2251
|
Metzger S, Saukko M, Van Che H, Tong L, Puder Y, Riess O, Nguyen HP. Age at onset in Huntington's disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet 2010; 128:453-9. [PMID: 20697744 DOI: 10.1007/s00439-010-0873-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/31/2010] [Indexed: 10/19/2022]
Abstract
Huntington's disease (HD) is caused by an expansion of a polyglutamine repeat of more than 35 units in the huntingtin protein. The expanded repeat length is inversely correlated with the age at onset (AAO); however, additional genetic factors apart from the expanded CAG repeat length can modify the course and the AAO in HD. Aberrations in macroautophagy have been observed in Huntington, Alzheimer, Parkinson, motor neuron and prion diseases. Therefore, we hypothesized that polymorphisms in autophagy-related (Atg) genes might contribute to the variation in the AAO. We initially tested eight single nucleotide polymorphisms in five Atg genes (Atg3, Atg5, Atg7, Atg16L1 and Beclin-1) for their frequency of ≥1%. Subsequently, we investigated the polymorphisms Atg7 V471A and Atg16L1 T281A for a disease-modifying effect in more than 900 European HD patients (including 2 populations consisting of 346 German patients and 327 patients of Italian descent). One polymorphism in the Atg7 gene that substitutes alanine for valine (V471A) showed a significant effect on the AAO (P=0.0050) and was associated with an earlier disease onset of 4 years. Our results further support the important pathophysiological role of autophagy in HD.
Collapse
Affiliation(s)
- Silke Metzger
- Department of Medical Genetics, University of Tuebingen, Calwerstr. 7, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
2252
|
Batlevi Y, La Spada AR. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis 2010; 43:46-51. [PMID: 20887789 DOI: 10.1016/j.nbd.2010.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/08/2010] [Accepted: 09/19/2010] [Indexed: 11/26/2022] Open
Abstract
Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson's disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Yakup Batlevi
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0642, USA
| | | |
Collapse
|
2253
|
Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 2010; 43:52-9. [PMID: 20883784 DOI: 10.1016/j.nbd.2010.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/07/2010] [Accepted: 09/19/2010] [Indexed: 01/01/2023] Open
Abstract
In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
|
2254
|
Wrighton KH. The importance of 'self-eating'. Nat Rev Mol Cell Biol 2010; 11:681. [PMID: 20861878 DOI: 10.1038/nrm2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2255
|
Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM. Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J Biol Chem 2010; 285:37415-26. [PMID: 20864542 PMCID: PMC2988347 DOI: 10.1074/jbc.m110.186411] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in the metabolism of amyloid precursor protein (APP) are believed to
play a central role in Alzheimer disease pathogenesis. Burgeoning data indicate
that APP is proteolytically processed in endosomal-autophagic-lysosomal
compartments. In this study, we used both in vivo and
in vitro paradigms to determine whether alterations in
macroautophagy affect APP metabolism. Three mouse models of glycosphingolipid
storage diseases, namely Niemann-Pick type C1, GM1 gangliosidosis, and Sandhoff
disease, had mTOR-independent increases in the autophagic vacuole
(AV)-associated protein, LC3-II, indicative of impaired lysosomal flux. APP
C-terminal fragments (APP-CTFs) were also increased in brains of the three mouse
models; however, discrepancies between LC3-II and APP-CTFs were seen between
primary (GM1 gangliosidosis and Sandhoff disease) and secondary (Niemann-Pick
type C1) lysosomal storage models. APP-CTFs were proportionately higher than
LC3-II in cerebellar regions of GM1 gangliosidosis and Sandhoff disease,
although LC3-II increased before APP-CTFs in brains of NPC1 mice. Endogenous
murine Aβ40 from RIPA-soluble extracts was increased in brains of all
three mice. The in vivo relationship between AV and APP-CTF
accumulation was also seen in cultured neurons treated with agents that impair
primary (chloroquine and leupeptin + pepstatin) and secondary (U18666A
and vinblastine) lysosomal flux. However, Aβ secretion was unaffected by
agents that induced autophagy (rapamycin) or impaired AV clearance, and
LC3-II-positive AVs predominantly co-localized with degradative LAMP-1-positive
lysosomes. These data suggest that neuronal macroautophagy does not directly
regulate APP metabolism but highlights the important anti-amyloidogenic role of
lysosomal proteolysis in post-secretase APP-CTF catabolism.
Collapse
Affiliation(s)
- Barry Boland
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
2256
|
Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 2010; 120:3673-9. [PMID: 20890041 DOI: 10.1172/jci42986] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/04/2010] [Indexed: 02/01/2023] Open
Abstract
Apoptosis of motor neurons is a well-documented feature in amyotrophic lateral sclerosis (ALS) and related motor neuron diseases (MNDs). However, the role of apoptosis in the pathogenesis of these diseases remains unresolved. One possibility is that the affected motor neurons only succumb to apoptosis once they have exhausted functional capacity. If true, blocking apoptosis should confer no therapeutic benefit. To directly investigate this idea, we tested whether tissue-specific deletion in the mouse CNS of BCL2-associated X protein (BAX) and BCL2-homologous antagonist/killer (BAK), 2 proapoptotic BCL-2 family proteins that together represent an essential gateway to the mitochondrial apoptotic pathway, would protect against motor neuron degeneration. We found that neuronal deletion of Bax and Bak in a mouse model of familial ALS not only halted neuronal loss, but prevented axonal degeneration, symptom onset, weight loss, and paralysis and extended survival. These results show that motor neurons damaged in ALS activate the mitochondrial apoptotic pathway early in the disease process and that apoptotic signaling directly contributes to neuromuscular degeneration and neuronal dysfunction. Hence, inhibiting apoptosis upstream of mitochondrial permeabilization represents a possible therapeutic strategy for preserving functional motor neurons in ALS and other MNDs.
Collapse
Affiliation(s)
- Nichole A Reyes
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143-0511, USA
| | | | | | | | | | | |
Collapse
|
2257
|
Garelick MG, Kennedy BK. TOR on the brain. Exp Gerontol 2010; 46:155-63. [PMID: 20849946 DOI: 10.1016/j.exger.2010.08.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to life span extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer's disease, Parkinson's disease, and polyglutamine expansion syndromes such as Huntington's disease.
Collapse
Affiliation(s)
- Michael G Garelick
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
2258
|
Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 2010; 30:11388-97. [PMID: 20739560 DOI: 10.1523/jneurosci.1356-10.2010] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Misexpression and cytosolic retention of peripheral myelin protein 22 (PMP22) within Schwann cells (SCs) is associated with a genetically heterogeneous group of demyelinating peripheral neuropathies. PMP22 overproducer C22 and spontaneous mutant Trembler J (TrJ) mice display neuropathic phenotypes and affected nerves contain abnormally localized PMP22. Nutrient deprivation-induced autophagy is able to suppress the formation of PMP22 aggregates in a toxin-induced cellular model, and improve locomotor performance and myelination in TrJ mice. As a step toward therapies, we assessed whether pharmacological activation of autophagy by rapamycin (RM) could facilitate the processing of PMP22 within neuropathic SCs and enhance their capacity to myelinate peripheral axons. Exposure of mouse SCs to RM induced autophagy in a dose- and time-dependent manner and decreased the accumulation of poly-ubiquitinated substrates. The treatment of myelinating dorsal root ganglion (DRG) explant cultures from neuropathic mice with RM (25 nm) improved the processing of PMP22 and increased the abundance and length of myelin internodes, as well as the expression of myelin proteins. Notably, RM is similarly effective in both the C22 and TrJ model, signifying that the benefit overlaps among distinct genetic models of PMP22 neuropathies. Furthermore, lentivirus-mediated shRNA knockdown of the autophagy-related gene 12 (Atg12) abolished the activation of autophagy and the increase in myelin proteins, demonstrating that autophagy is critical for the observed improvement. Together, these results support the potential use of RM and other autophagy-enhancing compounds as therapeutic agents for PMP22-associated demyelinating neuropathies.
Collapse
|
2259
|
Bett CK, Ngunjiri JN, Serem WK, Fontenot KR, Hammer RP, McCarley RL, Garno JC. Structure-activity relationships in peptide modulators of β-amyloid protein aggregation: variation in α,α-disubstitution results in altered aggregate size and morphology. ACS Chem Neurosci 2010; 1:608-26. [PMID: 22778850 DOI: 10.1021/cn100045q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/25/2010] [Indexed: 12/20/2022] Open
Abstract
Neuronal cytotoxicity observed in Alzheimer's disease (AD) is linked to the aggregation of β-amyloid peptide (Aβ) into toxic forms. Increasing evidence points to oligomeric materials as the neurotoxic species, not Aβ fibrils; disruption or inhibition of Aβ self-assembly into oligomeric or fibrillar forms remains a viable therapeutic strategy to reduce Aβ neurotoxicity. We describe the synthesis and characterization of amyloid aggregation mitigating peptides (AAMPs) whose structure is based on the Aβ "hydrophobic core" Aβ(17-20), with α,α-disubstituted amino acids (ααAAs) added into this core as potential disrupting agents of fibril self-assembly. The number, positional distribution, and side-chain functionality of ααAAs incorporated into the AAMP sequence were found to influence the resultant aggregate morphology as indicated by ex situ experiments using atomic force microscopy (AFM) and transmission electron microscopy (TEM). For instance, AAMP-5, incorporating a sterically hindered ααAA with a diisobutyl side chain in the core sequence, disrupted Aβ(1-40) fibril formation. However, AAMP-6, with a less sterically hindered ααAA with a dipropyl side chain, altered fibril morphology, producing shorter and larger sized fibrils (compared with those of Aβ(1-40)). Remarkably, ααAA-AAMPs caused disassembly of existing Aβ fibrils to produce either spherical aggregates or protofibrillar structures, suggesting the existence of equilibrium between fibrils and prefibrillar structures.
Collapse
Affiliation(s)
- Cyrus K. Bett
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Johnpeter N. Ngunjiri
- NanoInk, Inc., Illinois Science & Technology Park, 8025 Lamon Ave, Skokie, Illinois 60077
| | - Wilson K. Serem
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Krystal R. Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Robert P. Hammer
- New England Peptide LLC, 65 Zub Lane, Gardner, Massachusetts 01440
| | - Robin L. McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Jayne C. Garno
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
2260
|
A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci U S A 2010; 107:16982-7. [PMID: 20833817 DOI: 10.1073/pnas.1004498107] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular turnover pathway. It has special relevance for neurodegenerative proteinopathies, such as Alzheimer disease, Parkinson disease, and Huntington disease (HD), which are characterized by the accumulation of misfolded proteins. Although induction of autophagy enhances clearance of misfolded protein and has therefore been suggested as a therapy for proteinopathies, neurons appear to be less responsive to classic autophagy inducers than nonneuronal cells. Searching for improved inducers of neuronal autophagy, we discovered an N(10)-substituted phenoxazine that, at proper doses, potently and safely up-regulated autophagy in neurons in an Akt- and mTOR-independent fashion. In a neuron model of HD, this compound was neuroprotective and decreased the accumulation of diffuse and aggregated misfolded protein. A structure/activity analysis with structurally similar compounds approved by the US Food and Drug Administration revealed a defined pharmacophore for inducing neuronal autophagy. This pharmacophore should prove useful in studying autophagy in neurons and in developing therapies for neurodegenerative proteinopathies.
Collapse
|
2261
|
Yao TP. The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 2010; 1:779-786. [PMID: 21113398 DOI: 10.1177/1947601910383277] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The efficient management of misfolded protein aggregates is essential for cell viability and requires three interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic proteins aggregates to autophagy for clearance. Although autophagy is generally considered as non-selective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This so-called "quality control autophagy" is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here I will discuss the recent progress towards understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
Collapse
Affiliation(s)
- Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2262
|
Menzies FM, Hourez R, Imarisio S, Raspe M, Sadiq O, Chandraratna D, O'Kane C, Rock KL, Reits E, Goldberg AL, Rubinsztein DC. Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Hum Mol Genet 2010; 19:4573-86. [PMID: 20829225 PMCID: PMC2972693 DOI: 10.1093/hmg/ddq385] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major function of proteasomes and macroautophagy is to eliminate misfolded potentially toxic proteins. Mammalian proteasomes, however, cannot cleave polyglutamine (polyQ) sequences and seem to release polyQ-rich peptides. Puromycin-sensitive aminopeptidase (PSA) is the only cytosolic enzyme able to digest polyQ sequences. We tested whether PSA can protect against accumulation of polyQ fragments. In cultured cells, Drosophila and mouse muscles, PSA inhibition or knockdown increased aggregate content and toxicity of polyQ-expanded huntingtin exon 1. Conversely, PSA overexpression decreased aggregate content and toxicity. PSA inhibition also increased the levels of polyQ-expanded ataxin-3 as well as mutant α-synuclein and superoxide dismutase 1. These protective effects result from an unexpected ability of PSA to enhance macroautophagy. PSA overexpression increased, and PSA knockdown or inhibition reduced microtubule-associated protein 1 light chain 3-II (LC3-II) levels and the amount of protein degradation sensitive to inhibitors of lysosomal function and autophagy. Thus, by promoting autophagic protein clearance, PSA helps protect against accumulation of aggregation-prone proteins and proteotoxicity.
Collapse
Affiliation(s)
- Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2263
|
|
2264
|
Selective degradation of p62 by autophagy. Semin Immunopathol 2010; 32:431-6. [PMID: 20814791 DOI: 10.1007/s00281-010-0220-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/08/2010] [Indexed: 12/28/2022]
Abstract
The autophagy-lysosome pathway is a highly conserved bulk degradation system in eukaryotes. During starvation, cytoplasmic constituents are non-selectively degraded by autophagy, and the resulting amino acids are utilized for cell survival. By taking advantage of mouse genetics, many physiological functions of mammalian autophagy have been uncovered. Growing lines of evidences have revealed the essential role of constitutive (or basal) autophagy in cellular homeostasis through its selectivity. p62, one of the selective substrates for autophagy, plays a key role in the formation of cytoplasmic proteinaceous inclusion, a hallmark of conformational diseases such as Alzheimer's disease, Parkinson's disease, and various chronic liver disorders. In this review, we discuss the physiological roles of the selective turnover of p62 by autophagy and their molecular mechanisms.
Collapse
|
2265
|
Abstract
Recent studies have demonstrated protective roles for autophagy in various neurodegenerative disorders, including the polyglutamine diseases; however, the role of autophagy in retinal degeneration has remained unclear. Accumulation of activated rhodopsin in some Drosophila mutants leads to retinal degeneration, and although it is known that activated rhodopsin is degraded in endosomal pathways in normal photoreceptor cells, the contribution of autophagy to rhodopsin regulation has remained elusive. This study reveals that activated rhodopsin is degraded by autophagy in collaboration with endosomal pathways to prevent retinal degeneration. Light-dependent retinal degeneration in the Drosophila visual system is caused by the knockdown or mutation of autophagy-essential components, such as autophagy-related protein 7 and 8 (atg-7/atg-8), or genes essential for PE (phosphatidylethanolamine) biogenesis and autophagosome formation, including Phosphatidylserine decarboxylase (Psd) and CDP-ethanolamine:diacylglycerol ethanolaminephosphotransferase (Ept). The knockdown of atg-7/8 or Psd/Ept produced an increase in the amount of rhodopsin localized to Rab7-positive late endosomes. This rhodopsin accumulation, followed by retinal degeneration, was suppressed by overexpression of Rab7, which accelerated the endosomal degradation pathway. These results indicate a degree of cross talk between the autophagic and endosomal/lysosomal pathways. Importantly, a reduction in rhodopsin levels rescued Psd knockdown-induced retinal degeneration. Additionally, the Psd knockdown-induced retinal degeneration phenotype was enhanced by Ppt1 inactivation, which causes infantile neuronal ceroid lipofuscinosis, implying that autophagy plays a significant role in its pathogenesis. Collectively, the current data reveal that autophagy suppresses light-dependent retinal degeneration in collaboration with the endosomal degradation pathway and that rhodopsin is a key substrate for autophagic degradation in this context.
Collapse
|
2266
|
Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism. Semin Cell Dev Biol 2010; 21:683-90. [DOI: 10.1016/j.semcdb.2010.03.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/19/2010] [Accepted: 03/03/2010] [Indexed: 01/07/2023]
|
2267
|
Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J. The RB-E2F1 pathway regulates autophagy. Cancer Res 2010; 70:7882-93. [PMID: 20807803 DOI: 10.1158/0008-5472.can-10-1604] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a protective mechanism that renders cells viable in stressful conditions. Emerging evidence suggests that this cellular process is also a tumor suppressor pathway. Previous studies showed that cyclin-dependent kinase inhibitors (CDKI) induce autophagy. Whether retinoblastoma protein (RB), a key tumor suppressor and downstream target of CDKIs, induces autophagy is not clear. Here, we show that RB triggers autophagy and that the RB activators p16INK4a and p27/kip1 induce autophagy in an RB-dependent manner. RB binding to E2 transcription factor (E2F) is required for autophagy induction and E2F1 antagonizes RB-induced autophagy, leading to apoptosis. Downregulation of E2F1 in cells results in high levels of autophagy. Our findings indicate that RB induces autophagy by repressing E2F1 activity. We speculate that this newly discovered aspect of RB function is relevant to cancer development and therapy.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, Departments of Carcinogenesis, and Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2268
|
Autophagosome formation in mammalian cells. Semin Immunopathol 2010; 32:397-413. [PMID: 20740284 DOI: 10.1007/s00281-010-0222-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/08/2010] [Indexed: 02/07/2023]
Abstract
Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.
Collapse
|
2269
|
Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X, Eisenberg J, Liu J, Blenis J, Xavier RJ, Yuan J. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev Cell 2010; 18:1041-52. [PMID: 20627085 DOI: 10.1016/j.devcel.2010.05.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 02/11/2010] [Accepted: 03/23/2010] [Indexed: 01/07/2023]
Abstract
Autophagy is a cellular catabolic mechanism that plays an essential function in protecting multicellular eukaryotes from neurodegeneration, cancer, and other diseases. However, we still know very little about mechanisms regulating autophagy under normal homeostatic conditions when nutrients are not limiting. In a genome-wide human siRNA screen, we demonstrate that under normal nutrient conditions upregulation of autophagy requires the type III PI3 kinase, but not inhibition of mTORC1, the essential negative regulator of starvation-induced autophagy. We show that a group of growth factors and cytokines inhibit the type III PI3 kinase through multiple pathways, including the MAPK-ERK1/2, Stat3, Akt/Foxo3, and CXCR4/GPCR, which are all known to positively regulate cell growth and proliferation. Our study suggests that the type III PI3 kinase integrates diverse signals to regulate cellular levels of autophagy, and that autophagy and cell proliferation may represent two alternative cell fates that are regulated in a mutually exclusive manner.
Collapse
Affiliation(s)
- Marta M Lipinski
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2270
|
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn 2010; 239:1282-95. [PMID: 20108318 DOI: 10.1002/dvdy.22231] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is an age-related movement disorder resulting, in part, from selective loss of dopaminergic neurons. Both invertebrate and mammalian models have been developed to study the cellular mechanisms altered during disease progression; nevertheless there are limitations within each model. Mammalian models remain invaluable in studying PD, but are expensive and time consuming. Here, we review genetic and environmental factors associated with PD, and describe how the nematode roundworm, Caenorhabditis elegans, has been used as a model organism for studying various aspects of this neurodegenerative disease. Both genetic and chemical screens have been conducted in C. elegans to identify molecular pathways, proteins, and small molecules that can impact PD pathology. Lastly, we highlight future areas of investigation, in the context of emerging fields in biology, where the nematode can be exploited to provide mechanistic insights and potential strategies to accelerate the path toward possible therapeutic intervention for PD.
Collapse
Affiliation(s)
- Adam J Harrington
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0344, USA
| | | | | | | |
Collapse
|
2271
|
Rodriguez-Navarro JA, Cuervo AM. Autophagy and lipids: tightening the knot. Semin Immunopathol 2010; 32:343-53. [PMID: 20730586 DOI: 10.1007/s00281-010-0219-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/08/2010] [Indexed: 12/22/2022]
Abstract
The degradation of intracellular components in lysosomes, also known as autophagy, participates in a broad range of cellular functions from cellular quality control to cellular remodeling or as mechanism of defense against cellular aggressors. In this review, we focus on the role of autophagy as an alternative source of cellular energy, particularly important when nutrients are scarce. Almost since the discovery of autophagy, it has been known that amino acids obtained through the breakdown of proteins in lysosomes are essential to maintaining the cellular energetic balance during starvation. However, it is only recently that the ability of autophagy to mobilize intracellular lipid stores as an additional source of energy has been described. Autophagy contributes thus to modulating the amount of cellular lipids and allows cells to adapt to lipogenic stimuli. Interestingly, this interplay between autophagy and lipid metabolism is bidirectional, as changes in the intracellular lipid content also contribute to modulating autophagic activity. In this review, we describe the recent findings on the contribution of autophagy to lipid metabolism in different tissues and the consequences that impairments in autophagy have on cellular physiology. In addition, we comment on the regulatory role that lipid molecules and their modifying enzymes play on different steps of the autophagic process.
Collapse
Affiliation(s)
- Jose Antonio Rodriguez-Navarro
- Department of Developmental and Molecular Biology and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
2272
|
Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson's disease: the PINK1-parkin link. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:623-33. [PMID: 20736035 PMCID: PMC3925795 DOI: 10.1016/j.bbamcr.2010.08.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
The study of rare, inherited mutations underlying familial forms of Parkinson's disease has provided insight into the molecular mechanisms of disease pathogenesis. Mutations in these genes have been functionally linked to several key molecular pathways implicated in other neurodegenerative disorders, including mitochondrial dysfunction, protein accumulation and the autophagic-lysosomal pathway. In particular, the mitochondrial kinase PINK1 and the cytosolic E3 ubiquitin ligase parkin act in a common pathway to regulate mitochondrial function. In this review we discuss the recent evidence suggesting that the PINK1/parkin pathway also plays a critical role in the autophagic removal of damaged mitochondria–mitophagy. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Emma Deas
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
2273
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2010; 43:17-28. [PMID: 20732422 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
2274
|
FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 2010; 116:4806-14. [PMID: 20716775 DOI: 10.1182/blood-2010-06-288589] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Little is known about whether autophagic mechanisms are active in hematopoietic stem cells (HSCs) or how they are regulated. FIP200 (200-kDa FAK-family interacting protein) plays important roles in mammalian autophagy and other cellular functions, but its role in hematopoietic cells has not been examined. Here we show that conditional deletion of FIP200 in hematopoietic cells leads to perinatal lethality and severe anemia. FIP200 was cell-autonomously required for the maintenance and function of fetal HSCs. FIP200-deficient HSC were unable to reconstitute lethally irradiated recipients. FIP200 ablation did not result in increased HSC apoptosis, but it did increase the rate of HSC proliferation. Consistent with an essential role for FIP200 in autophagy, FIP200-null fetal HSCs exhibited both increased mitochondrial mass and reactive oxygen species. These data identify FIP200 as a key intrinsic regulator of fetal HSCs and implicate a potential role for autophagy in the maintenance of fetal hematopoiesis and HSCs.
Collapse
|
2275
|
Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB. Short-term fasting induces profound neuronal autophagy. Autophagy 2010; 6:702-10. [PMID: 20534972 DOI: 10.4161/auto.6.6.12376] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Disruption of autophagy--a key homeostatic process in which cytosolic components are degraded and recycled through lysosomes--can cause neurodegeneration in tissue culture and in vivo. Upregulation of this pathway may be neuroprotective, and much effort is being invested in developing drugs that cross the blood brain barrier and increase neuronal autophagy. One well-recognized way of inducing autophagy is by food restriction, which upregulates autophagy in many organs including the liver; but current dogma holds that the brain escapes this effect, perhaps because it is a metabolically privileged site. Here, we have re-evaluated this tenet using a novel approach that allows us to detect, enumerate and characterize autophagosomes in vivo. We first validate the approach by showing that it allows the identification and characterization of autophagosomes in the livers of food-restricted mice. We use the method to identify constitutive autophagosomes in cortical neurons and Purkinje cells, and we show that short-term fasting leads to a dramatic upregulation in neuronal autophagy. The increased neuronal autophagy is revealed by changes in autophagosome abundance and characteristics, and by diminished neuronal mTOR activity in vivo, demonstrated by a reduction in levels of phosphorylated S6 ribosomal protein in Purkinje cells. The increased abundance of autophagosomes in Purkinje cells was confirmed using transmission electron microscopy. Our data lead us to speculate that sporadic fasting might represent a simple, safe and inexpensive means to promote this potentially therapeutic neuronal response.
Collapse
Affiliation(s)
- Mehrdad Alirezaei
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
2276
|
Abstract
Autophagy is the main degradation pathway responsible for eliminating abnormal protein aggregates and damaged organelles prevalent in neurons after transient cerebral ischemia. This study investigated whether accumulation of protein aggregate-associated organelles in post-ischemic neurons is a consequence of changes in autophagy. Electron microscopic analysis indicated that both autophagosomes and autolysosomes are significantly up-regulated in hippocampal CA1 and DG neurons after ischemia. The microtubule-associated protein light chain 3 (LC3)-II conjugate, a marker for autophagosomes assessed by western blotting, was up-regulated in post-ischemic brain tissues. Confocal microscopy showed that LC3 isoforms were located in living post-ischemic neurons. Treatment with chloriquine resulted in accumulation of LC3-II in sham-operated rats, but did not further change the LC3-II levels in post-ischemic brain tissues. The results indicate that at least part of the accumulation of protein aggregate-associated organelles seen following ischemia is likely to be because of failure of the autophagy pathway. The resulting protein aggregation on subcellular organelle membranes could lead to multiple organelle damage and to delayed neuronal death after transient cerebral ischemia.
Collapse
Affiliation(s)
- Chunli Liu
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
2277
|
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic beta-cells producing insulin. Mitochondrial dysfunction may play a role in both processes of diabetes. Autophagy maintains cellular homeostasis through degradation and recycling of organelles such as mitochondria. As dysfunctional mitochondria are the main organelles removed by autophagy, we studied the role of autophagy in diabetes using mice with beta-cell-specific deletion of the Atg7 gene. Atg7-mutant mice showed reduction in beta-cell mass and pancreatic insulin content. Electron microscopy showed swollen mitochondria and other ultrastructural changes in autophagy-deficient beta-cells. Insulin secretory function ex vivo was also impaired. As a result, Atg7-mutant mice showed hypoinsulinemia and hyperglycemia. These results suggest that autophagy is necessary to maintain structure, mass, and function of beta-cells. Besides its effect on beta-cells, autophagy may affect insulin sensitivity because mitochondrial dysfunction has been implicated in insulin resistance and autophagy is involved in the maintenance of the organelles. Furthermore, since aging is associated with impaired glucose tolerance, decline of autophagic activity may be involved in age-associated reduction of glucose tolerance.
Collapse
Affiliation(s)
- Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
2278
|
Pérez-Victoria FJ, Schindler C, Magadán JG, Mardones GA, Delevoye C, Romao M, Raposo G, Bonifacino JS. Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex. Mol Biol Cell 2010; 21:3386-95. [PMID: 20685960 PMCID: PMC2947474 DOI: 10.1091/mbc.e10-05-0392] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi-associated retrograde protein (GARP) complex mediates tethering and fusion of endosome-derived transport carriers to the trans-Golgi network (TGN). In the yeast Saccharomyces cerevisiae, GARP comprises four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Orthologues of the GARP subunits, except for Vps51p, have been identified in all other eukaryotes. A yeast two-hybrid screen of a human cDNA library yielded a phylogenetically conserved protein, Ang2/Fat-free, which interacts with human Vps52, Vps53 and Vps54. Human Ang2 is larger than yeast Vps51p, but exhibits significant homology in an N-terminal coiled-coil region that mediates assembly with other GARP subunits. Biochemical analyses show that human Ang2, Vps52, Vps53 and Vps54 form an obligatory 1:1:1:1 complex that strongly interacts with the regulatory Habc domain of the TGN SNARE, Syntaxin 6. Depletion of Ang2 or the GARP subunits similarly impairs protein retrieval to the TGN, lysosomal enzyme sorting, endosomal cholesterol traffic¤ and autophagy. These findings indicate that Ang2 is the missing component of the GARP complex in most eukaryotes.
Collapse
Affiliation(s)
- F Javier Pérez-Victoria
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
2279
|
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:128-40. [PMID: 20674814 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
2280
|
Bellettato CM, Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:347-62. [PMID: 20429032 DOI: 10.1007/s10545-010-9075-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/28/2010] [Accepted: 03/05/2010] [Indexed: 12/19/2022]
Abstract
Although neurodegenerative diseases are most prevalent in the elderly, in rare cases, they can also affect children. Lysosomal storage diseases (LSDs) are a group of inherited metabolic neurodegenerative disorders due to deficiency of a specific protein integral to lysosomal function, such as enzymes or lysosomal components, or to errors in enzyme trafficking/targeting and defective function of nonenzymatic lysosomal proteins, all preventing the complete degradation and recycling of macromolecules. This primary metabolic event determines a cascade of secondary events, inducing LSD's pathology. The accumulation of intermediate degradation affects the function of lysosomes and other cellular organelles. Accumulation begins in infancy and progressively worsens, often affecting several organs, including the central nervous system (CNS). Affected neurons may die through apoptosis or necrosis, although neuronal loss usually does not occur before advanced stages of the disease. CNS pathology causes mental retardation, progressive neurodegeneration, and premature death. Many of these features are also found in adult neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. However, the nature of the secondary events and their exact contribution to mental retardation and dementia remains largely unknown. Recently, lysosomal involvement in the pathogenesis of these disorders has been described. Improved knowledge of secondary events may have impact on diagnosis, staging, and follow-up of affected children. Importantly, new insights may provide indications about possible disease reversal upon treatment. A discussion about the CNS pathophysiology involvement in LSDs is the aim of this review. The lysosomal involvement in adult neurodegenerative diseases will also be briefly described.
Collapse
Affiliation(s)
- Cinzia Maria Bellettato
- Department of Paediatrics, Centre for Rare Diseases, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | | |
Collapse
|
2281
|
Abstract
Autophagy is essential for neuronal homeostasis, and its dysfunction has been directly linked to a growing number of neurodegenerative disorders. The reasons behind autophagic failure in degenerating neurons can be very diverse because of the different steps required for autophagy and the characterization of the molecular players involved in each of them. Understanding the step(s) affected in the autophagic process in each disorder could explain differences in the course of these pathologies and will be essential to developing targeted therapeutic approaches for each disease based on modulation of autophagy. Here we present examples of different types of autophagic dysfunction described in common neurodegenerative disorders and discuss the prospect of exploring some of the recently identified autophagic variants and the interactions among autophagic and non-autophagic proteolytic systems as possible future therapeutic targets.
Collapse
|
2282
|
Komatsu M, Ichimura Y. MBSJ MCC Young Scientist Award 2009
REVIEW: Selective autophagy regulates various cellular functions. Genes Cells 2010; 15:923-33. [DOI: 10.1111/j.1365-2443.2010.01433.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2283
|
Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 2010; 107:14164-9. [PMID: 20660724 DOI: 10.1073/pnas.1009485107] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid beta peptide, the main pathogenic mediator of Alzheimer's disease (AD). However, lysosomal blockage also caused by Abeta is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death.
Collapse
|
2284
|
Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J Biol Chem 2010; 285:30026-33. [PMID: 20659891 DOI: 10.1074/jbc.m110.143545] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, a precursor form of aminopeptidase I (prApe1) and α-mannosidase (Ams1) are selectively transported to the vacuole through the cytoplasm-to-vacuole targeting pathway under vegetative conditions and through autophagy under starvation conditions. Atg19 plays a central role in these processes by linking Ams1 and prApe1 to Atg8 and Atg11. However, little is known about the molecular mechanisms of cargo recognition by Atg19. Here, we report structural and functional analyses of Atg19 and its paralog, Atg34. A protease-resistant domain was identified in the C-terminal region of Atg19, which was also conserved in Atg34. In vitro pulldown assays showed that the C-terminal domains of both Atg19 and Atg34 are responsible for Ams1 binding; these domains are hereafter referred to as Ams1-binding domains (ABDs). The transport of Ams1, but not prApe1, was blocked in atg19Δatg34Δ cells expressing Atg19(ΔABD), indicating that ABD is specifically required for Ams1 transport. We then determined the solution structures of the ABDs of Atg19 and Atg34 using NMR spectroscopy. Both ABD structures have a canonical immunoglobulin fold consisting of eight β-strands with highly conserved loops clustered at one side of the fold. These facts, together with the results of a mutational analysis, suggest that ABD recognizes Ams1 using these conserved loops.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6 Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
2285
|
Williamson WR, Wang D, Haberman AS, Hiesinger PR. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. ACTA ACUST UNITED AC 2010; 189:885-99. [PMID: 20513768 PMCID: PMC2878941 DOI: 10.1083/jcb.201003062] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A vesicular ATPase regulates both vesicle fusion and subsequent acidification of a subset of neuronal lysosomes and autophagosomes. The vesicular adenosine triphosphatase (v-ATPase) is a proton pump that acidifies intracellular compartments. In addition, mutations in components of the membrane-bound v-ATPase V0 sector cause acidification-independent defects in yeast, worm, fly, zebrafish, and mouse. In this study, we present a dual function for the neuron-specific V0 subunit a1 orthologue v100 in Drosophila melanogaster. A v100 mutant that selectively disrupts proton translocation rescues a previously characterized synaptic vesicle fusion defect and vesicle fusion with early endosomes. Correspondingly, V100 selectively interacts with syntaxins on the respective target membranes, and neither synaptic vesicles nor early endosomes require v100 for their acidification. In contrast, V100 is required for acidification once endosomes mature into degradative compartments. As a consequence of the complete loss of this neuronal degradation mechanism, photoreceptors undergo slow neurodegeneration, whereas selective rescue of the acidification-independent function accelerates cell death by increasing accumulations in degradation-incompetent compartments. We propose that V100 exerts a temporally integrated dual function that increases neuronal degradative capacity.
Collapse
Affiliation(s)
- W Ryan Williamson
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
2286
|
Li C, Guo Y, Xie W, Li X, Janokovic J, Le W. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson's disease. Neurochem Res 2010; 35:1546-56. [PMID: 20635141 DOI: 10.1007/s11064-010-0214-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2010] [Indexed: 12/21/2022]
Abstract
Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson's disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin-proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
2287
|
Read R, Savelieva K, Baker K, Hansen G, Vogel P. Histopathological and neurological features of Atg4b knockout mice. Vet Pathol 2010; 48:486-94. [PMID: 20634410 DOI: 10.1177/0300985810375810] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This investigation found that genetic inactivation of mouse Atg4b, 1 of the 4 mammalian homologs of the autophagy-related gene Atg4, resulted in amorphous globular bodies in the neuropil of the deep cerebellar nuclei and adjacent vestibular nuclei but nowhere else in the brain or other tissues. The spheroid-like bodies in the deep cerebellar and vestibular nuclei showed heterogeneous composition, reactivity with anti-ubiquitin antibody, and staining characteristics of proteinaceous material. Atg4b-deficient (Atg4b (-/-)) mice also showed a mild but measurable impairment of motor performance on the Rotarod. Atg4b (-/-) mice produced by breeding heterozygous parents were produced at a slightly lower than expected ratio to heterozygous and wild-type siblings but showed no other clear abnormalities in a battery of screening tests. These findings appear to be different than those reported for inactivation of other Atg4 homologs, suggesting that these homologs have tissue-specific functions beyond redundancy.
Collapse
Affiliation(s)
- R Read
- Department of Pathology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA.
| | | | | | | | | |
Collapse
|
2288
|
Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Córdoba SR, Knecht E, Rubinsztein DC. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 2010; 19:2867-76. [PMID: 20453062 PMCID: PMC2893813 DOI: 10.1093/hmg/ddq190] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/05/2010] [Indexed: 11/28/2022] Open
Abstract
Lafora disease (LD) is an autosomal recessive, progressive myoclonus epilepsy, which is characterized by the accumulation of polyglucosan inclusion bodies, called Lafora bodies, in the cytoplasm of cells in the central nervous system and in many other organs. However, it is unclear at the moment whether Lafora bodies are the cause of the disease, or whether they are secondary consequences of a primary metabolic alteration. Here we describe that the major genetic lesion that causes LD, loss-of-function of the protein laforin, impairs autophagy. This phenomenon is confirmed in cell lines from human patients, mouse embryonic fibroblasts from laforin knockout mice and in tissues from such mice. Conversely, laforin expression stimulates autophagy. Laforin regulates autophagy via the mammalian target of rapamycin kinase-dependent pathway. The changes in autophagy mediated by laforin regulate the accumulation of diverse autophagy substrates and would be predicted to impact on the Lafora body accumulation and the cell stress seen in this disease that may eventually contribute to cell death.
Collapse
Affiliation(s)
- Carmen Aguado
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe and CIBERER, Avda. Autopista del Saler 16, 46012 Valencia, Spain
| | - Sovan Sarkar
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | - Viktor I. Korolchuk
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | - Olga Criado
- Centro de Investigaciones Biológicas, CSIC and CIBERER, Ramiro de Maeztu 9, 28040 Madrid, Spain and
| | - Santiago Vernia
- Instituto de Biomedicina, CSIC and CIBERER, Jaime Roig 11, 46012 Valencia, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas, CSIC and CIBERER, Ramiro de Maeztu 9, 28040 Madrid, Spain and
| | - Pascual Sanz
- Instituto de Biomedicina, CSIC and CIBERER, Jaime Roig 11, 46012 Valencia, Spain
| | | | - Erwin Knecht
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe and CIBERER, Avda. Autopista del Saler 16, 46012 Valencia, Spain
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| |
Collapse
|
2289
|
Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, Osmand A, Paulson HL, Detloff PJ. Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 2010; 19:3702-20. [PMID: 20616151 DOI: 10.1093/hmg/ddq285] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aggregation of mutant polyglutamine (polyQ) proteins has sparked interest in the role of protein quality-control pathways in Huntington's disease (HD) and related polyQ disorders. Employing a novel knock-in HD mouse model, we provide in vivo evidence of early, sustained alterations of autophagy in response to mutant huntingtin (mhtt). The HdhQ200 knock-in model, derived from the selective breeding of HdhQ150 knock-in mice, manifests an accelerated and more robust phenotype than the parent line. Heterozygous HdhQ200 mice accumulate htt aggregates as cytoplasmic aggregation foci (AF) as early as 9 weeks of age and striatal neuronal intranuclear inclusions (NIIs) by 20 weeks. By 40 weeks, striatal AF are perinuclear and immunoreactive for ubiquitin and the autophagosome marker LC3. Striatal NIIs accumulate earlier in HdhQ200 mice than in HdhQ150 mice. The earlier appearance of aggregate pathology in HdhQ200 mice is paralleled by earlier and more rapidly progressive motor deficits: progressive imbalance and decreased motor coordination by 50 weeks, gait deficits by 60 weeks and gross motor impairment by 80 weeks of age. At 80 weeks, heterozygous HdhQ200 mice exhibit striatal and cortical astrogliosis and a approximately 50% reduction in striatal dopamine receptor binding. Increased LC3-II protein expression, which is noted early and sustained throughout the disease course, is paralleled by increased expression of the autophagy-related protein, p62. Early and sustained expression of autophagy-related proteins in this genetically precise mouse model of HD suggests that the alteration of autophagic flux is an important and early component of the neuronal response to mhtt.
Collapse
Affiliation(s)
- Mary Y Heng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2290
|
Nakatsu Y, Kotake Y, Takai N, Ohta S. Involvement of autophagy via mammalian target of rapamycin (mTOR) inhibition in tributyltin-induced neuronal cell death. J Toxicol Sci 2010; 35:245-51. [PMID: 20371977 DOI: 10.2131/jts.35.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tributyltin chloride (TBT) is a neurotoxic environmental pollutant that inhibits mitochondrial adenosine triphosphate (ATP) synthase. Autophagy is one of the major protein degradation systems induced by a decrease of intracellular ATP following activation of AMP-activated protein kinase (AMPK). Because we previously found that TBT induces activation of AMPK, here we examined whether TBT induces autophagic neuronal death. Exposure of cortical neurons to 500 nM TBT reduced the phosphorylation of mammalian target of rapamycin (mTOR), a regulator of autophagy. An autophagy inhibitor, 3-methyladenine (3-MA), markedly decreased TBT-induced neuronal death. TBT also induced the formation of LC3-II, an autophagy marker. These results suggest that TBT-induced neuronal death is at least partly autophagic.
Collapse
|
2291
|
Fujitani Y, Ueno T, Watada H. Autophagy in health and disease. 4. The role of pancreatic β-cell autophagy in health and diabetes. Am J Physiol Cell Physiol 2010; 299:C1-6. [DOI: 10.1152/ajpcell.00084.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved machinery for degradation and recycling of various cytoplasmic components such as long-lived proteins and organelles. In pancreatic β-cells, as in most other cells, autophagy is also important for the low basal turnover of ubiquitinated proteins and damaged organelles under normal conditions. Insulin resistance results in upregulation of autophagic activity in β-cells. Induced autophagy in β-cells plays a pivotal role in the adaptive expansion of β-cell mass. Nevertheless, it is not clear whether autophagy is protective or detrimental in response to cellular stresses in β-cells. In this review, we describe the crucial roles of autophagy in normal function of β-cells and discuss how dysfunction of the autophagic machinery could lead to the development of diabetes mellitus.
Collapse
Affiliation(s)
- Yoshio Fujitani
- Department of Medicine, Metabolism and Endocrinology,
- Center for Therapeutic Innovation in Diabetes,
| | - Takashi Ueno
- Department of Biochemistry, and
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Medicine, Metabolism and Endocrinology,
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2292
|
Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 2010; 6:614-21. [PMID: 20495340 DOI: 10.4161/auto.6.5.12189] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The accumulation of ubiquitin-positive protein aggregates has been implicated in the pathogenesis of neurodegenerative diseases, heart disease and diabetes. Emerging evidence indicates that the autophagy lysosomal pathway plays a critical role in the clearance of ubiquitin aggregates, a process that is mediated by the ubiquitin binding protein p62. In addition to binding ubiquitin, p62 also interacts with LC3 and transports ubiquitin conjugates to autophagosomes for degradation. The exact regulatory mechanism of this process is still largely unknown. Here we report the identification of Keap1 as a binding partner for p62 and LC3. Keap1 inhibits Nrf2 by sequestering it in the cytosol and preventing its translocation to the nucleus and activation of genes involved in the oxidative stress response. In this study, we found that Keap1 interacts with p62 and LC3 in a stress-inducible manner, and that Keap1 colocalizes with LC3 and p62 in puromycin-induced ubiquitin aggregates. Moreover, p62 serves as a bridge between Keap1 and ubiquitin aggregates and autophagosomes. Finally, genetic ablation of Keap1 leads to the accumulation of ubiquitin aggregates, increased cytotoxicity of misfolded protein aggregates, and defective activation of autophagy. Therefore, this study assigns a novel positive role of Keap1 in upregulating p62-mediated autophagic clearance of ubiquitin aggregates.
Collapse
Affiliation(s)
- Weiliang Fan
- State Key Lab of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
2293
|
Abstract
Mutant huntingtin (htt) carries an expanded polyglutamine (polyQ) repeat (> 36 glutamines) in its N-terminal region, which leads htt to become misfolded and kill neuronal cells in Huntington disease (HD). The cytotoxicity of N-terminal mutant htt fragments is evident by severe neurological phenotypes of transgenic mice that express these htt fragments. Clearance of mutant htt is primarily mediated by the ubiquitin-proteasomal sysmtem (UPS) and autophagy. However, the relative efficiency of these two systems to remove toxic forms of mutant htt has not been rigorously compared. Using cellular and mouse models of HD, we found that inhibiting the UPS leads to a greater accumulation of mutant htt than inhibiting autophagy. Moreover, N-terminal mutant htt fragments, but not full-length mutant htt, accumulate in the HD mouse brains after inhibiting the UPS. These findings suggest that the UPS is more efficient than autophagy to remove N-terminal mutant htt.
Collapse
Affiliation(s)
- Xiao-Jiang Li
- Department of Human Genetics; Emory University School of Medicine; Atlanta, GA USA
| | - He Li
- Division of Histology and Embryology; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, China
| | - Shihua Li
- Department of Human Genetics; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
2294
|
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12:665-75. [PMID: 20543840 DOI: 10.1038/ncb2069] [Citation(s) in RCA: 484] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
Autophagy is characterized by the sequestration of bulk cytoplasm, including damaged proteins and organelles, and delivery of the cargo to lysosomes for degradation. Although the autophagic pathway is also linked to tumour suppression activity, the mechanism is not yet clear. Here we report that cytosolic FoxO1, a forkhead O family protein, is a mediator of autophagy. Endogenous FoxO1 was required for autophagy in human cancer cell lines in response to oxidative stress or serum starvation, but this process was independent of the transcriptional activity of FoxO1. In response to stress, FoxO1 was acetylated by dissociation from sirtuin-2 (SIRT2), a NAD(+)-dependent histone deacetylase, and the acetylated FoxO1 bound to Atg7, an E1-like protein, to influence the autophagic process leading to cell death. This FoxO1-modulated cell death is associated with tumour suppressor activity in human colon tumours and a xenograft mouse model. Our finding links the anti-neoplastic activity of FoxO1 and the process of autophagy.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2295
|
Kawajiri S, Machida Y, Saiki S, Sato S, Hattori N. Zonisamide reduces cell death in SH-SY5Y cells via an anti-apoptotic effect and by upregulating MnSOD. Neurosci Lett 2010; 481:88-91. [PMID: 20600601 DOI: 10.1016/j.neulet.2010.06.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 12/21/2022]
Abstract
Zonisamide, originally known as an antiepileptic drug, has been approved in Japan as adjunctive therapy with levodopa for the treatment of Parkinson's disease (PD). Although zonisamide reduces neurotoxicity, the precise mechanism of this action is not known. Here, we show that zonisamide increases cell viability in SH-SY5Y cells via an anti-apoptotic effect and by upregulating levels of manganese superoxide dismutase (MnSOD). These results would give us novel evidences of PD treatment.
Collapse
Affiliation(s)
- Sumihiro Kawajiri
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | | | | | | | |
Collapse
|
2296
|
Mariño G, Fernández AF, Cabrera S, Lundberg YW, Cabanillas R, Rodríguez F, Salvador-Montoliu N, Vega JA, Germanà A, Fueyo A, Freije JMP, López-Otín C. Autophagy is essential for mouse sense of balance. J Clin Invest 2010; 120:2331-44. [PMID: 20577052 DOI: 10.1172/jci42601] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/05/2010] [Indexed: 01/26/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that is essential for cellular homeostasis and organismal viability in eukaryotes. However, the extent of its functions in higher-order processes of organismal physiology and behavior is still unknown. Here, we report that autophagy is essential for the maintenance of balance in mice and that its deficiency leads to severe balance disorders. We generated mice deficient in autophagin-1 protease (Atg4b) and showed that they had substantial systemic reduction of autophagic activity. Autophagy reduction occurred through defective proteolytic processing of the autophagosome component LC3 and its paralogs, which compromised the rate of autophagosome maturation. Despite their viability, Atg4b-null mice showed unusual patterns of behavior that are common features of inner ear pathologies. Consistent with this, Atg4b-null mice showed defects in the development of otoconia, organic calcium carbonate crystals essential for sense of balance (equilibrioception). Furthermore, these abnormalities were exacerbated in Atg5-/- mice, which completely lack the ability to perform autophagy, confirming that autophagic activity is necessary for otoconial biogenesis. Autophagy deficiency also led to impaired secretion and assembly of otoconial core proteins, thus hampering otoconial development. Taken together, these results describe an essential role for autophagy in inner ear development and equilibrioception and open new possibilities for understanding and treating human balance disorders, which are of growing relevance among the elderly population.
Collapse
Affiliation(s)
- Guillermo Mariño
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2297
|
Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010; 116:2324-31. [PMID: 20574048 DOI: 10.1182/blood-2010-01-261040] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid and/or arsenic trioxide represents a paradigm in targeted cancer therapy because these drugs cause clinical remission by affecting the stability of the fusion oncoprotein promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARA). The authors of previous studies have implicated the ubiquitin-proteasome pathway as the main mechanism involved in therapy-induced PML/RARA degradation. Here we have investigated a role of autophagy, a protein degradation pathway that involves proteolysis of intracellular material within lysosomes. We found that both all-trans retinoic acid and arsenic trioxide induce autophagy via the mammalian target of rapamycin pathway in APL cells and that autophagic degradation contributes significantly both to the basal turnover as well as the therapy-induced proteolysis of PML/RARA. In addition, we observed a correlation between autophagy and therapy-induced differentiation of APL cells. Given the central role of the PML/RARA oncoprotein in APL pathogenesis, this study highlights an important role of autophagy in the development and treatment of this disease.
Collapse
|
2298
|
Abstract
Autophagy is a tightly regulated catabolic process whereby cells degrade their constituents to dispose of unwanted cytoplasmic elements and recycle nutrients for cellular remodeling. Studies of autophagy in mammals have elicited substantial interest because it is linked to a range of physiologic and pathologic states. In this issue of the JCI, Mariño et al. uncover a role for autophagy in a balance disorder related to inner ear pathologies. Mice lacking the protease autophagy-related 4B (Atg4b, also known as autophagin-1) exhibited a systemic reduction in autophagy and showed defects in the development of otoconia, organic particles that contain calcium carbonate crystals and proteins and that are essential for balance perception (equilibrioception) in mammals. The intriguing aspect of this work is that an autophagy block impairs the secretion and assembly of otoconial proteins, emphasizing a role for autophagy in functions distinct from macromolecule degradation.
Collapse
Affiliation(s)
- Andreas Till
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
2299
|
Bossy B, Perkins G, Bossy-Wetzel E. Clearing the brain's cobwebs: the role of autophagy in neuroprotection. Curr Neuropharmacol 2010; 6:97-101. [PMID: 19305790 PMCID: PMC2647148 DOI: 10.2174/157015908784533897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 01/31/2023] Open
Abstract
Protein aggregates or inclusion bodies are common hallmarks of age-related neurodegenerative disorders. Why these aggregates form remains unclear. Equally debated is whether they are toxic, protective, or simple by-products. Increasing evidence, however, supports the notion that in general aggregates confer toxicity and disturb neuronal function by hampering axonal transport, synaptic integrity, transcriptional regulation, and mitochondrial function. Thus, neuroscientists in search of effective treatments to slow neural loss during neurodegeneration have long been interested in finding new ways to clear inclusion bodies. Intriguingly, two studies using conditional neuron-specific gene ablations of autophagy regulators in mice revealed that autophagy loss elicits inclusion body formation and a neurodegenerative cascade.Such studies indicate autophagy may be a built-in defense mechanism to clear the nervous system of inclusion bodies.This new finding has implications for our understanding of aging and neurodegeneration and the development of new therapies. First, we discuss the pathways underlying autophagy and its controversial role in cell death and survival regulation.We then discuss the physiological role of autophagy in the aging process of the nervous system. In the final portion of this review, we discuss the therapeutic promise of inducing autophagy and the potential side effects of such treatments.
Collapse
Affiliation(s)
- Blaise Bossy
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | | | | |
Collapse
|
2300
|
Cuervo AM, Wong ESP, Martinez-Vicente M. Protein degradation, aggregation, and misfolding. Mov Disord 2010; 25 Suppl 1:S49-54. [PMID: 20187257 DOI: 10.1002/mds.22718] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cellular surveillance systems guarantee proper removal of altered components from inside cells. Alterations of these systems in neurons have been proposed to be involved in the pathogenesis of different neurodegenerative disorders. In this review, we comment on the advances in our current understanding of how changes in the intracellular proteolytic systems, the main components of the cellular quality control system, contribute to neurodegeneration, with special emphasis on Parkinson's disease.
Collapse
Affiliation(s)
- Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|