2001
|
Haslberger AG. Codex guidelines for GM foods include the analysis of unintended effects. Nat Biotechnol 2003; 21:739-41. [PMID: 12833088 DOI: 10.1038/nbt0703-739] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander G Haslberger
- University of Vienna and the World Health Organization FOS Program for Food Safety, Geneva, Switzerland.
| |
Collapse
|
2002
|
Montrichard F, Renard M, Alkhalfioui F, Duval FD, Macherel D. Identification and differential expression of two thioredoxin h isoforms in germinating seeds from pea. PLANT PHYSIOLOGY 2003; 132:1707-15. [PMID: 12857849 PMCID: PMC167107 DOI: 10.1104/pp.102.019562] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Revised: 01/15/2003] [Accepted: 03/14/2003] [Indexed: 05/24/2023]
Abstract
The NADPH/NADP-thioredoxin (Trx) reductase (NTR)/Trx system (NTS) is a redox system that plays a posttranslational regulatory role by reducing protein targets involved in crucial cellular processes in microorganisms and animals. In plants, the system includes several h type Trx isoforms and has been shown to intervene in reserve mobilization during early seedling growth of cereals. To determine whether NTS was operational during germination of legume seeds and which Trx h isoforms could be implicated, Trx h isoforms expression was monitored in germinating pea (Pisum sativum cv Baccara) seeds, together with the amount of NTR and NADPH. Two new isoforms were identified: Trx h3, similar to the two isoforms already described in pea but not expressed in seeds; and the more divergent isoform, Trx h4. Active recombinant proteins were produced in Escherichia coli and used to raise specific antibodies. The expression of new isoforms was analyzed at both mRNA and protein levels. The lack of correlation between mRNA and protein abundances suggests the occurrence of posttranscriptional regulation. Trx h3 protein amount remained constant in both axes and cotyledons of dry and imbibed seeds but then decreased 2 d after radicle protrusion. In contrast, Trx h4 was only expressed in axes of dry and imbibed seeds but not in germinated seeds or in seedlings, therefore appearing as closely linked to germination. The presence of NTR and NADPH in seeds suggests that NTS could be functional during germination. The possible role of Trx h3 and h4 in this context is discussed.
Collapse
Affiliation(s)
- Françoise Montrichard
- Unité Mixte de Recherche 1191 Physiologie Moléculaire des Semences, Institut National de Recherche Agronomique - Institut National d'Horticulture - Université d'Angers, France.
| | | | | | | | | |
Collapse
|
2003
|
Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X. Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 2003; 12:177-85. [PMID: 12887903 PMCID: PMC2713655 DOI: 10.1016/s1097-2765(03)00224-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DIM-5 is a SUV39-type histone H3 Lys9 methyltransferase that is essential for DNA methylation in N. crassa. We report the structure of a ternary complex including DIM-5, S-adenosyl-L-homocysteine, and a substrate H3 peptide. The histone tail inserts as a parallel strand between two DIM-5 strands, completing a hybrid sheet. Three post-SET cysteines coordinate a zinc atom together with Cys242 from the SET signature motif (NHXCXPN) near the active site. Consequently, a narrow channel is formed to accommodate the target Lys9 side chain. The sulfur atom of S-adenosyl-L-homocysteine, where the transferable methyl group is to be attached in S-adenosyl-L-methionine, lies at the opposite end of the channel, approximately 4 A away from the target Lys9 nitrogen. Structural comparison of the active sites of DIM-5, an H3 Lys9 trimethyltransferase, and SET7/9, an H3 Lys4 monomethyltransferase, allowed us to design substitutions in both enzymes that profoundly alter their product specificities without affecting their catalytic activities.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Zhe Yang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Seema I. Khan
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
| | - John R. Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Hisashi Tamaru
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, Oregon 97403
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, Oregon 97403
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322
- Correspondence:
| |
Collapse
|
2004
|
Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 2003; 17:1540-53. [PMID: 12815071 PMCID: PMC196083 DOI: 10.1101/gad.257403] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Polycomb-group (PcG) proteins MEDEA, FERTILIZATION INDEPENDENT ENDOSPERM, and FERTILIZATION INDEPENDENT SEED2 regulate seed development in Arabidopsis by controlling embryo and endosperm proliferation. All three of these FIS-class proteins are likely subunits of a multiprotein PcG complex, which epigenetically regulates downstream target genes that were previously unknown. Here we show that the MADS-box gene PHERES1 (PHE1) is commonly deregulated in the fis-class mutants. PHE1 belongs to the evolutionarily ancient type I class of MADS-box proteins that have not yet been assigned any function in plants. Both MEDEA and FIE directly associate with the promoter region of PHE1, suggesting that PHE1 expression is epigenetically regulated by PcG proteins. PHE1 is expressed transiently after fertilization in both the embryo and the endosperm; however, it remains up-regulated in the fis mutants, consistent with the proposed function of the FIS genes as transcriptional repressors. Reduced expression levels of PHE1 in medea mutant seeds can suppress medea seed abortion, indicating a key role of PHE1 repression in seed development. PHE1 expression in a hypomethylated medea mutant background resembles the wild-type expression pattern and is associated with rescue of the medea seed-abortion phenotype. In summary, our results demonstrate that seed abortion in the medea mutant is largely mediated by deregulated expression of the type I MADS-box gene PHE1.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
2005
|
Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM. Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. PLANT PHYSIOLOGY 2003; 132:907-25. [PMID: 12805620 PMCID: PMC167030 DOI: 10.1104/pp.102.013722] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Revised: 10/30/2002] [Accepted: 02/11/2003] [Indexed: 05/17/2023]
Abstract
Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
2006
|
Siedlecka A, Ciereszko I, Mellerowicz E, Martz F, Chen J, Kleczkowski LA. The small subunit ADP-glucose pyrophosphorylase ( ApS) promoter mediates okadaic acid-sensitive uidA expression in starch-synthesizing tissues and cells in Arabidopsis. PLANTA 2003; 217:184-192. [PMID: 12783326 DOI: 10.1007/s00425-003-0982-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 12/23/2002] [Indexed: 05/24/2023]
Abstract
Transgenic plants of Arabidopsis thaliana Heynh., transformed with a bacterial beta-glucuronidase (GUS) gene under the control of the promoter of the small subunit (ApS) of ADP-glucose pyrophosphorylase (AGPase), exhibited GUS staining in leaves (including stomata), stems, roots and flowers. Cross-sections of stems revealed GUS staining in protoxylem parenchyma, primary phloem and cortex. In young roots, the staining was found in the root tips, including the root cap, and in vascular tissue, while the older root-hypocotyl axis showed prominent staining in the secondary phloem and paratracheary parenchyma of secondary xylem. The GUS staining co-localized with ApS protein, as found by tissue printing using antibodies against ApS. Starch was found only in cell and tissue types exhibiting GUS staining and ApS labelling, but not in all of them. For example, starch was lacking in the xylem parenchyma and secondary phloem of the root-hypocotyl axis. Sucrose potently activated ApS gene expression in leaves of wild-type (wt) plants, and in transgenic seedlings grown on sucrose medium where GUS activity was quantified with 4-methylumbelliferyl-beta-glucuronide as substrate. Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, completely blocked expression of ApS in mature leaves of wt plants and prevented GUS staining in root tips and flowers of the transgenic plants, suggesting a similar signal transduction mechanism for ApS expression in various tissues. The data support the key role of AGPase in starch synthesis, but they also underlie the ubiquitous importance of the ApS gene for AGPase function in all organs/tissues of Arabidopsis.
Collapse
Affiliation(s)
- Anna Siedlecka
- Department of Plant Physiology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
2007
|
Qin H, Dong Y, von Arnim AG. Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. PLANT MOLECULAR BIOLOGY 2003; 52:217-231. [PMID: 12825701 DOI: 10.1023/a:1023941123149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The stochastic variability of expression that is a characteristic of eukaryotic nuclear transgenes is often attributed to epigenetic mechanisms that are triggered by repetitive transgene locus structures and influenced by chromosomal position effects. In order to address the contribution of chromosomal position effects in the context of a fully sequenced genome, a novel set of transgene loci was established in the compact genome of Arabidopsis thaliana. Transgenes expressing GFP-tagged or GUS-tagged fusion proteins of Arabidopsis COP1 collectively displayed three types of gene silencing, which are distinguished by their developmental timing, gene dosage dependence, (post)transcriptional control, and extent of endogene co-suppression. Subsequently, the heritability of epistatic interactions between allelic and non-allelic transgene loci was investigated in light of both intrinsic transgene features, in particular T-DNA copy number per locus, and chromosomal insertion sites. The notion that chromosomal flanking sequences underlie the ability of transgenes to function as masters or targets of epigenetically heritable trans-silencing interactions was generally not favored by our data. Moreover, among single T-DNA loci at different chromosomal locations the great majority showed homozygosity-dependent posttranscriptional silencing. However, spontaneous silencing (in cis) may be promoted by a pericentromeric location. Instead, intrinsic transgene features correlated with all major aspects of silencing behavior tested.
Collapse
Affiliation(s)
- Huaxia Qin
- Department of Botany, University of Tennessee, Knoxville, TN 37996-1100, USA
| | | | | |
Collapse
|
2008
|
Pons JL, de Lamotte F, Gautier MF, Delsuc MA. Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J Biol Chem 2003; 278:14249-56. [PMID: 12525478 DOI: 10.1074/jbc.m211683200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The refined structure of a wheat type 2 nonspecific lipid transfer protein (ns-LTP2) liganded with l-alpha-palmitoylphosphatidylglycerol has been determined by NMR. The (15)N-labeled protein was produced in Pichia pastoris. Physicochemical conditions and ligandation were intensively screened to obtain the best NMR spectra quality. This ns-LTP2 is a 67-residue globular protein with a diameter of about 30 A. The structure is composed of five helices forming a right superhelix. The protein presents an inner cavity, which has been measured at 341 A(3). All of the helices display hydrophobic side chains oriented toward the cavity. The phospholipid is found in this cavity. Its fatty acid chain is completely inserted in the protein, the l-alpha-palmitoylphosphatidylglycerol glycerol moiety being located on a positively charged pocket on the surface of the protein. The superhelix structure of the protein is coiled around the fatty acid chain. The overall structure shows similarities with ns-LTP1. Nevertheless, large three-dimensional structural discrepancies are observed for the H3 and H4 alpha-helices, the C-terminal region, and the last turn of the H2 helix. The lipid is orthogonal to the orientation observed in ns-LTP1. The volume of the hydrophobic cavity appears to be in the same range as the one of ns-LTP1, despite the fact that ns-LTP2 is shorter by 24 residues.
Collapse
Affiliation(s)
- Jean-Luc Pons
- Centre de Biochimie Structurale, INSERM, CNRS, Université Montpellier I, France
| | | | | | | |
Collapse
|
2009
|
Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 2003; 13:627-37. [PMID: 12699618 DOI: 10.1016/s0960-9822(03)00243-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The genes of the trithorax (trxG) and Polycomb groups (PcG) are best known for their regulatory functions in Drosophila, where they control homeotic gene expression. Plants and animals are thought to have evolved multicellularity independently. Although homeotic genes control organ identity in both animals and plants, they are unrelated. Despite this fact, several plant homeotic genes are negatively regulated by plant genes similar to the repressors from the animal PcG. However, plant-activating regulators of the trxG have not been characterized. RESULTS We provide genetic, molecular, functional, and biochemical evidence that an Arabidopsis gene, ATX1, which is similar to the Drosophila trx, regulates floral organ development. The effects are specific: structurally and functionally related flower homeotic genes are under different control. We show that ATX1 is an epigenetic regulator with histone H3K4 methyltransferase activity. This is the first example of this kind of enzyme activity reported in plants, and, in contrast to the Drosophila and the yeast trithorax homologs, ATX1 can methylate in the absence of additional proteins. In its ability to methylate H3K4 as a recombinant protein, ATX1 is similar to the human homolog. CONCLUSIONS ATX1 functions as an activator of homeotic genes, like Trithorax in animal systems. The histone methylating activity of the ATX1-SET domain argues that the molecular basis of these effects is the ability of ATX1 to modify chromatin structure. Our results suggest a conservation of trxG function between the animal and plant kingdoms despite the different structural nature of their targets.
Collapse
Affiliation(s)
- Raul Alvarez-Venegas
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | | | | | | | | | | |
Collapse
|
2010
|
Knappe S, Flügge UI, Fischer K. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. PLANT PHYSIOLOGY 2003; 131:1178-90. [PMID: 12644669 PMCID: PMC166879 DOI: 10.1104/pp.016519] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/12/2002] [Accepted: 11/12/2002] [Indexed: 05/17/2023]
Abstract
Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncated phosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety of PT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue.
Collapse
Affiliation(s)
- Silke Knappe
- Botanisches Institut der Universität zu Köln, Lehrstuhl II, Gyrhofstrasse 15, D-50931 Cologne, Germany
| | | | | |
Collapse
|
2011
|
Kumar S, Fladung M. Somatic mobility of the maize element Ac and its utility for gene tagging in aspen. PLANT MOLECULAR BIOLOGY 2003; 51:643-650. [PMID: 12678553 DOI: 10.1023/a:1022505808929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have investigated the somatic activity of the maize Activator (Ac) element in aspen with the objective of developing an efficient transposon-based system for gene isolation in a model tree species. The analysis of the new insertion sites revealed the exact reconstitution of the Ac, however, aberrant transposition events were also found. Characterization of the genomic sequences flanking the Ac insertions showed that about one third (22/75) of the sequences were significantly similar to sequences represented in public databases and might correspond to genes. The frequency of Ac landing into coding regions was about two-fold higher when compared to the frequency of T-DNA hitting the predicted genes (5/32) in the aspen genome. Thus, Ac is demonstrated to be a potentially useful heterologous transposon tag in a tree species. This is the first report on transposon-based gene tagging in a tree species describing the excision and reinsertion of transposable element into new genomic positions. We also suggest a heterologous transposon tagging strategy that can be used in aspen somatic cells to obtain dominant gain-of-function mutants and recessive loss-of-function mutants overcoming the regeneration time barrier of a long-lived tree species.
Collapse
Affiliation(s)
- Sandeep Kumar
- BFH Institute for Forest Genetics and Forest Tree Breeding, Sieker Land Str. 2, D-22927 Grosshansdorf, Germany.
| | | |
Collapse
|
2012
|
Bon E, Casaregola S, Blandin G, Llorente B, Neuvéglise C, Munsterkotter M, Guldener U, Mewes HW, Van Helden J, Dujon B, Gaillardin C. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 2003; 31:1121-35. [PMID: 12582231 PMCID: PMC150231 DOI: 10.1093/nar/gkg213] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Accepted: 12/19/2002] [Indexed: 11/12/2022] Open
Abstract
As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5' end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns' features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts.
Collapse
Affiliation(s)
- Elisabeth Bon
- Laboratoire de Génétique Moléculaire et Cellulaire CNRS-INRA, Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2013
|
Schotta G, Ebert A, Dorn R, Reuter G. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin Cell Dev Biol 2003; 14:67-75. [PMID: 12524009 DOI: 10.1016/s1084-9521(02)00138-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In position-effect variegation (PEV) genes become silenced by heterochromatisation. Genetic dissection of this process has been performed by means of dominant suppressor [Su(var)] and enhancer [E(var)] mutations. Selective genetic screens allowed mass isolation of more than 380 PEV modifier mutations identifying about 150 genes. Genetic fine structure studies revealed unique dosage dependent effects. Most of the haplo-dependent Su(var) and E(var) genes do not display triplo-dependent effects. Several Su(var) loci with triplo-dependent opposite enhancer effects have been identified and shown to encode heterochromatin-associated proteins. From these the evolutionary conserved histone H3 lysine 9 methyltransferase SU(VAR)3-9 plays a central role in heterochromatic gene silencing. Molecular function of most PEV modifier genes is still unknown also including genes identified with mutations displaying lethal interaction to heterochromatin. Their analysis should contribute to further understanding of processes connected with regulation of higher order chromatin structure and epigenetic programming.
Collapse
Affiliation(s)
- Gunnar Schotta
- Institute of Genetics, Martin Luther University of Halle, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
2014
|
Brzeski J, Jerzmanowski A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem 2003; 278:823-8. [PMID: 12403775 DOI: 10.1074/jbc.m209260200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficient in DNA Methylation 1 (DDM1) protein is required to maintain the DNA methylation status of Arabidopsis thaliana. DDM1 is a member of the broad SWI2/SNF2 protein family. Because of its phylogenetic position, DDM1 has been speculated to act as a chromatin-remodeling factor. Here we used a purified recombinant DDM1 protein to investigate whether it can remodel chromatin in vitro. We show that DDM1 is an ATPase stimulated by both naked and nucleosomal DNA. DDM1 binds to the nucleosome and promotes chromatin remodeling in an ATP-dependent manner. Specifically, it induces nucleosome repositioning on a short DNA fragment. The enzymatic activity of DDM1 is not affected by DNA methylation. The relevance of these findings to the in vivo role of DDM1 is discussed.
Collapse
Affiliation(s)
- Jan Brzeski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
2015
|
Abstract
Peroxiredoxins (Prxs) are abundant low-efficiency peroxidases located in distinct cell compartments including the chloroplast and mitochondrion. They are grouped into four clans based on their structural and biochemical properties. The catalytic center contains a cysteinyl residue that reduces diverse peroxides and is regenerated via intramolecular or intermolecular thiol-disulfide-reactions and finally by electron donors such as thioredoxins and glutaredoxins. Prxs show a complex regulation by endogenous and environmental stimuli at both the transcript and protein levels. In addition to their role in antioxidant defense in photosynthesis, respiration, and stress response, they may also be involved in modulating redox signaling during development and adaptation.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, University of Bielefeld, 33501 Bielefeld, Germany.
| |
Collapse
|
2016
|
Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. PLANT PHYSIOLOGY 2003; 131:317-25. [PMID: 12529539 PMCID: PMC166811 DOI: 10.1104/pp.010017] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Revised: 07/04/2002] [Accepted: 10/14/2002] [Indexed: 05/17/2023]
Abstract
Peroxiredoxins (prxs) are peroxidases with broad substrate specificity. The seven prx genes expressed in Arabidopsis shoots were analyzed for their expressional response to changing photon fluence rates, oxidative stress, and ascorbate application. The results reveal a highly variable and gene-specific response to reducing and oxidizing conditions. The steady-state transcript amounts of the chloroplast-targeted prxs, namely the two-cysteine (2-Cys) prxs, prx Q and prx II E, decreased upon application of ascorbate. prx Q also responded to peroxides and diamide treatment. prx II B was induced by tertiary butylhydroperoxide, but rather unaffected by ascorbate. The strongest responses were observed for prx II C, which was induced with all treatments. The two Arabidopsis 2-Cys Prxs and four Prx II proteins were expressed heterologously in Escherichia coli. In an in vitro test system, they all showed peroxidase activity, but could be distinguished by their ability to accept dithiothreitol and thioredoxin as electron donor in the regeneration reaction. The midpoint redox potentials (E(m)') of Prx II B, Prx II C, and Prx II E were around -290 mV and, thus, less negative than E(m)' of Prx II F, 2-Cys Prx A, and 2-Cys Prx B (-307 to -322 mV). The data characterize expression and function of the mitochondrial Prx II F and the chloroplast Prx II E for the first time, to our knowledge. Antibodies directed against 2-Cys Prx and Prx II C showed a slight up-regulation of Prx II protein in strong light and of 2-Cys Prx upon transfer both to high and low light. The results are discussed in context with the subcellular localization of the Prx gene products.
Collapse
Affiliation(s)
- Frank Horling
- Department of Plant Physiology and Biochemistry/W5, University of Bielefeld, 33501 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
2017
|
Dietz KJ. Redox control, redox signaling, and redox homeostasis in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:141-93. [PMID: 14667044 DOI: 10.1016/s0074-7696(03)28004-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox chemistry is a key feature of life. Oxidized substrates are reduced to synthesize functional molecules; reduced substrates are oxidized for energy supply. In addition, cells must fight against uncontrolled oxidation of essential constituents, a process that continuously occurs in an atmosphere of 21% O2. The redox situation is further complicated in plants with their highly reactive photosynthetic metabolism. To this end it is now well established that redox regulation is a central element in adjusting plant metabolism and development to the prevailing environmental conditions. This review introduces general redox chemistry and the main components of the cellular redox network, namely pyridine nucleotides, ascorbate, glutathione, lipoic acid, tocopherol, thioredoxins, glutaredoxins, peroxiredoxins, and other thiol proteins. Examples for redox sensing, transduction, redox-regulated enzymes and transcription, and the function of regulatory circuits are presented. Emphasis is placed on redox regulation of photosynthesis, which is the best understood metabolism governed by redox control on essentially all levels, ranging from gene transcription to translation, assembly and turnover, as well as short-term adaptation by state transition and enzyme activity. Increasing evidence shows the importance of redox regulation in the context of transport, plant development, and programmed cell death.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
2018
|
Stangeland B, Salehian Z, Aalen R, Mandal A, Olsen OA. Isolation of GUS marker lines for genes expressed in Arabidopsis endosperm, embryo and maternal tissues. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:279-290. [PMID: 12493855 DOI: 10.1093/jxb/erg031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In order to identify marker lines expressing GUS in various endosperm compartments and at different developmental stages, a collection of Arabidopsis thaliana (L.) Heynh. promoter trap lines were screened. The screen identified 16 lines displaying GUS-reporter gene expression in the endosperm, embryo and other seed organs. The distinctive patterns of GUS expression in these lines provide molecular markers for most cell compartments in the endosperm of Arabidopsis seeds at all developmental stages, and represent a valuable research tool for characterizing present and future Arabidopsis seed mutants. GUS expression patterns of these 16 lines are presented here. One line showed chalazal endosperm-specific GUS activity at the heart stage of embryo development. In six lines embryo-specific GUS activity was detected. Six lines exhibited GUS activity predominantly in the endosperm and embryo while two lines showed strong GUS activity in all seed organs. In one line GUS activity was detected in integuments and syncytial endosperm, while the GUS activity at the cotyledonary stage of the embryo was seed coat-specific. In addition, two funiculus markers and two silique markers expressed in the abscission zone and the guard cells are also presented.
Collapse
Affiliation(s)
- Biljana Stangeland
- Plant Molecular Biology Laboratory, Department of Chemistry and Biotechnology, Agricultural University of Norway, PO Box 5040, N-1432 Aas, Norway.
| | | | | | | | | |
Collapse
|
2019
|
Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 2002; 21:6842-52. [PMID: 12486005 PMCID: PMC139107 DOI: 10.1093/emboj/cdf687] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 10/21/2002] [Accepted: 10/30/2002] [Indexed: 11/14/2022] Open
Abstract
Cytosine methylation is critical for correct development and genome stability in mammals and plants. In order to elucidate the factors that control genomic DNA methylation patterning, a genetic screen for mutations that disrupt methylation-correlated silencing of the endogenous gene PAI2 was conducted in Arabidopsis: This screen yielded seven loss-of-function alleles in a SET domain protein with histone H3 Lys9 methyltransferase activity, SUVH4. The mutations conferred reduced cytosine methylation on PAI2, especially in non-CG sequence contexts, but did not affect methylation on another PAI locus carrying two genes arranged as an inverted repeat. Moreover, an unmethylated PAI2 gene could be methylated de novo in the suvh4 mutant background. These results suggest that SUVH4 is involved in maintenance but not establishment of methylation at particular genomic regions. In contrast, a heterochromatin protein 1 homolog, LHP1, had no effect on PAI methylation.
Collapse
Affiliation(s)
- Fabienne Malagnac
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
2020
|
Abstract
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Collapse
Affiliation(s)
- Paul F Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
2021
|
Abstract
Plants and animals use the E2F-Rb pathway as a major mechanism of control in the decision to continue or stop cell division. The E2F-Rb pathway controls the G1-to-S-phase transition by the timely activation of genes involved in DNA synthesis and cell-cycle control. Recent findings reveal that the E2F-Rb pathway communicates with chromatin-remodelling factors in the control of transcription and cell-cycle progression. This article highlights the fast-moving advances in the molecular and functional characterization of plant E2F proteins, and in our understanding of how the E2F-Rb pathway is activated and repressed.
Collapse
Affiliation(s)
- Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS-ULP, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
2022
|
Reyes JC, Hennig L, Gruissem W. Chromatin-remodeling and memory factors. New regulators of plant development. PLANT PHYSIOLOGY 2002; 130:1090-101. [PMID: 12427976 PMCID: PMC1540260 DOI: 10.1104/pp.006791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- José C Reyes
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Avenida Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|
2023
|
Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K. Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. PLANT PHYSIOLOGY 2002; 130:1464-75. [PMID: 12428011 PMCID: PMC166665 DOI: 10.1104/pp.010363] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Revised: 07/12/2002] [Accepted: 08/15/2002] [Indexed: 05/20/2023]
Abstract
In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cytosolic form accounts for most of the AGPase activity. Using a combination of molecular and biochemical approaches to identify the cytosolic and plastidial protein components of wheat endosperm AGPase we show that the large and small subunits of the cytosolic enzyme are encoded by genes previously thought to encode plastidial subunits, and that a gene, Ta.AGP.S.1, which encodes the small subunit of the cytosolic form of AGPase, also gives rise to a second transcript by the use of an alternate first exon. This second transcript encodes an AGPase small subunit with a transit peptide. However, we could not find a plastidial small subunit protein corresponding to this transcript. The protein sequence of the purified plastidial small subunit does not match precisely to that encoded by Ta.AGP.S.1 or to the predicted sequences of any other known gene from wheat or barley (Hordeum vulgare). Instead, the protein sequence is most similar to those of the plastidial small subunits from chickpea (Cicer arietinum) and maize (Zea mays) and rice (Oryza sativa) seeds. These data suggest that the gene encoding the major plastidial small subunit of AGPase in wheat endosperm has yet to be identified.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromatography, Ion Exchange
- Cloning, Molecular
- Cytosol/enzymology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Plant/genetics
- Glucose-1-Phosphate Adenylyltransferase
- Molecular Sequence Data
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Phylogeny
- Plastids/enzymology
- Seeds/enzymology
- Seeds/genetics
- Seeds/growth & development
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Triticum/enzymology
- Triticum/genetics
- Triticum/growth & development
Collapse
Affiliation(s)
- Rachel A Burton
- Department of Plant Science, University of Adelaide, Glen Osmond South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
2024
|
Meza TJ, Stangeland B, Mercy IS, Skårn M, Nymoen DA, Berg A, Butenko MA, Håkelien AM, Haslekås C, Meza-Zepeda LA, Aalen RB. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 2002; 30:4556-4566. [PMID: 12384603 PMCID: PMC137132 DOI: 10.1093/nar/gkf568] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 08/22/2002] [Accepted: 08/22/2002] [Indexed: 11/12/2022] Open
Abstract
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.
Collapse
Affiliation(s)
- Trine J Meza
- Division of Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2025
|
Zhang X, Tamaru H, Khan SI, Horton JR, Keefe LJ, Selker EU, Xiaodong C. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 2002; 111:117-27. [PMID: 12372305 PMCID: PMC2713760 DOI: 10.1016/s0092-8674(02)00999-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AdoMet-dependent methylation of histones is part of the "histone code" that can profoundly influence gene expression. We describe the crystal structure of Neurospora DIM-5, a histone H3 lysine 9 methyltranferase (HKMT), determined at 1.98 A resolution, as well as results of biochemical characterization and site-directed mutagenesis of key residues. This SET domain protein bears no structural similarity to previously characterized AdoMet-dependent methyltransferases but includes notable features such as a triangular Zn3Cys9 zinc cluster in the pre-SET domain and a AdoMet binding site in the SET domain essential for methyl transfer. The structure suggests a mechanism for the methylation reaction and provides the structural basis for functional characterization of the HKMT family and the SET domain.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Hisashi Tamaru
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, Oregon 97403
| | - Seema I. Khan
- Department of Biochemistry, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
| | - John R. Horton
- Department of Biochemistry, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
| | - Lisa J. Keefe
- Advanced Photon Source (IMCA-CAT), Sector 17, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, Oregon 97403
| | - Cheng Xiaodong
- Department of Biochemistry, School of Medicine, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322
- Correspondence:
| |
Collapse
|
2026
|
Pan DA, Hardie DG. A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J 2002; 367:179-86. [PMID: 12093363 PMCID: PMC1222868 DOI: 10.1042/bj20020703] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 06/17/2002] [Accepted: 07/02/2002] [Indexed: 11/17/2022]
Abstract
We have identified single genes encoding homologues of the alpha, beta and gamma subunits of mammalian AMP-activated protein kinase (AMPK) in the genome of Drosophila melanogaster. Kinase activity could be detected in extracts of a Drosophila cell line using the SAMS peptide, which is a relatively specific substrate for the AMPK/SNF1 kinases in mammals and yeast. Expression of double stranded (ds) RNAs targeted at any of the putative alpha, beta or gamma subunits ablated this activity, and abolished expression of the alpha subunit. The Drosophila kinase (DmAMPK) was activated by AMP in cell-free assays (albeit to a smaller extent than mammalian AMPK), and by stresses that deplete ATP (oligomycin and hypoxia), as well as by carbohydrate deprivation, in intact cells. Using a phosphospecific antibody, we showed that activation was associated with phosphorylation of a threonine residue (Thr-184) within the 'activation loop' of the alpha subunit. We also identified a homologue of acetyl-CoA carboxylase (DmACC) in Drosophila and, using a phosphospecific antibody, showed that the site corresponding to the regulatory AMPK site on the mammalian enzyme became phosphorylated in response to oligomycin or hypoxia. By immunofluorescence microscopy of oligomycin-treated Dmel2 cells using the phosphospecific antibody, the phosphorylated DmAMPK alpha subunit was mainly detected in the nucleus. Our results show that the AMPK system is highly conserved between insects and mammals. Drosophila cells now represent an attractive system to study this pathway, because of the small, well-defined genome and the ability to ablate expression of specific gene products using interfering dsRNAs.
Collapse
Affiliation(s)
- David A Pan
- Division of Molecular Physiology, School of Life Sciences and Wellcome Trust Biocentre, Dundee University, Dundee DD1 5EH, Scotland, U.K
| | | |
Collapse
|
2027
|
Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP. Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. PLANT PHYSIOLOGY 2002; 130:519-37. [PMID: 12376622 PMCID: PMC166584 DOI: 10.1104/pp.006833] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Medicago truncatula expressed sequence tag (EST) database (Gene Index) contains over 140,000 sequences from 30 cDNA libraries. This resource offers the possibility of identifying previously uncharacterized genes and assessing the frequency and tissue specificity of their expression in silico. Because M. truncatula forms symbiotic root nodules, unlike Arabidopsis, this is a particularly important approach in investigating genes specific to nodule development and function in legumes. Our analyses have revealed 340 putative gene products, or tentative consensus sequences (TCs), expressed solely in root nodules. These TCs were represented by two to 379 ESTs. Of these TCs, 3% appear to encode novel proteins, 57% encode proteins with a weak similarity to the GenBank accessions, and 40% encode proteins with strong similarity to the known proteins. Nodule-specific TCs were grouped into nine categories based on the predicted function of their protein products. Besides previously characterized nodulins, other examples of highly abundant nodule-specific transcripts include plantacyanin, agglutinin, embryo-specific protein, and purine permease. Six nodule-specific TCs encode calmodulin-like proteins that possess a unique cleavable transit sequence potentially targeting the protein into the peribacteroid space. Surprisingly, 114 nodule-specific TCs encode small Cys cluster proteins with a cleavable transit peptide. To determine the validity of the in silico analysis, expression of 91 putative nodule-specific TCs was analyzed by macroarray and RNA-blot hybridizations. Nodule-enhanced expression was confirmed experimentally for the TCs composed of five or more ESTs, whereas the results for those TCs containing fewer ESTs were variable.
Collapse
Affiliation(s)
- Maria Fedorova
- Department of Agronomy and Plant Genetics, 1991 Upper Bedford Circle, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
2028
|
Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 2002; 297:1871-3. [PMID: 12077425 DOI: 10.1126/science.1074950] [Citation(s) in RCA: 377] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.
Collapse
|
2029
|
Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:319-30. [PMID: 12164811 DOI: 10.1046/j.1365-313x.2002.01364.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dormancy is an important developmental program allowing plants to withstand extended periods of extreme environmental conditions, such as low temperature or drought. Seed dormancy, bud dormancy and desiccation tolerance have been extensively studied, but little is known about the mechanisms involved in the dormancy of drought-tolerant plants, key to the survival of many plant species in arid and semi-arid environments. Subtractive PCR cloning of cDNAs from Retama raetam, a C3 drought-tolerant legume, revealed that dormancy in this plant is accompanied by the accumulation of transcripts encoding a pathogenesis-related, PR-10-like protein; a low temperature-inducible dehydrin; and a WRKY transcription factor. In contrast, non-dormant plants subjected to stress conditions contained transcripts encoding a cytosolic small heat-shock protein, HSP18; an ethylene-response transcriptional co-activator; and an early light-inducible protein. Physiological and biochemical analysis of Rubisco activity and protein in dormant and non-dormant tissues suggested a novel post-translational mechanism of regulation that may be controlled by the redox status of cells. Ultrastructural analysis of dormant plants revealed that air spaces of photosynthetic tissues contained an extracellular matrix that may function to prevent water loss. The cytosol of dormant cells appeared to be in a glassy state, limiting metabolic activity. A combination of biochemical, molecular and structural mechanisms, in association with metabolic suppression, may be key to the extreme drought tolerance of R. raetam and its acclimation to the desert ecosystem. These may enable plants to withstand long periods of drought, as well as rapidly to exit dormancy upon rainfall.
Collapse
Affiliation(s)
- Lilach Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
2030
|
Kalantidis K, Psaradakis S, Tabler M, Tsagris M. The occurrence of CMV-specific short Rnas in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:826-33. [PMID: 12182340 DOI: 10.1094/mpmi.2002.15.8.826] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression or introduction of double-stranded (ds)RNA in eukaryotic cells can trigger sequence-specific gene silencing of transgenes, endogenes, and viruses. Transgenic plants producing dsRNAs with homology to viral sequences are likely to exhibit pathogen-derived resistance to the virus. Cucumber mosaic virus (CMV), a very widespread virus with over 1,000 host species, has the natural ability to suppress silencing in order to establish infection. Here, we report the generation of transgenic tobacco lines, where a DNA transgene containing an inverted repeat of CMV cDNA had been introduced. Expression of this DNA construct delivered an RNA transcript that is able to form an intramolecular double strand. Transgenic plants were challenged with CMV. Three categories of plants could be discriminated: susceptible plants, which typically reacted with milder symptoms than the wild-type control; a "recovery" phenotype, in which newly emerging leaves were free of symptoms; and plants that showed complete resistance. Northern analysis showed that the expression of CMV dsRNA caused, in some transgenic lines, the generation of short RNAs characteristic of posttranscriptional gene silencing. Those lines were CMV resistant. The correlation between the detection of short RNAs and virus resistance provides a molecular marker that makes it possible to predict success in attempts to engineer virus resistance by dsRNA.
Collapse
Affiliation(s)
- Kriton Kalantidis
- Foundation for Research and Technology, Hellas Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
2031
|
Abstract
The MLL gene, also called HRX or ALL-1, was originally identified as a recurrent chromosomal translocation in particular subtypes of acute lymphocytic leukemia (ALL) and acute myelogenous leukemia (AML). Reciprocal rearrangements of the MLL gene are most common in infant ALL and secondary AML. Because of the unique association with infant leukemia and the intriguingly immature and mixed lineage phenotype of leukemic cells, the authors speculate that the wild-type MLL gene plays an important role early in the development of the hematopoietic system. This article reviews recent progress in understanding the function of the wild-type MLL protein, with particular consideration of potential functions within the developing hematopoietic system. Murine gain- and loss-of-function models have provided clues to the normal functions of MLL and altered functions of oncogenic MLL fusion proteins. Biochemical and genetic approaches using other model organisms have also elucidated mechanisms by which these functions are achieved.
Collapse
Affiliation(s)
- Patricia Ernst
- Department of Pathology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2032
|
Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. PLANT PHYSIOLOGY 2002; 129:1308-19. [PMID: 12114584 PMCID: PMC166524 DOI: 10.1104/pp.003681] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 03/11/2002] [Accepted: 03/25/2002] [Indexed: 05/15/2023]
Abstract
In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.
Collapse
Affiliation(s)
- Christine Finnie
- Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark
| | | | | | | |
Collapse
|
2033
|
Zhang C, Wu-Scharf D, Jeong BR, Cerutti H. A WD40-repeat containing protein, similar to a fungal co-repressor, is required for transcriptional gene silencing in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:25-36. [PMID: 12100480 DOI: 10.1046/j.1365-313x.2002.01331.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In higher plants, mammals, and filamentous fungi, transcriptional gene silencing is frequently associated with DNA methylation. However, recent evidence suggests that certain transgenes can be inactivated by a methylation independent mechanism. In the unicellular green alga Chlamydomonas reinhardtii, single-copy transgenes are transcriptionally silenced without discernible cytosine methylation of the introduced DNA. We have isolated a Chlamydomonas gene, Mut11, which is required for the transcriptional repression of single-copy transgenes. Mut11 appears to have a global role in gene regulation since it also affects transposon mobilization, cellular growth, and sensitivity to DNA damaging agents. In transient expression assays, a fusion protein between the predicted Mut11 gene product (Mut11p) and E. coli beta-glucuronidase localizes predominantly to the nucleus. Mut11p, a polypeptide of 370 amino acids containing seven WD40 repeats, is highly homologous to proteins of unknown function that are widely distributed among eukaryotes. Mut11p also shows similarity to the C-terminal domain of TUP1, a global transcriptional co-repressor in fungi. Based on these findings we speculate that, in Chlamydomonas, the silencing of certain single-copy transgenes and dispersed transposons integrated into euchromatic regions may occur by a mechanism(s) similar to those involving global transcriptional repressors. Our results also support the existence, in methylation-competent organisms, of a mechanism(s) of transcriptional (trans)gene silencing that is independent of DNA methylation.
Collapse
Affiliation(s)
- Chaomei Zhang
- School of Biological Sciences and Plant Science Initiative, University of Nebraska - Lincoln, E211 Beadle Center, Post Office Box 880666, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
2034
|
Abstract
Several barley (Hordeum vulgare) cultivars are used in the production of malt for brewing. The malt quality depends on the cultivar, its growth and storage conditions, and the industrial process. To enhance studies on malt quality, we embarked on a proteome analysis approach for barley seeds and malt. The proteome analysis includes two-dimensional (2-D) gel electrophoresis, mass spectrometry, and bioinformatics for identification of selected proteins. This project initially focused on proteins in major spots in the neutral isoelectric point range (pI 4-7) including selected spots that differ between four barley cultivars. The excellent malting barley cultivar Barke was used as reference. Cultivar differences in the 2-D gel spot patterns are observed both at the seed and the malt level. In seed extracts one of the proteins causing variations has been identified as an alpha-amylase/trypsin inhibitor. In malt extracts multiple forms of the alpha-amylase isozyme 2 have been identified in varying cultivar characteristic spot patterns. The present identification of proteins in major spots from 2-D gels includes 27 different proteins from 42 spots from mature seed extract, while only three specific proteins were identified by analysing 13 different spots from the corresponding malt extract. It is suggested that post-translational processing causes the same protein to occur in different spots.
Collapse
Affiliation(s)
- Ole Østergaard
- Department of Chemistry, Carlsberg Laboratory, Copenhagen, Denmark
| | | | | | | |
Collapse
|
2035
|
Avramova ZV. Heterochromatin in animals and plants. Similarities and differences. PLANT PHYSIOLOGY 2002; 129:40-9. [PMID: 12011336 PMCID: PMC1540225 DOI: 10.1104/pp.010981] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Zoya V Avramova
- School of Biological Sciences, Manter Hall, University of Nebraska, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
2036
|
Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002; 416:556-60. [PMID: 11898023 DOI: 10.1038/nature731] [Citation(s) in RCA: 876] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene silencing in eukaryotes is associated with the formation of heterochromatin, a complex of proteins and DNA that block transcription. Heterochromatin is characterized by the methylation of cytosine nucleotides of the DNA, the methylation of histone H3 at lysine 9 (H3 Lys 9), and the specific binding of heterochromatin protein 1 (HP1) to methylated H3 Lys 9 (refs 1-7). Although the relationship between these chromatin modifications is generally unknown, in the fungus Neurospora crassa, DNA methylation acts genetically downstream of H3 Lys 9 methylation. Here we report the isolation of KRYPTONITE, a methyltransferase gene specific to H3 Lys 9, identified in a mutant screen for suppressors of gene silencing at the Arabidopsis thaliana SUPERMAN (SUP) locus. Loss-of-function kryptonite alleles resemble mutants in the DNA methyltransferase gene CHROMOMETHYLASE3 (CMT3), showing loss of cytosine methylation at sites of CpNpG trinucleotides (where N is A, C, G or T) and reactivation of endogenous retrotransposon sequences. We show that CMT3 interacts with an Arabidopsis homologue of HP1, which in turn interacts with methylated histones. These data suggest that CpNpG DNA methylation is controlled by histone H3 Lys 9 methylation, through interaction of CMT3 with methylated chromatin.
Collapse
Affiliation(s)
- James P Jackson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
2037
|
Grene R. Oxidative stress and acclimation mechanisms in plants. THE ARABIDOPSIS BOOK 2002; 1:e0036. [PMID: 22303206 PMCID: PMC3243402 DOI: 10.1199/tab.0036.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, 435 Old Glade Road, Virginia Tech, Blacksburg, VA 24061-0330;
| |
Collapse
|
2038
|
Meza TJ, Enerly E, Børu B, Larsen F, Mandal A, Aalen RB, Jakobsen KS. A human CpG island randomly inserted into a plant genome is protected from methylation. Transgenic Res 2002; 11:133-142. [PMID: 12054347 DOI: 10.1023/a:1015244400941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vertebrate genomes the dinucleotide CpG is heavily methylated, except in CpG islands, which are normally unmethylated. It is not clear why the CpG islands are such poor substrates for DNA methyltransferase. Plant genomes display methylation, but otherwise the genomes of plants and animals represent two very divergent evolutionary lines. To gain a further understanding of the resistance of CpG islands to methylation, we introduced a human CpG island from the proteasome-like subunit I gene into the genome of the plant Arabidopsis thaliana. Our results show that prevention of methylation is an intrinsic property of CpG islands, recognized even if a human CpG island is transferred to a plant genome. Two different parts of the human CpG island - the promoter region/ first exon and exon 2-4 - both displayed resistance against methylation, but the promoter/ exon1 construct seemed to be most resistant. In contrast, certain sites in a plant CpG-rich region used as a control transgene were always methylated. The frequency of silencing of the adjacent nptII (KmR) gene in the human CpG constructs was lower than observed for the plant CpG-rich region. These results have implications for understanding DNA methylation, and for construction of vectors that will reduce transgene silencing.
Collapse
|
2039
|
Abstract
Present knowledge on peroxiredoxins is reviewed with special emphasis on catalytic principles, specificities and biological function. Peroxiredoxins are low efficiency peroxidases using thiols as reductants. They appear to be fairly promiscuous with respect to the hydroperoxide substrate; the specificities for the donor substrate vary considerably between the subfamilies, comprising GSH, thioredoxin, tryparedoxin and the analogous CXXC motifs in bacterial AhpF proteins. Peroxiredoxins are definitely responsible for antioxidant defense in bacteria (AhpC), yeast (thioredoxin peroxidase) and trypanosomatids (tryparedoxin peroxidase). They are considered to determine virulence of mycobacteria and trypanosomatids. In higher plants they are involved in balancing hydroperoxide production during photosynthesis. In higher animals peroxiredoxins appear to be involved in the redox-regulation of cellular signaling and differentiation, displaying in part opposite effects.
Collapse
Affiliation(s)
- Birgit Hofmann
- Department of Biochemistry, Technical University of Braunschweig, Germany
| | | | | |
Collapse
|
2040
|
Soulages JL, Kim K, Walters C, Cushman JC. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. PLANT PHYSIOLOGY 2002; 128:822-32. [PMID: 11891239 PMCID: PMC152196 DOI: 10.1104/pp.010521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Revised: 09/19/2001] [Accepted: 11/03/2001] [Indexed: 05/09/2023]
Abstract
Group 1 late embryogenesis-abundant (LEA) proteins are a subset of hydrophilins that are postulated to play important roles in protecting plant macromolecules from damage during freezing, desiccation, or osmotic stress. To better understand the putative functional roles of group 1 LEA proteins, we analyzed the structure of a group 1 LEA protein from soybean (Glycine max). Differential scanning calorimetry of the purified, recombinant protein demonstrated that the protein assumed a largely unstructured state in solution. In the presence of trifluoroethanol (50% [w/v]), the protein acquired a 30% alpha-helical content, indicating that the polypeptide is highly restricted to adopt alpha-helical structures. In the presence of sodium dodecyl sulfate (1% [w/v]), 8% of the polypeptide chain adopted an alpha-helical structure. However, incubation with phospholipids showed no effect on the protein structure. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein existed in equilibrium between two conformational states. Ultraviolet absorption spectroscopy studies also showed that the protein became more hydrated upon heating. Furthermore, circular dichroism spectral measurements indicated that a minimum of 14% of amino acid residues existed in a solvent-exposed, left-handed extended helical or poly (L-proline)-type (PII) conformation at 20 degrees C with the remainder of the protein being unstructured. The content of PII-like structure increased as temperature was lowered. We hypothesize that by favoring the adoption of PII structure, instead of the formation of alpha-helical or beta-sheet structures, group 1 LEA proteins retain a high content of surface area available for interaction with the solvent. This feature could constitute the basis of a potential role of LEA proteins in preventing freezing, desiccation, or osmotic stress damage.
Collapse
Affiliation(s)
- Jose L Soulages
- Department of Biochemistry and Molecular Biology, 355 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078-0454, USA
| | | | | | | |
Collapse
|
2041
|
Abstract
SET-domain (SET: Su(var)3-9, E(z) and Trithorax)-containing proteins were collected through sequence searches of the available databases. After removing redundancies, the proteins belonging to three families, SU(VAR)3-9, E(Z) and Trithorax, were selected. Analysis of the relationship between the different members is based on pairwise alignment, compilation, and comparison of their SET-domains. The level of homology of the SET-domains defined the distribution of the proteins into families and into clades within the families. The architecture of the entire protein supported the distribution pattern built upon SET-domain similarity. Parallel cladistic and protein-architecture analyses outlined two plausible criteria for predicting function.
Collapse
Affiliation(s)
- Raul Alvarez-Venegas
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
2042
|
Singh S, Choi SB, Modi MK, Okita TW. Isolation and characterization of cDNA clones encoding ADP-glucose pyrophosphorylase (AGPase) large and small subunits from chickpea (Cicer arietinum L.). PHYTOCHEMISTRY 2002; 59:261-268. [PMID: 11830133 DOI: 10.1016/s0031-9422(01)00457-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four cDNA clones encoding two large subunits and two small subunits of the starch regulatory enzyme ADP-glucose pyrophosphorylase (AGPase) were isolated from a chickpea (Cicer arietinum L.) stem cDNA library. DNA sequence and Southern blot analyses of these clones, designated CagpL1, CagpL2 (large subunits) and CagpS1 and CagpS2 (small subunits), revealed that these isoforms represented different AGPase large and small subunits. RNA expression analysis indicated that CagpL1 was expressed strongly in leaves with reduced expression in the stem. No detectable expression was observed in seeds and roots. CagpL2 was expressed moderately in seeds followed by weak expression in leaves, stems and roots. Similar analysis showed that CagpS1 and CagpS2 displayed a spatial expression pattern similar to that observed for CagpL2 with the exception that CagpS1 showed a much higher expression in seeds than CagpS2. The spatial expression patterns of these different AGPase subunit sequences indicate that different AGPase isoforms are used to control starch biosynthesis in different organs during chickpea development.
Collapse
Affiliation(s)
- Salvinder Singh
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
2043
|
Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A 2002; 99:1076-81. [PMID: 11782532 PMCID: PMC117432 DOI: 10.1073/pnas.022392999] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the unicellular green alga Chlamydomonas reinhardtii, the epigenetic silencing of transgenes occurs, as in land plants, at both the transcriptional and posttranscriptional levels. In the case of single-copy transgenes, transcriptional silencing takes place without detectable cytosine methylation of the introduced DNA. We have isolated two mutant strains, Mut-9 and Mut-11, that reactivate expression of a transcriptionally silenced single-copy transgene. These suppressors are deficient in the repression of a DNA transposon and a retrotransposon-like element. In addition, the mutants show enhanced sensitivity to DNA-damaging agents, particularly radiomimetic chemicals inducing DNA double-strand breaks. All of these phenotypes are much more prominent in a double mutant strain. These observations suggest that multiple partly redundant epigenetic mechanisms are involved in the repression of transgenes and transposons in eukaryotes, presumably as components of a system that evolved to preserve genomic stability. Our results also raise the possibility of mechanistic connections between epigenetic transcriptional silencing and DNA double-strand break repair.
Collapse
Affiliation(s)
- Byeong-ryool Jeong Br
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, E211 Beadle Center, Post Office Box 880666, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
2044
|
Abstract
A recent proteomic analysis of germinating Arabidopsis thaliana seeds demonstrates the effectiveness of functional genomics for investigating the complexity of developmental regulatory networks, such as the development of the embryo into a young plant.
Collapse
Affiliation(s)
- Jérôme Bove
- Unité Mixte de Recherche 204 Institute National de la Recherche Agronomique Paris Grignon de 'Biologie des semences', route de St Cyr, 78026 Versailles cedex, France.
| | | | | |
Collapse
|
2045
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447253 DOI: 10.1002/cfg.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
2046
|
Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. PLANT PHYSIOLOGY 2001; 127:1299-1309. [PMID: 11706208 DOI: 10.1104/pp.010586] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A sequence coding for a peroxiredoxin (Prx) was isolated from a xylem/phloem cDNA library from Populus trichocarpa and subsequently inserted into an expression plasmid yielding the construction pET-Prx. The recombinant protein was produced in Escherichia coli cells and purified to homogeneity with a high yield. The poplar Prx is composed of 162 residues, a property that makes it the shortest plant Prx sequence isolated so far. It was shown that the protein is monomeric and possesses two conserved cysteines (Cys). The Prx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of an exogenous proton donor that can be either thioredoxin or glutaredoxin (Grx). Based on this finding, we propose that the poplar protein represents a new type of Prx that differs from the so-called 2-Cys and 1-Cys Prx, a suggestion supported by the existence of natural fusion sequences constituted of a Prx motif coupled to a Grx motif. The protein was shown to be highly expressed in sieve tubes where thioredoxin h and Grx are also major proteins.
Collapse
Affiliation(s)
- N Rouhier
- Unité Mixte de Recherche Interaction Arbres Microorganisms, Institut National de la Recherche Agronomique-Université Henri Poincaré Nancy I. Biochimie et Biologie Moléculaire Végétales, Université Henri Poincaré, 54506 Vandoeuvre cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2047
|
Huang YJ, To KY, Yap MN, Chiang WJ, Suen DF, Chen SCG. Cloning and characterization of leaf senescence up-regulated genes in sweet potato. PHYSIOLOGIA PLANTARUM 2001; 113:384-391. [PMID: 12060284 DOI: 10.1034/j.1399-3054.2001.1130312.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genes that are expressed during leaf senescence in sweet potato (Ipomoea batatas, cv. Tainong 57) were identified by the isolation of cDNA fragments with the mRNA differential display method. Eight senescence-associated cDNA clones for mRNAs differentially expressed during leaf senescence were obtained and characterized. Northern blot analysis indicated that all these clones represented genes that are up-regulated during natural leaf senescence. Among them, five cDNA clones have been obtained in full length by screening a senescing leaf cDNA library or by performing rapid amplification of cDNA ends. DNA and protein database searches revealed that clones SPA15 and SPC9 encode proteins of unknown function. The other six clones SPG31, SPC20, SPG27, SPC25, SPC15 and SPC1 showed significant sequence homology to known genes encoding a cysteine proteinase, isocitrate lyase, S-adenosylmethionine decarboxylase, cysteine proteinase inhibitor and metallothionein-like type I protein. The gene expression patterns represented by SPG31, SPG27 and SPA15 were found to be highly specific in senescing leaves. The corresponding transcripts for SPG31, SPG27 and SPA15 were below detectable levels in other organs such as flowers, stems, roots and tubers. The possible physiological roles of these gene products in the leaf senescence process are discussed.
Collapse
Affiliation(s)
- Yih-Jong Huang
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan Institute of Botany, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
2048
|
Abstract
One of the strongest and most noticeable responses of a Bacillus subtilis cell to a range of stress and starvation conditions is the dramatic induction of a large number of general stress proteins. The alternative sigma factor sigma B is responsible for the induction of the genes encoding these general stress proteins that occurs following heat, ethanol, salt or acid stress, or during energy depletion. sigma B was detected more than 20 years ago by Richard Losick and William Haldenwang as the first alternative sigma factor of bacteria, but interest in sigma B declined after it was realized that sigma B is not involved in sporulation. It later turned out that sigma B, whose activity itself is tightly controlled, is absolutely required for the induction of this regulon, not only in B. subtilis, but also in other Gram-positive bacteria. These findings may have been responsible for the recent revival of interest in sigma B. This chapter summarizes the current information on this sigma B response including the latest results on the signal transduction pathways, the structure of the regulon and its physiological role. More than 150 general stress proteins/genes belong to this sigma B regulon, which is believed to provide the non-growing cell with a non-specific, multiple and preventive stress resistance. sigma B-dependent stress proteins are involved in non-specific protection against oxidative stress and also protect cells against heat, acid, alkaline or osmotic stress. A cell in the transition from a growing to a non-growing state induced by energy depletion will be equipped with a comprehensive stress resistance machine to protect it against future stress. The protection against oxidative stress may be an essential part of this response. In addition, preloading of cells with sigma B-dependent stress proteins, induced by mild heat or salt stress, will protect cells against a severe, potentially lethal, future stress. Both the specific protection against an acute emerging stress, as well as the non-specific, prospective protection against future stress, are adaptive functions crucial for surviving stress and starvation in nature. We suggest that the sigma B response is one essential component of a survival strategy that ensures survival in a quiescent, vegetative state as an alternative to sporulation. The role of sigma B in related Gram-positive bacteria (including cyanobacteria) with special emphasis on pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Friedrich-Ludwig-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | |
Collapse
|
2049
|
Abstract
While superficially simple, endosperm development is a complex, dynamic process. Cereal endosperms contain three major cell types: starchy endosperm, transfer cells and aleurone. The localized accumulation of the END1 transcript in the syncitial endosperm suggests that signals from the maternal placental tissue specify transfer cell type early. Aleurone fate is plastic and requires the continual input of positional cues to maintain cell identity. Starchy endosperm appears to be the default cell type. Mutant patterns suggest that a regulatory hierarchy integrates endosperm development. Requirements for gametic imprinting, maternal : paternal genome ratios and putative chromatin modeling factors indicate the importance of genomic control.
Collapse
Affiliation(s)
- P W Becraft
- Zoology and Genetics Department and Agronomy Department, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
2050
|
Oliver AE, Leprince O, Wolkers WF, Hincha DK, Heyer AG, Crowe JH. Non-disaccharide-based mechanisms of protection during drying. Cryobiology 2001; 43:151-67. [PMID: 11846470 DOI: 10.1006/cryo.2001.2359] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few tissues or organisms can survive the removal of nearly all their intra and extracellular water. These few have developed specialized adaptations to protect their cellular components from the damage caused by desiccation and rehydration. One mechanism, common to almost all such organisms, is the accumulation of disaccharides within cells and tissues at the onset of dehydration. This adaptation has been extensively studied and will not be considered in this review. It has become increasingly clear that true desiccation tolerance is likely to involve several mechanisms working in concert; thus, we will highlight several other important and complimentary adaptations found especially in the dehydration-resistant tissues of higher plants. These include the scavenging of reactive oxygen species, the down-regulation of metabolism, and the accumulation of certain amphiphilic solutes, proteins, and polysaccharides.
Collapse
Affiliation(s)
- A E Oliver
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | | | | | | | | | | |
Collapse
|