2001
|
Shao R, Karunagaran D, Zhou BP, Li K, Lo SS, Deng J, Chiao P, Hung MC. Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J Biol Chem 1997; 272:32739-42. [PMID: 9407046 DOI: 10.1074/jbc.272.52.32739] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The adenoviral E1A protein has been implicated in the potentiation of apoptosis induced by various external stimuli, but the exact mechanism of that potentiation is not clear. In this study, we compared the sensitivity to ionizing gamma-irradiation of E1A transfectants with that of parental cells in a human ovarian cancer cell line (SKOV3.ip1); we found that the E1A transfectants became sensitive to radiation-induced apoptosis. Recently, activation of the transcription factor nuclear factor-kappaB (NF-kappaB) has been shown to play a key role in the anti-apoptotic pathway of radiation-induced apoptosis. In an attempt to determine whether NF-kappaB was involved in the E1A-mediated sensitization of radiation-induced apoptosis, we found that radiation-induced activation of NF-kappaB occurred in the parental cells but was blocked in the E1A transfectants. Furthermore, parental cells cotransfected with NF-kappaB and E1A were better protected from undergoing apoptosis upon irradiation than those transfected with E1A alone. Thus, our results suggest that inhibition of NF-kappaB activation by E1A is a plausible mechanism for E1A-mediated sensitization of radiation-induced apoptosis.
Collapse
Affiliation(s)
- R Shao
- Department of Tumor Biology, Breast Cancer Research Program, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
2002
|
Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dörken B. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100:2961-2969. [PMID: 9399941 PMCID: PMC508507 DOI: 10.1172/jci119849] [Citation(s) in RCA: 583] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathogenesis and etiology of Hodgkin's disease, a common human malignant lymphoma, is still unresolved. As a unique characteristic, we have identified constitutive activation of the transcription factor nuclear factor (NF)-kappaB p50-RelA in Hodgkin/Reed-Sternberg (H/RS) cells, which discriminates these neoplastic cells from most cell types studied to date. In contrast to other lymphoid and nonlymphoid cell lines tested, proliferation of H/RS cells depended on activated NF-kappaB. Furthermore, constitutive NF-kappaB p50-RelA prevented Hodgkin's lymphoma cells from undergoing apoptosis under stress conditions. Consistent with this dual function, Hodgkin's lymphoma cells depleted of constitutive nuclear NF-kappaB revealed strongly impaired tumor growth in severe combined immunodeficient mice. Our findings identify NF-kappaB as an important component for understanding the pathogenesis of Hodgkin's disease and for developing new therapeutic strategies against it.
Collapse
Affiliation(s)
- R C Bargou
- Max Delbr-uck Center for Molecular Medicine, 13122 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2003
|
Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11:3482-96. [PMID: 9407039 PMCID: PMC316809 DOI: 10.1101/gad.11.24.3482] [Citation(s) in RCA: 817] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Accepted: 11/04/1997] [Indexed: 02/05/2023]
Abstract
NF-kappaB is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-kappaB. We have generated mice deficient in both the p50 and p52 subunits of NF-kappaB to reveal critical functions that may be shared by these two highly homologous proteins. We now demonstrate that unlike the respective single knockout mice, the p50/p52 double knockout mice fail to generate mature osteoclasts and B cells, apparently because of defects that track with these lineages in adoptive transfer experiments. Furthermore, these mice present markedly impaired thymic and splenic architectures and impaired macrophage functions. The blocks in osteoclast and B-cell maturation were unexpected. Lack of mature osteoclasts caused severe osteopetrosis, a family of diseases characterized by impaired osteoclastic bone resorption. These findings now establish critical roles for NF-kappaB in development and expand its repertoire of roles in the physiology of differentiated hematopoietic cells.
Collapse
Affiliation(s)
- G Franzoso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2004
|
Klefstrom J, Arighi E, Littlewood T, Jäättelä M, Saksela E, Evan GI, Alitalo K. Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-kappaB activation. EMBO J 1997; 16:7382-92. [PMID: 9405367 PMCID: PMC1170338 DOI: 10.1093/emboj/16.24.7382] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Normal fibroblasts are resistant to the cytotoxic action of tumor necrosis factor (TNF), but are rendered TNF-sensitive upon deregulation of c-Myc. To assess if oncoproteins induce the cytotoxic TNF activity by modulating TNF signaling, we investigated the TNF-elicited signaling responses in fibroblasts containing a conditionally active c-Myc protein. In association with cell death, c-Myc impaired TNF-induced activation of phospholipase A2, JNK protein kinase and cell survival-signaling-associated NF-kappaB transcription factor complex. The TNF-induced death of mouse primary fibroblasts expressing deregulated c-Myc was inhibited by transient overexpression of the p65 subunit of NF-kappaB, which increased NF-kappaB activity in the cells. Unlike other TNF-induced signals, TNF-induced accumulation of the wild-type p53 mRNA and protein was not inhibited by c-Myc. TNF, with c-Myc, induced apoptosis in mouse primary fibroblasts but only weakly in p53-deficient primary fibroblasts. The C-terminal domain of p53, which is a transacting dominant inhibitor of wild-type p53, failed to inhibit apoptosis by c-Myc and TNF, suggesting that the cell death was not dependent on the transcription-activating function of p53. Taken together, the present findings show that the cytotoxic activity of TNF towards oncoprotein-expressing cells involves p53 and an impaired signaling for survival in such cells.
Collapse
Affiliation(s)
- J Klefstrom
- Molecular/Cancer Biology Laboratory, Haartman Institute, PO Box 21, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
2005
|
Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997; 100:2952-60. [PMID: 9399940 PMCID: PMC508506 DOI: 10.1172/jci119848] [Citation(s) in RCA: 536] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of nuclear factor-kappaB (NF-kappaB)/Rel transcription factors has recently been found to promote cell survival, inhibiting the induction of apoptosis. In most cells other than B lymphocytes, NF-kappaB/Rel is inactive, sequestered in the cytoplasm. For example, nuclear extracts from two human untransformed breast epithelial cell lines expressed only very low levels of NF-kappaB. Unexpectedly, nuclear extracts from two human breast tumor cell lines displayed significant levels of NF-kappaB/Rel. Direct inhibition of this NF-kappaB/ Rel activity in breast cancer cells induced apoptosis. High levels of NF-kappaB/Rel binding were also observed in carcinogen-induced primary rat mammary tumors, whereas only expectedly low levels were seen in normal rat mammary glands. Furthermore, multiple human breast cancer specimens contained significant levels of nuclear NF-kappaB/Rel subunits. Thus, aberrant nuclear expression of NF-kappaB/Rel is associated with breast cancer. Given the role of NF-kappaB/Rel factors in cell survival, this aberrant activity may play a role in tumor progression, and represents a possible therapeutic target in the treatment of these tumors.
Collapse
Affiliation(s)
- M A Sovak
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
2006
|
Hannig H, Mätz-Rensing K, Kuhn EM, Stahl-Hennig C, Kaup FJ, Hunsmann G, Bodemer W. Cytokine gene transcription in simian immunodeficiency virus and human immunodeficiency virus-associated non-Hodgkin lymphomas. AIDS Res Hum Retroviruses 1997; 13:1589-96. [PMID: 9430251 DOI: 10.1089/aid.1997.13.1589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection of rhesus monkeys with SIV leads to AIDS-like symptoms. Similar to human AIDS patients, some monkeys develop B cell non-Hodgkin lymphoma (NHL). We determined transcription of cytokine genes regulating the activation of B and T cells, which play a role in intratumoral immune surveillance. Therefore, we compared the transcription of the cytokine genes encoding IL-2, IL-4, IL-6, IL-10, IFN-gamma, TNF-alpha, and TGF-beta1, and the Epstein-Barr virus-encoded BCRF 1 gene, in cells from five monkey and two human tumor specimens. The immune-suppressive IL-10 and TGF-beta1 genes were predominantly transcribed in all tumor specimens analyzed. Cytokine gene transcription patterns appeared to be similar in human and animal tumor cells. The transcription patterns corresponded to their histological classification as diffuse large-cell lymphoma according to the REAL classification and as immunoblastic or centroblastic tumors according to the Kiel classification. The determination of cytokine gene transcription pattern in the NHL may improve our understanding of pathogenesis and immune surveillance in this heterogeneous group of tumors. Our data show that SIV-associated NHLs of rhesus monkeys are comparable to human HIV-1-associated EBV-positive non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- H Hannig
- German Primate Centre, Göttingen
| | | | | | | | | | | | | |
Collapse
|
2007
|
Force WR, Cheung TC, Ware CF. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. J Biol Chem 1997; 272:30835-40. [PMID: 9388227 DOI: 10.1074/jbc.272.49.30835] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ligation of the lymphotoxin-beta receptor (LTbetaR) recruits tumor necrosis factor receptor-associated factor-3 (TRAF3) and initiates cell death in HT29 adenocarcinoma cells. The minimal receptor binding domain (TRAF-C) defined by two hybrid analyses is not sufficient for direct recruitment to the ligated receptor. A series of TRAF3 deletion mutants reveal that a subregion of the coiled coil motif is required for efficient recruitment to the LTbetaR. Furthermore, the ability of TRAF3 to self-associate maps to an adjacent subregion. A TRAF3 deletion mutant that lacks the N-terminal zinc RING and zinc finger motifs, but retains the coiled coil and TRAF-C motifs, competitively displaces endogenous TRAF3 from the LTbetaR. A second TRAF3 mutant that lacks the receptor binding domain, yet contains the TRAF3 self-association domain, prevents TRAF3 homodimers from being recruited to the LTbetaR. Both of these mutants have a dominant negative effect on cell death and demonstrate that the recruitment of TRAF3 oligomers is necessary to initiate signal transduction that activates the cell death pathway.
Collapse
Affiliation(s)
- W R Force
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | |
Collapse
|
2008
|
You M, Ku PT, Hrdlicková R, Bose HR. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 1997; 17:7328-41. [PMID: 9372964 PMCID: PMC232589 DOI: 10.1128/mcb.17.12.7328] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncoprotein v-Rel, a member of the Rel/NF-kappaB family of transcription factors, induces neoplasias and inhibits apoptosis. To identify differentially regulated cellular genes and to evaluate their relevance to transformation and apoptosis in v-Rel-transformed cells, mRNA differential display has been used. One of the recovered cDNAs corresponds to a gene that was highly expressed in v-Rel-transformed fibroblasts. Analysis of the isolated full-length cDNA of a chicken inhibitor-of-apoptosis protein (ch-IAP1) revealed that it encodes a 68-kDa protein that is highly homologous to members of the IAP family, such as human c-LAP1. Like other IAPs, ch-IAP1 contains the N-terminal baculovirus IAP repeats and C-terminal RING finger motifs. Northern blot analysis identified a 3.3-kb ch-IAP1 transcript expressed at relatively high levels in the spleen, thymus, bursa, intestine, and lungs. Expression of v-Rel in fibroblasts, a B-cell line, and spleen cells up-regulated the expression of ch-IAP1. In contrast, ch-IAP1 expression levels were low in chicken cell lines transformed by several other unrelated tumor viruses. ch-IAP1 was expressed predominantly in the cytoplasm of the v-Rel-transformed cells. ch-IAP1 suppressed mammalian cell apoptosis induced by the overexpression of the interleukin-1-converting enzyme. Expression of exogenous ch-IAP1 in temperature-sensitive v-Rel transformed spleen cells inhibited apoptosis of these cells at the nonpermissive temperature. Collectively, these results suggest that ch-IAP1 is induced during the v-Rel-mediated transformation process and functions as a suppressor of apoptosis in v-Rel-transformed cells.
Collapse
Affiliation(s)
- M You
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-1095, USA
| | | | | | | |
Collapse
|
2009
|
Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997; 7:813-20. [PMID: 9430226 DOI: 10.1016/s1074-7613(00)80399-4] [Citation(s) in RCA: 642] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A fourth member of the emerging TRAIL receptor family, TRAIL-R4, has been cloned and characterized. TRAIL-R4 encodes a 386-amino acid protein with an extracellular domain showing 58%-70% identity to those of TRAIL-R1, TRAIL-R2, and TRAIL-R3. The signaling capacity of TRAIL-R4 is similar to that of TRAIL-R1 and TRAIL-R2 with respect to NF-kappaB activation, but differs in its inability to induce apoptosis. Yet TRAIL-R4 retains a C-terminal element containing one third of a consensus death domain motif. Transient overexpression of TRAIL-R4 in cells normally sensitive to TRAIL-mediated killing confers complete protection, suggesting that one function of TRAIL-R4 may be inhibition of TRAIL cytotoxicity. Like TRAIL-R1 and TRAIL-R2, this receptor shows widespread tissue expression. The human TRAIL-R4 gene has been mapped to chromosome 8p22-21, clustered with three other TRAIL receptors.
Collapse
Affiliation(s)
- M A Degli-Esposti
- Department of Biochemistry, Immunex Corporation, Seattle, Washington 98101, USA.
| | | | | | | | | | | |
Collapse
|
2010
|
Chen CM, You LR, Hwang LH, Lee YH. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor. J Virol 1997; 71:9417-26. [PMID: 9371602 PMCID: PMC230246 DOI: 10.1128/jvi.71.12.9417-9426.1997] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies suggest that the core protein of hepatitis C virus (HCV) has a pleiotropic function in the replication cycle of the virus. To understand the role of this protein in HCV pathogenesis, we used a yeast two-hybrid protein interaction cloning system to search for cellular proteins physically interacting with the HCV core protein. One such cellular gene was isolated and characterized as the gene encoding the lymphotoxin-beta receptor (LT-betaR). In vitro binding analysis demonstrated that the HCV core protein binds to the C-terminal 98 amino acids within the intracellular domain of the LT-betaR that is involved in signal transduction, although the binding affinity of the full-length HCV core protein was weaker than that of its C-terminally truncated form. Our results also indicated that the N-terminal 40-amino-acid segment of the HCV core protein was sufficient for interaction with LT-betaR and that the core protein could form complexes with the oligomeric form of the intracellular domain of LT-betaR, which is a prerequisite for downstream signaling of this receptor. Similar to other members of the tumor necrosis factor (TNF) receptor superfamily, LT-betaR is involved in the cytotoxic effect of the signaling pathway, and thus we have elucidated the biological consequence of interaction between the HCV core protein and LT-betaR. Our results indicated that in the presence of the synergizing agent gamma interferon, the HCV core protein enhances the cytotoxic effects of recombinant forms of LT-betaR ligand in HeLa cells but not in hepatoma cells. Furthermore, this enhancement of the cytolytic activity was cytokine specific, since in the presence of cycloheximide, the expression of the HCV core protein did not elicit an increase in the cytolytic activity of TNF in both HeLa and hepatoma cells. In summary, the HCV core protein can associate with LT-betaR, and this protein-protein interaction has a modulatory effect on the signaling pathway of LT-betaR in certain cell types. Given the known roles of LT-betaR/LT-alpha1,beta2 receptor-ligand interactions in the normal development of peripheral lymphoid organs and in triggering cytolytic activity and NF-kappaB activation in certain cell types, our finding implies that the HCV core protein may aggravate these biological functions of LT-betaR, resulting in pathogenesis in HCV-infected cells.
Collapse
Affiliation(s)
- C M Chen
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
2011
|
Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997; 7:821-30. [PMID: 9430227 DOI: 10.1016/s1074-7613(00)80400-8] [Citation(s) in RCA: 547] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Death receptor 4 (DR4) is a recently described receptor for the cytotoxic ligand TRAIL that reportedly uses a FADD-independent pathway to induce apoptosis and does not activate the NF-kappaB pathway. We have isolated a new member of the tumor necrosis factor receptor (TNFR) family, designated DR5, which bears a high degree of sequence homology to DR4. However, contrary to the previous reports, both DR4- and DR5-induced apoptosis can be blocked by dominant-negative FADD, and both receptors can activate NF-kappaB using a TRADD-dependent pathway. Finally, both receptors can interact with FADD, TRADD, and RIP. Thus, both DR5 and DR4 use FADD, TRADD, and RIP in their signal transduction pathways, and FADD is the common mediator of apoptosis by all known death domain-containing receptors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Carrier Proteins/metabolism
- Caspase 8
- Caspase 9
- Caspases
- Cell Line
- Cloning, Molecular
- Cricetinae
- Cysteine Endopeptidases/metabolism
- DNA, Complementary
- Fas-Associated Death Domain Protein
- Humans
- Molecular Sequence Data
- NF-kappa B/metabolism
- Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 25
- Sequence Analysis, DNA
- TNF Receptor-Associated Factor 1
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P M Chaudhary
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
2012
|
Abstract
Nuclear Factor-Kappa B (NF-kappa B) was first identified by Sen and Baltimore (1986, Cell 46, 705-716) as a constitutively active transcription factor binding the kappa light chain immunoglobulin enhancer in B cells. Shortly afterwards, the same researchers found NF-kappa B to be present in other cell types in an inactive cytoplasmic form which upon cellular stimulation could be induced to translocate to the nucleus and bind DNA. Subsequently, it has been demonstrated that NF-kappa B performs a critical role as a regulator of the immune system, the response to stress, apoptosis, viral replication and is involved in many diseases, leading to it becoming one of the most intensively studied transcription factors of the last decade. The pivotal role played by NF-kappa B is illustrated not only by the great diversity of genes that it regulates, but also by the large variety of stimuli leading to its activation. This article will address how NF-kappa B, a ubiquitously expressed transcription factor composed of dimers formed from five subunits, differentially regulates the expression of such a diverse array of genes with different functions, in different cell types and at different times. Recent research indicates that this behavioral diversity arises from a delicately balanced network of protein: protein interactions: NF-kappa B activity is determined not only through its regulated nuclear localization but is also dependent on the cellular context in which it is found.
Collapse
Affiliation(s)
- N D Perkins
- Department of Biochemistry, University of Dundee, U.K
| |
Collapse
|
2013
|
Klingler K, Tchou-Wong KM, Brändli O, Aston C, Kim R, Chi C, Rom WN. Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes. Infect Immun 1997; 65:5272-8. [PMID: 9393826 PMCID: PMC175759 DOI: 10.1128/iai.65.12.5272-5278.1997] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since apoptosis is observed in tuberculous granulomata, we investigated the molecular mechanisms underlying the apoptotic pathway in an in vitro model of mycobacterial infection of mononuclear phagocytes. We postulated that Mycobacterium tuberculosis could trigger the apoptotic pathway in macrophages, resulting in death of the microorganism by modulating the expression of bcl-2, bax, bcl-xL, and bcl-xS. We found that the mRNA of bcl-2, an inhibitor of apoptosis, was downregulated in peripheral blood monocytes (PBM) between 2 and 6 h following infection with M. bovis BCG or induction with heat-killed M. tuberculosis H37Ra. Western analysis showed a downregulation of the Bcl-2 protein, with a half-life of 24 h. At the same time points, there was no change in the expression of Bax or Bcl-xS, inducers of apoptosis, but Bcl-xL, another inhibitor of apoptosis, was minimally upregulated by BCG. To determine if apoptosis could be a mechanism for growth inhibition in vivo, we obtained alveolar macrophages by bronchoalveolar lavage from involved sites in patients with active pulmonary tuberculosis. Using the TUNEL (terminal deoxynucleotidyltransferase mediated nick end labeling) technique, we observed significantly more apoptosis in involved segments of five tuberculosis patients (14.8 +/- 1.9%) than in those of normal controls (<1%, P = 0.02) or in uninvolved segments (4.3 +/- 0.9%, P < 0.05). We conclude that apoptosis of mononuclear phagocytes induced by M. tuberculosis occurs in vivo and that in an in vitro model of mycobacterial infection, apoptosis may be mediated by downregulation of Bcl-2.
Collapse
Affiliation(s)
- K Klingler
- Department of Medicine, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
2014
|
Koumenis C, Giaccia A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol Cell Biol 1997; 17:7306-16. [PMID: 9372962 PMCID: PMC232587 DOI: 10.1128/mcb.17.12.7306] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies have indicated that deregulated oncogene expression can result in either programmed cell death or proliferation, depending on the cellular microenvironment. However, little is known about whether oncogenic signals in themselves are able to activate a cellular apoptotic program. We have tested the hypothesis that oncogenic signals in the absence of gene expression are sufficient to induce cell death, which would indicate that constitutive expression of antiapoptotic genes is necessary for maintenance of the transformed state. Using two highly specific RNA polymerase (RNAP) II inhibitors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and alpha-amanitin, which inhibit RNAP II function by two distinct mechanisms, we found that inhibition of gene expression substantially increased apoptosis in a time- and dose-dependent manner in p53+/+- and p53(-/-)-transformed mouse embryonic fibroblasts and in HeLa cells, demonstrating that this type of apoptosis does not require wild-type p53. Engineered expression of an alpha-amanitin resistance RNAP II gene rendered cells resistant to induction of apoptosis by alpha-amanitin without affecting their sensitivity to DRB, indicating that alpha-amanitin induces apoptosis solely by inhibiting RNAP II function and not by a nonspecific mechanism. DRB-induced apoptosis was independent of the cell cycle or ongoing DNA replication, since DRB induced similar levels of apoptosis in asynchronous cells and cells synchronized by collection at mitosis. Inhibition of RNAP II in untransformed cells like Rat-1 or human AG1522 fibroblasts resulted not in apoptosis but in growth arrest. In contrast, deregulated expression of c-Myc in Rat-1 cells dramatically increased their sensitivity to DRB, directly demonstrating that apoptosis following inhibition of RNAP II function is greatly enhanced by oncogenic expression. The requirement for RNAP II function to prevent oncogene-induced apoptosis implies the need for the constitutive expression of an antiapoptotic gene(s) to maintain the transformed state. The differential sensitivities of untransformed and transformed cells to induction of apoptosis by transcriptional inhibition, coupled with the finding that this type of apoptosis is independent of p53 status, suggest that inhibition of RNAP II may be exploited therapeutically for the design of successful antitumor agents.
Collapse
Affiliation(s)
- C Koumenis
- Department of Radiation Oncology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
2015
|
Jones PL, Ping D, Boss JM. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol 1997; 17:6970-81. [PMID: 9372929 PMCID: PMC232554 DOI: 10.1128/mcb.17.12.6970] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD), a tumor necrosis factor (TNF)-inducible reactive oxygen-scavenging enzyme, protects cells from TNF-mediated apoptosis. To understand how MnSOD is regulated, transient transfections of promoter-reporter gene constructions, in vitro DNA binding assays, and in vivo genomic footprint (IVGF) analysis were carried out on the murine MnSOD gene. The results of this analysis identified a 238-bp region of intron 2 that was responsive to TNF and interleukin-1beta (IL-1). This TNF response element (TNFRE) had the properties of a traditional enhancer element that functioned in an orientation- and position-independent manner. IVGF of the TNFRE revealed TNF- and IL-1-induced factor occupancy of sites that could bind NF-kappaB and C/EBP. The 5' portion of the TNFRE bound C/EBP-beta in vitro and was both necessary and sufficient for TNF responsiveness with the MnSOD promoter or with a heterologous promoter when in an upstream position. The 3' end of the TNFRE bound both NF-kappaB and C/EBP but was not necessary for TNF responsiveness with the MnSOD promoter. However, this 3' portion of the TNFRE was required for the TNFRE to function as a downstream enhancer with a heterologous promoter. These data functionally separate the MnSOD TNFRE into a region responsible for TNF activation and one that mediates induction when it is downstream of a promoter.
Collapse
Affiliation(s)
- P L Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
2016
|
Morales A, García-Ruiz C, Miranda M, Marí M, Colell A, Ardite E, Fernández-Checa JC. Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase. J Biol Chem 1997; 272:30371-9. [PMID: 9374527 DOI: 10.1074/jbc.272.48.30371] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that causes cell injury by generation of oxidative stress. Since glutathione (GSH) is a key cellular antioxidant that detoxifies reactive oxygen species, the purpose of our work was to examine the regulation of cellular GSH, the expression of heavy subunit chain of gamma-glutamylcysteine synthetase (gamma-GCS-HS), and control of intracellular generation of reactive oxygen species in cultured rat hepatocytes treated with TNF. Exposure of cells to TNF (10,000 units/ml) resulted in depletion of cellular GSH levels (50-70%) and overproduction of hydrogen peroxide (2-3-fold) and lipid peroxidation. However, cells treated with lower doses of TNF (250-500 units/ml) exhibited increased levels of GSH (60-80% over control). TNF treatment increased (70-100%) the levels of gamma-GCS-HS mRNA, the catalytic subunit of the regulating enzyme in GSH biosynthesis. Furthermore, intact nuclei isolated from hepatocytes treated with TNF transcribed the gamma-GCS-HS gene to a greater extent than control cells, indicating that TNF regulates gamma-GCS-HS at the transcriptional level. The capacity to synthesize GSH de novo determined in cell-free extracts incubated with GSH precursors was greater (50-70%) in hepatocytes that were treated with TNF; however, the activity of GSH synthetase remained unaltered by TNF treatment indicating that TNF selectively increased the activity of gamma-GCS. Despite activation of nuclear factor-kappaB (NF-kappaB) by TNF, this transcription factor was not required for TNF-induced transcription of gamma-GCS-HS as revealed by deletion constructs of the gamma-GCS-HS promoter subcloned in a chloramphenicol acetyltransferase reporter vector and transfected into HepG2 cells. In contrast, a construct containing AP-1 like/metal response regulatory elements increased chloramphenicol acetyltransferase activity upon exposure to TNF. Thus, TNF increases hepatocellular GSH levels by transcriptional regulation of gamma-GCS-HS gene, probably through AP-1/metal response element-like binding site(s) in its promoter, which may constitute a protective mechanism in the control of oxidative stress induced by inflammatory cytokines.
Collapse
Affiliation(s)
- A Morales
- Instituto de Investigaciones Biomédicas, Consejo Superior Investigaciones Científicas and Liver Unit and Servicio de Bioquímica, Department of Medicine, Hospital Clinic i Provincial, Universidad de Barcelona, Barcelona 08036, Spa
| | | | | | | | | | | | | |
Collapse
|
2017
|
Barkett M, Xue D, Horvitz HR, Gilmore TD. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 1997; 272:29419-22. [PMID: 9367996 DOI: 10.1074/jbc.272.47.29419] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IkappaB proteins function as direct regulators of Rel/NF-kappaB transcription complexes. We show that the cell-death protease CPP32 (caspase-3) in vitro specifically cleaved chicken and human IkappaB-alpha at a conserved Asp-Ser sequence. This cleavage site appears to be identical to the site at which chicken IkappaB-alpha is cleaved in vivo in temperature-sensitive v-Rel-transformed chicken spleen cells undergoing apoptosis. Other caspases, namely interleukin-1beta-converting enzyme (caspase-1) and Ich-1 (caspase-2), did not cleave IkappaB-alpha. CPP32 also cleaved mammalian IkappaB-beta in vitro at the analogous Asp-Ser sequence. Cleavage of IkappaB-alpha by CPP32 was blocked by serine phosphorylation of IkappaB-alpha. Cleavage of IkappaB-alpha by a CPP32- like protease could generate a constitutive inhibitor of Rel transcription complexes. This report provides evidence for a direct biochemical interaction between the NF-kappaB signaling pathway and a cell-death protease signaling pathway.
Collapse
Affiliation(s)
- M Barkett
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
2018
|
Maldonado V, Meléndez-Zajgla J, Ortega A. Modulation of NF-kappa B, and Bcl-2 in apoptosis induced by cisplatin in HeLa cells. Mutat Res 1997; 381:67-75. [PMID: 9403032 DOI: 10.1016/s0027-5107(97)00150-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cisplatin exposure induces apoptosis in HeLa cells. Since the interaction of this drug with DNA produces reactive oxygen species, we performed an analysis of the oxidative stress-responsive factors AP-1 and NF-kappa B. Although AP-1 levels were not modified during cisplatin exposure, electrophoretic mobility shift assays demonstrated an increase in NF-kappa B DNA binding activity that correlated with a decrease of the inhibitory protein I kappa B alpha and a specific relocalization of c-Rel, as assessed by immunoblotting and immunofluorescence. No changes in the levels or localization of p65 were found. Interestingly, I kappa B alpha relocalized to the nucleus, probably in order to regulate the binding of specific complexes. This process was accompanied by a decrease of the antiapoptotic protein Bcl-2, and a relocalization of p53 protein to the nucleus. Since HeLa cells lost most of their p53 protein due to a specific E6-dependent degradation, cisplatin could be inhibiting this degradation, since the p53 total levels were not increased during the exposure to the drug.
Collapse
Affiliation(s)
- V Maldonado
- Laboratorio de Biología Molecular, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | |
Collapse
|
2019
|
Ishikawa Y, Yokoo T, Kitamura M. c-Jun/AP-1, but not NF-kappa B, is a mediator for oxidant-initiated apoptosis in glomerular mesangial cells. Biochem Biophys Res Commun 1997; 240:496-501. [PMID: 9388508 DOI: 10.1006/bbrc.1997.7665] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidant stress is a trigger of cell death in various cell types. Hydrogen peroxide (H2O2) induced mesangial cell death with nuclear condensation and DNA fragmentation typical of apoptosis. To explore molecular mechanisms involved in this process, redox-sensitive transacting molecules, activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappa B), have been brought into focus. Northern blot analysis and transient transfection assays using reporter plasmids showed that H2O2 activated both AP-1 and NF-kappa B. Downregulation of c-Jun/AP-1 using a transdominant negative mutant of c-jun, an antisense c-jun, or a pharmacologic inhibitor curcumin inhibited the H2O2-initiated apoptosis. In contrast, inhibition of the NF-kappa B activation using a transdominant negative mutant of the p50 NF-kappa B subunit did not affect the H2O2-triggered cellular death. These data elucidated that c-Jun/AP-1, but not NF-kappa B, is involved in the oxidant-initiated cell death program in glomerular mesangial cells.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Medicine, University College London Medical School, United Kingdom
| | | | | |
Collapse
|
2020
|
Bash J, Zong WX, Gélinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol 1997; 17:6526-36. [PMID: 9343416 PMCID: PMC232506 DOI: 10.1128/mcb.17.11.6526] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A tetracycline-regulated system was used to characterize the effects of c-Rel on cell proliferation. The expression of c-Rel in HeLa cells led to growth arrest at the G1/S-phase transition, which correlated with its nuclear localization and the induction of endogenous IkappaB alpha expression. These changes were accompanied by a decrease in E2F DNA binding and the accumulation of the hypophosphorylated form of Rb. In vitro kinase assays showed a reduction in Cdk2 kinase activity that correlated with elevated levels of p21WAF1 Cdk inhibitor and p53 tumor suppressor protein. While the steady-state levels of WAF1 transcripts were increased, pulse-chase analysis revealed a sharp increase in p53 protein stability. Importantly, the deletion of the C-terminal transactivation domains of c-Rel abolished these effects. Together, these studies demonstrate that c-Rel can affect cell cycle control and suggest the involvement of the p21WAF1 and p53 cell cycle regulators.
Collapse
Affiliation(s)
- J Bash
- Center for Advanced Biotechnology and Medicine, and Graduate Program in Microbiology and Molecular Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
2021
|
Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 1997; 7:703-13. [PMID: 9390693 DOI: 10.1016/s1074-7613(00)80390-8] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TRAF2 is believed to mediate the activation of NF-kappaB and JNK induced by the tumor necrosis factor receptor (TNFR) superfamily, which elicits pleiotropic responses in lymphocytes. We have investigated the physiological roles of TRAF2 in these processes by expressing a lymphocyte-specific dominant negative form of TRAF2, thereby blocking this protein's effector function. We find that the TNFR superfamily signals require TRAF2 for activation of JNK but not NF-kappaB. In addition, we show that TRAF2 induces NF-kappaB-independent antiapoptotic pathways during TNF-induced apoptosis. Inhibition of TRAF2 leads to splenomegaly, lymphadenopathy, and an increased number of B cells. These findings indicate that TRAF2 is involved in the regulation of lymphocyte function and growth in vivo.
Collapse
Affiliation(s)
- S Y Lee
- Laboratory of Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
2022
|
Martínez-Martínez S, Gómez del Arco P, Armesilla AL, Aramburu J, Luo C, Rao A, Redondo JM. Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells. Mol Cell Biol 1997; 17:6437-47. [PMID: 9343406 PMCID: PMC232496 DOI: 10.1128/mcb.17.11.6437] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants.
Collapse
Affiliation(s)
- S Martínez-Martínez
- Servicio de Immunología, Hospital de la Princesa y Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
2023
|
Pine R. Convergence of TNFalpha and IFNgamma signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/kappaB promoter element. Nucleic Acids Res 1997; 25:4346-54. [PMID: 9336467 PMCID: PMC147058 DOI: 10.1093/nar/25.21.4346] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular basis for the well known synergistic biological effects of tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) is still poorly understood. This report demonstrates that expression of interferon-regulatory factor 1 (IRF-1), also known as interferon-stimulated-gene factor 2 (ISGF-2), is synergistically induced by these cytokines. The induction is a primary transcriptional response that occurs rapidly without a requirement for new protein synthesis. Synergism is mediated by a novel composite element in the IRF-1 promoter that includes an IFNgamma-activation site (GAS) overlapped by a non-consensus site for nuclear factor kappa B (NFkappaB). These sequences are bound strongly by signal transducer and activator of transcription 1 (STAT-1) and weakly by the p50/p65 heterodimer form of NFkappaB, respectively. However, the binding of STAT-1 and NFkappaB to the GAS/kappaB element in vitro seems to be mutually exclusive and independent. Synergistic induction of IRF-1 is likely to be an important early step in regulatory networks critical to the synergism of TNFalpha and IFNgamma. The GAS/kappaB element may mediate synergistic transcriptional induction of IRF-1 by other pairs of ligands that together activate NFkappaB and STAT family members. Other genes are likely to contain this motif and be regulated similarly.
Collapse
Affiliation(s)
- R Pine
- Public Health Research Institute, New York, NY 10016, USA
| |
Collapse
|
2024
|
Herrlich P, Blattner C, Knebel A, Bender K, Rahmsdorf HJ. Nuclear and non-nuclear targets of genotoxic agents in the induction of gene expression. Shared principles in yeast, rodents, man and plants. Biol Chem 1997; 378:1217-29. [PMID: 9426181 DOI: 10.1515/bchm.1997.378.11.1217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interplay between environmental cues and the genetic response is decisive for the development, health and well-being of an organism. For some environmental factors a narrow margin separates beneficial and toxic impacts. With the increasing exposure to UV-B this dichotomy has reached public attention. This review will be concerned with the mechanisms that mediate a cellular genetic response to noxious agents. The toxic stimuli find access to the regulatory network inside cells by interacting at several points with cellular molecules - a process that converts the 'outside information' into 'cellular language'. As a consequence of such interactions, many adverse agents cause massive signal transduction and changes of gene expression. There is an interesting conservation of the mechanisms from yeast to man. An understanding of the genetic programs and of their phenotypic consequences is lagging behind.
Collapse
Affiliation(s)
- P Herrlich
- Forschungszentrum Karlsruhe, Institut für Genetik and Universität Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
2025
|
Abstract
Adaptation to heat may occur through acclimatization or thermotolerance; however, the linkage of these phenomena is poorly understood. The importance of heat shock proteins (HSPs) in thermotolerance and differences in their accumulation in organisms adapted to the heat suggest a role for HSPs in acclimatization as well. The role of HSPs in heat adaptation of the whole organism and the interrelationships among heat adaptation, endotoxin tolerance, and cytokine resistance through HSPs are reviewed.
Collapse
Affiliation(s)
- P L Moseley
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque 87131-5271, USA
| |
Collapse
|
2026
|
Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A, de la Pompa JL, Ferrick D, Hum B, Iscove N, Ohashi P, Rothe M, Goeddel DV, Mak TW. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997; 7:715-25. [PMID: 9390694 DOI: 10.1016/s1074-7613(00)80391-x] [Citation(s) in RCA: 655] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TRAF2 is an intracellular signal-transducing protein recruited to the TNFR1 and TNFR2 receptors following TNF stimulation. To investigate the physiological role of TRAF2, we generated TRAF2-deficient mice. traf2-/- mice appeared normal at birth but became progressively runted and died prematurely. Atrophy of the thymus and spleen and depletion of B cell precursors also were observed. Thymocytes and other hematopoietic progenitors were highly sensitive to TNF-induced cell death and serum TNF levels were elevated in these TRAF2-deficient animals. Examination of traf2-/- cells revealed a severe reduction in TNF-mediated JNK/SAPK activation but a mild effect on NF-kappaB activation. These results suggest that TRAF2-independent pathways of NF-kappaB activation exist and that TRAF2 is required for an NF-kappaB-independent signal that protects against TNF-induced apoptosis.
Collapse
Affiliation(s)
- W C Yeh
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2027
|
Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, Coffey RJ. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nat Med 1997; 3:1233-41. [PMID: 9359698 DOI: 10.1038/nm1197-1233] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. Five-fluorouracil (5FU) remains the single most effective treatment for advanced disease, despite a response rate of only 20%. Herein, we show that the antioxidants pyrrolidinedithiocarbamate and vitamin E induce apoptosis in CRC cells. This effect is mediated by induction of p21WAF1/CIP1, a powerful inhibitor of the cell cycle, through a mechanism involving C/EBPbeta (a member of the CCAAT/enhancer binding protein family of transcription factors), independent of p53. Antioxidants significantly enhance CRC tumor growth inhibition by cytotoxic chemotherapy in vitro (5FU and doxorubicin) and in vivo (5FU). Thus, chemotherapeutic agents administered in the presence of antioxidants may provide a novel therapy for colorectal cancer.
Collapse
Affiliation(s)
- R Chinery
- Department of Cell Biology, Vanderbilt University Medical Center, and Veterans Affairs Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
2028
|
Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997; 11:2810-21. [PMID: 9353251 PMCID: PMC316646 DOI: 10.1101/gad.11.21.2810] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023]
Abstract
CD30 is a cell-surface receptor that can augment lymphocyte activation and survival through its ability to induce the transcription factor NF-kappaB. CD30, however, has also been implicated in the induction of apoptotic cell death of lymphocytes. Here we show that one of the effects of CD30 signal transduction is to render cells sensitive to apoptosis induced by the type 1 tumor necrosis factor receptor (TNFR1). This sensitization is dependent on the TRAF-binding sites within the CD30 cytoplasmic domain. One of the proteins that binds to these sites is TRAF2, a signal transduction molecule that is also utilized by TNFR1 to mediate the activation of several downstream kinases and transcription factors. During CD30 signal transduction, we found that binding of TRAF2 to the cytoplasmic domain of CD30 results in the rapid depletion of TRAF2 and the associated protein TRAF1 by proteolysis. These data suggest a model in which CD30 limits its own ability to transduce cell survival signals through signal-coupled depletion of TRAF2. Depletion of intracellular TRAF2 and its coassociated proteins also increased the sensitivity of the cell to undergoing apoptosis during activation of death-inducing receptors such as TNFR1. Consistent with this hypothesis, expression of a dominant-negative form of TRAF2 was found to potentiate TNFR1-mediated death. These studies provide a potential mechanism through which CD30, as well as other TRAF-binding members of the TNFR superfamily, can negatively regulate cell survival.
Collapse
Affiliation(s)
- C S Duckett
- Howard Hughes Medical Institute, Gwen Knapp Center for Lupus and Immunology Research, and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
2029
|
Griffin DE, Hardwick JM. Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 1997; 51:565-92. [PMID: 9343360 DOI: 10.1146/annurev.micro.51.1.565] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alphavirus infection can trigger the host cell to activate its genetically programmed cell death pathway, leading to the morphological features of apoptosis. The ability to activate this death pathway is dependent on both viral and cellular determinants. The more virulent strains of alphavirus induce apoptosis with increased efficiency both in animal models and in some cultured cells. Although the immune system clearly plays a central role in clearing virus, the importance of other cellular factors in determining the outcome of virus infections are evident from the observation that mature neurons are better able to resist alphavirus-induced apoptosis than immature neurons are, both in culture and in mouse brains. These findings are consistent with the age-dependent susceptibility to disease seen in animals. Cellular genes that are known to regulate the cell death pathway can modulate the outcome of alphavirus infection in cultured cells and perhaps in animals. The cellular bax and bak genes, which are known to accelerate cell death, also accelerate virus-induced apoptosis. In contrast, inhibitors of apoptotic cell death such as bcl-2 suppress virus-induced apoptosis, which can facilitate a persistent virus infection. Thus, the balance of cellular factors that regulate cell death may be critical in virus infections. Additional viral factors also contribute to this balance. The more virulent strains of alphavirus have acquired the ability to induce apoptosis in mature neurons, while mature neurons are resistant to cell death upon infection with less virulent strains. Here we discuss a variety of cellular and viral factors that modulate the outcome of virus infection.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
2030
|
Affiliation(s)
- I M Verma
- Laboratory of Genetics, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
2031
|
Abstract
The antimetabolite cytosine arabinoside (ara-C) represents a prototype of the nucleoside analog class of antineoplastic agents and remains one of the most effective drugs used in the treatment of acute leukemia as well as other hematopoietic malignancies. The ability of ara-C to kill neoplastic cells is regulated at three distinct but interrelated levels. First, the activity of ara-C depends on conversion to its lethal triphosphate derivative, ara-CTP, a process that is influenced by multiple factors, including nucleoside transport, phosphorylation, deamination, and levels of competing metabolites, particularly dCTP. Second, the antiproliferative and lethal effects of ara-C are linked to the ability of ara-CTP to interfere with one or more DNA polymerases as well as the degree to which it is incorporated into elongating DNA strands, leading to DNA fragmentation and chain termination. Finally, the fate of the cell is ultimately determined by whether a threshold level of ara-C-mediated DNA damage is exceeded, thereby inducing apoptosis, or programmed cell death. The latter process is influenced by components of various signal transduction pathways (e.g., PKC) and expression of oncogenes (e.g., bcl-2, c-Jun), perturbations in which may significantly alter ara-C sensitivity. A better understanding of these factors could eventually lead to the development of novel therapeutic strategies capable of overcoming ara-C resistance and improving therapeutic efficacy.
Collapse
Affiliation(s)
- S Grant
- Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| |
Collapse
|
2032
|
Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F151-78. [PMID: 9395285 DOI: 10.1016/s0304-419x(97)00019-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell production within an organ is determined by the rate of immigration, proliferation, differentiation, emigration and death of cells. Abnormalities in any one of these processes will disturb normal control of cell production, thereby eliciting hyperplasia can be an early event in neoplasia. Cell death, apoptosis, is a physiological process responsible for removing unwanted cells. It is used in multi-cellular organisms for tissue remodelling during embryogenesis, regulation of cell turnover and as a defence strategy against invading pathogens. In this review article we describe the role of the bcl-2/ced-9 gene family in cancer and discuss the general implications of defects in the apoptosis program for tumourigenesis and resistance of cancer cells to chemotherapy in light of current knowledge of the molecular mechanisms of cell death.
Collapse
Affiliation(s)
- A Strasser
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria, Australia.
| | | | | |
Collapse
|
2033
|
Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D. Functional role for the c-Abl protein tyrosine kinase in the cellular response to genotoxic stress. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:O1-7. [PMID: 9395286 DOI: 10.1016/s0304-419x(97)00020-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Kharbanda
- Division of Cancer Pharmacology Dana-Farber Cancer Institute Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
2034
|
Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997; 91:243-52. [PMID: 9346241 DOI: 10.1016/s0092-8674(00)80406-7] [Citation(s) in RCA: 1508] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we purified a 900 kDa cytokine-responsive IkappaB kinase complex (IKK) and molecularly cloned one of its subunits, IKKalpha, a serine kinase. We now describe the molecular cloning and characterization of IKKbeta, a second subunit of the IKK complex. IKKbeta is 50% identical to IKKalpha and like it contains a kinase domain, a leucine zipper, and a helix-loop-helix. Although IKKalpha and IKKbeta can undergo homotypic interaction, they also interact with each other and the functional IKK complex contains both subunits. The catalytic activities of both IKKalpha and IKKbeta make essential contributions to IkappaB phosphorylation and NF-kappaB activation. While the interactions between IKKalpha and IKKbeta may be mediated through their leucine zipper motifs, their helix-loop-helix motifs may be involved in interactions with essential regulatory subunits.
Collapse
Affiliation(s)
- E Zandi
- Department of Pharmacology, University of California at San Diego, La Jolla 92093-0636, USA
| | | | | | | | | |
Collapse
|
2035
|
Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C, Levrero M. Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 1997; 272:26079-82. [PMID: 9334169 DOI: 10.1074/jbc.272.42.26079] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Like other members of the tumor necrosis factor (TNF) receptor family, p55 TNF receptor 1 (TNF-R1) lacks intrinsic signaling capacity and transduces signals by recruiting associating molecules. The TNF-R1 associated death domain protein interacts with the p55 TNF-R1 cytoplasmic domain and recruits the Fas-associated death domain protein (which directly activates the apoptotic proteases), the protein kinase receptor interacting protein, and TNF receptor-associated factor 2 (TRAF2). TRAF2 has previously been demonstrated to activate both transcription factor nuclear factor kappaB (NFkappaB) and the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway, which in turn stimulates transcription factor activating protein 1 (AP1) mainly via phosphorylation of the c-Jun component. We have investigated the signaling properties of NFkappaB-inducing kinase (NIK), a TRAF2-associated protein kinase that mediates NFkappaB induction. NIK was found to be unable to activate JNK/SAPK, mitogen-activated protein kinase, or p38 kinase. Moreover, NIK was not required for JNK/SAPK activation by TNF-R1, thus representing the first TNF-R1 complex component to dissect the NFkappaB and the JNK/SAPK pathways. Despite being unable to activate JNK/SAPK and mitogen-activated protein kinase, NIK strongly activated AP1 and was required for TNF-R1-induced AP1 activation. Therefore, NIK links TNF-R1 to a novel, JNK/SAPK-independent, AP1 activation pathway.
Collapse
Affiliation(s)
- G Natoli
- Fondazione Andrea Cesalpino and Istituto I Clinica Medica, Policlinico Umberto I, Università degli Studi di Roma La Sapienza, Viale del Policlinico 155, 00161 Rome, 86100 Italy
| | | | | | | | | | | |
Collapse
|
2036
|
Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a regulatory response to injury. IMMUNOLOGY TODAY 1997; 18:483-6. [PMID: 9357140 DOI: 10.1016/s0167-5699(97)01129-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endothelial cells (ECs) have evolved to guard against insults that incite inflammation. Response to injury is an active process that, if uncontrolled, can progress to EC death (apoptosis). Here Fritz Bach and colleagues suggest that ECs have a balancing component to their proinflammatory response: they upregulate a set of protective genes, including anti-apoptotic genes, that serve to limit the activation process and thereby regulate the response to injury.
Collapse
Affiliation(s)
- F H Bach
- Sandoz Center for Immunobiology, Dept. of Surgery, Boston, MA, USA
| | | | | |
Collapse
|
2037
|
Ayyavoo V, Mahboubi A, Mahalingam S, Ramalingam R, Kudchodkar S, Williams WV, Green DR, Weiner DB. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor kappa B. Nat Med 1997; 3:1117-23. [PMID: 9334723 DOI: 10.1038/nm1097-1117] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HIV-1 accessory gene product Vpr can influence viral pathogenesis by affecting viral replication as well as host cell transcription and proliferation. We have investigated the effects of Vpr on host cell activation and confirm that it influences cellular proliferation. However, we have also found that Vpr modulates T-cell receptor (TCR)-triggered apoptosis in a manner similar to that of glucocorticoids. In the absence of TCR-mediated activation, Vpr induces apoptosis whereas in its presence, Vpr interrupts the expected induction of apoptosis. This regulation of apoptosis is linked to Vpr suppression of NF-kappa B activity via the induction of I kappa B, an inhibitor of NF-kappa B. Further, Vpr suppresses expression of IL-2, IL-10, IL-12, TNF alpha and IL-4, all of which are NF-kappa B-dependent. The effects of Vpr could be reversed by RU486. Our finding that Vpr can regulate NF-kappa B supports the hypothesis that some aspects of viral pathogenesis are the consequence of cell dysregulation by Vpr.
Collapse
Affiliation(s)
- V Ayyavoo
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
2038
|
Abstract
Treatment of cancer with means other than chemo- and radiation therapy becomes more and more important. Through the better understanding of tumor biology approaches towards the cure of cancer interfering with the pathophysiological mechanisms of malignancy can be considered. Hodgkin's disease is a good example for the role of the immune system in cancer. The Reed-Sternberg (RS) cells, malignant cells of Hodgkin's disease (HD), are surrounded by tumor infiltrating lymphocytes (TILs) and still evade immunesurveillance. In this respect the importance of the superfamily of tumor necrosis factor (TNF) receptors and ligands is becoming more and more clear. Ligand-receptor interaction either leads to death or survival signals. Many of these receptors and ligands are expressed by the RS cells and the surrounding lymphocytes. Their expression and function in HD are discussed and future directions for possible therapeutical investigations are proposed.
Collapse
Affiliation(s)
- K Clodi
- Department of Hematology, Section of Lymphoma, The University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
2039
|
Abstract
Apoptosis research has accelerated with the discovery of genes within a common cell death pathway and evidence for their inter-relationship. Breakthroughs include insights into the mechanism of action of the Bcl-2 family, caspases and their targets, and death receptor complexes. Deregulation of apoptosis is evident in tumors and viral infection, as well as in autoimmune disease, immunodeficiency, neurodegeneration, and infertility.
Collapse
Affiliation(s)
- J L Rinkenberger
- Department of Anatomy, University of California, San Francisco 94143-0750, USA.
| | | |
Collapse
|
2040
|
Xie H, Seward RJ, Huber BT. Cytokine rescue from glucocorticoid induced apoptosis in T cells is mediated through inhibition of IkappaBalpha. Mol Immunol 1997; 34:987-94. [PMID: 9488049 DOI: 10.1016/s0161-5890(97)00128-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported that dexamethasone (DEX), a synthetic glucocorticoid, causes apoptosis in mature Th cell lines, and that this induction of cell death is prevented by specific cytokines, namely, by IL-2 in Th1 cells and by IL-4 in Th2 cells. We now show that this differential rescue by specific cytokines in Th cells correlates with the level of IkappaBalpha that is regulated by DEX and cytokines. In both cell types the cellular levels of IkappaBalpha mRNA and protein were evaluated by DEX treatment. Interestingly, the DEX-mediated IkappaBalpha induction was completely inhibited by IL-2, but not IL-4, in Th1 cells, while the reverse profile was seen in Th2 cells. In both cell types, the cytokine that inhibits the induction of IkappaBalpha by DEX, also rescues these cells from DEX-induced apoptosis, although the rescue cytokine is different in Th1 and Th2 cells. Our results imply that T cells need to maintain a certain level of NF-kappaB transcriptional activity in order to survive; up- or down-regulation of nuclear NF kappaB through modulation of IkappaBalpha expression by cytokines or DEX may lead to cell survival or cell death, respectively.
Collapse
Affiliation(s)
- H Xie
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
2041
|
Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem 1997; 272:24113-6. [PMID: 9305854 DOI: 10.1074/jbc.272.39.24113] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ras proteins function in stimulating cell proliferation and differentiation through the activation of Raf-dependent and Raf-independent signal transduction pathways and the subsequent activation of specific transcription factors. The transcription factor NF-kappaB has been widely studied as a regulator of genes involved in immune and inflammatory responses. A variety of stimuli activate NF-kappaB through the induced phosphorylation and degradation of the inhibitor IkappaB followed by nuclear translocation of NF-kappaB. We show here that oncogenic forms of Ha-Ras activate NF-kappaB, not through induced nuclear translocation, but rather through the activation of the transcriptional function of the NF-kappaB RelA/p65 subunit. Importantly, RelA/p65 -/- cells are inefficient in the activation of kappaB-dependent gene expression in response to oncogenic Ras expression. Furthermore, IkappaBalpha expression blocks focus formation in NIH3T3 cells induced by oncogenic Ras. These results demonstrate that NF-kappaB is a critical downstream mediator of Ha-Ras signaling and oncogenic potential.
Collapse
Affiliation(s)
- T S Finco
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
2042
|
Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 1997; 94:10057-62. [PMID: 9294162 PMCID: PMC23303 DOI: 10.1073/pnas.94.19.10057] [Citation(s) in RCA: 722] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Members of the NF-kappaB/Rel and inhibitor of apoptosis (IAP) protein families have been implicated in signal transduction programs that prevent cell death elicited by the cytokine tumor necrosis factor alpha (TNF). Although NF-kappaB appears to stimulate the expression of specific protective genes, neither the identities of these genes nor the precise role of IAP proteins in this anti-apoptotic process are known. We demonstrate here that NF-kappaB is required for TNF-mediated induction of the gene encoding human c-IAP2. When overexpressed in mammalian cells, c-IAP2 activates NF-kappaB and suppresses TNF cytotoxicity. Both of these c-IAP2 activities are blocked in vivo by coexpressing a dominant form of IkappaB that is resistant to TNF-induced degradation. In contrast to wild-type c-IAP2, a mutant lacking the C-terminal RING domain inhibits NF-kappaB induction by TNF and enhances TNF killing. These findings suggest that c-IAP2 is critically involved in TNF signaling and exerts positive feedback control on NF-kappaB via an IkappaB targeting mechanism. Functional coupling of NF-kappaB and c-IAP2 during the TNF response may provide a signal amplification loop that promotes cell survival rather than death.
Collapse
Affiliation(s)
- Z L Chu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0295, USA
| | | | | | | | | | | |
Collapse
|
2043
|
Abstract
The sphingomyelin pathway has been implicated in mediating the effect of several extracellular agents leading to important biochemical and cellular changes. The aim of this investigation is to study interleukin-1 beta (IL-1 beta) signaling in oligodendrocytes. For this purpose, the CG4 oligodendrocyte cells were differentiated and incubated with IL-1 beta. This treatment induced a time- and dose-dependent increase of the endocellular ceramide. To mimic the effect of the elevation of endogenous ceramide, the CG4 cells were treated with the ceramide analogue C2-ceramide. Cell survival, measured with the MTT assay, showed that, by increasing the concentration of ceramide, up to 40% of CG4 cells were dying within 6 h, similar data were obtained with the primary differentiated oligodendrocytes. Condensation of chromatin, nuclear fragmentation, and formation of apoptotic bodies indicated that apoptosis was the cause of death. Surprisingly, long-term exposure (72 h) to increasing concentrations of IL-1 beta, which increases intracellular ceramide, did not induce oligodendroglial cell death. These results show that an increase of intracellular ceramide is not sufficient to induce apoptosis in oligodendrocytes and that IL-1 beta signaling through the ceramide pathway in these cells can mediate functions other than programmed cell death.
Collapse
Affiliation(s)
- A Brogi
- Istituto Biologia Generale Università di Siena, Italy
| | | | | | | |
Collapse
|
2044
|
Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K. Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 1997; 49:681-97. [PMID: 9335256 DOI: 10.1002/(sici)1097-4547(19970915)49:6<681::aid-jnr3>3.0.co;2-3] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transcription factor NF-kappaB is expressed in neurons wherein it is activated in response to a variety of stress- and injury-related stimuli including exposure to cytokines such as tumor necrosis factor-alpha (TNFalpha), and excitotoxic and oxidative insults. NF-kappaB may play a role in the anti-death actions of TNFalpha in cultured hippocampal neurons exposed to metabolic and oxidative insults. We now report that pretreatment of hippocampal cell cultures with agents that activate NF-kappaB (TNFalpha and C2-ceramide) confers resistance of neurons to apoptosis induced by the oxidative insults FeSO4 and amyloid beta-peptide (Abeta25-35). The neuroprotective actions of TNFalpha and ceramide were abolished in cultures cotreated with kappaB decoy DNA demonstrating a requirement for NF-kappaB activation for prevention of cell death. Levels of manganese superoxide dismutase (Mn-SOD) in neurons were increased following exposure of cultures to TNFalpha and ceramide in control cultures, but not in cultures cotreated with kappaB decoy DNA. FeSO4 and Abeta25-35 induced accumulation of mitochondrial peroxynitrite, and membrane lipid peroxidation, in neurons. Peroxynitrite accumulation and lipid peroxidation were largely prevented in neurons pretreated with TNFalpha and ceramide prior to exposure to FeSO4 and Abeta25-35, an effect blocked by kappaB decoy DNA. Immunoreactivity of neurons with an anti-nitrotyrosine antibody was increased following exposure to FeSO4 and Abeta25-35; TNFalpha and C2-ceramide suppressed protein tyrosine nitration, and kappaB decoy DNA blocked the effects of TNFalpha and C2-ceramide. Finally, the peroxynitrite scavenger uric acid protected neurons against apoptosis induced by FeSO4 and Abeta, and suppressed peroxynitrite accumulation. We conclude that, by inducing production of Mn-SOD and suppressing peroxynitrite formation and membrane lipid peroxidation, NF-kappaB plays an anti-apoptotic role in neurodegenerative conditions that involve oxidative stress. The data further suggest important roles for peroxynitrite and NF-kappaB in the pathogenesis of neuronal degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
2045
|
Vojdani A, Mordechai E, Brautbar N. Abnormal apoptosis and cell cycle progression in humans exposed to methyl tertiary-butyl ether and benzene contaminating water. Hum Exp Toxicol 1997; 16:485-94. [PMID: 9306134 DOI: 10.1177/096032719701600902] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. In this study we hypothesized that in individuals with certain genetic makeup, MTBE, benzene or their metabolites act as adducts and may induce programmed cell death. 2. Our study involved a group of 60 male and female subjects who were exposed to MTBE and benzene-contaminated water concentrations up to 76 PPB for MTBE and 14 PPB for benzene, for a period of 5 to 8 years. For comparison, we recruited a control group consisting of 32 healthy males and females with similar age distribution and without a history of exposure to MTBE or benzene. 3. Peripheral blood lymphocytes (PBL) of both groups were tested for the percentage of apoptotic cells and cell cycle progression using flow cytometry. 4. When apoptotic lymphocytes from exposed individuals were compared to apoptotic lymphocytes from the control group, statistically-significant differences between each mean group were detected (26.4 +/- 1.8 and 12.1 +/- 1.3, respectively), indicating an increased rate of apoptosis in 80.5% of exposed individuals (P < 0.0001, Mann-Whitney U-Test). MTBE and benzene-induced apoptosis is attributed to a discrete block within the cell cycle progression. Because cell cycle analysis showed that in PBL from chemically-exposed individuals, between 20-50% of cells were accumulated at the S-G2/M boundaries. 5. One of the signaling molecules which mediates programmed cell death is nuclear factor Kappa-B (NF-kappa B). NF-kappa B was examined as one of the many molecular mechanisms for mediating cell death by MTBE and benzene. Indeed, addition of inhibitors of NF-kappa B activation pyrrolidine dithiocarbamate (PDTC), to the lymphocytes of the chemically-exposed group was capable of inhibiting programmed cell death by 40%. This reversal of apoptosis almost to the control level by inhibitor of NF-kappa B activation may indicate involvement of this signaling molecule in MTBE and benzene induction of programmed cell death.
Collapse
Affiliation(s)
- A Vojdani
- Immunoscience Lab, Inc., Drew University School of Medicine and Science, Los Angeles, California, USA
| | | | | |
Collapse
|
2046
|
Sugano N, Chen W, Roberts ML, Cooper NR. Epstein-Barr virus binding to CD21 activates the initial viral promoter via NF-kappaB induction. J Exp Med 1997; 186:731-7. [PMID: 9271588 PMCID: PMC2199015 DOI: 10.1084/jem.186.5.731] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1997] [Revised: 07/07/1997] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic human herpesvirus, binds to and infects normal human B lymphocytes via CD21, the CR2 complement receptor. Studies of the mechanisms that enable EBV to infect nonactivated, noncycling B cells provide compelling evidence for a sequence of events in which EBV binding to CD21 on purified resting human B cells rapidly activates the NF-kappaB transcription factor, which, in turn, binds to and mediates transcriptional activation of Wp, the initial viral latent gene promoter. Thus, EBV binding to its cellular receptor on resting B cells triggers an NF-kappaB-dependent intracellular signaling pathway which is required for infection.
Collapse
Affiliation(s)
- N Sugano
- Scripps Research Institute, Department of Immunology, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
2047
|
Li Y, Zhang W, Mantell LL, Kazzaz JA, Fein AM, Horowitz S. Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death. J Biol Chem 1997; 272:20646-9. [PMID: 9252381 DOI: 10.1074/jbc.272.33.20646] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oxidative insults that are lethal to epithelial cells kill either via apoptosis or necrosis. Nuclear factor-kappaB (NF-kappaB) is a redox-sensitive transcription factor that is activated by oxidative insult, and NF-kappaB activation can protect cells from apoptosis. To test if NF-kappaB can protect from necrotic cell death caused by high levels of molecular O2 (hyperoxia), we exposed human alveolar epithelial (A549) cells to hyperoxia. NF-kappaB was shown to be activated and was translocated to the nucleus within minutes. Nuclear translocation persisted over the course of several days, and the levels of NF-kappaB protein and mRNA increased as well. In hyperoxia, NF-kappaB regulation was independent of mitogen-activated protein kinase (MAPK). In sharp contrast, there was neither nuclear translocation of NF-kappaB nor any increase in expression after exposure to H2O2 at a concentration where this oxidant induces both MAPK and widespread apoptosis. Despite the activation and increased expression of NF-kappaB in hyperoxia, this oxidant remained lethal to the cells. These observations confirm the notion that apoptosis occurs in the absence of NF-kappaB activation but indicate that protection from cell death by NF-kappaB is probably limited to apoptosis.
Collapse
Affiliation(s)
- Y Li
- The CardioPulmonary Research Institute, Winthrop-University Hospital, State University of New York at Stony Brook School of Medicine, Mineola, New York 11501, USA
| | | | | | | | | | | |
Collapse
|
2048
|
Abstract
The flow of new information on gene expression related to apoptosis has been relentless in the last several years. This has also been the case with respect to gene expression after cerebral ischemia. Many of genes associated with an apoptotic mode of cell death have now been studied in the context of experimental cerebral ischemia from the immediate early genes through modulating genes such as bcl-2 to genes in the final execution phase such as interleukin-1β converting enzyme (ICE)-related proteases. It was impossible to adequately cite all primary reports on these subjects. However, many excellent reviews have appeared in the last year, which together, cover all these areas of interest. In this review, we have elected to cite only reports published since January 1996 and use an extensive collection of reviews (indicated in italics) to guide the reader to the earlier literature. Our intent is to provide the reader with a timely and useful analysis of the current state of the art. It is hoped that this approach does not cause offense with our colleagues whose contributions before 1996 laid the foundation for much of this work.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | |
Collapse
|
2049
|
Abstract
A large amount of detailed information about the intracellular proteins regulating NF-kappa B activation and the cellular response to NF-kappa B activation has emerged recently. Several small molecules, an antisense oligonucleotide, and gene therapeutic agents that inhibit NF-kappa b activation have been described. Despite this, there are still significant gaps in our understanding of this process and its consequences. In contrast, the characterization of transcription factors selectively regulating cytokine production by CD4+ T cell subsets is at a very early stage. Three interacting proteins have recently been shown to contribute to subset-restricted expression of the IL-4 gene. There are other elements regulating IL-4 gene expression, however, and the relative importance of these recently identified proteins has yet to be determined.
Collapse
Affiliation(s)
- G Peltz
- Roche Bioscience S3-1, Palo Alto, CA 94303, USA.
| |
Collapse
|
2050
|
Yamagishi N, Miyakoshi J, Takebe H. Enhanced radiosensitivity by inhibition of nuclear factor kappa B activation in human malignant glioma cells. Int J Radiat Biol 1997; 72:157-62. [PMID: 9269308 DOI: 10.1080/095530097143374] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To clarify the relationship between cellular radiosensitivity and nuclear factor kappa B (NF-kappa B) activation, an expression plasmid was constructed for I kappa B-alpha, a cellular inhibitory protein of NF-kappa B, and transfected it into two human malignant glioma cell lines. Cells overexpressing the I kappa B-alpha protein were more radiosensitive than the parental cells and one transfected clone with low expression. In the parental cell lines and one transfected clone with low expression, the sequence specific DNA-binding activity of NF-kappa B was considerably increased between 1 and 2 h after irradiation. In contrast, no increase in the DNA-binding activity was observed in the transfected clone overexpressing I kappa B-alpha protein. These results suggest that the activation of NF-kappa B may be one of the intrinsic responses determining cellular radiosensitivity.
Collapse
Affiliation(s)
- N Yamagishi
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|