201
|
Oppedisano F, Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Scicchitano M, Scarano F, Bosco F, Macrì R, Ruga S, Zito MC, Palma E, Muscoli C, Mollace V. The Potential for Natural Antioxidant Supplementation in the Early Stages of Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21072618. [PMID: 32283806 PMCID: PMC7177481 DOI: 10.3390/ijms21072618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The neurodegenerative process is characterized by the progressive ultrastructural alterations of selected classes of neurons accompanied by imbalanced cellular homeostasis, a process which culminates, in the later stages, in cell death and the loss of specific neurological functions. Apart from the neuronal cell impairment in selected areas of the central nervous system which characterizes many neurodegenerative diseases (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, etc.), some alterations may be found in the early stages including gliosis and the misfolding or unfolding accumulation of proteins. On the other hand, several common pathophysiological mechanisms can be found early in the course of the disease including altered oxidative metabolism, the loss of cross-talk among the cellular organelles and increased neuroinflammation. Thus, antioxidant compounds have been suggested, in recent years, as a potential strategy for preventing or counteracting neuronal cell death and nutraceutical supplementation has been studied in approaching the early phases of neurodegenerative diseases. The present review will deal with the pathophysiological mechanisms underlying the early stages of the neurodegenerative process. In addition, the potential of nutraceutical supplementation in counteracting these diseases will be assessed.
Collapse
Affiliation(s)
- Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8007
| |
Collapse
|
202
|
Li Z, Huang W, Wang W. Multifaceted roles of COPII subunits in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118627. [DOI: 10.1016/j.bbamcr.2019.118627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 01/06/2023]
|
203
|
Chen J, Chen X, Xu D, Yang L, Yang Z, Yang Q, Yan D, Zhang P, Feng D, Liu J. Autophagy Induced by Proteasomal DUB Inhibitor NiPT Restricts NiPT-Mediated Cancer Cell Death. Front Oncol 2020; 10:348. [PMID: 32292717 PMCID: PMC7119081 DOI: 10.3389/fonc.2020.00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin–proteasome system (UPS) and autophagy–lysosome pathway (ALP) are two major systems for protein quality control (PQC) in eukaryotic cells. Interconnectivity between these two pathways has been suggested, but the molecular detail of how they impact each other remains elusive. Proteasomal deubiquitinase (DUB) is an important constituent in the UPS and has proved to be a novel anticancer target. We have previously found that a novel DUB inhibitor, nickel complex NiPT, induces apoptosis in both cultured tumor cell lines and cancer cells from acute myeloid leukemia human patients. In this study, we found that NiPT triggered autophagy both in vitro and in vivo. Mechanistically, NiPT targets two DUBs, USP14, and UCHL5, and increased the total cellular level of polyubiquitination. Deletion of the Ubiquitin Associated (UBA) domain of P62 that is required for polyubiquitin binding prevented NiPT-induced autophagy. NiPT-induced autophagy is through either concomitant activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR) signaling, or eliciting endoplasmic reticulum (ER)-stress by activating activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP). Moreover, NiPT could induce more lung cancer cells undergoing apoptosis if it synergistically uses autophagy inhibitors, suggesting that NiPT-induced autophagy protects cancer cell from death. Collectively, our findings demonstrate that autophagy inhibition enhances the anticancer effects of proteasomal DUB inhibitor and might be an effective treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Jinghong Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dacai Xu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,The Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
| | - Zhenjun Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ding Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Peiquan Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
204
|
Stone S, Wu S, Nave KA, Lin W. The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight 2020; 5:132364. [PMID: 32053121 DOI: 10.1172/jci.insight.132364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Maintaining cellular proteostasis is essential for oligodendrocyte viability and function; however, its underlying mechanisms remain unexplored. Unfolded protein response (UPR), which comprises 3 parallel branches, inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6α (ATF6α), is a major mechanism that maintains cellular proteostasis by facilitating protein folding, attenuating protein translation, and enhancing autophagy and ER-associated degradation. Here we report that impaired UPR in oligodendrocytes via deletion of PERK and ATF6α did not affect developmental myelination but caused late-onset mature oligodendrocyte dysfunction and death in young adult mice. The detrimental effects of the impaired UPR on mature oligodendrocytes were accompanied by autophagy impairment and intracellular proteolipid protein (PLP) accumulation and were rescued by PLP deletion. Data indicate that PLP was degraded by autophagy and that intracellular PLP accumulation was cytotoxic to oligodendrocytes. Thus, these findings imply that the UPR is required for maintaining cellular proteostasis and the viability and function of mature oligodendrocytes in adults by regulating autophagy of PLP.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
205
|
Lv J, Jiang Y, Feng Q, Fan Z, Sun Y, Xu P, Hou Y, Zhang X, Fan Y, Xu X, Zhang Y, Guo K. Porcine Circovirus Type 2 ORF5 Protein Induces Autophagy to Promote Viral Replication via the PERK-eIF2α-ATF4 and mTOR-ERK1/2-AMPK Signaling Pathways in PK-15 Cells. Front Microbiol 2020; 11:320. [PMID: 32184774 PMCID: PMC7058596 DOI: 10.3389/fmicb.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent that causing porcine circovirus-associated disease (PCVAD). The open reading frame 5 (ORF5) protein is a newly discovered non-structural protein in PCV2, which the function in viral pathogenesis remains unknown. The aim of this study was to investigate the mechanism of PCV2 ORF5 protein on autophagy and viral replication. The pEGFP-tagged ORF5 gene was ectopic expressed in PK-15 cells and an ORF5-deficient PCV2 mutant strain (PCV2ΔORF5) were used to infected PK-15 cells. This study demonstrated that the ORF5 is essential for the of PCV2-induced autophagy. The ORF5 protein triggers the phosphorylation of PERK, eIF2α and the expression of downstream transcription factor ATF4. In addition, ORF5 protein activated the AMPK-ERK1/2-mTOR signaling pathways. These findings suggest that ORF5 play essential roles in the induction of autophagy by PCV2. We further revealed that PCV2 ORF5 promotes viral replication through PERK-eIF2α-ATF4 and AMPK-ERK1/2-mTOR pathways. In conclusion, we showed that PCV2 ORF5 induces autophagy to promote virus replication in PK-15 cells.
Collapse
Affiliation(s)
- Jiangman Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhixin Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ying Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Panpan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,College of Animal Science, Tarim University, Alar, China
| | - Yuxin Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
206
|
Liu YP, Shao SJ, Guo HD. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci 2020; 248:117459. [PMID: 32092332 DOI: 10.1016/j.lfs.2020.117459] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus that affects approximately half of patients with diabetes. Current treatment regimens cannot treat DPN effectively. Schwann cells (SCs) are very sensitive to glucose concentration and insulin, and closely associated with the occurrence and development of type 1 diabetic mellitus (T1DM) and DPN. Apoptosis of SCs is induced by hyperglycemia and is involved in the pathogenesis of DPN. This review considers the pathological processes of SCs apoptosis under high glucose, which include the following: oxidative stress, inflammatory reactions, endoplasmic reticulum stress, autophagy, nitrification and signaling pathways (PI3K/AKT, ERK, PERK/Nrf2, and Wnt/β-catenin). The clarification of mechanisms underlying SCs apoptosis induced by high glucose will help us to understand and identify more effective strategies for the treatment of T1DM DPN.
Collapse
Affiliation(s)
- Yu-Pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-Jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
207
|
Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation. Mol Biol Rep 2020; 47:1949-1964. [PMID: 32056044 DOI: 10.1007/s11033-020-05292-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.
Collapse
|
208
|
Qu P, Shen C, Du Y, Qin H, Luo S, Fu S, Dong Y, Guo S, Hu F, Xue Y, Liu E. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci Rep 2020; 10:2186. [PMID: 32042116 PMCID: PMC7010831 DOI: 10.1038/s41598-020-59161-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The study's objectives were to examine the effects of electrofusion on rabbit somatic cell nuclear transfer (SCNT) embryos, and to test melatonin as a protective agent against electrofusion damage to SCNT embryos. The levels of reactive oxygen species (ROS), the epigenetic state (H3K9me3), and the content of endoplasmic reticulum (ER) stress-associated transcripts (IRE-1 and CHOP) were measured. Melatonin was added during the preimplantation development period. The total blastocyst cell numbers were counted, and the fragmentation rate and apoptotic index were determined and used to assess embryonic development. Electrofusion increased (1) ROS levels at the 1-, 2-, 4-, and 8-cell stages; (2) H3K9me3 levels at the 2-, 4-, and 8-cell stage; and (3) the expression of IRE-1 and CHOP at the 8-cell, 16-cell, morula, and blastocyst stages. The treatment of SCNT embryos with melatonin significantly reduced the level of ROS and H3K9me3, and the expression levels of IRE-1 and CHOP. This treatment also significantly reduced the fragmentation rate and apoptotic index of blastocysts and increased their total cell number. In conclusion, the electrofusion of rabbit SCNT embryos induced oxidative stress, disturbed the epigenetic state, and caused ER stress, while melatonin reduced this damage. Our findings are of signal importance for improving the efficiency of SCNT and for optimizing the application of electrical stimulation in other biomedical areas.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China
| | - Chong Shen
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Hongyu Qin
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shiwei Luo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Sixin Fu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Dong
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shuaiqingying Guo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Fang Hu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Ying Xue
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China.
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
209
|
Liu X, Zhang E, Yin S, Zhao C, Fan L, Hu H. Activation of the IRE1α Arm, but not the PERK Arm, of the Unfolded Protein Response Contributes to Fumonisin B1-Induced Hepatotoxicity. Toxins (Basel) 2020; 12:toxins12010055. [PMID: 31963346 PMCID: PMC7020448 DOI: 10.3390/toxins12010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies by us or others have shown that endoplasmic reticulum (ER) stress was activated by fumonisin 1 (FB1) exposure, which is considered to be a critical event in the FB1-induced toxic effect. However, the detailed mechanisms underlying FB1-induced ER stress-mediated liver toxicity remain elusive. The objectives of the present study were designed to address the following issues: (1) the contribution of each arm of the unfolded protein response (UPR); (2) the downstream targets of ER stress that mediated FB1-induced liver toxicity; and (3) the relationship between ER stress and oxidative stress triggered by FB1. We also investigated whether the inhibition of ER stress by its inhibitor could offer protection against FB1-induced hepatotoxicity in vivo, which has not been critically addressed previously. The results showed that the activation of the IRE1α axis, but not of the PERK axis, of UPR contributed to FB1-induced ER stress-mediated hepatocyte toxicity; the activation of the Bax/Bak-mediated mitochondrial pathway lay downstream of IRE1α to trigger mitochondrial-dependent apoptosis in response to FB1; FB1-induced oxidative stress and ER stress augmented each other through a positive feedback mechanism; tauroursodeoxycholic acid (TUDCA)-mediated ER stress inactivation is an effective approach to counteract FB1-induced hepatotoxicity in vivo. The data of the present study allow us to better understand the mechanisms of FB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yunamingyuan West Road, Haidian District, Beijing 100193, China;
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing 100083, China; (X.L.); (E.Z.); (S.Y.); (C.Z.)
- Correspondence: ; Tel.: +86-10-62738653
| |
Collapse
|
210
|
All-trans-retinal induces autophagic cell death via oxidative stress and the endoplasmic reticulum stress pathway in human retinal pigment epithelial cells. Toxicol Lett 2020; 322:77-86. [PMID: 31931077 DOI: 10.1016/j.toxlet.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
Failure of all-trans-retinal (atRAL) clearance contributes to retina degeneration. However, whether autophagy can be activated by excess atRAL accumulation in retinal pigment epithelial (RPE) cells is not known. This study showed that atRAL provoked mitochondria-associated reactive oxygen species (ROS) production, activated the nuclear factor (erythroid-derived 2)-like 2 and apoptosis in a human RPE cell line, ARPE-19 cells. Moreover, we found that autophagic flux was functionally activated after atRAL treatment. The antioxidant N-acetylcysteine attenuated the expression of autophagy markers, suggesting that ROS triggered atRAL-activated autophagy. In addition, autophagic cell death was observed in atRAL-treated RPE cells, while inhibition of autophagy with 3-methyladenine or LC3, Beclin1, p62 silencing ameliorated atRAL-induced cytotoxicity. Suppression of autophagy quenched mitochondrial ROS and inhibited HO-1 and γ-GCSh expression, indicating that atRAL-activated autophagy enhances intracellular oxidative stress, thereby promoting RPE cell apoptosis. Furthermore, we found that inhibiting endoplasmic reticulum (ER) stress suppressed atRAL-induced mitochondrial ROS generation, subsequently attenuated autophagy and apoptosis in RPE cells. Taken together, these results suggest that atRAL-induced oxidative stress and ER stress modulate autophagy, which may contribute to RPE degeneration. There may be positive feedback regulatory mechanisms between atRAL-induced oxidative stress and autophagy or ER stress.
Collapse
|
211
|
Abstract
Activation of the unfolded protein response in response to endoplasmic reticulum stress preserves cell viability and function under stressful conditions. Nevertheless, persistent, unresolvable activation of the unfolded protein response can trigger apoptosis to eliminate stressed cells. Recent studies show that the unfolded protein response plays an important role in the pathogenesis of various disorders of myelin, including multiples sclerosis, Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease, vanishing white matter disease, spinal cord injury, tuberous sclerosis complex, and hypoxia-induced perinatal white matter injury. In this review we summarize the current literature on the unfolded protein response and the evidence for its role in the pathogenesis of myelin disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
212
|
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:285-325. [PMID: 32138902 DOI: 10.1016/bs.ircmb.2019.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
213
|
Zhao Y, Li H, Chai Z, Shi W, Li X, Ma H. An endoplasmic reticulum-targeting fluorescent probe for imaging ˙OH in living cells. Chem Commun (Camb) 2020; 56:6344-6347. [DOI: 10.1039/d0cc00233j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new ER-targeting fluorescent probe for ˙OH is developed and applied to imaging ˙OH generation as well as lipid droplet formation in ER stress.
Collapse
Affiliation(s)
- Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hongyu Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Ziyin Chai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
214
|
Somparn P, Boonkrai C, Charngkaew K, Chomanee N, Hodge KG, Fenton RA, Pisitkun T, Khositseth S. Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2. Am J Physiol Renal Physiol 2020; 318:F135-F147. [PMID: 31736351 PMCID: PMC7054639 DOI: 10.1152/ajprenal.00113.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After the release of bilateral ureteral obstruction (BUO), postobstructive diuresis from an impaired urine concentration mechanism is associated with reduced aquaporin 2 (AQP2) abundance in the inner medullary collecting duct (IMCD). However, the underlying molecular mechanism of this AQP2 reduction is incompletely understood. To elucidate the mechanisms responsible for this phenomenon, we studied molecular changes in IMCDs isolated from rats with 4-h BUO or sham operation at the early onset of AQP2 downregulation using mass spectrometry-based proteomic analysis. Two-hundred fifteen proteins had significant changes in abundances, with 65% of them downregulated in the IMCD of 4-h BUO rats compared with sham rats. Bioinformatic analysis revealed that significantly changed proteins were associated with functional Gene Ontology terms, including “cell-cell adhesion,” “cell-cell adherens junction,” “mitochondrial inner membrane,” “endoplasmic reticulum chaperone complex,” and the KEGG pathway of glycolysis/gluconeogenesis. Targeted liquid chromatography-tandem mass spectrometry or immunoblot analysis confirmed the changes in 19 proteins representative of each predominant cluster, including AQP2. Electron microscopy demonstrated disrupted tight junctions, disorganized adherens junctions, swollen mitochondria, enlargement of the endoplasmic reticulum lumen, and numerous autophagosomes/lysosomes in the IMCD of rats with 4-h BUO. AQP2 and seven proteins chosen as representative of the significantly altered clusters had a significant increase in immunofluorescence-based colocalization with autophagosomes/lysosomes. Immunogold electron microscopy confirmed colocalization of AQP2 with the autophagosome marker microtubule-associated protein 1A/1B-light chain 3 and the lysosomal marker cathepsin D in IMCD cells of rats with 4-h BUO. We conclude that enhanced autophagic degradation of AQP2 and other critical proteins, as well as endoplasmic reticulum stress in the IMCD, are initiated shortly after BUO.
Collapse
Affiliation(s)
- Poorichaya Somparn
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Kenneth G Hodge
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
215
|
Zhang Z, Lin R, Liu Z, Yan T, Xia Y, Zhao L, Lin F, Zhang X, Li C, Wang Y. Curcumin analog, WZ37, promotes G2/M arrest and apoptosis of HNSCC cells through Akt/mTOR inhibition. Toxicol In Vitro 2019; 65:104754. [PMID: 31863822 DOI: 10.1016/j.tiv.2019.104754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/01/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a leading form of malignancy arising from the head and neck region. Existing conventional therapies are toxic and induce resistance to advanced HNSCC, therefore, new highly efficient therapeutic agents are urgently needed. The present study investigated the anti-cancer efficacy of WZ37, a curcumin analog, in HNSCC cell lines, and defined the mechanism of this activity. Results indicated that WZ37 inhibited proliferation of several HNSCC cell types by G2/M cycle arrest, promoted expression of a pro-apoptotic protein profile, and induced ROS-dependent mitochondrial injury and ER stress. Pre-treatment with NAC, an ROS scavenger, lowered the anti-cancer activity of WZ37 in HEP-2 cells. Long-term treatment of WZ37 (24 h) decreased Akt/mTOR phosphorylation which was accompanied by increased expression of BAD and PTEN. Moreover, co-treatment of WZ37 with MK-2206 (Akt inhibitor) promoted cancer cell apoptosis. Our findings indicated that the anti-cancer potential of WZ37 was attributed to ROS-dependent cell cycle arrest, mitochondrial injury, and ER stress, leading to apoptosis. The basis of the HNSCC cell apoptosis was through a mechanism of inhibition of the oxidant-sensitive Akt/mTOR pathway. We conclude that WZ37 can be a promising anti-cancer agent for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ziheng Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, the Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Renyu Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhoudi Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leping Zhao
- Department of Pharmacy, the Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Feng Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Zhang
- Department of Pharmacy, the Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenglong Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
216
|
Gerakis Y, Quintero M, Li H, Hetz C. The UFMylation System in Proteostasis and Beyond. Trends Cell Biol 2019; 29:974-986. [PMID: 31703843 PMCID: PMC6917045 DOI: 10.1016/j.tcb.2019.09.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications are at the apex of cellular communication and eventually regulate every aspect of life. The identification of new post-translational modifiers is opening alternative avenues in understanding fundamental cell biology processes and may ultimately provide novel therapeutic opportunities. The ubiquitin-fold modifier 1 (UFM1) is a post-translational modifier discovered a decade ago but its biological significance has remained mostly unknown. The field has recently witnessed an explosion of research uncovering the implications of the pathway to cellular homeostasis in living organisms. We overview recent advances in the function and regulation of the UFM1 pathway, and its implications for cell physiology and disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
217
|
Bedard M, Shrestha D, Priestman DA, Wang Y, Schneider F, Matute JD, Iyer SS, Gileadi U, Prota G, Kandasamy M, Veerapen N, Besra G, Fritzsche M, Zeissig S, Shevchenko A, Christianson JC, Platt FM, Eggeling C, Blumberg RS, Salio M, Cerundolo V. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 2019; 116:23671-23681. [PMID: 31690657 PMCID: PMC6876220 DOI: 10.1073/pnas.1910097116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Collapse
Affiliation(s)
- Melissa Bedard
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David A Priestman
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Yuting Wang
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Shankar S Iyer
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Uzi Gileadi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Gennaro Prota
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Gurdyal Besra
- School of Biosciences, University of Birmingham, B15 2TT Egdbaston, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Medicine I, University Medical Center Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, OX3 7LD Oxford, United Kingdom
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics and Biophysics, 07743 Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technologies e.V., 07745 Jena, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
218
|
Gao P, Chai Y, Song J, Liu T, Chen P, Zhou L, Ge X, Guo X, Han J, Yang H. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathog 2019; 15:e1008169. [PMID: 31738790 PMCID: PMC6932825 DOI: 10.1371/journal.ppat.1008169] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/26/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) constitutes a critical component of host innate immunity against microbial infections. In this report, we show that porcine reproductive and respiratory syndrome virus (PRRSV) utilizes the UPR machinery for its own benefit. We provide evidence that the virus targets the UPR central regulator GRP78 for proteasomal degradation via a mechanism that requires viral glycoprotein GP2a, while both IRE1-XBP1s and PERK-eIF2α-ATF4 signaling branches of the UPR are turned on at early stage of infection. The activated effector XBP1s was found to enter the nucleus, but ATF4 was unexpectedly diverted to cytoplasmic viral replication complexes by means of nonstructural proteins nsp2/3 to promote viral RNA synthesis. RNAi knockdown of either ATF4 or XBP1s dramatically attenuated virus titers, while overexpression caused increases. These observations reveal attractive host targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) poses a major threat to the worldwide swine industry, but no effective vaccines or antiviral drugs are available. A better understanding of the pathogen-host interactions that support PRRSV replication is essential for understanding viral pathogenesis and the development of preventive measures. Here we report that PRRSV utilizes unconventional strategies to reprogram the unfolded protein response (UPR) of the host to its own advantage. The virus targets GRP78 for partial degradation to create a favorable environment for UPR induction and hijacks ATF4 into cytoplasmic replication complexes to promote viral RNA synthesis. The data also reveal potential targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Teng Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Peng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
- * E-mail:
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| |
Collapse
|
219
|
Zhu E, Chen W, Qin Y, Ma S, Fan S, Wu K, Li W, Fan J, Yi L, Ding H, Chen J, Zhao M. Classical Swine Fever Virus Infection Induces Endoplasmic Reticulum Stress-Mediated Autophagy to Sustain Viral Replication in vivo and in vitro. Front Microbiol 2019; 10:2545. [PMID: 31798542 PMCID: PMC6861840 DOI: 10.3389/fmicb.2019.02545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-mediated autophagy plays significant roles in replication and pathogenesis of many animal viruses. However, the relationship between ER stress, autophagy, and viral replication during in vivo and in vitro infection of classical swine fever virus (CSFV) remains unclear. In this study, we established a pig model for CSFV infection and found that viral loads of CSFV differed in 10 kinds of infected organs, and that the degree of tissue lesions was to some extent positively correlated with CSFV replication in vivo. Next, we found that CSFV infection not only induced ER stress and subsequently activated three unfolded protein responses (UPR) pathways including protein kinase R-like ER kinase (PERK), inositol requiring enzyme 1 (IRE1), and activating transcription factor-6 (ATF-6) pathways, but also triggered complete autophagy in main immune organs and partial nonimmune organs exhibiting severer pathological injuries and higher viral loads. However, only the IRE1 pathway and no autophagy were activated in some other nonimmune organs with slighter pathologies and lower viral loads. These results indicate a potential link between CSFV-induced ER stress and autophagy, both of which are associated with the CSFV replication in vivo. We further performed in vitro experiments and found that CSFV infection activates the PERK and IRE1 pathways and autophagy in cultured porcine kidney cell lines (PK-15) and macrophage cell lines (3D4/2), and pharmacological regulation of ER stress remarkably changed autophagic activities induced by CSFV, suggesting that CSFV-induced autophagy can be mediated by ER stress possibly via the PERK and IRE1 pathway. Furthermore, treatment with ER stress regulators significantly altered copy numbers of NS5B genes, expression of Npro proteins, and viral titers in CSFV-infected cells or in cells treated with autophagy regulators prior to CSFV infection, suggesting the requirement of ER stress-mediated autophagy for CSFV replication in vitro. Collectively, our data demonstrate that CSFV induces ER stress-mediated autophagy to sustain its replication in vivo and in vitro, which may be one of the potential strategies exploited by CSFV for immune evasion. This finding will provide new insights into mechanisms of replication and pathogenesis of CSFV, and development of new strategies for controlling CSF.
Collapse
Affiliation(s)
- Erpeng Zhu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shengming Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jindai Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
220
|
Liu H, Mei D, Xu P, Wang H, Wang Y. YAP promotes gastric cancer cell survival and migration/invasion via the ERK/endoplasmic reticulum stress pathway. Oncol Lett 2019; 18:6752-6758. [PMID: 31807184 PMCID: PMC6876304 DOI: 10.3892/ol.2019.11049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Yes-associated protein (YAP) has been reported to serve an important role in gastric cancer cell survival and migration. However, the underlying mechanism remains unclear. The aim of present study was to identify the underlying mechanism through which Yap sustains gastric cancer viability and migration. The results of the present study demonstrated that YAP expression was upregulated in gastric cancer MKN-28/74 cells compared with normal gastric GES-1 cells. Functional studies revealed that silencing of YAP inhibited gastric cancer MKN-28/74 cell viability and invasion. Mechanistically, YAP may promote gastric cancer cell survival and migration/invasion by inhibiting the endoplasmic reticulum (ER) stress pathway. In addition, YAP may regulate ER stress by activating the ERK signaling pathway. The results of the present study suggested that YAP may be a tumor promoter in gastric cancer and act through the ERK/ER stress pathway; therefore, YAP may have potential implications for new approaches to gastric cancer therapy.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dong Mei
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Pengcheng Xu
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Haisheng Wang
- Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Yan Wang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
221
|
Tao T, Wang J, Wang X, Wang Y, Mao H, Liu X. The PERK/Nrf2 pathway mediates endoplasmic reticulum stress-induced injury by upregulating endoplasmic reticulophagy in H9c2 cardiomyoblasts. Life Sci 2019; 237:116944. [DOI: 10.1016/j.lfs.2019.116944] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
222
|
Ren MT, Gu ML, Zhou XX, Yu MS, Pan HH, Ji F, Ding CY. Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis. World J Gastroenterol 2019; 25:5800-5813. [PMID: 31636473 PMCID: PMC6801188 DOI: 10.3748/wjg.v25.i38.5800] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase that is involved in various diseases, including cancers, metabolic diseases, and inflammation-associated diseases. However, the role of SIRT1 in ulcerative colitis (UC) is still confusing.
AIM To investigate the role of SIRT1 in intestinal epithelial cells (IECs) in UC and further explore the underlying mechanisms.
METHODS We developed a coculture model using macrophages and Caco-2 cells. After treatment with the SIRT1 activator SRT1720 or inhibitor nicotinamide (NAM), the expression of occludin and zona occludens 1 (ZO-1) was assessed by Western blot analysis. Annexin V-APC/7-AAD assays were performed to evaluate Caco-2 apoptosis. Dextran sodium sulfate (DSS)-induced colitis mice were exposed to SRT1720 or NAM for 7 d. Transferase-mediated dUTP nick-end labeling (TUNEL) assays were conducted to assess apoptosis in colon tissues. The expression levels of glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, caspase-9, and caspase-3 in Caco-2 cells and the colon tissues of treated mice were examined by quantitative real-time PCR and Western blot.
RESULTS SRT1720 treatment increased the protein levels of occludin and ZO-1 and inhibited Caco-2 apoptosis, whereas NAM administration caused the opposite effects. DSS-induced colitis mice treated with SRT1720 had a lower disease activity index (P < 0.01), histological score (P < 0.001), inflammatory cytokine levels (P < 0.01), and apoptotic cell rate (P < 0.01), while exposure to NAM caused the opposite effects. Moreover, SIRT1 activation reduced the expression levels of GRP78, CHOP, cleaved caspase-12, cleaved caspase-9, and cleaved caspase-3 in Caco-2 cells and the colon tissues of treated mice.
CONCLUSION SIRT1 activation reduces apoptosis of IECs via the suppression of endoplasmic reticulum stress-mediated apoptosis-associated molecules CHOP and caspase-12. SIRT1 activation may be a potential therapeutic strategy for UC.
Collapse
Affiliation(s)
- Meng-Ting Ren
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Li Gu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hang-Hai Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chen-Yan Ding
- Department of Emergency Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
223
|
Redox-Mediated Mechanism of Chemoresistance in Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100471. [PMID: 31658599 PMCID: PMC6826977 DOI: 10.3390/antiox8100471] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular reactive oxygen species (ROS) status is stabilized by a balance of ROS generation and elimination called redox homeostasis. ROS is increased by activation of endoplasmic reticulum stress, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family members and adenosine triphosphate (ATP) synthesis of mitochondria. Increased ROS is detoxified by superoxide dismutase, catalase, and peroxiredoxins. ROS has a role as a secondary messenger in signal transduction. Cancer cells induce fluctuations of redox homeostasis by variation of ROS regulated machinery, leading to increased tumorigenesis and chemoresistance. Redox-mediated mechanisms of chemoresistance include endoplasmic reticulum stress-mediated autophagy, increased cell cycle progression, and increased conversion to metastasis or cancer stem-like cells. This review discusses changes of the redox state in tumorigenesis and redox-mediated mechanisms involved in tolerance to chemotherapeutic drugs in cancer.
Collapse
|
224
|
Maciel M, Hernández-Barrientos D, Herrera I, Selman M, Pardo A, Cabrera S. Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. Aging (Albany NY) 2019; 10:2098-2112. [PMID: 30147026 PMCID: PMC6128419 DOI: 10.18632/aging.101532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
Aging is the main risk factor for the development of idiopathic pulmonary fibrosis (IPF), a progressive and usually lethal lung disorder. Although the pathogenic mechanisms are uncertain, endoplasmic reticulum (ER) stress and impaired proteostasis that have been linked with aging are strongly associated with the pathogenesis of IPF. Using the Atg4b-deficient mice as a model, that partially reproduces the autophagy deficient conditions reported in aging and IPF lungs, we show for the first time how autophagy impairment and ER stress induction, contribute simultaneously to development of lung fibrosis in vivo. Increased expression of ER stress markers, inflammation and apoptosis of alveolar epithelial cells were observed in Atg4b-deficient mice compared to WT mice, when treated with the ER stress inducer tunicamycin. After tunicamycin treatment, Atg4b null lungs showed accumulation of its substrate LC3-I, demonstrating that these mice failed to induce autophagy despite the ER stress conditions. We also showed that compromised autophagy in lungs from Atg4b null mice is associated with exacerbated lung damage, epithelial apoptosis and the development of lung fibrosis at 21 days after tunicamycin treatment. Our findings indicate that ATG4B protein and autophagy are essential to mitigate ER stress and to prevent tunicamycin-induced epithelial apoptosis and lung fibrosis.
Collapse
Affiliation(s)
- Mariana Maciel
- Department of Cell Biology, Facultad de Ciencias Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Hernández-Barrientos
- Department of Cell Biology, Facultad de Ciencias Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iliana Herrera
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, México
| | - Annie Pardo
- Department of Cell Biology, Facultad de Ciencias Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandra Cabrera
- Department of Cell Biology, Facultad de Ciencias Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
225
|
Plazyo O, Sheng JJ, Jin JP. Downregulation of calponin 2 contributes to the quiescence of lung macrophages. Am J Physiol Cell Physiol 2019; 317:C749-C761. [PMID: 31365293 PMCID: PMC6850996 DOI: 10.1152/ajpcell.00036.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Calponin 2 is an actin cytoskeleton-associated regulatory protein that inhibits the activity of myosin-ATPase and cytoskeleton dynamics. Recent studies have demonstrated that deletion of calponin 2 restricts the proinflammatory activation of macrophages in atherosclerosis and arthritis to attenuate the disease progression in mice. Here we demonstrate that the levels of calponin 2 vary among different macrophage populations, which may reflect their adaptation to specific tissue microenvironment corresponding to specific functional states. Interestingly, lung resident macrophages express significantly lower calponin 2 than peritoneal resident macrophages, which correlates with decreased substrate adhesion and reduced expression of proinflammatory cytokines and a proresolution phenotype. Deletion of calponin 2 in peritoneal macrophages also decreased substrate adhesion and downregulated the expression of proinflammatory cytokines. Providing the first line of defense against microbial invasion while receiving constant exposure to extrinsic antigens, lung macrophages need to maintain a necessary level of activity while limiting exaggerated inflammatory reaction. Therefore, their low level of calponin 2 may reflect an important physiological adaption. Downregulation of calponin 2 in macrophages may be targeted as a cytoskeleton-based novel mechanism, possibly via endoplasmic reticulum stress altering the processing and secretion of cytokines, to regulate immune response and promote quiescence for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Olesya Plazyo
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
226
|
Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM. Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci 2019; 20:926-934. [PMID: 31244421 DOI: 10.2174/1389203720666190618101441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of oncoprotein which has been poorly taken into account in the cellular communication. Among them, E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with the cervical cancer.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sepideh Jahangiri
- Genetics department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Hassan Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
227
|
Gao LP, Chen HC, Ma ZL, Chen AD, Du HL, Yin J, Jing YH. Fibrillation of human islet amyloid polypeptide and its toxicity to pancreatic β-cells under lipid environment. Biochim Biophys Acta Gen Subj 2019; 1864:129422. [PMID: 31491457 DOI: 10.1016/j.bbagen.2019.129422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Previous studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in β-cells, resulting in β-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in β-cell damage are unclear. METHODS Synthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the β-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated. RESULTS The five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate. CONCLUSION Free fatty acids and anionic phospholipid can promote β-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused β-cell death in high lipid environment. GENERAL SIGNIFICANCE Our study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet β-cells.
Collapse
Affiliation(s)
- Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Ze-Lin Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - An-Di Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Hong-Li Du
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu province 730000, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou City, Gansu Province 730000, People's Republic of China.
| |
Collapse
|
228
|
Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon 2019; 167:1-5. [DOI: 10.1016/j.toxicon.2019.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
|
229
|
Weng J, Chen M, Lin Q, Chen J, Wang S, Fang D. Penehyclidine hydrochloride defends against LPS-induced ALI in rats by mitigating endoplasmic reticulum stress and promoting the Hes1/Notch1 pathway. Gene 2019; 721:144095. [PMID: 31476403 DOI: 10.1016/j.gene.2019.144095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Penehyclidine hydrochloride (PHC) is a novel anticholinergic drug applied broadly in surgeries as a preanesthetic medication. A substantial amount of research indicates that PHC has lung defensive properties. Considering that endoplasmic reticulum (ER) stress exerts a crucial function in cell apoptosis associated with the lipopolysaccharides (LPS)-induced acute lung injury (ALI) model, we aimed to determine whether regulation of ER stress in the LPS-induced ALI model was associated with the lung defensive role of PHC. Adult male SD rats were administered LPS (5 mg/kg, intratracheally) followed by PHC (1.0 mg/kg, intravenously) for 24 h. The NR8383 alveolar macrophages were randomly separated into Sham, LPS (100 ng/mL), and PHC (1, 2.5, or 5 μg/mL) + LPS groups. PHC (1, 2.5, or 5 μg/mL) + LPS groups were treated with PHC alone for 1 h after LPS exposure. Posttreatment with PHC relieved LPS-induced pulmonary impairment and blocked LPS-mediated lung apoptosis, indicated by the downregulation of the lung apoptotic indicators malondialdehyde and superoxide dismutase in serum at 24 h after LPS-induced ALI. PHC (1-5 μg/mL) did not influence the activity of cultivated NR8383 alveolar macrophages in vitro. However, postconditioning with PHC dosage-dependently reduced LPS-mediated cell apoptosis. Additionally, many studies have indicated that PHC administration inhibits ER stress and initiates hairy and enhancer of split 1 (Hes1)/(Notch1) signaling by decreasing phosphorylated α subunit of eukaryotic initiation factor 2α (p-eIF2α)/eukaryotic translation initiation factor 2α (eIF2α) and Phospho-protein kinase R-like ER kinase (p-PERK)/ protein kinase R-like ER kinase (PERK) proportions; inhibiting C/EBP-homologous protein (CHOP), activating transcription factor 4 (ATF4), caspase-3, and Bcl2-associated x (Bax) activity; and enhancing notch1 intracellular domain (NICD), Notch1, B-cell lymphoma-2 (Bcl-2), and Hes1 activity in vivo and in vitro. In addition, the defensive functions of PHC on LPS-activated NR8383 alveolar macrophages were abrogated through the Notch1 pathway antagonist [(3,5-difluorophenacetyl)-1-alanyl] -phenylglycine-butyl ester (DAPT). In conclusion, PHC alleviates LPS-induced ALI by ameliorating ER stress-mediated apoptosis and promoting Hes1/Notch1 signaling in vivo and in vitro.
Collapse
Affiliation(s)
- Junting Weng
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Min Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Qunying Lin
- Department of Respiratory and Critical Care, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Jianfei Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - ShanZuan Wang
- Department of Respiratory and Critical Care, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Dexiang Fang
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China.
| |
Collapse
|
230
|
Hou L, Dong J, Zhu S, Yuan F, Wei L, Wang J, Quan R, Chu J, Wang D, Jiang H, Xi Y, Li Z, Song H, Guo Y, Lv M, Liu J. Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways. Virology 2019; 537:254-263. [PMID: 31539773 DOI: 10.1016/j.virol.2019.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
Diverse effects on autophagy, a cell degradation pathway, have been associated with the infectious mechanisms of different pathogens. Here, we demonstrated that Seneca valley virus (SVV), an important emerging porcine virus characterized by vesicular lesions and neonatal mortality, can induce autophagy in cultured PK-15 and BHK-21 cells by detecting autophagosome formation, GFP-LC3 puncta and accumulation of LC3-II proteins. Treatment with pharmacological inducers/inhibitors and small interfering RNA sequences targeting genes critical for autophagosome formation affected autophagy induction and viral yields. SVV induced a complete autophagic process to enhance its replication. The PERK and ATF6 pathways, two components of the endoplasmic reticulum (ER)-related unfolded protein response (UPR), were also activated in SVV-infected cells and downregulation of their expression suppressed SVV-induced autophagy and viral yields. Overall, these results reveal that SVV induces autophagy in cultured cells through the PERK and ATF6 pathways, thereby contributing to understanding of the molecular mechanisms underlying SVV pathogenesis.
Collapse
Affiliation(s)
- Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianguo Dong
- College of Animal Husbandry and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Moran Lv
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
231
|
Ye S, Yang X, Wang Q, Chen Q, Ma Y. Penehyclidine Hydrochloride Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Ameliorating Apoptosis and Endoplasmic Reticulum Stress. J Surg Res 2019; 245:344-353. [PMID: 31425874 DOI: 10.1016/j.jss.2019.07.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Penehyclidine hydrochloride (PHC), a novel anticholinergic reagent, has been shown to exert anti-endoplasmic reticulum stress (ERS), antioxidant, and antiinflammation functions in various rat models. However, the definite pathogenesis of lung defensive roles of PHC remains unclear. This study measured the functions of PHC on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. METHODS In this research, the LPS-induced ALI model was assessed through the branchial injection of LPS for 24 h. Male Sprague-Dawley rats were randomly allocated into 5 groups: sham, LPS, LPS + PHC (0.5 mg/kg), LPS + PHC (1 mg/kg), and LPS + PHC (2.5 mg/kg). The concentrations of superoxide dismutase, malondialdehyde, myeloperoxidase, and glutathione peroxidase were measured by enzyme-linked immunosorbent assay and immunohistochemistry analysis. Western blotting, real-time PCR, and immunofluorescence analysis were used to determine the ERS-associated protein levels and mRNA expression. The protein levels of Bax, Bcl-2, caspase-3, and caspase-9 were used to measure lung tissue apoptosis. RESULTS The results revealed that PHC administration inhibited LPS-induced ALI as indicated by the loss in the ratio of injury production evaluated through hematoxylin-eosin staining, in particular the lung sample sections, compared with the LPS group. PHC administration inhibited LPS-induced lung myeloperoxidase and serum concentrations of malondialdehyde, superoxide dismutase, and glutathione peroxidase in rats. PHC administration repressed the LPS-activated ERS-correlated pathway and apoptosis-associated protein levels in rats. CONCLUSIONS In summary, our findings indicated that PHC has a defensive effect on LPS-induced ALI by inhibiting oxidative stress, attenuating PERK and ATF6 signals, and suppressing ERS-mediated apoptosis.
Collapse
Affiliation(s)
- Shaobing Ye
- Department of Anesthesiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiansong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongda Ma
- Department of Anesthesiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
232
|
Optineurin downregulation induces endoplasmic reticulum stress, chaperone-mediated autophagy, and apoptosis in pancreatic cancer cells. Cell Death Discov 2019; 5:128. [PMID: 31428460 PMCID: PMC6689035 DOI: 10.1038/s41420-019-0206-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival. Therefore, the role of OPTN on proliferation, migration, and colony formation was investigated by transient knockdown in Miapaca, BXPC3, and Suit2-007 human PDAC cells. Furthermore, gene expression modulation in response to OPTN knockdown was assessed by microarray. The influence on cell cycle distribution and cell death signaling cascades was followed by FACS, assays for apoptosis, RT-PCR, and western blot. Finally, autophagy and ROS induction were screened by acridine orange and DCFH-DA fluorescent staining respectively. OPTN knockdown caused significant inhibition of colony formation, increased migration and no significant effect on proliferation in Miapaca, BXPC3 and Suit2-007 cells. The microarray showed modulation of 293 genes in Miapaca versus 302 in Suit2-007 cells, of which 52 genes overlapped. Activated common pathways included the ER stress response and chaperone-mediated autophagy, which was confirmed at mRNA and protein levels. Apoptosis was activated as shown by increased levels of cleaved PARP, Annexin V binding and nuclear fragmentation. OPTN knockdown caused no increased vacuole formation as assessed by acridine orange. Also, there was only marginally increased ROS production. Combination of OPTN knockdown with the autophagy inducer erufosine or LY294002, an inhibitor of autophagy, showed additive effects, which led us to hypothesize that they address different pathways. In conclusion, OPTN knockdown was related to activation of ER stress response and chaperone-mediated autophagy, which tend to confine the damage caused by OPTN knockdown and thus question its value for PDAC therapy.
Collapse
|
233
|
Li X, Liu Q, Feng H, Deng J, Zhang R, Wen J, Dong J, Wang T. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 2019; 16:862-877. [PMID: 31362589 PMCID: PMC7144882 DOI: 10.1080/15548627.2019.1643656] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Drought stress seriously affects crop yield, and the mechanism underlying plant resistance to drought stress via macroautophagy/autophagy is not clear. Here, we show that a dehydrin, Medicago truncatula MtCAS31 (cold acclimation-specific 31), a positive regulator of drought response, plays a key role in autophagic degradation. A GFP cleavage assay and treatment with an autophagy-specific inhibitor indicated that MtCAS31 participates in the autophagic degradation pathway and that overexpressing MtCAS31 promotes autophagy under drought stress. Furthermore, we discovered that MtCAS31 interacts with the autophagy-related protein ATG8a in the AIM-like motif YXXXI, supporting its function in autophagic degradation. In addition, we identified a cargo protein of MtCAS31, the aquaporin MtPIP2;7, by screening an M. truncatula cDNA library. We found that MtPIP2;7 functions as a negative regulator of drought response. Under drought stress, MtCAS31 facilitated the autophagic degradation of MtPIP2;7 and reduced root hydraulic conductivity, thus reducing water loss and improving drought tolerance. Taken together, our results reveal a novel function of dehydrins in promoting the autophagic degradation of proteins, which extends our knowledge of the function of dehydrins.Abbreviations: AIM: ATG8-interacting motif; ATG: autophagy-related; ATI1: ATG8-interacting protein1; BiFC: Biomolecular fluorescence complementation; CAS31: cold acclimation-specific 31; ConcA: concanamycin A; DSK2: dominant suppressor of KAR2; ER: endoplasmic reticulum; ERAD: ER-associated degradation; NBR1: next to BRCA1 gene 1; PM: plasma membrane; PIPs: plasma membrane intrinsic proteins; TALEN: transcription activator-like effector nuclease; TSPO: tryptophan-rich sensory protein/translocator; UPR: unfolded protein response; VC: vector control.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, OK, USA
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
234
|
Zhang Z, Gao W, Zhou L, Chen Y, Qin S, Zhang L, Liu J, He Y, Lei Y, Chen HN, Han J, Zhou ZG, Nice EC, Li C, Huang C, Wei X. Repurposing Brigatinib for the Treatment of Colorectal Cancer Based on Inhibition of ER-phagy. Am J Cancer Res 2019; 9:4878-4892. [PMID: 31410188 PMCID: PMC6691391 DOI: 10.7150/thno.36254] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
Rationale: The sustained and severe endoplasmic reticulum (ER) stress in cancer cells may contribute to apoptotic cell death, thus representing a potential target for cancer therapy. Brigatinib is an anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of ALK-positive non-small-cell lung cancer (NSCLC). However, it remains unclear if brigatinib has alternative model of action to exert antitumor effect in ALK-negative cancers. Methods: ALK-positive NSCLC cells and various human ALK-negative cancer cells, especially human colorectal cancer (CRC) cells were used to examine the tumor suppression effect of brigatinib alone or in combination with autophagy inhibitors in vitro and in vivo. A variety of biochemical assays were conducted to elucidate the underlying mechanisms of brigatinib in CRC cells. Results: Here, we show the significant anti-cancer effect of brigatinib in CRC through induction of apoptosis by sustained ER stress. Mechanistically, brigatinib induces ER stress via promoting the interaction between ubiquitin-specific peptidase 5 (USP5), a deubiquitinase, and oxysterol-binding protein-related protein 8 (ORP8), leading to ORP8 deubiquitination, accumulation and growth inhibition. Furthermore, we find that brigatinib-mediated ER stress simultaneously induces autophagic response via ER-phagy that acts as a protective mechanism to relieve excessive ER stress. As such, combination of brigatinib with autophagy inhibitors significantly enhances the anti-CRC effect of brigatinib both in vitro and in vivo, supporting the repurposing of brigatinib in CRC, independently of ALK. Conclusion: The unearthed new molecular action of brigatinib suggests that therapeutic modulation of ER stress and autophagy might represent a valid strategy to treat CRC and perhaps other ALK-negative cancers.
Collapse
|
235
|
Du N, Li XH, Bao WG, Wang B, Xu G, Wang F. Resveratrol‑loaded nanoparticles inhibit enterovirus 71 replication through the oxidative stress‑mediated ERS/autophagy pathway. Int J Mol Med 2019; 44:737-749. [PMID: 31173159 DOI: 10.3892/ijmm.2019.4211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/23/2019] [Indexed: 11/05/2022] Open
Abstract
A number of studies have demonstrated that resveratrol (RES) has a variety of biological functions, including cardiovascular protective effects, treatment of mutations, and anti‑inflammatory, anti‑tumor and antiviral effects. In the present study, RES‑loaded nanoparticles (RES‑NPs) were used to protect rhabdosarcoma (RD) cells from enterovirus 71 (EV71) infection, and the relevant mechanisms were also explored. An amphiphilic copolymer, monomethoxy poly (ethylene glycol)‑b‑poly (D,L‑lactide), was used as vehicle material, and RES‑NPs with necessitated drug‑loading content and suitable sizes were prepared under optimized conditions. RES‑NPs exhibited the ability to inhibit the increase of intracellular oxidative stress. The prospective mechanism for the function of RES‑NPs suggested was that RES‑NPs may inhibit the oxidative stress‑mediated PERK/eIF2α/ATF4 signaling pathway, downregulate the autophagy pathway and resist EV71‑induced RD cells injury. Furthermore, RES‑NPs treatment markedly inhibited the secretion of inflammatory factors, including interleukin (IL)‑6, IL‑8 and tumor necrosis factor‑α elicited by EV71 infection. Concomitantly, inhibitors of oxidative stress, endoplasmic reticulum stress (ERS) or autophagy were demonstrated to negate the anti‑inflammatory and antiviral effects of RES‑NPs on EV71‑infected RD cells. These results demonstrated that RES‑NPs attenuated EV71‑induced viral replication and inflammatory effects by inhibiting the oxidative stress‑mediated ERS/autophagy signaling pathway. In view of their safety and efficiency, these RES‑NPs have potential applications in protecting RD cells from EV71 injury.
Collapse
Affiliation(s)
- Na Du
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Hua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan-Guo Bao
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang Xu
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feng Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
236
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
237
|
Ethanol-Mediated Stress Promotes Autophagic Survival and Aggressiveness of Colon Cancer Cells via Activation of Nrf2/HO-1 Pathway. Cancers (Basel) 2019; 11:cancers11040505. [PMID: 30974805 PMCID: PMC6521343 DOI: 10.3390/cancers11040505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies suggest that chronic alcohol consumption is a lifestyle risk factor strongly associated with colorectal cancer development and progression. The aim of the present study was to examine the effect of ethanol (EtOH) on survival and progression of three different colon cancer cell lines (HCT116, HT29, and Caco-2). Our data showed that EtOH induces oxidative and endoplasmic reticulum (ER) stress, as demonstrated by reactive oxygen species (ROS) and ER stress markers Grp78, ATF6, PERK and, CHOP increase. Moreover, EtOH triggers an autophagic response which is accompanied by the upregulation of beclin, LC3-II, ATG7, and p62 proteins. The addition of the antioxidant N-acetylcysteine significantly prevents autophagy, suggesting that autophagy is triggered by oxidative stress as a prosurvival response. EtOH treatment also upregulates the antioxidant enzymes SOD, catalase, and heme oxygenase (HO-1) and promotes the nuclear translocation of both Nrf2 and HO-1. Interestingly, EtOH also upregulates the levels of matrix metalloproteases (MMP2 and MMP9) and VEGF. Nrf2 silencing or preventing HO-1 nuclear translocation by the protease inhibitor E64d abrogates the EtOH-induced increase in the antioxidant enzyme levels as well as the migration markers. Taken together, our results suggest that EtOH mediates both the activation of Nrf2 and HO-1 to sustain colon cancer cell survival, thus leading to the acquisition of a more aggressive phenotype.
Collapse
|
238
|
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, Landriscina M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. Int J Mol Sci 2019; 20:ijms20040857. [PMID: 30781465 PMCID: PMC6412864 DOI: 10.3390/ijms20040857] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.
Collapse
Affiliation(s)
- Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
239
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
240
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
241
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
242
|
Wang MG, Fan RF, Li WH, Zhang D, Yang DB, Wang ZY, Wang L. Activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress contributes to lead-induced nephrotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:713-726. [PMID: 30528975 DOI: 10.1016/j.bbamcr.2018.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/07/2018] [Accepted: 12/01/2018] [Indexed: 12/11/2022]
Abstract
Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. PERK pathway plays an important role in the pathogenesis of renal diseases, but its role in Pb-induced nephrotoxicity remains largely unknown. In this study, data showed that Pb could induce ER stress as shown by increased phosphorylation of PERK with subsequent activation of the eIF2α-ATF4-CHOP axis in primary rat proximal tubular (rPT) cells, indicating the activation of PERK-eIF2α-ATF4-CHOP pathway due to excessive ER stress. Pb-activated PERK pathway can be effectively inhibited by 4-phenylbutyric acid and PERK gene silencing, respectively; whereas continuously up-regulated by tunicamycin (TM) treatment. Moreover, Pb-induced apoptosis and inhibition of autophagic flux in rPT cells were significantly augmented and aggravated by co-treatment with TM, respectively. Pharmacological or genetic inhibition of the PERK pathway results in alleviation of apoptosis and restoration of autophagy inhibition in Pb-exposed rPT cells. Mechanistically, activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress in rPT cells leads to Pb-induced apoptosis and blockage of autophagic flux, resulting in nephrotoxicity.
Collapse
Affiliation(s)
- Min-Ge Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wen-Hui Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Ji'nan City, Shandong Province 250022, China
| | - Du-Bao Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
243
|
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang Z, Wen Y, Miao X, Li Q, Xiong L, He J. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis 2018; 23:587-606. [PMID: 30288638 DOI: 10.1007/s10495-018-1489-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a procedure used in cancer therapy that has been shown to be useful for certain indications. Considerable evidence suggests that PDT might be superior to conventional modalities for some indications. In this report, we examine the relationship between PDT responsiveness and autophagy, which can exert a cytoprotective effect. Autophagy is an essential physiological process that maintains cellular homeostasis by degrading dysfunctional or impaired cellular components and organelles via a lysosome-based pathway. Autophagy, which includes macroautophagy and microautophagy, can be a factor that decreases or abolishes responses to various therapeutic protocols. We systematically discuss the mechanisms underlying cell-fate decisions elicited by PDT; analyse the principles of PDT-induced autophagy, macroautophagy and microautophagy; and present evidence to support the notion that autophagy is a critical mechanism in resistance to PDT. A combined strategy involving autophagy inhibitors may be able to further enhance PDT efficacy. Finally, we provide suggestions for future studies, note where our understanding of the relevant molecular regulators is deficient, and discuss the correlations among PDT-induced resistance and autophagy, especially microautophagy.
Collapse
Affiliation(s)
- Xian Duan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Chen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Cui
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chenkai Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
244
|
Xu ZM, Li CB, Liu QL, Li P, Yang H. Ginsenoside Rg1 Prevents Doxorubicin-Induced Cardiotoxicity through the Inhibition of Autophagy and Endoplasmic Reticulum Stress in Mice. Int J Mol Sci 2018; 19:ijms19113658. [PMID: 30463294 PMCID: PMC6274738 DOI: 10.3390/ijms19113658] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023] Open
Abstract
Ginsenoside Rg1, a saponin that is a primary component of ginseng, has been demonstrated to protect hearts from diverse cardiovascular diseases with regulating multiple cellular signal pathways. In the present study, we investigated the protective role of ginsenoside Rg1 on doxorubicin-induced cardiotoxicity and its effects on endoplasmic reticulum stress and autophagy. After pre-treatment with ginsenoside Rg1 (50 mg/kg i.g.) for 7 days, male C57BL/6J mice were intraperitoneally injected with a single dose of doxorubicin (6 mg/kg) every 3 days for four injections. Echocardiographic and pathological findings showed that ginsenoside Rg1 could significantly reduce the cardiotoxicity induced by doxorubicin. Ginsenoside Rg1 significantly inhibited doxorubicin-induced formation of autophagosome. At the same time, ginsenoside Rg1 decreased the doxorubicin-induced cardiac microtubule-associated protein-light chain 3 and autophagy related 5 expression. Ginsenoside Rg1 can reduce endoplasmic reticulum dilation caused by doxorubicin. Compared with the doxorubicin group, the expression of cleaved activating transcription factor 6 and inositol-requiring enzyme 1 decreased in group ginsenoside Rg1. Treatment with ginsenoside Rg1 reduces the expression of TIF1 and increases the expression of glucose-regulated protein 78. In the ginsenoside Rg1 group, the expression of p-P70S6K, c-Jun N-terminal kinases 1 and Beclin1 declined. These results indicate that ginsenoside Rg1 may improve doxorubicin-induced cardiac dysfunction by inhibiting endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng-Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qing-Ling Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
245
|
Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol 2018; 58:109-117. [PMID: 30149066 DOI: 10.1016/j.semcancer.2018.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023]
Abstract
To achieve preferential effects against cancer cells but less damage to normal cells is one of the main challenges of cancer research. In this review, we explore the roles and relationships of oxidative stress-mediated apoptosis, DNA damage, ER stress, autophagy, metabolism, and migration of ROS-modulating anticancer drugs. Understanding preferential anticancer effects in more detail will improve chemotherapeutic approaches that are based on ROS-modulating drugs in cancer treatments.
Collapse
|
246
|
Weissmann M, Bhattacharya U, Feld S, Hammond E, Ilan N, Vlodavsky I. The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix Biol 2018; 77:58-72. [PMID: 30096360 DOI: 10.1016/j.matbio.2018.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
It is now well recognized that heparanase, an endo-β-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains at a limited number of sites, promotes tumorigenesis by diverse mechanisms. Compelling evidence strongly implies that heparanase is a viable target for cancer therapy, thus encouraging the development of heparanase inhibitors as anti-cancer therapeutics. Here, we examined the efficacy and mode of action of PG545, an HS-mimetic heparanase inhibitor, in human lymphoma. We found that PG545 exhibits a strong anti-lymphoma effect, eliciting lymphoma cell apoptosis. Notably, this anti-lymphoma effect involves ER stress response that was accompanied by increased autophagy. The persistent ER stress evoked by PG545 is held responsible for cell apoptosis because apoptotic cell death was attenuated by an inhibitor of PERK, a molecular effector of ER stress. Importantly, PG545 had no such apoptotic effect on naïve splenocytes, further encouraging the development of this compound as anti-lymphoma drug. Surprisingly, we found that PG545 also elicits apoptosis in lymphoma cells that are devoid of heparanase activity (i.e., Raji), indicating that the drug also exerts heparanase-independent function(s) that together underlie the high potency of PG545 in preclinical cancer models.
Collapse
Affiliation(s)
- Marina Weissmann
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Udayan Bhattacharya
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
247
|
Arbogast F, Gros F. Lymphocyte Autophagy in Homeostasis, Activation, and Inflammatory Diseases. Front Immunol 2018; 9:1801. [PMID: 30127786 PMCID: PMC6087746 DOI: 10.3389/fimmu.2018.01801] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic mechanism, allowing the degradation of cytoplasmic content via lysosomal activity. Several forms of autophagy are described in mammals. Macroautophagy leads to integration of cytoplasmic portions into vesicles named autophagosomes that ultimately fuse with lysosomes. Chaperone-mediated autophagy is in contrast the direct translocation of protein in lysosomes. Macroautophagy is central to lymphocyte homeostasis. Although its role is controversial in lymphocyte development and in naive cell survival, it seems particularly involved in the maintenance of certain lymphocyte subtypes. Its importance in memory B and T cells biology has recently emerged. Moreover, some effector cells like plasma cells rely on autophagy for survival. Autophagy is central to glucose and lipid metabolism, and to the maintenance of organelles like mitochondria and endoplasmic reticulum. In addition macroautophagy, or individual components of its machinery, are also actors in antigen presentation by B cells, a crucial step to receive help from T cells, this crosstalk favoring their final differentiation into memory or plasma cells. Autophagy is deregulated in several autoimmune or autoinflammatory diseases like systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and Crohn’s disease. Some treatments used in these pathologies impact autophagic activity, even if the causal link between autophagy regulation and the efficiency of the treatments has not yet been clearly established. In this review, we will first discuss the mechanisms linking autophagy to lymphocyte subtype survival and the signaling pathways involved. Finally, potential impacts of autophagy modulation in lymphocytes on the course of these diseases will be approached.
Collapse
Affiliation(s)
- Florent Arbogast
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Frédéric Gros
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| |
Collapse
|
248
|
Xu Z, Wang H, Wei S, Wang Z, Ji G. Inhibition of ER stress-related IRE1α/CREB/NLRP1 pathway promotes the apoptosis of human chronic myelogenous leukemia cell. Mol Immunol 2018; 101:377-385. [PMID: 30055408 DOI: 10.1016/j.molimm.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress is induced in chronic myelogenous leukemia (CML) cells. As an important sensor of ER stress, inositol-requiring protein-1α (IRE1α) promotes the survival of acute myeloid leukemia. NLRP1 inflammasome activation promotes metastatic melanoma growth and that IRE1α can increase NLRP1 inflammasome gene expression. This study aimed to investigate the role and molecular mechanism of IRE1α in CML cell growth. We found that overexpression of IRE1α or NLRP1 significantly promoted the proliferation and decreased the apoptosis of CML cells, whereas downregulation of these two genes showed the opposite effects. 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, reduced the expression of IRE1α and NLRP1. IRE1α elevated NLRP1 expression via cAMP responsive element binding protein (CREB) phosphorylation. NLRP1 inflammasome was activated in CML cells and its activation partly reversed ER stress inhibitor-induced cell apoptosis. Furthermore, inhibition of IRE1α/NLRP1 pathway sensitized CML cells to imatinib-mediated apoptosis. Additionally, IRE1α expression was elevated and NLRP1 inflammasome was activated in primary cells from CML patients. Downregulation of IRE1α or NLRP1 suppressed the proliferation and elevated the apoptosis of primary CML cells. Collectively, this study demonstrated that the IRE1α/CREB/NLRP1 pathway contributes to the progression of CML and the development of imatinib resistance. Hence, targeting ER stress-related IRE1α expression or NLRP1 inflammasome activation may block CML development.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Hematology, Xinyang Central Hospital of Henan Province, Xinyang, Henan 464000, PR China
| | - Huirui Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zhencheng Wang
- Department of Hematopathology, Zibo Central Hospital, Zibo, Shandong 255036, PR China
| | - Guanghou Ji
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, Shandong 273200, PR China.
| |
Collapse
|
249
|
The role of HBV-induced autophagy in HBV replication and HBV related-HCC. Life Sci 2018; 205:107-112. [DOI: 10.1016/j.lfs.2018.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
|
250
|
Duan YM, Jin Y, Guo ML, Duan LX, Wang JG. Differentially expressed genes of HepG2 cells treated with gecko polypeptide mixture. J Cancer 2018; 9:2723-2733. [PMID: 30087713 PMCID: PMC6072819 DOI: 10.7150/jca.26339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Gecko (Gekko japonicus) extracts have been used in traditional Chinese medicine for many years. It has been proven that the gecko polypeptide mixture (GPM) extracted from gecko can inhibit the growth of multiple types of tumor cells. In order to investigate the possible anti-tumor molecular mechanisms of GPM, we used RNA-seq technology to identify the differentially expressed genes (DEGs) of human hepatocellular carcinoma (HCC) HepG2 cells treated with or without GPM. MTT assay was used to detect the viability of HepG2 cells. DAPI fluorescence staining was performed to observe morphological changes in the nuclei of HepG2 cells. Western blot analysis was applied to observe the expressions of apoptosis-related and endoplasmic reticulum stress (ERS)-related proteins in HepG2 cells. Flow cytometry assay was performed to detect the apoptosis and reactive oxygen species (ROS) in HepG2 cells. Our results showed that GPM inhibited HepG2 cells proliferation and induced the apoptosis of HepG2 cells. RNA-seq analysis suggested that the ER-nucleus signaling pathway involved in the anti-cancer molecular mechanism of GPM. Therefore, GPM may induce apoptosis in HepG2 cells via the ERs pathway.
Collapse
Affiliation(s)
- Yi-Meng Duan
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Ying Jin
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Meng-Li Guo
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Leng-Xin Duan
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jian-Gang Wang
- Medical College Department of Pharmacy, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|