151
|
Jiwlawat N, Lynch EM, Napiwocki BN, Stempien A, Ashton RS, Kamp TJ, Crone WC, Suzuki M. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes. Biotechnol Bioeng 2019; 116:2377-2392. [PMID: 31131875 DOI: 10.1002/bit.27075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Recent advances in bioengineering have enabled cell culture systems that more closely mimic the native cellular environment. Here, we demonstrated that human induced pluripotent stem cell (iPSC)-derived myogenic progenitors formed highly-aligned myotubes and contracted when seeded on two-dimensional micropatterned platforms. The differentiated cells showed clear nuclear alignment and formed elongated myotubes dependent on the width of the micropatterned lanes. Topographical cues from micropatterning and physiological substrate stiffness improved the formation of well-aligned and multinucleated myotubes similar to myofibers. These aligned myotubes exhibited spontaneous contractions specifically along the long axis of the pattern. Notably, the micropatterned platforms developed bundle-like myotubes using patient-derived iPSCs with a background of Pompe disease (glycogen storage disease type II) and even enhanced the disease phenotype as shown through the specific pathology of abnormal lysosome accumulations. A highly-aligned formation of matured myotubes holds great potential in further understanding the process of human muscle development, as well as advancing in vitro pharmacological studies for skeletal muscle diseases.
Collapse
Affiliation(s)
- Nunnapas Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Eileen M Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Brett N Napiwocki
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Alana Stempien
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin
| | - Wendy C Crone
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin.,Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
152
|
Arrigoni C, Petta D, Bersini S, Mironov V, Candrian C, Moretti M. Engineering complex muscle-tissue interfaces through microfabrication. Biofabrication 2019; 11:032004. [PMID: 31042682 DOI: 10.1088/1758-5090/ab1e7c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a tissue with a complex and hierarchical architecture that influences its functional properties. In order to exert its contractile function, muscle tissue is connected to neural, vascular and connective compartments, comprising finely structured interfaces which are orchestrated by multiple signalling pathways. Pathological conditions such as dystrophies and trauma, or physiological situations such as exercise and aging, modify the architectural organization of these structures, hence affecting muscle functionality. To overcome current limitations of in vivo and standard in vitro models, microfluidics and biofabrication techniques have been applied to better reproduce the microarchitecture and physicochemical environment of human skeletal muscle tissue. In the present review, we aim to critically discuss the role of those techniques, taken individually or in combination, in the generation of models that mimic the complex interfaces between muscle tissue and neural/vascular/tendon compartments. The exploitation of either microfluidics or biofabrication to model different muscle interfaces has led to the development of constructs with an improved spatial organization, thus presenting a better functionality as compared to standard models. However, the achievement of models replicating muscle-tissue interfaces with adequate architecture, presence of fundamental proteins and recapitulation of signalling pathways is still far from being achieved. Increased integration between microfluidics and biofabrication, providing the possibility to pattern cells in predetermined structures with higher resolution, will help to reproduce the hierarchical and heterogeneous structure of skeletal muscle interfaces. Such strategies will further improve the functionality of these techniques, providing a key contribution towards the study of skeletal muscle functions in physiology and pathology.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland
| | | | | | | | | | | |
Collapse
|
153
|
Dissecting cell diversity and connectivity in skeletal muscle for myogenesis. Cell Death Dis 2019; 10:427. [PMID: 31160550 PMCID: PMC6546706 DOI: 10.1038/s41419-019-1647-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
Characterized by their slow adhering property, skeletal muscle myogenic progenitor cells (MPCs) have been widely utilized in skeletal muscle tissue engineering for muscle regeneration, but with limited efficacy. Skeletal muscle regeneration is regulated by various cell types, including a large number of rapidly adhering cells (RACs) where their functions and mechanisms are still unclear. In this study, we explored the function of RACs by co-culturing them with MPCs in a biomimetic skeletal muscle organoid system. Results showed that RACs promoted the myogenic potential of MPCs in the organoid. Single-cell RNA-Seq was also performed, classifying RACs into 7 cell subtypes, including one newly described cell subtype: teno-muscular cells (TMCs). Connectivity map of RACs and MPCs subpopulations revealed potential growth factors (VEGFA and HBEGF) and extracellular matrix (ECM) proteins involvement in the promotion of myogenesis of MPCs during muscle organoid formation. Finally, trans-well experiments and small molecular inhibitors blocking experiments confirmed the role of RACs in the promotion of myogenic differentiation of MPCs. The RACs reported here revealed complex cell diversity and connectivity with MPCs in the biomimetic skeletal muscle organoid system, which not only offers an attractive alternative for disease modeling and in vitro drug screening but also provides clues for in vivo muscle regeneration.
Collapse
|
154
|
Davis BN, Yen R, Prasad V, Truskey GA. Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions. APL Bioeng 2019; 3:026103. [PMID: 31149650 DOI: 10.1063/1.5093417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
During three-dimensional culture of skeletal muscle in vitro, electrical stimulation provides an important cue to enhance skeletal muscle mimicry of the in vivo structure and function. However, increased respiration can cause oxygen transport limitations in these avascular three-dimensional constructs, leading to a hypoxic, necrotic core, or nonuniform cell distributions in larger constructs. To enhance oxygen transport with convection, oxygen concentrations were measured using an optical sensor at the inlet and outlet of an 80 μl fluid volume microphysiological system (MPS) flow chamber containing three-dimensional human skeletal muscle myobundles. Finite element model simulations of convection around myobundles and oxygen metabolism by the myobundles in the 80 μl MPS flow chamber agreed well with the oxygen consumption rate (OCR) at different flow rates, suggesting that under basal conditions, mass transfer limitations were negligible for flow rates above 1.5 μl s-1. To accommodate electrodes for electrical stimulation, a modified 450 μl chamber was constructed. Electrical stimulation for 30 min increased the measured rate of oxygen consumption by the myobundles to slightly over 2 times the basal OCR. Model simulations indicate that mass transfer limitations were significant during electrical stimulation and, in the absence of mass transfer limitations, electrical stimulation induced about a 20-fold increase in the maximum rate of oxygen consumption. The results indicate that simulated exercise conditions increase respiration of skeletal muscle and mass transfer limitations reduce the measured levels of oxygen uptake, which may affect previous studies that model exercise with engineered muscle.
Collapse
Affiliation(s)
- Brittany N Davis
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Ringo Yen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| |
Collapse
|
155
|
Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, Stewart BA, van den Dorpel H, Fuehrmann T, Shoichet M, Bigot A, Pegoraro E, Ahn H, Ginsberg H, Zhen M, Ashton RS, Gilbert PM. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife 2019; 8:44530. [PMID: 31084710 PMCID: PMC6516829 DOI: 10.7554/elife.44530] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional (2D) human skeletal muscle fiber cultures are ill-equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-cultures. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. Hence, this work offers a simple method to model and evaluate adult human NMJ de novo development or disease in culture.
Collapse
Affiliation(s)
- Mohsen Afshar Bakooshli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ethan S Lippmann
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Kayee Tung
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Hubrecht van den Dorpel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Tobias Fuehrmann
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Molly Shoichet
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Anne Bigot
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Universite, Paris, France
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Howard Ginsberg
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Randolph Scott Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
156
|
|
157
|
Davis BNJ, Santoso JW, Walker MJ, Oliver CE, Cunningham MM, Boehm CA, Dawes D, Lasater SL, Huffman K, Kraus WE, Truskey GA. Modeling the Effect of TNF-α upon Drug-Induced Toxicity in Human, Tissue-Engineered Myobundles. Ann Biomed Eng 2019; 47:1596-1610. [PMID: 30963383 DOI: 10.1007/s10439-019-02263-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
A number of significant muscle diseases, such as cachexia, sarcopenia, systemic chronic inflammation, along with inflammatory myopathies share TNF-α-dominated inflammation in their pathogenesis. In addition, inflammatory episodes may increase susceptibility to drug toxicity. To assess the effect of TNF-α-induced inflammation on drug responses, we engineered 3D, human skeletal myobundles, chronically exposed them to TNF-α during maturation, and measured the combined response of TNF-α and the chemotherapeutic doxorubicin on muscle function. First, the myobundle inflammatory environment was characterized by assessing the effects of TNF-α on 2D human skeletal muscle cultures and 3D human myobundles. High doses of TNF-α inhibited maturation in human 2D cultures and maturation and function in 3D myobundles. Then, a tetanus force dose-response curve was constructed to characterize doxorubicin's effects on function alone. The combination of TNF-α and 10 nM doxorubicin exhibited a synergistic effect on both twitch and tetanus force production. Overall, the results demonstrated that inflammation of a 3D, human skeletal muscle inflammatory system alters the response to doxorubicin.
Collapse
Affiliation(s)
- Brittany N J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Jeffrey W Santoso
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michaela J Walker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Catherine E Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Michael M Cunningham
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian A Boehm
- Department of Textile Technology, RWTH Aachen University, 52062, Aachen, Germany
| | - Danielle Dawes
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Samantha L Lasater
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Kim Huffman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cardiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA. .,, 1395 FCIEMS, 101 Science Drive, Durham, NC, 27708-0281, USA.
| |
Collapse
|
158
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
159
|
Del Carmen Ortuño-Costela M, García-López M, Cerrada V, Gallardo ME. iPSCs: A powerful tool for skeletal muscle tissue engineering. J Cell Mol Med 2019; 23:3784-3794. [PMID: 30933431 PMCID: PMC6533516 DOI: 10.1111/jcmm.14292] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Both volumetric muscle loss (VML) and muscle degenerative diseases lead to an important decrease in skeletal muscle mass, condition that nowadays lacks an optimal treatment. This issue has driven towards an increasing interest in new strategies in tissue engineering, an emerging field that can offer very promising approaches. In addition, the discovery of induced pluripotent stem cells (iPSCs) has completely revolutionized the actual view of personalized medicine, and their utilization in skeletal muscle tissue engineering could, undoubtedly, add myriad benefits. In this review, we want to provide a general vision of the basic aspects to consider when engineering skeletal muscle tissue using iPSCs. Specifically, we will focus on the three main pillars of tissue engineering: the scaffold designing, the selection of the ideal cell source and the addition of factors that can enhance the resemblance with the native tissue.
Collapse
Affiliation(s)
- María Del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid, Spain, (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta García-López
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Victoria Cerrada
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación, Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain
| |
Collapse
|
160
|
Arifuzzaman M, Ito A, Ikeda K, Kawabe Y, Kamihira M. Fabricating Muscle–Neuron Constructs with Improved Contractile Force Generation. Tissue Eng Part A 2019; 25:563-574. [DOI: 10.1089/ten.tea.2018.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Md Arifuzzaman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
161
|
Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, Jones JM, Martin NRW, Ferguson RA, Mudera VC, Lewis MP. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol 2019; 7:20. [PMID: 30838203 PMCID: PMC6383409 DOI: 10.3389/fbioe.2019.00020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25–500 μL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue.
Collapse
Affiliation(s)
- Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jacob W Fleming
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Luke A Baker
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark C Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Julia M Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek C Mudera
- Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
162
|
Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays. Tissue Eng Part C Methods 2019; 24:346-359. [PMID: 29739270 DOI: 10.1089/ten.tec.2018.0062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physical connection between motoneurons and skeletal muscle targets is responsible for the creation of neuromuscular junctions (NMJs), which allow electrical signals to be translated to mechanical work. NMJ pathology contributes to the spectrum of neuromuscular, motoneuron, and dystrophic disease. Improving in vitro tools that allow for recapitulation of the physiology of the neuromuscular connection will enable researchers to better understand the development and maturation of NMJs, and will help to decipher mechanisms leading to NMJ degeneration. In this work, we first describe robust differentiation of bungarotoxin-positive human myotubes, as well as a reproducible method for encapsulating and aligning human myoblasts in three-dimensional (3D) suspended culture using bioprinted silk fibroin cantilevers as cell culture supports. Further analysis with coculture of motoneuron-like cells demonstrates feasibility of fully human coculture using two-dimensional and 2.5-dimensional culture methods, with appropriate differentiation of both cell types. Using these coculture differentiation conditions with motoneuron-like cells added to monocultures of 3D suspended human myotubes, we then demonstrate synaptic colocalization in coculture as well as acetylcholine and glutamic acid stimulation of human myocytes. This method represents a unique platform to coculture suspended human myoblast-seeded 3D hydrogels with integrated motoneuron-like cells derived from human induced neural stem cells. The platform described is fully customizable using 3D freeform printing into standard laboratory tissue culture materials, and allows for human myoblast alignment in 3D with precise motoneuron integration into preformed myotubes. The coculture method will ideally be useful in observation and analysis of neurite outgrowth and myogenic differentiation in 3D with quantification of several parameters of muscle innervation and function.
Collapse
|
163
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
164
|
Vila OF, Uzel SG, Ma SP, Williams D, Pak J, Kamm RD, Vunjak-Novakovic G. Quantification of human neuromuscular function through optogenetics. Am J Cancer Res 2019; 9:1232-1246. [PMID: 30867827 PMCID: PMC6401498 DOI: 10.7150/thno.25735] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/23/2018] [Indexed: 01/15/2023] Open
Abstract
The study of human neuromuscular diseases has traditionally been performed in animal models, due to the difficulty of performing studies in human subjects. Despite the unquestioned value of animal models, inter-species differences hamper the translation of these findings to clinical trials. Tissue-engineered models of the neuromuscular junction (NMJ) allow for the recapitulation of the human physiology in tightly controlled in vitro settings. Methods: Here we report the first human patient-specific tissue-engineered model of the neuromuscular junction (NMJ) that combines stem cell technology with tissue engineering, optogenetics, microfabrication and image processing. The combination of custom-made hardware and software allows for repeated, quantitative measurements of NMJ function in a user-independent manner. Results: We demonstrate the utility of this model for basic and translational research by characterizing in real time the functional changes during physiological and pathological processes. Principal Conclusions: This system holds great potential for the study of neuromuscular diseases and drug screening, allowing for the extraction of quantitative functional data from a human, patient-specific system.
Collapse
|
165
|
Kim W, Kim J, Park HS, Jeon JS. Development of Microfluidic Stretch System for Studying Recovery of Damaged Skeletal Muscle Cells. MICROMACHINES 2018; 9:E671. [PMID: 30567359 PMCID: PMC6315523 DOI: 10.3390/mi9120671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 12/13/2022]
Abstract
The skeletal muscle occupies about 40% mass of the human body and plays a significant role in the skeletal movement control. Skeletal muscle injury also occurs often and causes pain, discomfort, and functional impairment in daily living. Clinically, most studies observed the recovery phenomenon of muscle by massage or electrical stimulation, but there are limitations on quantitatively analyzing the effects on recovery. Although additional efforts have been made within in vitro biochemical research, some questions still remain for effects of the different cell microenvironment for recovery. To overcome these limitations, we have developed a microfluidic system to investigate appropriate conditions for repairing skeletal muscle injury. First, the muscle cells were cultured in the microfluidic chip and differentiated to muscle fibers. After differentiation, we treated hydrogen peroxide and 18% axial stretch to cause chemical and physical damage to the muscle fibers. Then the damaged muscle fibers were placed under the cyclic stretch condition to allow recovery. Finally, we analyzed the damage and recovery by quantifying morphological change as well as the intensity change of intracellular fluorescent signals and showed the skeletal muscle fibers recovered better in the cyclic stretched condition. In total, our in situ generation of muscle damage and induction recovery platform may be a key system for investigating muscle recovery and rehabilitation.
Collapse
Affiliation(s)
- Wanho Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Jaesang Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
- KI HST, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
166
|
Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium. Cell Rep 2018; 25:3858-3868.e4. [DOI: 10.1016/j.celrep.2018.11.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
|
167
|
Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS Technol 2018; 23:599-613. [PMID: 29895208 PMCID: PMC6249648 DOI: 10.1177/2472630318776594] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Two-dimensional (2D) cell cultures do not reflect the in vivo situation, and thus it is important to develop predictive three-dimensional (3D) in vitro models with enhanced reliability and robustness for drug screening applications. Treatments against muscle-related diseases are becoming more prominent due to the growth of the aging population worldwide. In this study, we describe a novel drug screening platform with automated production of 3D musculoskeletal-tendon-like tissues. With 3D bioprinting, alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspension tissue models were produced in a dumbbell shape onto novel postholder cell culture inserts in 24-well plates. Monocultures of human primary skeletal muscle cells and rat tenocytes were printed around and between the posts. The cells showed high viability in culture and good tissue differentiation, based on marker gene and protein expressions. Different printing patterns of bioink and cells were explored and calcium signaling with Fluo4-loaded cells while electrically stimulated was shown. Finally, controlled co-printing of tenocytes and myoblasts around and between the posts, respectively, was demonstrated followed by co-culture and co-differentiation. This screening platform combining 3D bioprinting with a novel microplate represents a promising tool to address musculoskeletal diseases.
Collapse
Affiliation(s)
- Sandra Laternser
- Competence Center TEDD, Institute of
Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences,
Waedenswil, Switzerland
- Center for Cell Biology & Tissue
Engineering, Institute of Chemistry and Biotechnology (ICBT), Zurich University of
Applied Sciences, Waedenswil, Switzerland
| | - Hansjoerg Keller
- Musculoskeletal Diseases, Novartis
Institutes for BioMedical Research, Basel, Switzerland
| | - Olivier Leupin
- Musculoskeletal Diseases, Novartis
Institutes for BioMedical Research, Basel, Switzerland
| | - Martin Rausch
- Biotherapeutic and Analytical
Technologies, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ursula Graf-Hausner
- Competence Center TEDD, Institute of
Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences,
Waedenswil, Switzerland
- Center for Cell Biology & Tissue
Engineering, Institute of Chemistry and Biotechnology (ICBT), Zurich University of
Applied Sciences, Waedenswil, Switzerland
| | - Markus Rimann
- Competence Center TEDD, Institute of
Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences,
Waedenswil, Switzerland
- Center for Cell Biology & Tissue
Engineering, Institute of Chemistry and Biotechnology (ICBT), Zurich University of
Applied Sciences, Waedenswil, Switzerland
| |
Collapse
|
168
|
Mills RJ, Parker BL, Monnot P, Needham EJ, Vivien CJ, Ferguson C, Parton RG, James DE, Porrello ER, Hudson JE. Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials 2018; 198:217-227. [PMID: 30527761 DOI: 10.1016/j.biomaterials.2018.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
Abstract
Three dimensional engineered culture systems are powerful tools to rapidly expand our knowledge of human biology and identify novel therapeutic targets for disease. Bioengineered skeletal muscle has been recently shown to recapitulate many features of native muscle biology. However, current skeletal muscle bioengineering approaches require large numbers of cells, reagents and labour, limiting their potential for high-throughput studies. Herein, we use a miniaturized 96-well micro-muscle platform to facilitate semi-automated tissue formation, culture and analysis of human skeletal micro muscles (hμMs). Utilising an iterative screening approach we define a serum-free differentiation protocol that drives rapid, directed differentiation of human myoblast to skeletal myofibres. The resulting hμMs comprised organised bundles of striated and functional myofibres, which respond appropriately to electrical stimulation. Additionally, we developed an optogenetic approach to chronically stimulate hμM to recapitulate known features of exercise training including myofibre hypertrophy and increased expression of metabolic proteins. Taken together, our miniaturized approach provides a new platform to enable high-throughput studies of human skeletal muscle biology and exercise physiology.
Collapse
Affiliation(s)
- Richard J Mills
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, St Lucia, 4072, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Pauline Monnot
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Laboratoire de Biologie du Développement-Institut de Biologie, CNRS, Sorbonne Université, 75005, Paris, France
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Celine J Vivien
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, St Lucia, 4072, Queensland, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, St Lucia, 4072, Queensland, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, St Lucia, 4072, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia.
| |
Collapse
|
169
|
Truskey GA. Development and application of human skeletal muscle microphysiological systems. LAB ON A CHIP 2018; 18:3061-3073. [PMID: 30183050 PMCID: PMC6177290 DOI: 10.1039/c8lc00553b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of major disease states involve skeletal muscle, including type 2 diabetes, muscular dystrophy, sarcopenia and cachexia arising from cancer or heart disease. Animals do not accurately represent many of these disease states. Human skeletal muscle microphysiological systems derived from primary or induced pluripotent stem cells (hPSCs) can provide an in vitro model of genetic and chronic diseases and assess individual variations. Three-dimensional culture systems more accurately represent skeletal muscle function than do two-dimensional cultures. While muscle biopsies enable culture of primary muscle cells, hPSCs provide the opportunity to sample a wider population of donors. Recent advances to promote maturation of PSC-derived skeletal muscle provide an alternative to primary cells. While contractile function is often measured in three-dimensional cultures and several systems exist to characterize contraction of small numbers of muscle fibers, there is a need for functional measures of metabolism suited for microphysiological systems. Future research should address generation of well-differentiated hPSC-derived muscle cells, enabling muscle repair in vitro, and improved disease models.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, 1427 CIEMAS, 101 Science Drive, Durham, NC 27708-0281, USA.
| |
Collapse
|
170
|
Juhas M, Abutaleb N, Wang JT, Ye J, Shaikh Z, Sriworarat C, Qian Y, Bursac N. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat Biomed Eng 2018; 2:942-954. [PMID: 30581652 DOI: 10.1038/s41551-018-0290-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult skeletal muscle has a robust capacity for self-repair, owing to synergies between muscle satellite cells and the immune system. In vitro models of muscle self-repair would facilitate the basic understanding of muscle regeneration and the screening of therapies for muscle disease. Here, we show that the incorporation of macrophages into muscle tissues engineered from adult-rat myogenic cells enables near-complete structural and functional repair after cardiotoxic injury in vitro. First, we show that-in contrast with injured neonatal-derived engineered muscle-adult-derived engineered muscle fails to properly self-repair after injury, even when treated with pro-regenerative cytokines. We then show that rat bone-marrow-derived macrophages or human blood-derived macrophages resident within the in vitro engineered tissues stimulate muscle satellite cell-mediated myogenesis while significantly limiting myofibre apoptosis and degeneration. Moreover, bone-marrow-derived macrophages within engineered tissues implanted in a mouse dorsal window-chamber model augmented blood vessel ingrowth, cell survival, muscle regeneration and contractile function.
Collapse
Affiliation(s)
- Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jason T Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jean Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zohaib Shaikh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Ying Qian
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
171
|
Takahashi H, Shimizu T, Okano T. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Sci Rep 2018; 8:13932. [PMID: 30224737 PMCID: PMC6141563 DOI: 10.1038/s41598-018-32163-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle physiology and the mechanisms of muscle diseases can be effectively studied by an in-vitro tissue model produced by muscle tissue engineering. Engineered human cell-based tissues are required more than ever because of the advantages they bring as tissue models in research studies. This study reports on a production method of a human skeletal myofiber sheet that demonstrates biomimetic properties including the aligned structure of myofibers, basement membrane-like structure of the extracellular matrix, and unidirectional contractile ability. The contractile ability and drug responsibility shown in this study indicate that this engineered muscle tissue has potential as a human cell-based tissue model for clinically relevant in-vitro studies in muscle physiology and drug discovery. Moreover, this engineered tissue can be used to better understand the relationships between mechanical stress and myogenesis, including muscle growth and regeneration. In this study, periodic exercise induced by continuous electrical pulse stimulation enhanced the contractile ability of the engineered myofibers and the secretion of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from the exercising myofibers. Since the physiology of skeletal muscle is directly related to mechanical stress, these features point to application as a tissue model and platform for future biological studies of skeletal muscle including muscle metabolism, muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
172
|
Zhang X, Hong S, Yen R, Kondash M, Fernandez CE, Truskey GA. A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. LAB ON A CHIP 2018; 18:2787-2796. [PMID: 30112530 PMCID: PMC6145090 DOI: 10.1039/c8lc00654g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microphysiological tissue engineering models of human skeletal muscle (myobundles) provide a platform to investigate the mechanism of muscle diseases and to study the response to drugs and toxins in vitro. To examine the dynamic response to drugs, which often take several days to induce responses, we developed a system to monitor the contractile force of the same human skeletal muscle myobundles over time before and after treatment with drugs. Myobundles were formed in series with Ecoflex films (platinum-catalyzed silicones) with embedded microbeads. The displacement of the microbeads in Ecoflex exhibited a linear relation between muscle force production and Ecoflex film stretch. Forces measured with the microbeads embedded in Ecoflex agreed well with simultaneous measurements with a force transducer. Application of the Hill model for the myobundles showed that the Ecoflex affected the magnitude of the response, but not the kinetics. After continuous exposure to 100 nM cerivastatin, both active and passive forces were reduced relative to controls after 2-4 days. The decline in force was associated with a decline in the muscle myofiber organization. The inhibitory effect of cerivastatin was reduced when 0.1-1 mM mevalonate was added with cerivastatin. Although addition of co-enzyme Q10 with cerivastatin inhibited degradation of sarcomeric α-actinin (SAA) in myoblasts, the contractile force still declined, suggesting that statin-induced myopathy was related to mevalonate pathway but the addition of co-enzyme Q10 was insufficient to overcome the effect of statins on the mevalonate pathway. Thus, cerivastatin rapidly induces myopathy which can be reversds with mevalonate but not co-enzyme Q10.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
173
|
Shima A, Morimoto Y, Sweeney HL, Takeuchi S. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Exp Cell Res 2018; 370:168-173. [DOI: 10.1016/j.yexcr.2018.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
|
174
|
Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018; 9:1130. [PMID: 30246791 PMCID: PMC6113794 DOI: 10.3389/fphys.2018.01130] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.
Collapse
Affiliation(s)
- Babette Maleiner
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Janine Tomasch
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Trauma Care Consult GmbH, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Dominik Rünzler
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christiane Fuchs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
175
|
Thorrez L, DiSano K, Shansky J, Vandenburgh H. Engineering of Human Skeletal Muscle With an Autologous Deposited Extracellular Matrix. Front Physiol 2018; 9:1076. [PMID: 30177884 PMCID: PMC6109771 DOI: 10.3389/fphys.2018.01076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
Abstract
Adult skeletal muscle progenitor cells can be embedded in an extracellular matrix (ECM) and tissue-engineered to form bio-artificial muscles (BAMs), composed of aligned post-mitotic myofibers. The ECM proteins which have been used most commonly are collagen type I and fibrin. Fibrin allows for in vitro vasculogenesis, however, high concentrations of fibrinolysis inhibitors are needed to inhibit degradation of the ECM and subsequent loss of BAM tissue structure. For in vivo implantation, fibrinolysis inhibition may prove difficult or even harmful to the host. Therefore, we adapted in vitro culture conditions to enhance the deposition of de novo synthesized collagen type I gradually replacing the degrading fibrin ECM. The in vitro viscoelastic properties of the fibrin BAMs and deposition of collagen were characterized. BAMs engineered with the addition of proline, hydroxyproline, and ascorbic acid in the tissue culture medium had a twofold increase in Young’s Modulus, a 2.5-fold decrease in maximum strain, and a 1.6-fold increase in collagen deposition. Lowering the fibrin content of the BAMs also increased Young’s Modulus, decreased maximum strain, and increased collagen deposition. Tissue engineering of BAMs with autologous ECM may allow for prolonged in vivo survival.
Collapse
Affiliation(s)
- Lieven Thorrez
- Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium
| | - Katherine DiSano
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Janet Shansky
- Department of Pathology, The Miriam Hospital, Brown University, Providence, RI, United States
| | - Herman Vandenburgh
- Department of Pathology, The Miriam Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
176
|
Klaren WD, Rusyn I. High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts. Assay Drug Dev Technol 2018; 16:333-342. [PMID: 30070899 DOI: 10.1089/adt.2018.860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle-associated toxicity is an underresearched area in the field of high-throughput toxicity screening; hence, the potential adverse effects of drugs and chemicals on skeletal muscle are largely unknown. Novel organotypic microphysiological in vitro models are being developed to replicate the contractile function of skeletal muscle; however, the throughput and a need for specialized equipment may limit the utility of these tissue chip models for screening. In addition, recent developments in stem cell biology have resulted in the generation of induced pluripotent stem cell (iPSC)-derived skeletal myoblasts that enable high-throughput in vitro screening. This study set out to develop a high-throughput multiplexed assay using iPSC-derived skeletal myoblasts that can be used as a first-pass screen to assess the potential for chemicals to affect skeletal muscle. We found that cytotoxicity and cytoskeletal integrity are most useful and reproducible assays for the skeletal myoblasts when evaluating overall cellular health or gauging disruptions in actin polymerization following 24 h of exposure. Both assays are based on high-content imaging and quantitative image processing to derive quantitative phenotypes. Both assays showed good to excellent assay robustness and reproducibility measured by interplate and interday replicability, coefficients of variation of negative controls, and Z'-factors for positive control chemicals. Concentration response assessment of muscle-related toxicants showed specificity of the observed effects compared to the general cytotoxicity. Overall, this study establishes a high-throughput multiplexed assay using skeletal myoblasts that may be used for screening and prioritization of chemicals for more complex tissue chip-based and in vivo evaluation.
Collapse
Affiliation(s)
- William D Klaren
- Department of Veterinary Integrative Biosciences, Texas A&M University , College Station, Texas
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University , College Station, Texas
| |
Collapse
|
177
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
178
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
179
|
Truskey GA. Human Microphysiological Systems and Organoids as in Vitro Models for Toxicological Studies. Front Public Health 2018; 6:185. [PMID: 30042936 PMCID: PMC6048981 DOI: 10.3389/fpubh.2018.00185] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Organoids and microphysiological systems represent two current approaches to reproduce organ function in vitro. These systems can potentially provide unbiased assays of function which are needed to understand the mechanism of action of environmental toxins. Culture models that replicate organ function and interactions among cell types and tissues move beyond existing screens that target individual pathways and provide a means to assay context-dependent function. The current state of organoid cultures and microphysiological systems is reviewed and applications discussed. While few studies have examined environmental pollutants, studies with drugs demonstrate the power of these systems to assess toxicity as well as mechanism of action. Strengths and limitations of organoids and microphysiological systems are reviewed and challenges are identified to produce suitable high capacity functional assays.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
180
|
Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes. Methods Mol Biol 2018; 1668:147-163. [PMID: 28842908 DOI: 10.1007/978-1-4939-7283-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cultured skeletal myotubes are a powerful in vitro system for identifying mechanisms of skeletal muscle development and disease. However, skeletal myotubes routinely delaminate from conventional culture substrates after approximately 1 week, which significantly hampers their utility for in vitro disease modeling and drug screening. To address this problem, we fabricated micromolded gelatin hydrogels as culture substrates that are more biomimetic than conventional substrates. On micromolded gelatin hydrogels, C2C12 skeletal myoblasts align and differentiate into skeletal myotubes that are stable in culture for multiple weeks. With this protocol, we detail three key steps: (1) Fabrication of micromolded gelatin hydrogels; (2) Culture of mouse C2C12 myoblasts and differentiation into myotubes; and (3) Quantification of myotube morphology. These substrates have many applications for skeletal muscle disease modeling and drug screening over longer time scales.
Collapse
|
181
|
Dinulovic I, Furrer R, Handschin C. Plasticity of the Muscle Stem Cell Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:141-169. [PMID: 29204832 DOI: 10.1007/978-3-319-69194-7_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
Collapse
|
182
|
Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, Steele-Stallard H, Cappellari O, Wells KE, Ferrari G, Mitchell JS, Tyzack GE, Kotiadis VN, Khedr M, Ragazzi M, Wang W, Duchen MR, Patani R, Zammit PS, Wells DJ, Eschenhagen T, Tedesco FS. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep 2018; 23:899-908. [PMID: 29669293 PMCID: PMC5917451 DOI: 10.1016/j.celrep.2018.03.091] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development.
Collapse
Affiliation(s)
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Alexander B H Henderson
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf (UKE), 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Luca Pinton
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Heather Steele-Stallard
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Ornella Cappellari
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Kim E Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Jamie S Mitchell
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Giulia E Tyzack
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Moustafa Khedr
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Weixin Wang
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Dominic J Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf (UKE), 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | | |
Collapse
|
183
|
Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, Zanotti S, Moretti M. Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 2018. [PMID: 29518415 DOI: 10.1016/j.addr.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle fibrosis represents the end stage consequence of different diseases, among which muscular dystrophies, leading to severe impairment of muscle functions. Muscle fibrosis involves the production of several growth factors, cytokines and proteolytic enzymes and is strictly associated to inflammatory processes. Moreover, fibrosis causes profound changes in tissue properties, including increased stiffness and density, lower pH and oxygenation. Up to now, there is no therapeutic approach able to counteract the fibrotic process and treatments directed against muscle pathologies are severely impaired by the harsh conditions of the fibrotic environment. The design of new therapeutics thus need innovative tools mimicking the obstacles posed by the fibrotic environment to their delivery. This review will critically discuss the role of in vivo and 3D in vitro models in this context and the characteristics that an ideal model should possess to help the translation from bench to bedside of new candidate anti-fibrotic agents.
Collapse
|
184
|
Low LA, Tagle DA. ‘You-on-a-chip’ for precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1456333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lucie A. Low
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
185
|
Young J, Margaron Y, Fernandes M, Duchemin-Pelletier E, Michaud J, Flaender M, Lorintiu O, Degot S, Poydenot P. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery. SLAS DISCOVERY 2018; 23:790-806. [PMID: 29498891 DOI: 10.1177/2472555218761102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.
Collapse
|
186
|
Sapoznik E, Niu G, Zhou Y, Prim PM, Criswell TL, Soker S. A real-time monitoring platform of myogenesis regulators using double fluorescent labeling. PLoS One 2018; 13:e0192654. [PMID: 29444187 PMCID: PMC5812636 DOI: 10.1371/journal.pone.0192654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
Real-time, quantitative measurement of muscle progenitor cell (myoblast) differentiation is an important tool for skeletal muscle research and identification of drugs that support skeletal muscle regeneration. While most quantitative tools rely on sacrificial approach, we developed a double fluorescent tagging approach, which allows for dynamic monitoring of myoblast differentiation through assessment of fusion index and nuclei count. Fluorescent tagging of both the cell cytoplasm and nucleus enables monitoring of cell fusion and the formation of new myotube fibers, similar to immunostaining results. This labeling approach allowed monitoring the effects of Myf5 overexpression, TNFα, and Wnt agonist on myoblast differentiation. It also enabled testing the effects of surface coating on the fusion levels of scaffold-seeded myoblasts. The double fluorescent labeling of myoblasts is a promising technique to visualize even minor changes in myogenesis of myoblasts in order to support applications such as tissue engineering and drug screening.
Collapse
Affiliation(s)
- Etai Sapoznik
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Guoguang Niu
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Peter M. Prim
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Tracy L. Criswell
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
187
|
Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery. PLoS One 2018; 13:e0191497. [PMID: 29352303 PMCID: PMC5774802 DOI: 10.1371/journal.pone.0191497] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacques Paul Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Burns Ghoshhajra
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Harald Christian Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
188
|
Rao L, Qian Y, Khodabukus A, Ribar T, Bursac N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 2018; 9:126. [PMID: 29317646 PMCID: PMC5760720 DOI: 10.1038/s41467-017-02636-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022] Open
Abstract
The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Here, we derive induced myogenic progenitor cells (iMPCs) via transient overexpression of Pax7 in paraxial mesoderm cells differentiated from hPSCs. In 2D culture, iMPCs readily differentiate into spontaneously contracting multinucleated myotubes and a pool of satellite-like cells endogenously expressing Pax7. Under optimized 3D culture conditions, iMPCs derived from multiple hPSC lines reproducibly form functional skeletal muscle tissues (iSKM bundles) containing aligned multi-nucleated myotubes that exhibit positive force-frequency relationship and robust calcium transients in response to electrical or acetylcholine stimulation. During 1-month culture, the iSKM bundles undergo increased structural and molecular maturation, hypertrophy, and force generation. When implanted into dorsal window chamber or hindlimb muscle in immunocompromised mice, the iSKM bundles survive, progressively vascularize, and maintain functionality. iSKM bundles hold promise as a microphysiological platform for human muscle disease modeling and drug development.
Collapse
Affiliation(s)
- Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ying Qian
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Thomas Ribar
- Duke iPSC Shared Resource Facility, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
189
|
Jackman CP, Ganapathi AM, Asfour H, Qian Y, Allen BW, Li Y, Bursac N. Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials 2018; 159:48-58. [PMID: 29309993 DOI: 10.1016/j.biomaterials.2018.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 12/22/2022]
Abstract
Functional cardiac tissue engineering holds promise as a candidate therapy for myocardial infarction and heart failure. Generation of "strong-contracting and fast-conducting" cardiac tissue patches capable of electromechanical coupling with host myocardium could allow efficient improvement of heart function without increased arrhythmogenic risks. Towards that goal, we engineered highly functional 1 cm × 1 cm cardiac tissue patches made of neonatal rat ventricular cells which after 2 weeks of culture exhibited force of contraction of 18.0 ± 1.4 mN, conduction velocity (CV) of 32.3 ± 1.8 cm/s, and sustained chronic activation when paced at rates as high as 8.7 ± 0.8 Hz. Patches transduced with genetically-encoded calcium indicator (GCaMP6) were implanted onto adult rat ventricles and after 4-6 weeks assessed for action potential conduction and electrical integration by two-camera optical mapping of GCaMP6-reported Ca2+ transients in the patch and RH237-reported action potentials in the recipient heart. Of the 13 implanted patches, 11 (85%) engrafted, maintained structural integrity, and conducted action potentials with average CVs and Ca2+ transient durations comparable to those before implantation. Despite preserved graft electrical properties, no anterograde or retrograde conduction could be induced between the patch and host cardiomyocytes, indicating lack of electrical integration. Electrical properties of the underlying myocardium were not changed by the engrafted patch. From immunostaining analyses, implanted patches were highly vascularized and expressed abundant electromechanical junctions, but remained separated from the epicardium by a non-myocyte layer. In summary, our studies demonstrate generation of highly functional cardiac tissue patches that can robustly engraft on the epicardial surface, vascularize, and maintain electrical function, but do not couple with host tissue. The lack of graft-host electrical integration is therefore a critical obstacle to development of efficient tissue engineering therapies for heart repair.
Collapse
Affiliation(s)
| | - Asvin M Ganapathi
- Duke University Medical Center, Department of General Surgery, Durham, NC, USA
| | - Huda Asfour
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Ying Qian
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Brian W Allen
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Yanzhen Li
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Nenad Bursac
- Duke University, Department of Biomedical Engineering, Durham, NC, USA.
| |
Collapse
|
190
|
Nawroth J, Rogal J, Weiss M, Brucker SY, Loskill P. Organ-on-a-Chip Systems for Women's Health Applications. Adv Healthc Mater 2018; 7. [PMID: 28985032 DOI: 10.1002/adhm.201700550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Biomedical research, for a long time, has paid little attention to the influence of sex in many areas of study, ranging from molecular and cellular biology to animal models and clinical studies on human subjects. Many studies solely rely on male cells/tissues/animals/humans, although there are profound differences in male and female physiology, which can significantly impact disease mechanisms, toxicity of compounds, and efficacy of pharmaceuticals. In vitro systems have been traditionally very limited in their capacity to recapitulate female-specific physiology and anatomy such as dynamic sex-hormone levels and the complex interdependencies of female reproductive tract organs. However, the advent of microphysiological organ-on-a-chip systems, which attempt to recreate the 3D structure and function of human organs, now gives researchers the opportunity to integrate cells and tissues from a variety of individuals. Moreover, adding a dynamic flow environment allows mimicking endocrine signaling during the menstrual cycle and pregnancy, as well as providing a controlled microfluidic environment for pharmacokinetic modeling. This review gives an introduction into preclinical and clinical research on women's health and discusses where organ-on-a-chip systems are already utilized or have the potential to deliver new insights and enable entirely new types of studies.
Collapse
Affiliation(s)
| | - Julia Rogal
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| | - Martin Weiss
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Peter Loskill
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| |
Collapse
|
191
|
Li EW, McKee-Muir OC, Gilbert PM. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol 2018; 126:125-176. [DOI: 10.1016/bs.ctdb.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
192
|
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface 2018; 15:20170380. [PMID: 29343633 PMCID: PMC5805959 DOI: 10.1098/rsif.2017.0380] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
193
|
Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
194
|
Jodat YA, Kang MG, Kiaee K, Kim GJ, Martinez AFH, Rosenkranz A, Bae H, Shin SR. Human-Derived Organ-on-a-Chip for Personalized Drug Development. Curr Pharm Des 2018; 24:5471-5486. [PMID: 30854951 PMCID: PMC6587585 DOI: 10.2174/1381612825666190308150055] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
To reduce the required capital and time investment in the development of new pharmaceutical agents, there is an urgent need for preclinical drug testing models that are predictive of drug response in human tissues or organs. Despite tremendous advancements and rigorous multistage screening of drug candidates involving computational models, traditional cell culture platforms, animal models and most recently humanized animals, there is still a large deficit in our ability to predict drug response in patient groups and overall attrition rates from phase 1 through phase 4 of clinical studies remain well above 90%. Organ-on-a-chip (OOC) platforms have proven potential in providing tremendous flexibility and robustness in drug screening and development by employing engineering techniques and materials. More importantly, in recent years, there is a clear upward trend in studies that utilize human-induced pluripotent stem cell (hiPSC) to develop personalized tissue or organ models. Additionally, integrated multiple organs on the single chip with increasingly more sophisticated representation of absorption, distribution, metabolism, excretion and toxicity (ADMET) process are being utilized to better understand drug interaction mechanisms in the human body and thus showing great potential to better predict drug efficacy and safety. In this review, we summarize these advances, highlighting studies that took the next step to clinical trials and research areas with the utmost potential and discuss the role of the OOCs in the overall drug discovery process at a preclinical and clinical stage, as well as outline remaining challenges.
Collapse
Affiliation(s)
- Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States
- Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey, 07030, United States
| | - Min G Kang
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Korea
| | - Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States
- Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey, 07030, United States
| | - Gyeong J Kim
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Korea
| | - Angel F H Martinez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States
- ALPHA Medical Leadership Program, Anahuac University, School of Medicine, Mexico
| | - Aliza Rosenkranz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technololgy Institute, Konkuk University, Seoul, 05029, Korea
| | - Su R Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| |
Collapse
|
195
|
Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol 2017; 217:39-50. [PMID: 29263081 PMCID: PMC5748992 DOI: 10.1083/jcb.201709054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research.
Collapse
Affiliation(s)
- Jennifer L Hu
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Michael E Todhunter
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Mark A LaBarge
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA .,National Science Foundation Center for Cellular Construction, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
196
|
Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017; 8:1825. [PMID: 29184059 PMCID: PMC5705709 DOI: 10.1038/s41467-017-01946-x] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Despite increased use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for drug development and disease modeling studies, methods to generate large, functional heart tissues for human therapy are lacking. Here we present a “Cardiopatch” platform for 3D culture and maturation of hiPSC-CMs that after 5 weeks of differentiation show robust electromechanical coupling, consistent H-zones, I-bands, and evidence for T-tubules and M-bands. Cardiopatch maturation markers and functional output increase during culture, approaching values of adult myocardium. Cardiopatches can be scaled up to clinically relevant dimensions, while preserving spatially uniform properties with high conduction velocities and contractile stresses. Within window chambers in nude mice, cardiopatches undergo vascularization by host vessels and continue to fire Ca2+ transients. When implanted onto rat hearts, cardiopatches robustly engraft, maintain pre-implantation electrical function, and do not increase the incidence of arrhythmias. These studies provide enabling technology for future use of hiPSC-CM tissues in human heart repair. Cardiomyocytes derived from human induced pluripotent stem cells could be used to generate cardiac tissues for regenerative purposes. Here the authors describe a method to obtain large bioengineered heart tissues showing advanced maturation, functional features and engraftment capacity.
Collapse
|
197
|
Abstract
Hydrogels mimic many of the physical properties of soft tissue and are widely used biomaterials for tissue engineering and regenerative medicine. Synthetic hydrogels have been developed to recapitulate many of the healthy and diseased states of native tissues and can be used as a cell scaffold to study the effect of matricellular interactions in vitro. However, these matrices often fail to capture the dynamic and heterogenous nature of the in vivo environment, which varies spatially and during events such as development and disease. To address this deficiency, a variety of manufacturing and processing techniques are being adapted to the biomaterials setting. Among these, photochemistry is particularly well suited because these reactions can be performed in precise three-dimensional space and at specific moments in time. This spatiotemporal control over chemical reactions can also be performed over a range of cell- and tissue-relevant length scales with reactions that proceed efficiently and harmlessly at ambient conditions. This review will focus on the use of photochemical reactions to create dynamic hydrogel environments, and how these dynamic environments are being used to investigate and direct cell behavior.
Collapse
Affiliation(s)
- Tobin E Brown
- Department of Chemical and Biological Engineering, University of Colorado Boulder, USA.
| | | |
Collapse
|
198
|
Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. LAB ON A CHIP 2017; 17:3447-3461. [PMID: 28871305 PMCID: PMC6296378 DOI: 10.1039/c7lc00512a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered skeletal muscle tissues can be used for in vitro studies that require physiologically relevant models of native tissues. Herein, we describe the development of a three-dimensional (3D) skeletal muscle tissue that recapitulates the architectural and structural complexities of muscle within a microfluidic device. Using a 3D photo-patterning approach, we spatially confined a cell-laden gelatin network around two bio-inert hydrogel pillars, which induce uniaxial alignment of the cells and serve as anchoring sites for the encapsulated cells and muscle tissues as they form and mature. We have characterized the tissue morphology and strain profile during differentiation of the cells and skeletal muscle tissue formation by using a combination of fluorescence microscopy and computational tools. The time-dependent strain profile suggests the existence of individual cells within the gelatin matrix, which differentiated to form a multinucleated skeletal muscle tissue bundle as a function of culture time. We have also developed a method to calculate the passive tension generated by the engineered muscle tissue bundles suspended between two pillars. Finally, as a proof-of-concept we have examined the applicability of the skeletal muscle-on-chip system as a screening platform and in vitro muscle injury model. We studied the dose-dependent effect of cardiotoxin on the engineered muscle tissue architecture and its subsequent effect on the passive tension. This simple yet effective tool can be appealing for studies that necessitate the analysis of skeletal muscle structure and function, including preclinical drug discovery and development.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.
| | | | | |
Collapse
|
199
|
Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. LAB ON A CHIP 2017; 17:3026-3036. [PMID: 28795174 PMCID: PMC5621042 DOI: 10.1039/c7lc00462a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
Collapse
Affiliation(s)
- L A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
200
|
Abstract
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.
Collapse
|