1951
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
1952
|
Blank T, Prinz M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 2017; 65:1397-1406. [PMID: 28519900 DOI: 10.1002/glia.23154] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
Abstract
Type I interferons (IFNs), IFN-α and IFN-β, represent the major effector cytokines of the host immune response against viruses and other intracellular pathogens. These cytokines are produced via activation of numerous pattern recognition receptors, including the Toll-like receptor signaling network, retinoic acid-inducible gene-1 (RIG-1), melanoma differentiation-associated protein-5 (MDA-5) and interferon gamma-inducible protein-16 (IFI-16). Whilst the contribution of type I IFNs to peripheral immunity is well documented, they can also be produced by almost every cell in the central nervous system (CNS). Furthermore, IFNs can reach the CNS from the periphery to modulate the function of not only microglia and astrocytes, but also neurons and oligodendrocytes, with major consequences for cognition and behavior. Given the pleiotropic nature of type I IFNs, it is critical to determine their exact cellular impact. Inappropriate upregulation of type I IFN signaling and interferon-stimulated gene expression have been linked to several CNS diseases termed "interferonopathies" including Aicardi-Goutieres syndrome and ubiquitin specific peptidase 18 (USP18)-deficiency. In contrast, in the CNS of mice with virus-induced neuroinflammation, type I IFNs can limit production of other cytokines to prevent potential damage associated with chronic cytokine expression. This capacity of type I IFNs could also explain the therapeutic benefits of exogenous type I IFN in chronic CNS autoimmune diseases such as multiple sclerosis. In this review we will highlight the importance of a well-balanced level of type I IFNs for healthy brain physiology, and to what extent dysregulation of this cytokine system can result in brain 'interferonopathies'.
Collapse
Affiliation(s)
- Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
1953
|
Sakuma S, D'Angelo MA. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 2017; 68:72-84. [PMID: 28506892 DOI: 10.1016/j.semcdb.2017.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
The study of the Nuclear Pore Complex (NPC), the proteins that compose it (nucleoporins), and the nucleocytoplasmic transport that it controls have revealed an unexpected layer to pathogenic disease onset and progression. Recent advances in the study of the regulation of NPC composition and function suggest that the precise control of this structure is necessary to prevent diseases from arising or progressing. Here we discuss the role of nucleoporins in a diverse set of diseases, many of which directly or indirectly increase in occurrence and severity as we age, and often shorten the human lifespan. NPC biology has been shown to play a direct role in these diseases and therefore in the process of healthy aging.
Collapse
Affiliation(s)
- Stephen Sakuma
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
1954
|
Abstract
PD-L1 and PD-L2 are ligands for the PD-1 immune inhibiting checkpoint that can be induced in tumors by interferon exposure, leading to immune evasion. This process is important for immunotherapy based on PD-1 blockade. We examined the specific molecules involved in interferon-induced signaling that regulates PD-L1 and PD-L2 expression in melanoma cells. These studies revealed that the interferon-gamma-JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis primarily regulates PD-L1 expression, with IRF1 binding to its promoter. PD-L2 responded equally to interferon beta and gamma and is regulated through both IRF1 and STAT3, which bind to the PD-L2 promoter. Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors. Therefore, these studies map the signaling pathway of interferon-gamma-inducible PD-1 ligand expression.
Collapse
|
1955
|
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, Parisi G, Saus CP, Torrejon DY, Graeber TG, Comin-Anduix B, Hu-Lieskovan S, Damoiseaux R, Lo RS, Ribas A. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep 2017; 19:1189-1201. [PMID: 28494868 PMCID: PMC6420824 DOI: 10.1016/j.celrep.2017.04.031] [Citation(s) in RCA: 1280] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/23/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
PD-L1 and PD-L2 are ligands for the PD-1 immune inhibiting checkpoint that can be induced in tumors by interferon exposure, leading to immune evasion. This process is important for immunotherapy based on PD-1 blockade. We examined the specific molecules involved in interferon-induced signaling that regulates PD-L1 and PD-L2 expression in melanoma cells. These studies revealed that the interferon-gamma-JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis primarily regulates PD-L1 expression, with IRF1 binding to its promoter. PD-L2 responded equally to interferon beta and gamma and is regulated through both IRF1 and STAT3, which bind to the PD-L2 promoter. Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors. Therefore, these studies map the signaling pathway of interferon-gamma-inducible PD-1 ligand expression.
Collapse
Affiliation(s)
- Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Daniel Sanghoon Shin
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Blanca Homet Moreno
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Division of Translational Oncology, Carlos III Health Institute, 28029 Madrid, Spain
| | - Justin Saco
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Helena Escuin-Ordinas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Gabriel Abril Rodriguez
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Lu Sun
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Statistics Core, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Cristina Puig Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Davis Y Torrejon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Begonya Comin-Anduix
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
1956
|
Rackov G, Shokri R, De Mon MÁ, Martínez-A C, Balomenos D. The Role of IFN-β during the Course of Sepsis Progression and Its Therapeutic Potential. Front Immunol 2017; 8:493. [PMID: 28533774 PMCID: PMC5420561 DOI: 10.3389/fimmu.2017.00493] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a complex biphasic syndrome characterized by both pro- and anti-inflammatory immune states. Whereas early sepsis mortality is caused by an acute, deleterious pro-inflammatory response, the second sepsis phase is governed by acute immunosuppression, which predisposes patients to long-term risk for life-threatening secondary infections. Despite extensive basic research and clinical trials, there is to date no specific therapy for sepsis, and mortality rates are on the rise. Although IFN-β is one of the most-studied cytokines, its diverse effects are not fully understood. Depending on the disease or type of infection, it can have beneficial or detrimental effects. As IFN-β has been used successfully to treat diverse diseases, emphasis has been placed on understanding the role of IFN-β in sepsis. Analyses of mouse models of septic shock attribute a pro-inflammatory role to IFN-β in sepsis development. As anti-inflammatory treatments in humans with antibodies to TNF-α or IL1-β resulted disappointing, cytokine modulation approaches were discouraged and neutralization of IFN-β has not been pursued for sepsis treatment. In the case of patients with delayed sepsis and immunosuppression, there is a debate as to whether the use of specific cytokines would restore the deactivated immune response. Recent reports show an association of low IFN-β levels with the hyporesponsive state of monocytes from sepsis patients and after endotoxin tolerance induction. These data, discussed here, project a role for IFN-β in restoring monocyte function and reversing immunosuppression, and suggest IFN-β-based additive immunomodulatory therapy. The dichotomy in putative therapeutic approaches, involving reduction or an increase in IFN-β levels, mirrors the contrasting nature of the early hyperinflammatory state and the delayed immunosuppression phase.
Collapse
Affiliation(s)
- Gorjana Rackov
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain.,IMDEA Nanoscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rahman Shokri
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| | - Melchor Álvarez De Mon
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Principe de Asturias, Alcalá de Henares, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| | - Dimitrios Balomenos
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| |
Collapse
|
1957
|
Zhu Q, Kanneganti TD. Cutting Edge: Distinct Regulatory Mechanisms Control Proinflammatory Cytokines IL-18 and IL-1β. THE JOURNAL OF IMMUNOLOGY 2017; 198:4210-4215. [PMID: 28468974 DOI: 10.4049/jimmunol.1700352] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/09/2017] [Indexed: 01/07/2023]
Abstract
Interleukin-18 and IL-1β, which are cytokines of the IL-1 family, are synthesized as precursor proteins and activated by the inflammasome via proteolytic processing. IL-1β is only induced in response to inflammatory stimuli, but IL-18 is constitutively expressed. However, how IL-18 and IL-1β expression is regulated by different inflammatory signals remains poorly studied. In this study, we found that IL-18 and IL-1β are differentially regulated. Despite being constitutively expressed, IL-18 expression was increased and sustained after stimulation of TLRs. In contrast, IL-1β was induced but not sustained after chronic treatment. Furthermore, type I IFN signaling was essential for induction of IL-18 and macrophages lacking type I IFN signaling were impaired in their ability to promote IL-18 induction. Thus, our findings reveal a fundamental difference in IL-18 and IL-1β regulation and uncover novel mechanisms that are relevant to the inflammatory settings where these proinflammatory cytokines play a critical role.
Collapse
Affiliation(s)
- Qifan Zhu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163
| | | |
Collapse
|
1958
|
Saleh D, Najjar M, Zelic M, Shah S, Nogusa S, Polykratis A, Paczosa MK, Gough PJ, Bertin J, Whalen M, Fitzgerald KA, Slavov N, Pasparakis M, Balachandran S, Kelliher M, Mecsas J, Degterev A. Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2017; 198:4435-4447. [PMID: 28461567 DOI: 10.4049/jimmunol.1601717] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
The innate immune response is a central element of the initial defense against bacterial and viral pathogens. Macrophages are key innate immune cells that upon encountering pathogen-associated molecular patterns respond by producing cytokines, including IFN-β. In this study, we identify a novel role for RIPK1 and RIPK3, a pair of homologous serine/threonine kinases previously implicated in the regulation of necroptosis and pathologic tissue injury, in directing IFN-β production in macrophages. Using genetic and pharmacologic tools, we show that catalytic activity of RIPK1 directs IFN-β synthesis induced by LPS in mice. Additionally, we report that RIPK1 kinase-dependent IFN-β production may be elicited in an analogous fashion using LPS in bone marrow-derived macrophages upon inhibition of caspases. Notably, this regulation requires kinase activities of both RIPK1 and RIPK3, but not the necroptosis effector protein, MLKL. Mechanistically, we provide evidence that necrosome-like RIPK1 and RIPK3 aggregates facilitate canonical TRIF-dependent IFN-β production downstream of the LPS receptor TLR4. Intriguingly, we also show that RIPK1 and RIPK3 kinase-dependent synthesis of IFN-β is markedly induced by avirulent strains of Gram-negative bacteria, Yersinia and Klebsiella, and less so by their wild-type counterparts. Overall, these observations identify unexpected roles for RIPK1 and RIPK3 kinases in the production of IFN-β during the host inflammatory responses to bacterial infection and suggest that the axis in which these kinases operate may represent a target for bacterial virulence factors.
Collapse
Affiliation(s)
- Danish Saleh
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111.,Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Malek Najjar
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Matija Zelic
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Saumil Shah
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Apostolos Polykratis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Michelle K Paczosa
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426
| | - Michael Whalen
- Department of Pediatric Critical Care Medicine, Neuroscience Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nikolai Slavov
- Department of Bioengineering and Biology, Northeastern University, Boston, MA 02115; and
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Alexei Degterev
- Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111; .,Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111.,Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
1959
|
Weiss E, Rautou PE, Fasseu M, Giabicani M, de Chambrun M, Wan J, Minsart C, Gustot T, Couvineau A, Maiwall R, Hurtado-Nedelec M, Pilard N, Lebrec D, Valla D, Durand F, de la Grange P, Monteiro RC, Paugam-Burtz C, Lotersztajn S, Moreau R. Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome. J Hepatol 2017; 66:930-941. [PMID: 28040548 DOI: 10.1016/j.jhep.2016.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS In immune cells, constitutively and acutely produced type I interferons (IFNs) engage autocrine/paracrine signaling pathways to induce IFN-stimulated genes (ISGs). Enhanced activity of IFN signaling pathways can cause excessive inflammation and tissue damage. We aimed to investigate ISG expression in systemic immune cells from patients with decompensated alcoholic cirrhosis, and its association with outcome. METHODS Peripheral blood mononuclear cells (PBMCs) from patients and heathy subjects were stimulated or not with lipopolysaccharide (LPS, an IFN inducer) or increasing concentrations of IFN-β. The expression of 48 ISGs and ten "non-ISG" inflammatory cytokines were analyzed using RT-qPCR. RESULTS We developed an 8-ISG signature (IFN score) assessing ISG expression. LPS-stimulated ISG induction was significantly lower in PBMCs from patients with cirrhosis compared to healthy controls. Non-ISGs, however, showed higher induction. Lower induction of ISGs by LPS was not due to decreased IFN production by cirrhotic PBMCs or neutralization of secreted IFN, but a defective PBMC response to IFN. This defect was at least in part due to decreased constitutive ISG expression. Patients with the higher baseline IFN scores and ISG levels had the higher risk of death. At baseline, "non-ISG" cytokines did not correlate with outcome. CONCLUSIONS PBMCs from patients with decompensated alcoholic cirrhosis exhibit downregulated ISG expression, both constitutively and after an acute stimulus. Our finding that higher baseline PBMC ISG expression was associated with higher risk of death, suggests that constitutive ISG expression in systemic immune cells contributes to the prognosis of alcoholic cirrhosis. LAY SUMMARY Enhanced activity of IFN signaling pathways can cause excessive inflammation and tissue damage. Here we show that peripheral blood mononuclear cells (PBMCs) from patients with alcoholic cirrhosis exhibit a defect in interferon-stimulated genes (ISGs). We found that higher baseline ISG expression in PBMCs was associated with higher risk of death, revealing a probable contribution of ISG expression in immune cells to the outcome of alcoholic cirrhosis.
Collapse
Affiliation(s)
- Emmanuel Weiss
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France; Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Pierre-Emmanuel Rautou
- Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; INSERM, U970, Paris Cardiovascular Research Center - PARCC, Paris, France; UMR S_970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Magali Fasseu
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mikhael Giabicani
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marc de Chambrun
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - JingHong Wan
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Charlotte Minsart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Thierry Gustot
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium; Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Couvineau
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Science, New Delhi, India
| | - Margarita Hurtado-Nedelec
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Service d'Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Nathalie Pilard
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Didier Lebrec
- Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Dominique Valla
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - François Durand
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | | | - Renato C Monteiro
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France; Service d'Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Catherine Paugam-Burtz
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Sophie Lotersztajn
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France
| | - Richard Moreau
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy and Paris, France; UMR S_1149, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Excellence Inflamex, ComUE Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France.
| |
Collapse
|
1960
|
Kim JH, Park ME, Nikapitiya C, Kim TH, Uddin MB, Lee HC, Kim E, Ma JY, Jung JU, Kim CJ, Lee JS. FAS-associated factor-1 positively regulates type I interferon response to RNA virus infection by targeting NLRX1. PLoS Pathog 2017; 13:e1006398. [PMID: 28542569 PMCID: PMC5456407 DOI: 10.1371/journal.ppat.1006398] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
FAS-associated factor-1 (FAF1) is a component of the death-inducing signaling complex involved in Fas-mediated apoptosis. It regulates NF-κB activity, ubiquitination, and proteasomal degradation. Here, we found that FAF1 positively regulates the type I interferon pathway. FAF1gt/gt mice, which deficient in FAF1, and FAF1 knockdown immune cells were highly susceptible to RNA virus infection and showed low levels of inflammatory cytokines and type I interferon (IFN) production. FAF1 was bound competitively to NLRX1 and positively regulated type I IFN signaling by interfering with the interaction between NLRX1 and MAVS, thereby freeing MAVS to bind RIG-I, which switched on the MAVS-RIG-I-mediated antiviral signaling cascade. These results highlight a critical role of FAF1 in antiviral responses against RNA virus infection.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Eun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eunhee Kim
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, California, United States of America
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
1961
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
1962
|
Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol 2017; 35:337-370. [PMID: 28142321 PMCID: PMC5937945 DOI: 10.1146/annurev-immunol-051116-052225] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.
Collapse
Affiliation(s)
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030;
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, Texas 75204; , ,
| |
Collapse
|
1963
|
Pervolaraki K, Stanifer ML, Münchau S, Renn LA, Albrecht D, Kurzhals S, Senís E, Grimm D, Schröder-Braunstein J, Rabin RL, Boulant S. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut. Front Immunol 2017; 8:459. [PMID: 28484457 PMCID: PMC5399069 DOI: 10.3389/fimmu.2017.00459] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.
Collapse
Affiliation(s)
- Kalliopi Pervolaraki
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Münchau
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lynnsey A Renn
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Dorothee Albrecht
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kurzhals
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elena Senís
- Department of Infectious Diseases, Virology, BioQuant, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, BioQuant, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
1964
|
Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, Tsai S, Schroer SA, Park YJ, Chng MHY, Shen L, D’Angelo JA, Horton P, Chapman WC, Brockmeier D, Woo M, Engleman EG, Adeyi O, Hirano N, Jin T, Gehring AJ, Winer S, Winer DA. Type I Interferon Responses Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci Immunol 2017; 2:eaai7616. [PMID: 28567448 PMCID: PMC5447456 DOI: 10.1126/sciimmunol.aai7616] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-related insulin resistance is driven by low-grade chronic inflammation of metabolic tissues. In the liver, non-alcoholic fatty liver disease (NAFLD) is associated with hepatic insulin resistance and systemic glucose dysregulation. However, the immunological factors supporting these processes are poorly understood. We found that the liver accumulates pathogenic CD8+ T cell subsets which control hepatic insulin sensitivity and gluconeogenesis during diet-induced obesity in mice. In a cohort of human patients, CD8+ T cells represent a dominant intrahepatic immune cell population which links to glucose dysregulation. Accumulation and activation of these cells are largely supported by type I interferon (IFN-I) responses in the liver. Livers from obese mice upregulate critical interferon regulatory factors (IRFs), interferon stimulatory genes (ISGs), and IFNα protein, while IFNαR1-/- mice, or CD8-specific IFNαR1-/- chimeric mice are protected from disease. IFNαR1 inhibitors improve metabolic parameters in mice, while CD8+ T cells and IFN-I responses correlate with NAFLD activity in human patients. Thus, IFN-I responses represent a central immunological axis that governs intrahepatic T cell pathogenicity during metabolic disease.
Collapse
Affiliation(s)
- Magar Ghazarian
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Xavier S. Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mark K. Nøhr
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Helen Luck
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Kejing Zeng
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Helena Lei
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stephanie A. Schroer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yoo Jin Park
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Melissa Hui Yen Chng
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - June Ann D’Angelo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Peter Horton
- Methodist University Hospital Transplant Institute, Memphis, TN 38104, USA
- Division of Abdominal Transplant, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - William C. Chapman
- Division of Abdominal Transplant, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Minna Woo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Oyedele Adeyi
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tianru Jin
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Adam J. Gehring
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
1965
|
Thaney VE, O'Neill AM, Hoefer MM, Maung R, Sanchez AB, Kaul M. IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury. Sci Rep 2017; 7:46514. [PMID: 28425451 PMCID: PMC5397848 DOI: 10.1038/srep46514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Graduate School of Biomedical Sciences, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| |
Collapse
|
1966
|
Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz EJHJ, Lebbink RJ. EBV MicroRNA BART16 Suppresses Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2017; 198:4062-4073. [PMID: 28416598 DOI: 10.4049/jimmunol.1501605] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.
Collapse
Affiliation(s)
- Marjolein J G Hooykaas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Dik van Leenen
- Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 EA Utrecht, the Netherlands
| | - Maaike E Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
1967
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
1968
|
Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, Kim SM, Discepolo V, Pruijssers AJ, Ernest JD, Iskarpatyoti JA, Costes LMM, Lawrence I, Palanski BA, Varma M, Zurenski MA, Khomandiak S, McAllister N, Aravamudhan P, Boehme KW, Hu F, Samsom JN, Reinecker HC, Kupfer SS, Guandalini S, Semrad CE, Abadie V, Khosla C, Barreiro LB, Xavier RJ, Ng A, Dermody TS, Jabri B. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017; 356:44-50. [PMID: 28386004 PMCID: PMC5506690 DOI: 10.1126/science.aah5298] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.
Collapse
Affiliation(s)
- Romain Bouziat
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer E Stencel-Baerenwald
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mine Ikizler
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Marlies Meisel
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, and CeInGe-Biotecnologie Avanzate, Naples, Italy
| | - Andrea J Pruijssers
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Jason A Iskarpatyoti
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Léa M M Costes
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ian Lawrence
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mukund Varma
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew A Zurenski
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Solomiia Khomandiak
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicole McAllister
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavithra Aravamudhan
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karl W Boehme
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fengling Hu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hans-Christian Reinecker
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Stefano Guandalini
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Carol E Semrad
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Valérie Abadie
- Department of Microbiology, Infectiology, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, California, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Ramnik J Xavier
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aylwin Ng
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Terence S Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
1969
|
Musella M, Manic G, De Maria R, Vitale I, Sistigu A. Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncoimmunology 2017. [PMID: 28638743 DOI: 10.1080/2162402x.2017.1314424] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If there is a great new hope in the treatment of cancer, the immune system is it. Innate and adaptive immunity either promote or attenuate tumorigenesis and so can have opposing effects on the therapeutic outcome. Originally described as potent antivirals, Type-I interferons (IFNs) were quickly recognized as central coordinators of tumor-immune system interactions. Type-I-IFNs are produced by, and act on, both tumor and immune cells being either host-protecting or tumor-promoting. Here, we discuss Type-I-IFNs in infectious and cancer diseases highlighting their dichotomous role and raising the importance to deeply understand the underlying mechanisms so to reshape the way we can exploit Type-I-IFNs therapeutically.
Collapse
Affiliation(s)
- Martina Musella
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Ruggero De Maria
- Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
1970
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
1971
|
Dallari S, Macal M, Loureiro ME, Jo Y, Swanson L, Hesser C, Ghosh P, Zuniga EI. Src family kinases Fyn and Lyn are constitutively activated and mediate plasmacytoid dendritic cell responses. Nat Commun 2017; 8:14830. [PMID: 28368000 PMCID: PMC5382270 DOI: 10.1038/ncomms14830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are type I interferon-producing cells with critical functions in a number of human illnesses; however, their molecular regulation is incompletely understood. Here we show the role of Src family kinases (SFK) in mouse and human pDCs. pDCs express Fyn and Lyn and their activating residues are phosphorylated both before and after Toll-like receptor (TLR) stimulation. Fyn or Lyn genetic ablation as well as treatment with SFK inhibitors ablate pDC (but not conventional DC) responses both in vitro and in vivo. Inhibition of SFK activity not only alters TLR-ligand localization and inhibits downstream signalling events, but, independent of ex-vivo TLR stimulation, also affects constitutive phosphorylation of BCAP, an adaptor protein bridging PI3K and TLR pathways. Our data identify Fyn and Lyn as important factors that promote pDC responses, describe the mechanisms involved and highlight a tonic SFK-mediated signalling that precedes pathogen encounter, raising the possibility that small molecules targeting SFKs could modulate pDC responses in human diseases.
Collapse
Affiliation(s)
- S Dallari
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - M Macal
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - M E Loureiro
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - Y Jo
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - L Swanson
- Departments of Medicine and Cellular and Molecular Medicine, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - C Hesser
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - P Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| | - E I Zuniga
- Molecular Biology Section, Division of Biological Sciences, University of California, 9500 Gilman Dr La Jolla, San Diego, California 92093, USA
| |
Collapse
|
1972
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
1973
|
Abstract
The human gut is in constant complex interaction with the external environment. Although much is understood about the composition and function of the microbiota, much remains to be learnt about the mechanisms by which these organisms interact with the immune system in health and disease. Type 1 interferon (T1IFN), a ubiquitous and pleiotropic family of cytokines, is a critical mediator of the response to viral, bacterial, and other antigens sampled in the intestine. Although inflammation is enhanced in mouse model of colitis when T1IFN signaling is lost, the action of T1IFN is context specific and can be pro- or anti-inflammatory. In humans, T1IFN has been used to treat inflammatory diseases, including multiple sclerosis and inflammatory bowel disease but intestinal inflammation can also develop after the administration of T1IFN. Recent findings indicate that "tonic" or "endogenous" T1IFN, induced by signals from the commensal microbiota, modulates the local signaling environment to prime the intestinal mucosal immune system to determine later responses to pathogens and commensal organisms. This review will summarize the complex immunological effects of T1IFN and recent the role of T1IFN as a mediator between the microbiota and the mucosal immune system, highlighting human data wherever possible. It will discuss what we can learn from clinical experiences with T1IFN and how the T1IFN pathway may be manipulated in the future to maintain mucosal homeostasis.
Collapse
|
1974
|
Evan GI, Hah N, Littlewood TD, Sodir NM, Campos T, Downes M, Evans RM. Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clin Cancer Res 2017; 23:1647-1655. [PMID: 28373363 PMCID: PMC5381729 DOI: 10.1158/1078-0432.ccr-16-3275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
1975
|
Müller L, Aigner P, Stoiber D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Front Immunol 2017; 8:304. [PMID: 28408907 PMCID: PMC5374157 DOI: 10.3389/fimmu.2017.00304] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/03/2017] [Indexed: 01/05/2023] Open
Abstract
Type I interferons (IFNs) are known to mediate antitumor effects against several tumor types and have therefore been commonly used in clinical anticancer treatment. However, how IFN signaling exerts its beneficial effects is only partially understood. The clinically relevant activity of type I IFNs has been mainly attributed to their role in tumor immune surveillance. Different mechanisms have been postulated to explain how type I IFNs stimulate the immune system. On the one hand, they modulate innate immune cell subsets such as natural killer (NK) cells. On the other hand, type I IFNs also influence adaptive immune responses. Here, we review evidence for the impact of type I IFNs on immune surveillance against cancer and highlight the role of NK cells therein.
Collapse
Affiliation(s)
- Lena Müller
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Petra Aigner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
1976
|
Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal 2017; 15:13. [PMID: 28359286 PMCID: PMC5374693 DOI: 10.1186/s12964-017-0168-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs on various tumor types and discuss the potential of new treatment options and combinations.
Collapse
Affiliation(s)
- Florian Wolff
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Leisch
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria.
| |
Collapse
|
1977
|
Xiao Y, Zou Q, Xie X, Liu T, Li HS, Jie Z, Jin J, Hu H, Manyam G, Zhang L, Cheng X, Wang H, Marie I, Levy DE, Watowich SS, Sun SC. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. J Exp Med 2017; 214:1493-1507. [PMID: 28356390 PMCID: PMC5413337 DOI: 10.1084/jem.20161524] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/18/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance.
Collapse
Affiliation(s)
- Yichuan Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.,Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Qiang Zou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Xiaoping Xie
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Ting Liu
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030.,State Key Laboratory of Biotherapy, West China Hospital, Si-Chuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Haiyan S Li
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Zuliang Jie
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Jin Jin
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030.,Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongbo Hu
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030.,State Key Laboratory of Biotherapy, West China Hospital, Si-Chuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030.,Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45220
| | - Xuhong Cheng
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Hui Wang
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Isabelle Marie
- Department of Pathology, NYU School of Medicine, New York, NY 10016.,Department of Microbiology, NYU School of Medicine, New York, NY 10016.,NYU Cancer Institute, NYU School of Medicine, New York, NY 10016
| | - David E Levy
- Department of Pathology, NYU School of Medicine, New York, NY 10016
| | - Stephanie S Watowich
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030 .,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030
| |
Collapse
|
1978
|
Kanninen KM, White AR. Type-I interferons in Parkinson's disease: innate inflammatory response drives fate of neurons in model of degenerative brain disorder: An editorial comment on 'Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone'. J Neurochem 2017; 141:9-11. [PMID: 28332229 DOI: 10.1111/jnc.13983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 01/29/2017] [Accepted: 02/08/2017] [Indexed: 11/29/2022]
Abstract
Read the commented article 'Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone' on page 75.
Collapse
Affiliation(s)
- Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anthony R White
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
1979
|
IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus. J Invest Dermatol 2017; 137:1493-1500. [PMID: 28344062 DOI: 10.1016/j.jid.2017.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB+ pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage.
Collapse
|
1980
|
Cumberworth SL, Clark JJ, Kohl A, Donald CL. Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cell Microbiol 2017; 19. [PMID: 28273394 PMCID: PMC5413821 DOI: 10.1111/cmi.12737] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.
Collapse
Affiliation(s)
| | - Jordan J Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| |
Collapse
|
1981
|
Villarino AV, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18:374-384. [PMID: 28323260 PMCID: PMC11565648 DOI: 10.1038/ni.3691] [Citation(s) in RCA: 836] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
1982
|
A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival. mBio 2017; 8:mBio.00119-17. [PMID: 28325762 PMCID: PMC5362031 DOI: 10.1128/mbio.00119-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for the synthesis of the menaquinone precursor 1,4-dihydroxy-2-naphthoate (DHNA) in cytosolic survival. Together, these data begin to elucidate adaptations that allow cytosolic pathogens to survive in their intracellular niches.
Collapse
|
1983
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
1984
|
Hayward CPM, Liang M, Tasneem S, Soomro A, Waye JS, Paterson AD, Rivard GE, Wilson MD. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS One 2017; 12:e0173991. [PMID: 28301587 PMCID: PMC5354430 DOI: 10.1371/journal.pone.0173991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Collapse
Affiliation(s)
- Catherine P. M. Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
- * E-mail: (CPMH); (MDW)
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Asim Soomro
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Andrew D. Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalla Lana School of Public Health and Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Georges E. Rivard
- Hematology/ Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
- * E-mail: (CPMH); (MDW)
| |
Collapse
|
1985
|
Elias KM, Harvey RA, Hasselblatt KT, Seckl MJ, Berkowitz RS. Type I interferons modulate methotrexate resistance in gestational trophoblastic neoplasia. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/17/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kevin M. Elias
- New England Trophoblastic Disease Center; Division of Gynecologic Oncology; Department of Obstetrics, Gynecology and Reproductive Biology; Dana-Farber Cancer Institute; Harvard Medical School; Brigham and Women's Hospital; Boston MA USA
| | - Richard A. Harvey
- Charing Cross Gestational Trophoblastic Disease Centre; Charing Cross Campus of Imperial College Healthcare NHS Trust; London UK
| | - Kathleen T. Hasselblatt
- New England Trophoblastic Disease Center; Division of Gynecologic Oncology; Department of Obstetrics, Gynecology and Reproductive Biology; Dana-Farber Cancer Institute; Harvard Medical School; Brigham and Women's Hospital; Boston MA USA
| | - Michael J. Seckl
- Charing Cross Gestational Trophoblastic Disease Centre; Charing Cross Campus of Imperial College Healthcare NHS Trust; London UK
- Lung Cancer Biology Group; Division of Medicine; Hammersmith Campus of Imperial College School of Medicine; London UK
| | - Ross S. Berkowitz
- New England Trophoblastic Disease Center; Division of Gynecologic Oncology; Department of Obstetrics, Gynecology and Reproductive Biology; Dana-Farber Cancer Institute; Harvard Medical School; Brigham and Women's Hospital; Boston MA USA
| |
Collapse
|
1986
|
The core protein of a pestivirus protects the incoming virus against IFN-induced effectors. Sci Rep 2017; 7:44459. [PMID: 28290554 PMCID: PMC5349576 DOI: 10.1038/srep44459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
A multitude of viral factors - either inhibiting the induction of the IFN-system or its effectors – have been described to date. However, little is known about the role of structural components of the incoming virus particle in protecting against IFN-induced antiviral factors during or immediately after entry. In this study, we take advantage of the previously reported property of Classical swine fever virus (family Flaviviridae, genus Pestivirus) to tolerate a deletion of the core protein if a compensatory mutation is present in the NS3-helicase-domain (Vp447∆c). In contrast to the parental virus (Vp447), which causes a hemorrhagic-fever-like disease in pigs, Vp447∆c is avirulent in vivo. In comparison to Vp447, growth of Vp447∆c in primary porcine cells and IFN-treated porcine cell lines was reduced >20-fold. Also, primary porcine endothelial cells and IFN-pretreated porcine cell lines were 8–24 times less susceptible to Vp447∆c. This reduction of susceptibility could be partially reversed by loading Vp447∆c particles with different levels of core protein. In contrast, expression of core protein in the recipient cell did not have any beneficial effect. Therefore, a protective effect of core protein in the incoming virus particle against the products of IFN-stimulated genes could be demonstrated.
Collapse
|
1987
|
Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A, Amati B, Ostuni R, Natoli G. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol 2017; 18:530-540. [PMID: 28288101 PMCID: PMC5524187 DOI: 10.1038/ni.3710] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Macrophage stimulation with interferon-γ (IFN-γ) and interleukin 4 (IL-4) triggers distinct and opposing activation programs. During mixed infections or cancer macrophages are often exposed to both cytokines, but how these two programs influence each other remains unclear. We found that IFN-γ and IL-4 mutually inhibited epigenomic and transcriptional changes induced by each cytokine alone. Computational and functional analyses revealed the genomic bases for gene-specific cross-repression. For instance, while STAT1 and IRF1 motifs were associated with robust and IL-4-resistant responses to IFN-γ their coexistence with binding sites for auxiliary transcription factors such as AP-1, generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation in complex environmental conditions.
Collapse
Affiliation(s)
- Viviana Piccolo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessia Curina
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biomedical Sciences, School of Medicine, Humanitas University, Milan, Italy
| |
Collapse
|
1988
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
1989
|
Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, Xie Y, Chen S, Dong P, Chen L, Chen Z, Dai F, Wan X, Xiao P, Cao X, Liu Y, Wang Q. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun 2017; 8:14654. [PMID: 28287082 PMCID: PMC5355826 DOI: 10.1038/ncomms14654] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses can escape from host recognition by degradation of RIG-I or interference with the RIG-I signalling to establish persistent infections. However, the mechanisms by which host cells stabilize RIG-I protein for avoiding its degradation are largely unknown. We report here that, upon virus infection, the E3 ubiquitin ligase FBXW7 translocates from the nucleus into the cytoplasm and stabilizes RIG-I. FBXW7 interacts with SHP2 and mediates the degradation and ubiquitination of SHP2, thus disrupting the SHP2/c-Cbl complex, which mediates RIG-I degradation. When infected with VSV or influenza A virus, FBXW7 conditional knockout mice (Lysm+FBXW7f/f) show impaired antiviral immunity. FBXW7-deficient macrophages have decreased RIG-I protein levels and type-I interferon signalling. Furthermore, PBMCs from RSV-infected children have reduced FBXW7 mRNA levels. Our results identify FBXW7 as an important interacting partner for RIG-I. These findings provide insights into the function of FBXW7 in antiviral immunity and its related clinical significance. The innate immune response to many RNA viruses depends on recognition of viral RNA by RIG-I. Here the authors show that, upon virus infection, FBXW7 interacts with RIG-I and inhibits ubiquitin-mediated degradation of RIG-I, resulting in increased interferon signalling in vitro and in vivo.
Collapse
Affiliation(s)
- Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhenlu Chong
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanyuan Zhang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yiwei Xie
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Songchang Chen
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ping Dong
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luoquan Chen
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhimin Chen
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng Dai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaopeng Wan
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Peng Xiao
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.,National Key Laboratory of Medical Molecular Biology and Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
1990
|
Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol 2017; 8:259. [PMID: 28344581 PMCID: PMC5344902 DOI: 10.3389/fimmu.2017.00259] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Immune responses to lung infections must be tightly regulated in order to permit pathogen eradication while maintaining organ function. Exuberant or dysregulated inflammation can impair gas exchange and underlies many instances of lung disease. An important driver of inflammation in the lung is the interferon (IFN) response. Type I IFNs are antiviral cytokines that induce a large range of proteins that impair viral replication in infected cells. This cell-intrinsic action plays a crucial role in protecting the lungs from spread of respiratory viruses. However, type I IFNs have also recently been found to be central to the initiation of lung inflammatory responses, by inducing recruitment and activation of immune cells. This helps control virus burden but can cause detrimental immunopathology and contribute to disease severity. Furthermore, there is now increasing evidence that type I IFNs are not only induced after viral infections but also after infection with bacteria and fungi. The pro-inflammatory function of type I IFNs in the lung opens up the possibility of immune modulation directed against this antiviral cytokine family. In this review, the initiation and signaling of type I IFNs as well as their role in driving and maintaining lung inflammation will be discussed.
Collapse
Affiliation(s)
- Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Michelle Paulsen
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| |
Collapse
|
1991
|
Mashimo Y, Sakurai-Yageta M, Watanabe M, Arima T, Morita Y, Inoue Y, Sato K, Nishimuta T, Suzuki S, Watanabe H, Hoshioka A, Tomiita M, Yamaide A, Kohno Y, Okamoto Y, Shimojo N, Hata A, Suzuki Y. Induction of the Matrix Metalloproteinase 13 Gene in Bronchial Epithelial Cells by Interferon and Identification of its Novel Functional Polymorphism. Inflammation 2017; 39:949-62. [PMID: 26635116 DOI: 10.1007/s10753-015-0291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a class of extra-cellular and membrane-bound proteases involved in a wide array of physiological and pathological processes including tissue remodeling, inflammation, and cytokine secretion and activation. MMP-13 has been shown to be involved in lung diseases such as acute lung injury, viral infections, and chronic obstructive pulmonary disease; however, the molecular pathogenesis of MMP-13 in these conditions is not well understood. In this study, we investigated the mechanisms and roles of MMP-13 secretion in human small airway epithelial cells (SAECs) and functional polymorphisms of the MMP13 gene. Polyinosinic-polycytidylic acid (poly(I:C)) and interferon β (IFN-β) stimulated the secretion of MMP-13 from SAECs by more than several hundred-fold. Stimulation of the secretion by poly(I:C) was abolished by SB304680 (p38 inhibitor), LY294002 (PI3K inhibitor), Janus kinase (JAK) inhibitor I, RNA-activated protein kinase (PKR) inhibitor, and Bay 11-7082 (NF-κB inhibitor), while stimulation by IFN-β was inhibited by all except Bay 11-7082. These data suggested that the secretion of MMP-13 was mediated through IFN receptor pathways independently of nuclear factor kappa B (NF-κB) and that poly(I:C) stimulated IFN secretion in an NF-κB-dependent manner from SAECs, leading to IFN-stimulated MMP-13 secretion. Chemical MMP-13 inhibitors and MMP-13 small interfering RNA (siRNA) inhibited IFN-stimulated secretion of interferon gamma-inducible protein 10 (IP-10) and regulated on activation, normal T-cell expressed and secreted (RANTES), suggesting that MMP-13 is involved in the secretion of these virus-induced proinflammatory chemokines. We identified a novel functional polymorphism in the promoter region of the MMP13 gene. The MMP13 gene may play important roles in defense mechanisms of airway epithelial cells.
Collapse
Affiliation(s)
- Yoichi Mashimo
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mika Sakurai-Yageta
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai, 980-8573, Japan
| | - Misa Watanabe
- The Department of Pediatrics, Toho University School of Medicine, Tokyo, Japan
| | - Takayasu Arima
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshinori Morita
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuzaburo Inoue
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Sato
- Department of Pediatrics, National Shimoshizu Hospital, Yotsukaido, Japan
| | | | - Shuichi Suzuki
- Department of Pediatrics, National Shimoshizu Hospital, Yotsukaido, Japan
| | - Hiroko Watanabe
- Department of Pediatrics, National Shimoshizu Hospital, Yotsukaido, Japan
| | - Akira Hoshioka
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Minako Tomiita
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Akiko Yamaide
- Department of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Yoichi Kohno
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Hata
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Suzuki
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai, 980-8573, Japan.
| |
Collapse
|
1992
|
Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S, Harley IT, McAlees JW, Giles DA, Moreno-Fernandez ME, Rueda CM, Senthamaraikannan P, Sun X, Karns R, Hoebe K, Janssen EM, Karp CL, Hildeman DA, Hogan SP, Kallapur SG, Chougnet CA, Way SS, Divanovic S. Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight 2017; 2:e91288. [PMID: 28289719 DOI: 10.1172/jci.insight.91288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection-driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern-driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge-driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.
Collapse
Affiliation(s)
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | - Matthew J Lawson
- Division of Immunobiology.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Daniel A Giles
- Division of Immunobiology.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Rebekah Karns
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | | | | | | |
Collapse
|
1993
|
Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, Ratner N. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep 2017; 7:43315. [PMID: 28256556 PMCID: PMC5335359 DOI: 10.1038/srep43315] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses.
Collapse
Affiliation(s)
- Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
1994
|
Abstract
Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies.
Collapse
Affiliation(s)
- Jason E Prasso
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 37-131, Los Angeles, CA 90095, USA
| | - Jane C Deng
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Healthcare System, University of Michigan, 2215 Fuller Road, 111G Pulmonary, Ann Arbor, MI 48105, USA.
| |
Collapse
|
1995
|
Skrzeczynska-Moncznik J, Zabieglo K, Bossowski JP, Osiecka O, Wlodarczyk A, Kapinska-Mrowiecka M, Kwitniewski M, Majewski P, Dubin A, Cichy J. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps. J Interferon Cytokine Res 2017; 37:119-128. [DOI: 10.1089/jir.2016.0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Joanna Skrzeczynska-Moncznik
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Zabieglo
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Jozef P. Bossowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Oktawia Osiecka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Wlodarczyk
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | | | - Mateusz Kwitniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| | - Adam Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Analytical Biochemistry, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Immunology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
1996
|
Mauri C, Menon M. Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest 2017; 127:772-779. [PMID: 28248202 DOI: 10.1172/jci85113] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory B cells (Bregs) modulate immune responses predominantly, although not exclusively, via the release of IL-10. The importance of human Bregs in the maintenance of immune homeostasis comes from a variety of immune-related pathologies, such as autoimmune diseases, cancers, and chronic infections that are often associated with abnormalities in Breg numbers or function. A continuous effort toward understanding Breg biology in healthy individuals will provide new opportunities to develop Breg immunotherapy that could prove beneficial in treating various immune-mediated pathologies. In this Review, we discuss findings regarding human Bregs, including their mechanisms of suppression and role in different disease settings. We also propose several therapeutic strategies targeting Bregs for better management of immune disorders.
Collapse
|
1997
|
Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity 2017; 46:393-404. [DOI: 10.1016/j.immuni.2017.02.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
|
1998
|
The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun 2017; 8:14605. [PMID: 28233779 PMCID: PMC5333124 DOI: 10.1038/ncomms14605] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3' UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3' UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3' processing factors is down-regulated upon VSV infection. When the core 3' processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3' processing factors on 3' UTR variation upon viral infection.
Collapse
|
1999
|
Aguilera LU, Zimmer C, Kummer U. A new efficient approach to fit stochastic models on the basis of high-throughput experimental data using a model of IRF7 gene expression as case study. BMC SYSTEMS BIOLOGY 2017; 11:26. [PMID: 28219373 PMCID: PMC5322793 DOI: 10.1186/s12918-017-0406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023]
Abstract
Background Mathematical models are used to gain an integrative understanding of biochemical processes and networks. Commonly the models are based on deterministic ordinary differential equations. When molecular counts are low, stochastic formalisms like Monte Carlo simulations are more appropriate and well established. However, compared to the wealth of computational methods used to fit and analyze deterministic models, there is only little available to quantify the exactness of the fit of stochastic models compared to experimental data or to analyze different aspects of the modeling results. Results Here, we developed a method to fit stochastic simulations to experimental high-throughput data, meaning data that exhibits distributions. The method uses a comparison of the probability density functions that are computed based on Monte Carlo simulations and the experimental data. Multiple parameter values are iteratively evaluated using optimization routines. The method improves its performance by selecting parameters values after comparing the similitude between the deterministic stability of the system and the modes in the experimental data distribution. As a case study we fitted a model of the IRF7 gene expression circuit to time-course experimental data obtained by flow cytometry. IRF7 shows bimodal dynamics upon IFN stimulation. This dynamics occurs due to the switching between active and basal states of the IRF7 promoter. However, the exact molecular mechanisms responsible for the bimodality of IRF7 is not fully understood. Conclusions Our results allow us to conclude that the activation of the IRF7 promoter by the combination of IRF7 and ISGF3 is sufficient to explain the observed bimodal dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0406-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Christoph Zimmer
- BIOMS (Center for Modeling and Simulation in the Biosciences), Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany.
| |
Collapse
|
2000
|
Wang BX, Grover SA, Kannu P, Yoon G, Laxer RM, Yeh EA, Fish EN. Interferon-Stimulated Gene Expression as a Preferred Biomarker for Disease Activity in Aicardi-Goutières Syndrome. J Interferon Cytokine Res 2017; 37:147-152. [PMID: 28387595 DOI: 10.1089/jir.2016.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is an early-onset, genetic disease characterized by recurrent fever, multifocal lesions of the brain, and systemic autoimmunity. We report on 3 AGS patients, 2 siblings with an RNASEH2A gene mutation and 1 patient with a SAMHD1 gene mutation. Serial analysis of peripheral blood from all 3 AGS patients showed consistently elevated expression of the interferon-stimulated genes (ISGs): ISG15, RSAD2, and IFI27, not observed in unaffected family members. Enumeration of circulating white blood cells and platelets and examination of C-reactive protein showed no significant deviation from the normal range for Patient 2 with the RNASEH2A mutation and Patient 3 with the SAMHD1 mutation, even when Patient 2 had magnetic resonance imaging abnormalities and ongoing febrile episodes. Erythrocyte sedimentation rates fluctuated within the normal range for Patient 2, with some elevation, yet, were in the normal range during the second febrile episode when there were accompanying neurological abnormalities. These preliminary data suggest that ISG expression may be a more specific indicator of disease activity in comparison to standard inflammatory markers.
Collapse
Affiliation(s)
- Ben X Wang
- 1 Toronto General Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | - Stephanie A Grover
- 3 Department of Neurosciences and Mental Health, The Hospital for Sick Children , Toronto, Ontario, Canada
| | - Peter Kannu
- 4 Department of Pediatrics, The Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - Grace Yoon
- 4 Department of Pediatrics, The Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - Ronald M Laxer
- 4 Department of Pediatrics, The Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - E Ann Yeh
- 4 Department of Pediatrics, The Hospital for Sick Children, University of Toronto , Toronto, Ontario, Canada
| | - Eleanor N Fish
- 1 Toronto General Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|