attributes similar to but distinct from those of cocaine, appears to have spawned a new type of ANCA-associated systemic vasculitis. This review discusses the nephrotoxic effects of these common and emerging drugs of abuse, of which both community and health care providers should become aware given their widespread abuse. Future investigation into pathogenetic mechanisms associated with these drugs is critical and may provide a window into ways to lessen and even prevent the nephrotoxic effects of these drugs of abuse and perhaps allow a deeper understanding of the nephrotoxicities themselves.
Collapse
Affiliation(s)
- William F Pendergraft
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Nephrology, Department of Medicine, and Vasculitis and Glomerulonephritis Clinic, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
| | - Leal C Herlitz
- Division of Renal Pathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Denyse Thornley-Brown
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Mitchell Rosner
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John L Niles
- Division of Nephrology, Department of Medicine, and Vasculitis and Glomerulonephritis Clinic, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts;
| |
Collapse
|
199
|
Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest 2014; 124:2333-40. [PMID: 24892707 DOI: 10.1172/jci72271] [Citation(s) in RCA: 663] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide and the single strongest predictor of mortality in patients with diabetes. DKD is a prototypical disease of gene and environmental interactions. Tight glucose control significantly decreases DKD incidence, indicating that hyperglycemia-induced metabolic alterations, including changes in energy utilization and mitochondrial dysfunction, play critical roles in disease initiation. Blood pressure control, especially with medications that inhibit the angiotensin system, is the only effective way to slow disease progression. While DKD is considered a microvascular complication of diabetes, growing evidence indicates that podocyte loss and epithelial dysfunction play important roles. Inflammation, cell hypertrophy, and dedifferentiation by the activation of classic pathways of regeneration further contribute to disease progression. Concerted clinical and basic research efforts will be needed to understand DKD pathogenesis and to identify novel drug targets.
Collapse
|
200
|
Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, Wei X, Zhang Y, Wang Z, Han H, Xu H, Bao C, Song Z, Zhang X, Li N, Yi F. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 2014; 86:712-25. [PMID: 24717296 DOI: 10.1038/ki.2014.111] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/18/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
Abstract
Studies have highlighted the importance of histone deacetylase (HDAC)-mediated epigenetic processes in the development of diabetic complications. Inhibitors of HDAC are a novel class of therapeutic agents in diabetic nephropathy, but currently available inhibitors are mostly nonselective inhibit multiple HDACs, and different HDACs serve very distinct functions. Therefore, it is essential to determine the role of individual HDACs in diabetic nephropathy and develop HDAC inhibitors with improved specificity. First, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC2/4/5 were upregulated in the kidney from streptozotocin-induced diabetic rats, diabetic db/db mice, and in kidney biopsies from diabetic patients. Podocytes treated with high glucose, advanced glycation end products, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) selectively increased HDAC4 expression. The role of HDAC4 was evaluated by in vivo gene silencing by intrarenal lentiviral gene delivery and found to reduce renal injury in diabetic rats. Podocyte injury was associated with suppressing autophagy and exacerbating inflammation by HDAC4-STAT1 signaling in vitro. Thus, HDAC4 contributes to podocyte injury and is one of critical components of a signal transduction pathway that links renal injury to autophagy in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jiang Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University School of Medicine, Jinan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wan
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Huirong Han
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Huiyan Xu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Chanchan Bao
- The Microscopy Characterization Platform, Shandong University, Jinan, China
| | - Zhenyu Song
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Xiumei Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|