201
|
Hidaka K, Shirai M, Lee JK, Wakayama T, Kodama I, Schneider MD, Morisaki T. The cellular prion protein identifies bipotential cardiomyogenic progenitors. Circ Res 2009; 106:111-9. [PMID: 19910576 DOI: 10.1161/circresaha.109.209478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The paucity of specific surface markers for cardiomyocytes and their progenitors has impeded the development of embryonic or pluripotent stem cell-based transplantation therapy. Identification of relevant surface markers may also enhance our understanding of the mechanisms underlying differentiation. OBJECTIVE Here, we show that cellular prion protein (PrP) serves as an effective surface marker for isolating nascent cardiomyocytes as well as cardiomyogenic progenitors. METHODS AND RESULTS Embryonic stem (or embryo-derived) cells were analyzed using flow cytometry to detect surface expression of PrP and intracellular myosin heavy chain (Myhc) proteins. Sorted cells were then analyzed for their differentiation potential. CONCLUSIONS PrP+ cells from beating embryoid bodies (EBs) frequently included nascent Myhc+ cardiomyocytes. Cultured PrP+ cells further differentiated, giving rise to cardiac troponin I+ definitive cardiomyocytes with either an atrial or a ventricular identity. These cells were electrophysiologically functional and able to survive in vivo after transplantation. Combining PrP with a second marker, platelet-derived growth factor receptor (PDGFR)alpha, enabled us to identify an earlier cardiomyogenic population from prebeating EBs, the PrP+PDGFRalpha+ (PRa) cells. The Myhc- PRa cells expressed cardiac transcription factors, such as Nkx2.5, T-box transcription factor 5, and Isl1 (islet LIM homeobox 1), although they were not completely committed. In mouse embryos, PRa cells in cardiac crescent at the 1 to 2 somite stage were Myhc+, whereas they were Myhc- at headfold stages. PRa cells clonally expanded in methlycellulose cultures. Furthermore, single Myhc- PRa cell-derived colonies contained both cardiac and smooth muscle cells. Thus, PrP demarcates a population of bipotential cardiomyogenic progenitor cells that can differentiate into cardiac or smooth muscle cells.
Collapse
Affiliation(s)
- Kyoko Hidaka
- Department of Bioscience, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
202
|
Influence of natriuretic peptide receptor-1 on survival and cardiac hypertrophy during development. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1175-84. [PMID: 19782130 DOI: 10.1016/j.bbadis.2009.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/27/2009] [Accepted: 09/17/2009] [Indexed: 11/21/2022]
Abstract
The heart adapts to an increased workload through the activation of a hypertrophic response within the cardiac ventricles. This response is characterized by both an increase in the size of the individual cardiomyocytes and an induction of a panel of genes normally expressed in the embryonic and neonatal ventricle, such as atrial natriuretic peptide (ANP). ANP and brain natriuretic peptide (BNP) exert their biological actions through activation of the natriuretic peptide receptor-1 (Npr1). The current study examined mice lacking Npr1 (Npr1(-/-)) activity and investigated the effects of the absence of Npr1 signaling during cardiac development on embryo viability, cardiac structure and gene and protein expression. Npr1(-/-)embryos were collected at embryonic day (ED) 12.5, 15.5 and neonatal day 1 (ND 1). Npr1(-/-)embryos occurred at the expected Mendelian frequency at ED 12.5, but knockout numbers were significantly decreased at ED 15.5 and ND 1. There was no indication of cardiac structural abnormalities in surviving embryos. However, Npr1(-/-)embryos exhibited cardiac enlargement (without fibrosis) from ED 15.5 as well as significantly increased ANP mRNA and protein expression compared to wild-type (WT) mice, but no concomitant increase in expression of the hypertrophy-related transcription factors, Mef2A, Mef2C, GATA-4, GATA-6 or serum response factor (SRF). However, there was a significant decrease in Connexin-43 (Cx43) gene and protein expression at mid-gestation in Npr1(-/-)embryos. Our findings suggest that the mechanism by which natriuretic peptide signaling influences cardiac development in Npr1(-/-) mice is distinct from that seen during the development of pathological cardiac hypertrophy and fibrosis. The decreased viability of Npr1(-/-)embryos may result from a combination of cardiomegaly and dysregulated Cx43 protein affecting cardiac contractility.
Collapse
|
203
|
Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, Karamath S, Letarte M, Puri MC. Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 2009; 335:66-77. [PMID: 19703439 DOI: 10.1016/j.ydbio.2009.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/27/2009] [Accepted: 08/15/2009] [Indexed: 11/16/2022]
Abstract
Vascular patterning depends on precisely coordinated timing of endothelial cell differentiation and onset of cardiac function. Endoglin is a transmembrane receptor for members of the TGF-beta superfamily that is expressed on endothelial cells from early embryonic gestation to adult life. Heterozygous loss of function mutations in human ENDOGLIN cause Hereditary Hemorrhagic Telangiectasia Type 1, a vascular disorder characterized by arteriovenous malformations that lead to hemorrhage and stroke. Endoglin null mice die in embryogenesis with numerous lesions in the cardiovascular tree including incomplete yolk sac vessel branching and remodeling, vessel dilation, hemorrhage and abnormal cardiac morphogenesis. Since defects in multiple cardiovascular tissues confound interpretations of these observations, we performed in vivo chimeric rescue analysis using Endoglin null embryonic stem cells. We demonstrate that Endoglin is required cell autonomously for endocardial to mesenchymal transition during formation of the endocardial cushions. Endoglin null cells contribute widely to endothelium in chimeric embryos rescued from cardiac development defects, indicating that Endoglin is dispensable for angiogenesis and vascular remodeling in the midgestation embryo, but is required for early patterning of the heart.
Collapse
Affiliation(s)
- Aya Nomura-Kitabayashi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada M4N-3M5
| | | | | | | | | | | | | | | |
Collapse
|
204
|
|
205
|
Boogerd CJJ, Moorman AFM, Barnett P. Protein interactions at the heart of cardiac chamber formation. Ann Anat 2009; 191:505-17. [PMID: 19647421 DOI: 10.1016/j.aanat.2009.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
The vertebrate heart is a muscular pump that contracts in a rhythmic fashion to propel the blood through the body. During evolution, the morphologically complex four-chambered heart of birds and mammals has evolved from a single-layered tube with peristaltic contractility. The heart of Drosophila, referred to as the dorsal vessel, is a blind sac composed of myogenic cells that contract rhythmically. The fish heart is composed of a single atrial chamber connected to a single ventricular chamber. The evolutionary development of fast-contracting chambers allowed the heart to build up high blood pressures. In amphibians two atrial chambers exist, separated by a septum, connecting to a single ventricle. The division of a common atrium and ventricle into right and left-sided chambers represents an evolutionary milestone in the development of the four-chambered heart and is necessary for separation of oxygenated and deoxygenated blood. In amphibians and reptiles, pulmonary and systemic circulations are incompletely separated allowing adaptable blood flows to both circulations. In contrast, the hearts of birds and mammals, in which septa completely separate the pulmonary and systemic circulations, both circulations have similar flows, but blood pressures can be regulated separately. In this review we focus, in a morphologically integrated fashion, on the molecular interactions that govern the intricate cardiac design.
Collapse
Affiliation(s)
- Cornelis J J Boogerd
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
206
|
Henderson DJ, Anderson RH. The development and structure of the ventricles in the human heart. Pediatr Cardiol 2009; 30:588-96. [PMID: 19225828 DOI: 10.1007/s00246-009-9390-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/19/2009] [Indexed: 11/30/2022]
Abstract
Over the past decade, much has been learned concerning the origin and development of the ventricles. However, most, if not all, of the new information has come from study of the mouse heart. Most of this information has yet to be assimilated by those who study ventricular function or diagnose congenitally malformed hearts. Nevertheless, the evidence available from recent studies, particularly if it can be shown relevant to human development, is remarkably pertinent to these topics. For example, knowledge of how each ventricle derives its inlet and outlet components, information available for human development (Lamers et al., Circulation 86:1194-1205, 1992), provides a firm foundation for understanding congenital cardiac malformations, particularly those dependent on a functionally univentricular circulation (Jacobs and Anderson, Cardiol Young 16(Suppl 1):3-8, 2006). Appreciation of ventricle development also is important with regard to understanding the basis of so-called ventricular noncompaction because this knowledge will elucidate whether the compact component of the ventricular walls is produced by consolidation of the initially extensive trabecular zone seen during early development or by defective formation and/or maturation of the compact myocardium (Anderson, Eur Heart J 29:10-11, 2008). Knowledge concerning the mechanism whereby ventricular myocytes are packed within the compact component of the ventricular walls then will help clarify the architectural arrangement of the aggregated myocytes, a topic of considerable recent interest. This review discusses all these topics.
Collapse
|
207
|
Abstract
Recent research, enabled by powerful molecular techniques, has revolutionized our concepts of cardiac development. It was firmly established that the early heart tube gives rise to the left ventricle only, and that the remainder of the myocardium is recruited from surrounding mesoderm during subsequent development. Also, the cardiac chambers were shown not to be derived from the entire looping heart tube, but only from the myocardium at its outer curvatures. Intriguingly, many years ago, classic experimental embryological studies reached very similar conclusions. However, with the current scientific emphasis on molecular mechanisms, old morphological insights became underexposed. Since cardiac development occurs in an architecturally complex and dynamic fashion, molecular insights can only fully be exploited when placed in a proper morphological context. In this communication we present excerpts of important embryological studies of the pioneers of experimental cardiac embryology of the previous century, to relate insights from the past to current observations.
Collapse
Affiliation(s)
- Gert van den Berg
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Antoon F. M. Moorman
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Anatomy & Embryology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
208
|
Laguens RP, Crottogini AJ. Cardiac regeneration: the gene therapy approach. Expert Opin Biol Ther 2009; 9:411-25. [DOI: 10.1517/14712590902806364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
209
|
Horsthuis T, Christoffels VM, Anderson RH, Moorman AFM. Can recent insights into cardiac development improve our understanding of congenitally malformed hearts? Clin Anat 2009; 22:4-20. [PMID: 19031393 DOI: 10.1002/ca.20723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Congenital cardiac malformations account for one-quarter of all human congenital abnormalities. They are caused by environmental and genetic factors. Despite increasing efforts in fundamental research, as yet, the morphogenesis of only a limited number of malformations has been elucidated. Over the last decades, new genetic modifications have made it possible to manipulate the mammalian embryo. Evidence provided using these transgenic techniques has, over the past decade, necessitated re-evaluation of several developmental processes, important in the understanding of normal as opposed to abnormal cardiac development. In this review, we discuss current understanding of the patterning of the initial heart tube, new insights into formation of the atrial and ventricular chambers, and novel information on the origin of the cells that are added to the heart after formation of the initial tube. All of these advances modify our appreciation of malformations involving the venous and arterial poles. As we demonstrate, this new information sheds light not only on normal cardiac development, but also explains the structure of several previously controversial lesions seen in malformed human hearts.
Collapse
Affiliation(s)
- Thomas Horsthuis
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
210
|
Fukushima R, Kanamori S, Hirashiba M, Hishikawa A, Muranaka RI, Kaneto M, Kitagawa H. Critical periods for the teratogenicity of immune-suppressant Leflunomide in mice. Congenit Anom (Kyoto) 2009; 49:20-6. [PMID: 19243413 DOI: 10.1111/j.1741-4520.2008.00217.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leflunomide has inhibitory effects on dihydroorotate-dehydrogenase activity and protein tyrosine kinase activity. In the present study, a single dose of 50 mg/kg Leflunomide was administered to pregnant mice on one of gestation days (GD)6-11. Characteristic external malformations were craniofacial defects following dosing on GD7, cleft palate on GD9, cleft palate and limb and tail deformities on GD10, and limb deformities on GD11. Skeletal examination revealed cervical to caudal vertebral malformations after treatment on GD7, GD8, GD9 or GD10. In the viscera, cardiovascular deformities were observed in the GD7 and GD9 Leflunomide-treated groups. These results demonstrate that multiple malformations were seen in various organs and most of the malformations observed appeared to be developmental stage-specific responses to Leflunomide treatment.
Collapse
Affiliation(s)
- Ryou Fukushima
- Drug Safety Evaluation, Developmental Research Laboratories, Shionogi & Co. Ltd., Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
211
|
Männer J. The anatomy of cardiac looping: A step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat 2009; 22:21-35. [DOI: 10.1002/ca.20652] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
212
|
Yamanaka S, Zahanich I, Wersto RP, Boheler KR. Enhanced proliferation of monolayer cultures of embryonic stem (ES) cell-derived cardiomyocytes following acute loss of retinoblastoma. PLoS One 2008; 3:e3896. [PMID: 19066628 PMCID: PMC2588539 DOI: 10.1371/journal.pone.0003896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/14/2008] [Indexed: 12/14/2022] Open
Abstract
Background Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms. Methodology/Principal Findings We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are >98% pure, and at least 85% of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation. Conclusions/Significance We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint and maturation of heart cells. We conclude that this in vitro model will facilitate the analysis of cell cycle control mechanisms of CMs.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Ihor Zahanich
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Robert P. Wersto
- Resource Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
213
|
Bajolle F, Zaffran S, Bonnet D. Genetics and embryological mechanisms of congenital heart diseases. Arch Cardiovasc Dis 2008; 102:59-63. [PMID: 19233110 DOI: 10.1016/j.acvd.2008.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/10/2008] [Accepted: 06/19/2008] [Indexed: 11/17/2022]
Abstract
Developmental genetics of congenital heart diseases has evolved from analysis of embryo sections towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Lineage analysis, transgenic animal models and retrospective clonal analysis of the developing heart led to identification of different cardiac lineages and their respective roles. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population based analysis to screening for mutations in candidates genes identified in animal models. Based on these new concepts, genetic counselling in congenital heart diseases is based on the mechanism of a given heart defect rather than on its anatomy. Using this approach, genetic heterogeneity or intrafamilial variability of a molecular anomaly can at least be partially explained. Close cooperation between molecular embryologists, pathologists involved in heart development and paediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects.
Collapse
Affiliation(s)
- Fanny Bajolle
- Malformations cardiaques congénitales complexes (M3C), Reference Centre, Department of Paediatric Cardiology, hôpital Necker-Enfants-Malades, AP-HP, université Paris-V, 149, rue de Sèvres, 75015 Paris, France
| | | | | |
Collapse
|
214
|
Abstract
The development of the embryonic heart is dependent upon the generation and incorporation of different mesenchymal subpopulations that derive from intra- and extra-cardiac sources, including the endocardium, epicardium, neural crest, and second heart field. Each of these populations plays a crucial role in cardiovascular development, in particular in the formation of the valvuloseptal apparatus. Notwithstanding shared mechanisms by which these cells are generated, their fate and function differ profoundly by their originating source. While most of our early insights into the origin and fate of the cardiac mesenchyme has come from experimental studies in avian model systems, recent advances in transgenic mouse technology has enhanced our ability to study these cell populations in the mammalian heart. In this article, we will review the current understanding of the role of cardiac mesenchyme in cardiac morphogenesis and discuss several new paradigms based on recent studies in the mouse.
Collapse
Affiliation(s)
- Brian S Snarr
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
215
|
He W, Jia Y, Takimoto K. Interaction between transcription factors Iroquois proteins 4 and 5 controls cardiac potassium channel Kv4.2 gene transcription. Cardiovasc Res 2008; 81:64-71. [PMID: 18815185 DOI: 10.1093/cvr/cvn259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The homeobox transcription factor, Iroquois protein 5 (Irx5), plays an essential role in the generation of region-selective expression of Kv4.2 gene across the left ventricular wall of rodent hearts. Here, we analyse molecular mechanisms underlying the Irx5-induced regulation of the rat Kv4.2 promoter. METHODS AND RESULTS The mRNA levels for Irx members in various heart regions were assessed by RT-PCR. A luciferase reporter gene with the rat Kv4.2 promoter was used to test the effects of Irx members on channel promoter activity. Irx3 and Irx5 mRNAs were differentially distributed across the left ventricular wall, whereas Irx4 message was equally abundant in various ventricular regions. Irx5, but not Irx3 or Irx4, increased Kv4.2 promoter activity in 10T1/2 fibroblasts, whereas the transcription factor decreased promoter activity in neonatal ventricular myocytes. These effects were mediated by the C-terminal portion of Irx5. Irx4 appeared to inhibit the Irx5-induced increase in channel promoter activity in 10T1/2 cells. The N-terminal region of Irx4 was necessary and sufficient for this inhibition. Furthermore, when endogenous Irx4 expression was suppressed with siRNA, Irx5 increased channel promoter activity in neonatal myocytes. CONCLUSION These results indicate that Irx5 possesses the ability to activate the Kv4.2 promoter. The abundant Irx4 expression throughout the rat ventricle may play a role in the inverse relationship between Irx5 and Kv4.2 levels across the left ventricular wall.
Collapse
Affiliation(s)
- Wenjie He
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Bridgeside Point, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
216
|
Wang R, Liang J, Jiang H, Qin LJ, Yang HT. Promoter-dependent EGFP expression during embryonic stem cell propagation and differentiation. Stem Cells Dev 2008; 17:279-89. [PMID: 18447643 DOI: 10.1089/scd.2007.0084] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic modification is an important tool in embryonic stem (ES) cell research and requires efficient promoter systems. Here, we have compared the transcriptional activities of three ubiquitous promoters, elongation factor-1alpha (EF1alpha), phosphoglycerate kinase-1 (PGK), and cytomegalovirus (CMV), during propagation and differentiation of mouse (m) ES cells by using stable mES cell lines expressing enhanced green fluorescent protein (EGFP) under each of these promoters. In undifferentiated ES cells, the EGFP expression driven by the EF1alpha was most stable, followed by the PGK, whereas the down-regulation of EGFP expression driven by the CMV promoter was most significant during propagation up to passage 35. A similar pattern for the activities of these promoters was observed in embryoid bodies (EBs) during 14 days of differentiation, with brighter EGFP signals driven by the EF1alpha promoter versus the other two. Moreover, the EF1alpha and PGK promoters, but not CMV, were effective in almost all mES cell-differentiated neuronal cells, cardiomyocytes, and visceral endoderm cells, with the fluorescent signal intensity higher for EF1alpha and even for PGK. The CMV promoter yielded a weak fluorescent signal in about 60-80% of these differentiated cells, while a few differentiated cells with the CMV promoter showed bright EGFP expression like that with the EF1alpha promoter. These results extend previous observations for the activities of these promoters in mES cells and provide new information for choosing appropriate promoters to facilitate genetic modification of mES cells.
Collapse
Affiliation(s)
- Rong Wang
- Key Laboratory of Stem Cell Biology of Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
217
|
Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC DEVELOPMENTAL BIOLOGY 2008; 8:75. [PMID: 18667074 PMCID: PMC2518925 DOI: 10.1186/1471-213x-8-75] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
Abstract
Background Msx1 and Msx2, which belong to the highly conserved Nk family of homeobox genes, display overlapping expression patterns and redundant functions in multiple tissues and organs during vertebrate development. Msx1 and Msx2 have well-documented roles in mediating epithelial-mesenchymal interactions during organogenesis. Given that both Msx1 and Msx2 are crucial downstream effectors of Bmp signaling, we investigated whether Msx1 and Msx2 are required for the Bmp-induced endothelial-mesenchymal transformation (EMT) during atrioventricular (AV) valve formation. Results While both Msx1-/- and Msx2-/- single homozygous mutant mice exhibited normal valve formation, we observed hypoplastic AV cushions and malformed AV valves in Msx1-/-; Msx2-/- mutants, indicating redundant functions of Msx1 and Msx2 during AV valve morphogenesis. In Msx1/2 null mutant AV cushions, we found decreased Bmp2/4 and Notch1 signaling as well as reduced expression of Has2, NFATc1 and Notch1, demonstrating impaired endocardial activation and EMT. Moreover, perturbed expression of chamber-specific genes Anf, Tbx2, Hand1 and Hand2 reveals mispatterning of the Msx1/2 double mutant myocardium and suggests functions of Msx1 and Msx2 in regulating myocardial signals required for remodelling AV valves and maintaining an undifferentiated state of the AV myocardium. Conclusion Our findings demonstrate redundant roles of Msx1 and Msx2 in regulating signals required for development of the AV myocardium and formation of the AV valves.
Collapse
|
218
|
Wang R, Liang J, Yu HM, Liang H, Shi YJ, Yang HT. Retinoic acid maintains self-renewal of murine embryonic stem cells via a feedback mechanism. Differentiation 2008; 76:931-45. [PMID: 18637026 DOI: 10.1111/j.1432-0436.2008.00272.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
219
|
GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium. Mol Cell Biol 2008; 28:5420-31. [PMID: 18591257 DOI: 10.1128/mcb.00717-08] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The anterior heart field (AHF) comprises a population of mesodermal progenitor cells that are added to the nascent linear heart to give rise to the majority of the right ventricle, interventricular septum, and outflow tract in mammals and birds. The zinc finger transcription factor GATA4 functions as an integral member of the cardiac transcription factor network in the derivatives of the AHF. In addition to its role in cardiac differentiation, GATA4 is also required for cardiomyocyte replication, although the transcriptional targets of GATA4 required for proliferation have not been previously identified. In the present study, we disrupted Gata4 function exclusively in the AHF and its derivatives. Gata4 AHF knockout mice die by embryonic day 13.5 and exhibit hypoplasia of the right ventricular myocardium and interventricular septum and display profound ventricular septal defects. Loss of Gata4 function in the AHF results in decreased myocyte proliferation in the right ventricle, and we identified numerous cell cycle genes that are dependent on Gata4 by microarray analysis. We show that GATA4 is required for cyclin D2, cyclin A2, and Cdk4 expression in the right ventricle and that the Cyclin D2 and Cdk4 promoters are bound and activated by GATA4 via multiple consensus GATA binding sites in each gene's proximal promoter. These findings establish Cyclin D2 and Cdk4 as direct transcriptional targets of GATA4 and support a model in which GATA4 controls cardiomyocyte proliferation by coordinately regulating numerous cell cycle genes.
Collapse
|
220
|
McMullen NM, Zhang F, Pasumarthi KBS. Assessment of embryonic myocardial cell differentiation using a dual fluorescent reporter system. J Cell Mol Med 2008; 13:2834-42. [PMID: 18624775 PMCID: PMC4498939 DOI: 10.1111/j.1582-4934.2008.00413.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recent studies have identified the existence of undifferentiated myocardial cells during early embryonic as well as post-natal stages of heart development. While primitive cells present in the precardiac mesoderm can differentiate into multiple cell types of the cardiovascular system, the developmental potential of undifferentiated cells identified in the ventricular myocardium after chamber formation is not well characterized. A deeper understanding of mechanisms regulating myocardial cell differentiation will provide further insights into the normal and pathological aspects of heart development. Here, we showed that Nkx2.5 positive and sarcomeric myosin negative cells were predominantly localized in the right ventricular myocardium of CD1 mice at E11.5 stage. We confirmed that myocardial regions negative for saromeric myosin were also devoid of atrial natriuretic factor (ANF). These observations are consistent with our previous study, which showed that ANF expression is restricted to moderately differentiated and mature myocardial cells in E11.5 myocardium of C3H/FeJ mice. Further, we found that the receptor c-Kit, a marker for early embryonic myocardial progenitor cells, is not expressed in the undifferentiated cells of the E11.5 myocardium. To monitor the differentiation potential of Nkx2.5+/ANF− cells in vitro, we developed a novel double fluorescent reporter system. Subsequently, we confirmed that the majority of Nkx2.5+/ANF− cells expressed mature myocyte markers such as sarcomeric myosin, MLC2V and alpha-cardiac actin after 48 hrs in culture, albeit at lower levels compared to Nkx2.5+/ANF+ or Nkx2.5−/ANF+ cell populations. Our results suggest that fluorescent reporters under the control of lineage-specific promoters can be used to study myocardial cell differentiation in response to various exogenous or pharmacological agents.
Collapse
Affiliation(s)
- Nichole M McMullen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
221
|
Bakker ML, Boukens BJ, Mommersteeg MTM, Brons JF, Wakker V, Moorman AFM, Christoffels VM. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 2008; 102:1340-9. [PMID: 18467625 DOI: 10.1161/circresaha.107.169565] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiac conduction system consists of distinctive heart muscle cells that initiate and propagate the electric impulse required for coordinated contraction. The conduction system expresses the transcriptional repressor Tbx3, which is required for vertebrate development and controls the formation of the sinus node. In humans, mutations in Tbx3 cause ulnar-mammary syndrome. Here, we investigated the role of Tbx3 in the molecular specification of the atrioventricular conduction system. Expression analysis revealed early delineation of the atrioventricular bundle and proximal bundle branches by Tbx3 expression in human, mouse, and chicken. Tbx3-deficient mice, which die between embryonic day 12.5 and 15.5, ectopically expressed genes for connexin (Cx)43, atrial natriuretic factor (Nppa), Tbx18, and Tbx20 in the atrioventricular bundle and proximal bundle branches. Cx40 was precociously upregulated in the atrioventricular bundle of Tbx3 mutants. Moreover, the atrioventricular bundle and branches failed to exit the cell cycle in Tbx3 mutant embryos. Finally, Tbx3-deficient embryos developed outflow tract malformations and ventricular septal defects. These data reveal that Tbx3 is required for the molecular specification of the atrioventricular bundle and bundle branches and for the development of the ventricular septum and outflow tract. Our data suggest a mechanism in which Tbx3 represses differentiation into ventricular working myocardium, thereby imposing the conduction system phenotype on cells within its expression domain.
Collapse
Affiliation(s)
- Martijn L Bakker
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
222
|
Delhaas T, Kroon W, Bovendeerd P, Arts T. Left ventricular apical torsion and architecture are not inverted in situs inversus totalis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:513-9. [DOI: 10.1016/j.pbiomolbio.2008.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
223
|
Abstract
Congenital heart disease is the commonest malformation in humans and contributes greatly to the burden of disease in infancy. Increasingly, developmental origins are also implicated in heart disease in adults. Significant advances have been made over the past decade in elucidating morphogenetic events of heart formation and their underlying molecular cascades, mostly in animal models. Clinical studies are increasingly successful in quantifying and unraveling genetic factors. This review focuses on recent progress made in understanding the genetic underpinnings of normal and abnormal heart formation and highlights the importance of understanding these mechanisms to improve patient management.
Collapse
Affiliation(s)
- G Andelfinger
- Cardiovascular Genetics, Pediatric Cardiology Service, Department of Pediatrics, Sainte-Justine Hospital, University of Montréal, Québec, Canada.
| |
Collapse
|
224
|
Horsthuis T, Houweling AC, Habets PE, de Lange FJ, el Azzouzi H, Clout DE, Moorman AF, Christoffels VM. Distinct Regulation of Developmental and Heart Disease–Induced Atrial Natriuretic Factor Expression by Two Separate Distal Sequences. Circ Res 2008; 102:849-59. [DOI: 10.1161/circresaha.107.170571] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nppa
, encoding atrial natriuretic factor, is expressed in fetal atrial and ventricular myocardium and is downregulated in the ventricles after birth. During hypertrophy and heart failure,
Nppa
expression is reactivated in the ventricles and serves as a highly conserved marker of heart disease. The
Nppa
promoter has become a frequently used model to study mechanisms of cardiac gene regulation. Nevertheless, the regulatory sequences that provide the correct developmental pattern and ventricular reactivation during cardiac disease remain to be defined. We found that proximal
Nppa
fragments ranging from 250 bp to 16 kbp provide robust reporter gene activity in the atria and correct repression in the atrioventricular canal and the nodes of the conduction system in vivo. However, depending on fragment size and site of integration into the genome of mice, the fetal ventricular activity was either absent or present in an incorrect pattern. Furthermore, these fragments did not provide ventricular reactivation in heart disease models. These results indicate that the proximal promoter does not provide a physiologically relevant model for ventricular gene activity. In contrast, 2 modified bacterial artificial chromosome clones with partially overlapping genomic
Nppa
sequences provided appropriate reactivation of the green fluorescent protein reporter during pressure overload–induced hypertrophy and heart failure in vivo. However, only 1 of these bacterial artificial chromosomes provided correct fetal ventricular green fluorescent protein activity. These results show that distinct distal regulatory sequences and divergent regulatory pathways control fetal ventricular activity and reactivation of
Nppa
during cardiac disease, respectively.
Collapse
Affiliation(s)
- Thomas Horsthuis
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Arjan C. Houweling
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Petra E.M.H. Habets
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Frederik J. de Lange
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Hamid el Azzouzi
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Danielle E.W. Clout
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Antoon F.M. Moorman
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| | - Vincent M. Christoffels
- From the Heart Failure Research Center (T.H., A.C.H., P.E.M.H.H, F.J.d.L., D.E.W.C., A.F.M.M., V.M.C.), Academic Medical Center, University of Amsterdam; and the Hubrecht Institute and Interuniversity Cardiology Institute Netherlands (H.e.A.), Royal Netherlands Academy of Sciences, Utrecht, the Netherlands
| |
Collapse
|
225
|
Galli D, Domínguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development 2008; 135:1157-67. [PMID: 18272591 DOI: 10.1242/dev.014563] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Splanchnic mesoderm in the region described as the second heart field (SHF) is marked by Islet1 expression in the mouse embryo. The anterior part of this region expresses a number of markers, including Fgf10, and the contribution of these cells to outflow tract and right ventricular myocardium has been established. We now show that the posterior region also has myocardial potential, giving rise specifically to differentiated cells of the atria. This conclusion is based on explant experiments using endogenous and transgenic markers and on DiI labelling, followed by embryo culture. Progenitor cells in the right or left posterior SHF contribute to the right or left common atrium, respectively. Explant experiments with transgenic embryos, in which the transgene marks the right atrium, show that atrial progenitor cells acquire right-left identity between the 4- and 6-somite stages, at the time when Pitx2c is first expressed. Manipulation of Pitx2c, by gain- and loss-of-function, shows that it represses the transgenic marker of right atrial identity. A repressive effect is also seen on the proliferation of cells in the left sinus venosus and in cultured explants from the left side of the posterior SHF. This report provides new insights into the contribution of the SHF to atrial myocardium and the effect of Pitx2c on the formation of the left atrium.
Collapse
Affiliation(s)
- Daniela Galli
- Department of Developmental Biology, URA 2578 CNRS, Pasteur Institute, 25 rue du Docteur Roux, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
226
|
Boogerd KJ, Wong LYE, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AFM, Barnett P. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43. Cardiovasc Res 2008; 78:485-93. [PMID: 18285513 DOI: 10.1093/cvr/cvn049] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. METHODS AND RESULTS Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. CONCLUSION Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.
Collapse
Affiliation(s)
- Kees-Jan Boogerd
- Department of Anatomy and Embryology, Heart Failure Research Centre, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Congenital heart defects occur in nearly 1% of human live births and many are lethal if not surgically repaired. In addition, the genetic contribution to congenital or acquired cardiovascular diseases that are silent at birth, but progress to cause significant disease in later life is being increasingly appreciated. Heart development and structure are highly conserved between mouse and human. The discoveries that are being made in this model system are highly relevant to understanding the pathogenesis of human heart defects whether they occus in isolation, or in the context of a syndrome. Many of the genes required for cardiovascular development were discovered fortuitously when early lethality or structural defects were observed in mouse mutants generated for other purposes, and relevant genes continue to be defined in this manner. Candidate genes for this process are being identified by their roles other species, or by their expression in pertinent tissues in mice. In this review, I will briefly summarize heart development as currently understood in the mouse, and then discuss how complementary studies in mouse and human have identified genes and pathways that are critical for normal cardiovascular development, and for maintaining the structure and function of this organ system throughout life.
Collapse
Affiliation(s)
- Anne Moon
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
228
|
Zhang F, Pasumarthi KBS. Ultrastructural and immunocharacterization of undifferentiated myocardial cells in the developing mouse heart. J Cell Mol Med 2007; 11:552-60. [PMID: 17635645 PMCID: PMC3922360 DOI: 10.1111/j.1582-4934.2007.00044.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The recent discovery of several myogenic cardiac progenitor cells in the post-natal heart suggests that some myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission electron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 ± 6%), moderately differentiated cells (43 ± 2%) and mature cardiomyocytes (14 ± 4%). Undifferentiated cells contained a large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well-developed sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low levels in the E16.5 (∼20%) and E18.5 (∼7%) myocardium. Further we used immunogold labeling technique to test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A preponderance of anti-Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types. Anti-ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature myocardial cells. All of the undifferentiated cells were negative for anti-ANF labeling. We did not find immuno-gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in post-chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF represent differentiating myocytes.
Collapse
Affiliation(s)
- Feixiong Zhang
- *Correspondence to: Kishore B.S. PASUMARTHI Department of Pharmacology, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS B3H 1X5 Canada. Tel.: 902 494 2681 Fax: 902 494 1388 E-mail:
| | - Kishore BS Pasumarthi
- *Correspondence to: Kishore B.S. PASUMARTHI Department of Pharmacology, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS B3H 1X5 Canada. Tel.: 902 494 2681 Fax: 902 494 1388 E-mail:
| |
Collapse
|
229
|
Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007; 15:2027-36. [PMID: 17895862 DOI: 10.1038/sj.mt.6300303] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To realize the full scientific and clinical potential of human embryonic stem cell (hESC)-cardiomyocytes, strategies to overcome the high degree of heterogeneity of differentiated populations are required. Here we demonstrate the utility of two transgenic approaches in enrichment of cardiomyocytes derived from HUES-7 cells: (i) negative selection of proliferating cells with the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system; and (ii) positive selection of cardiomyocytes expressing a bicistronic reporter [green fluorescent protein (GFP)-internal ribosome entry site (IRES)-puromycin-N-acetyltransferase (PAC)] from the human alphamyosin heavy chain promoter. Parental and transgenic HUES-7 cells were similar with regard to morphology, pluripotency marker expression, differentiation, and cardiomyocyte electrophysiology. Whereas immunostaining of dissociated cardiomyocyte preparations expressing HSVtk or PAC contained <7% cardiomyocytes, parallel cultures treated with GCV or puromycin, respectively, contained 33.4 +/- 2.1% or 91.5 +/- 4.3% cardiomyocytes corresponding to an enrichment factor of 6.7- or 14.5-fold. Drug-selected cardiomyocytes responded to chronotropic stimulation and displayed cardiac-specific action potentials, demonstrating that functionality was retained. Both transgenic strategies will be generically applicable and should readily translate to the enrichment of many other differentiated lineages derived from hESCs.
Collapse
Affiliation(s)
- David Anderson
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
230
|
Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol 2007; 5:e53. [PMID: 17311471 PMCID: PMC1802756 DOI: 10.1371/journal.pbio.0050053] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/18/2006] [Indexed: 11/30/2022] Open
Abstract
Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis. As organs develop, they acquire a characteristic shape; the factors governing this complex process, however, are not understood. Shape may be sculpted by cell movement, cell division, or changes in cell size and shape, all of which can be influenced by the local environment. Here we investigate heart formation to understand how organs develop. The heart appears as a simple tube early in development; later, the tube walls bulge outward to form the cardiac chambers. Using transgenic zebrafish in which we can watch individual cardiac cells, we found that cells change size and shape, enlarging and elongating to form the bulges in the heart tube and eventually the chambers. Since the heart is beating as it develops, we asked whether cardiac function influences cell shape. Using zebrafish mutants with functional defects, we found that both blood flow and cardiac contractility influence cardiac cell shape. We propose that a balance of the cell's internal forces (through contractility) with external forces (such as blood flow) is necessary to create the cell shapes that generate chamber curvatures. Disruption of this balance may underlie the aberrations observed in some types of heart disease. Cardiac function depends upon properly shaped heart chambers. Here the authors show that blood flow and contractility independently regulate cell shape changes in the emerging ventricle.
Collapse
Affiliation(s)
- Heidi J Auman
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Hope Coleman
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Heather E Riley
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Felix Olale
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Huai-Jen Tsai
- Institute of Molecular and Cell Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Deborah Yelon
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
231
|
Filipczyk AA, Passier R, Rochat A, Mummery CL. Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 2007; 64:704-18. [PMID: 17380311 PMCID: PMC2778649 DOI: 10.1007/s00018-007-6523-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Investigating the signalling pathways that regulate heart development is essential if stem cells are to become an effective source of cardiomyocytes that can be used for studying cardiac physiology and pharmacology and eventually developing cell-based therapies for heart repair. Here, we briefly describe current understanding of heart development in vertebrates and review the signalling pathways thought to be involved in cardiomyogenesis in multiple species. We discuss how this might be applied to stem cells currently thought to have cardiomyogenic potential by considering the factors relevant for each differentiation step from the undifferentiated cell to nascent mesoderm, cardiac progenitors and finally a fully determined cardiomyocyte. We focus particularly on how this is being applied to human embryonic stem cells and provide recent examples from both our own work and that of others.
Collapse
Affiliation(s)
- A. A. Filipczyk
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
| | - R. Passier
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
| | - A. Rochat
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
- Mouse Molecular Genetics Group, Faculté de Médecine Pitié-Salpêtriére, 105, boulevard de l’Hôpital, 75364 Paris Cedex 13, France
| | - C. L. Mummery
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands and Heart Lung Center, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
232
|
Abstract
The heart of higher vertebrates is a structurally complicated multi-chambered pump that contracts synchronously. For its proper function a number of distinct integrated components have to be generated, including force-generating compartments, unidirectional valves, septa and a system in charge of the initiation and coordinated propagation of the depolarizing impulse over the heart. Not surprisingly, a large number of regulating factors are involved in these processes that act in complex and intertwined pathways to regulate the activity of target genes responsible for morphogenesis and function. The finding that mutations in T-box transcription factor-encoding genes in humans lead to congenital heart defects has focused attention on the importance of this family of regulators in heart development. Functional and genetic analyses in a variety of divergent species has demonstrated the critical roles of multiple T-box factor gene family members, including Tbx11, −2, −3, −5, −18 and −20, in the patterning, recruitment, specification, differentiation and growth processes underlying formation and integration of the heart components. Insight into the roles of T-box factors in these processes will enhance our understanding of heart formation and the underlying molecular regulatory pathways.
Collapse
Affiliation(s)
- W. M. H. Hoogaars
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - P. Barnett
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
233
|
|
234
|
Taha MF, Valojerdi MR. Effect of bone morphogenetic protein-4 on cardiac differentiation from mouse embryonic stem cells in serum-free and low-serum media. Int J Cardiol 2007; 127:78-87. [PMID: 17714812 DOI: 10.1016/j.ijcard.2007.04.173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 04/10/2007] [Accepted: 04/12/2007] [Indexed: 10/22/2022]
Abstract
In spite of previous reports, the precise role of bone morphogenetic proteins (BMPs) on cardiomyocyte differentiation, especially in the absence or presence of minimum amount of serum in culture medium is still unclear. So, the aim of the present study was to investigate the effect of BMP-4 on mouse embryonic stem cells (ESCs)-derived cardiomyocyte differentiation in serum-free and low-serum media. The mouse ESCs differentiation to cardiomyocytes was induced by embryoid bodies' (EBs') development through hanging drop, suspension and plating stages. Different models of differentiation were designed according to addition of fetal bovine serum (FBS) or knockout serum replacement (KoSR) to the medium of three stages. 10 ng/ml BMP-4 was added throughout the suspension period. Up to 30 days after plating, contraction and beating frequency were monitored and evaluated daily. The growth characteristics of cardiomyocytes were assessed by cardioactive drugs, immunocytochemistry, transmission electron microscopy (TEM) and reverse transcription-polymerase chain reaction (RT-PCR). In the complete absence of serum, neither control nor BMP-4 treated groups resulted in cardiac differentiation. Addition of FBS to hanging drop stage resulted in the appearance of beating cardiac clusters in some BMP-4 treated EBs. In the best designed differentiation model in which only hanging drop and the first 24 h of plating stage was carried out at the presence of FBS, the BMP-4 treatment resulted in cardiac differentiation in EBs characterized by positive immunostaining for the applied antibodies, chronotropic response to the cardioactive drugs and cardiac-specific genes expression at different developmental stages. These cardiomyocytes showed immature myofibrils and numerous intercellular junctions. In conclusion, BMP-4 is unable to induce cardiomyocyte differentiation from mouse ESCs in serum-free models, and at least small amount of FBS in hanging drop stage is necessary. Furthermore, serum factors are not strictly necessary after the initial activation, but they do favor a better differentiation of cardiomyocytes.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
235
|
Abstract
Despite the critical importance of proper cell cycle regulation in establishing the correct morphology of organs and tissues during development, relatively little is known about how cell proliferation is regulated in a tissue-specific manner. The control of cell proliferation within the developing heart is of considerable interest, given the high prevalence of congenital cardiac abnormalities among humans, and recent interest in the isolation of cardiac progenitor populations. We therefore review studies exploring the contribution of cell proliferation to overall cardiac morphology and the molecular mechanisms regulating this process. In addition, we also review recent studies that have identified progenitor cell populations within the adult myocardium, as well as those exploring the capability of differentiated myocardial cells to proliferate post-natally. Thus, the exploration of cardiomyocyte cell cycle regulation, both during development as well as in the adult heart, promises to yield many exciting and important discoveries over the coming years.
Collapse
Affiliation(s)
- Sarah C. Goetz
- Carolina Cardiovascular Biology Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Genetics Fordham Hall; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| |
Collapse
|
236
|
Abstract
Congenital heart diseases are the most commonly observed human birth defects and are the leading cause of infant morbidity and mortality. Accumulating evidence indicates that transforming growth factor-beta/bone morphogenetic protein signaling pathways play critical roles during cardiogenesis. Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of transforming growth factor-beta/bone morphogenetic protein signaling. The aim of this work was to investigate the roles of Smad4 during heart development. To overcome the early embryonic lethality of Smad4(-/-) mice, we specifically disrupted Smad4 in the myocardium using a Cre/loxP system. We show that myocardial-specific inactivation of Smad4 caused heart failure and embryonic lethality at midgestation. Histological analysis revealed that mutant mice displayed a hypocellular myocardial wall defect, which is likely the primary cause for heart failure. Both decreased cell proliferation and increased apoptosis contributed to the myocardial wall defect in mutant mice. Data presented in this article contradict a previous report showing that Smad4 is dispensable for heart development. Our further molecular characterization showed that expression of Nmyc and its downstream targets, including cyclin D1, cyclin D2, and Id2, were downregulated in mutant embryos. Reporter analysis indicated that the transcriptional activity of the 351-bp Nmyc promoter can be positively regulated by bone morphogenetic protein stimulation and negatively regulated by transforming growth factor-beta stimulation. Chromatin immunoprecipitation analysis revealed that the Nmyc promoter can form a complex with Smad4, suggesting that Nmyc is a direct downstream target of Smad4. In conclusion, this study provides the first mouse model showing that Smad4 plays essential roles during cardiogenesis.
Collapse
Affiliation(s)
- Lanying Song
- Department of Genetics, Division of Genetic and Translational Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
237
|
Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LE, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 2007; 21:1098-112. [PMID: 17473172 PMCID: PMC1855235 DOI: 10.1101/gad.416007] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression. Ectopic expression of Tbx3 in mice revealed that Tbx3 represses the atrial phenotype and imposes the pacemaker phenotype on the atria. The mice displayed arrhythmias and developed functional ectopic pacemakers. These data identify a Tbx3-dependent pathway for the specification and formation of the sinoatrial node, and show that Tbx3 regulates the pacemaker gene expression program and phenotype.
Collapse
Affiliation(s)
- Willem M.H. Hoogaars
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Angela Engel
- Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Janynke F. Brons
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frederik J. de Lange
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - L.Y. Elaine Wong
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Martijn L. Bakker
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Danielle E. Clout
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Hindrik Ravesloot
- Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Antoon F.M. Moorman
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - E. Etienne Verheijck
- Department of Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Corresponding author.E-MAIL ; FAX 31-20-6976177
| |
Collapse
|
238
|
Ribeiro I, Kawakami Y, Büscher D, Raya Á, Rodríguez-León J, Morita M, Rodríguez Esteban C, Izpisúa Belmonte JC. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One 2007; 2:e398. [PMID: 17460765 PMCID: PMC1851989 DOI: 10.1371/journal.pone.0000398] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/23/2007] [Indexed: 01/12/2023] Open
Abstract
Background The heart forms from a linear tube that is subject to complex remodeling during embryonic development. Hallmarks of this remodeling are the looping of the heart tube and the regionalization into chamber and non-chamber myocardium. Cardiomyocytes in the future chamber myocardium acquire different cellular and physiological characteristics through activation of a chamber-specific genetic program, which is in part mediated by T-box genes. Methodology/Principal Finding We characterize two new zebrafish T-box transcription factors, tbx3b and tbx2a, and analyze their role during the development of the atrioventricular canal. Loss- and gain-of-function analyses demonstrate that tbx3b and tbx2a are necessary to repress the chamber-genetic program in the non-chamber myocardium. We also show that tbx3b and tbx2a are required to control cell proliferation in the atrioventricular canal and that misregulation of cell proliferation in the heart tube influences looping. Furthermore, we characterize the heart phenotype of a novel Tbx3 mutation in mice and show that both the control of cell proliferation and the repression of chamber-specific genetic program in the non-chamber myocardium are conserved roles of Tbx3 in this species. Conclusions/Significance Taken together, our results uncover an evolutionarily conserved role of Tbx2/3 transcription factors during remodeling of the heart myocardium and highlight the importance of controlling cell proliferation as a driving force of morphogenesis.
Collapse
Affiliation(s)
- Inês Ribeiro
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Yasuhiko Kawakami
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Dirk Büscher
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ángel Raya
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Masanobu Morita
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Concepción Rodríguez Esteban
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Juan Carlos Izpisúa Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
239
|
Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A, Habib M, Yankelson L, Kehat I, Gepstein L. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 2007; 21:2551-63. [PMID: 17435178 DOI: 10.1096/fj.05-5711com] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human embryonic stem cells (hESC) are pluripotent lines that can differentiate in vitro into cell derivatives of all three germ layers, including cardiomyocytes. Successful application of these unique cells in the areas of cardiovascular research and regenerative medicine has been hampered by difficulties in identifying and selecting specific cardiac progenitor cells from the mixed population of differentiating cells. We report the generation of stable transgenic hESC lines, using lentiviral vectors, and single-cell clones that express a reporter gene (eGFP) under the transcriptional control of a cardiac-specific promoter (the human myosin light chain-2V promoter). Our results demonstrate the appearance of eGFP-expressing cells during the differentiation of the hESC as embryoid bodies (EBs) that can be identified and sorted using FACS (purity>95%, viability>85%). The eGFP-expressing cells were stained positively for cardiac-specific proteins (>93%), expressed cardiac-specific genes, displayed cardiac-specific action-potentials, and could form stable myocardial cell grafts following in vivo cell transplantation. The generation of these transgenic hESC lines may be used to identify and study early cardiac precursors for developmental studies, to robustly quantify the extent of cardiomyocyte differentiation, to label the cells for in vivo grafting, and to allow derivation of purified cell populations of cardiomyocytes for future myocardial cell therapy strategies.
Collapse
Affiliation(s)
- Irit Huber
- Sohnis Family Research Laboratory for the Regeneration of Functional Myocardium and the Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Espinoza J, Gotsch F, Kusanovic JP, Gonçalves LF, Lee W, Hassan S, Mittal P, Shoen ML, Romero R. Changes in fetal cardiac geometry with gestation: implications for 3- and 4-dimensional fetal echocardiography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2007; 26:437-43; quiz 444. [PMID: 17384040 PMCID: PMC2190734 DOI: 10.7863/jum.2007.26.4.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
OBJECTIVE Three- and 4-dimensional fetal echocardiography can be performed using novel algorithms. However, these algorithms assume that the spatial relationships among cardiac chambers and great vessels are constant throughout gestation. The objective of this study was to determine whether changes in fetal cardiac geometry occur during gestation. METHODS A cross-sectional study was conducted by reviewing 3- and 4-dimensional volume data sets from healthy fetuses obtained between 12 and 41 weeks of gestation. Volume data sets were examined using commercially available software. Parameters measured included angles between: (1) the ductal arch and fetal thoracic aorta; (2) the ductal arch and aortic arch; and (3) the left outflow tract and main pulmonary artery, as seen in the short axis of the heart. The mean angle from the left outflow tract to the short axis was calculated. Nonparametric statistics were used for analysis. RESULTS Eighty-five fetuses were included in the study. The angle between the ductal arch and the fetal thoracic aorta decreased with gestational age (Spearman rho coefficient: -0.39; P < .001). In contrast, the angle between the ductal arch and aortic arch, and the mean angle between the left outflow tract and the short axis of the heart increased with gestational age (Spearman rho coefficients: 0.45 and 0.40, respectively; P < .001). CONCLUSIONS (1) Changes in fetal cardiac geometry were shown with advancing gestational age. (2) Proposed algorithms for the examination of the fetal heart with 3-dimensional ultrasonography may need to be adapted to optimize visualization of the standard planes before 26 weeks of gestation.
Collapse
Affiliation(s)
- Jimmy Espinoza
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
| | - Luís F. Gonçalves
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Wesley Lee
- Division of Fetal Imaging, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Sonia Hassan
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Pooja Mittal
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Mary Lou Shoen
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
241
|
Koibuchi N, Chin MT. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res 2007; 100:850-5. [PMID: 17332425 DOI: 10.1161/01.res.0000261693.13269.bf] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that mice lacking the hairy-related basic helix-loop-helix (bHLH) transcription factor CHF1/Hey2 develop a thin-walled left ventricle. To explore the basis for this phenotype, we examined regional gene expression patterns in the developing myocardium. We found that atrial natriuretic factor (ANF), which is normally expressed in the atria and trabeculae and is restricted from the developing compact myocardium beginning at embryonic day 13.5, is persistently expressed in the left ventricular compact myocardium of the knockout animals. We also examined the expression pattern of the T-box transcription factor Tbx5, a known regulator of ANF, and an additional Tbx5-dependent gene, connexin 40 (Cx40), both of which share a similar expression pattern to ANF during development. Tbx5 and Cx40 were similarly expressed ectopically in the compact myocardium of the CHF1/Hey2 knockout mouse. The atrial contractile genes mlc1a and mlc2a were also expressed ectopically in the left ventricular compact myocardium, providing evidence for a general dysregulation of atrial gene expression. Crossing of a myocardial-specific CHF1/Hey2 transgenic mouse with the knockouts led to rescue of the thin-walled myocardial phenotype and restoration of the normal patterns of gene expression. Myocardial cell proliferation, which has been shown previously to be suppressed by Tbx5, was also decreased in the knockout mice and rescued by the transgene. Our findings suggest that CHF1/Hey2 suppresses atrial identity in the left ventricular compact myocardium, facilitates myocardial proliferation by suppressing Tbx5, and thereby promotes proper ventricular myocardial maturation.
Collapse
Affiliation(s)
- Nobutaka Koibuchi
- Vascular Medicine Research, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
242
|
Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 2007; 100:220-8. [PMID: 17218603 DOI: 10.1161/01.res.0000257780.60484.6a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) play many roles in mammalian cardiac development. Here we address the functions of Noggin, a dedicated BMP antagonist, in the developing mouse heart. In early cardiac tissues, the Noggin gene is mainly expressed in the myocardial cells of the outflow tract, atrioventricular canal, and future right ventricle. The major heart phenotypes of Noggin mutant embryos are thicker myocardium and larger endocardial cushions. Both defects result from increased cell number. Cell proliferation is increased and cell cycle exit is decreased in the myocardium. Although we find evidence of increased BMP signal transduction in the myocardium and endocardium, we show that the cardiac defects of Noggin mutants are rescued by halving the gene dosage of Bmp4. In culture, BMP increases the epithelial-to-mesenchymal transformation (EMT) of endocardial explant cells. Increased EMT likely accounts for the enlarged atrioventricular cushion. In the outflow tract cushion, we observed an increased contribution of cardiac neural crest cells to the mutant cushion mesenchyme, although many cells of the cushion were not derived from neural crest. Thus the enlarged outflow tract cushion of Noggin mutants likely arises by increased contributions both of endocardial cells that have undergone EMT as well as cells that have migrated from the neural crest. These data indicate that antagonism of BMP signaling by Noggin plays a critical role in ensuring proper levels of cell proliferation and EMT during cardiac morphogenesis in the mouse.
Collapse
Affiliation(s)
- Murim Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
243
|
Dunwoodie SL. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Semin Cell Dev Biol 2007; 18:54-66. [PMID: 17236794 DOI: 10.1016/j.semcdb.2006.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The complexity of mammalian cardiogenesis is compounded, as the heart must function in the embryo whilst it is still being formed. Great advances have been made recently as additional cardiac progenitor cell populations have been identified. The induction and maintenance of these progenitors, and their deployment to the developing heart relies on combinatorial molecular signalling, a feature also of cardiac chamber formation. Many forms of congenital heart disease in humans are likely to arise from defects in the early stages of heart development; therefore it is important to understand the molecular pathways that underlie some of the key events that shape the heart during the early stages of it development.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Developmental Biology Program, Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
244
|
Taha MF, Valojerdi MR, Mowla SJ. Effect of bone morphogenetic protein-4 (BMP-4) on cardiomyocyte differentiation from mouse embryonic stem cell. Int J Cardiol 2006; 120:92-101. [PMID: 17156864 DOI: 10.1016/j.ijcard.2006.08.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the effect of BMP-4 on mouse embryonic stem cells (ESCs)-derived cardiomyocyte. Cardiac differentiation of the mouse ESCs was initiated by embryoid bodies (EBs) formation in hanging drops, transfer of EBs to the suspension culture and then plating onto gelatin-coated tissue culture plates. BMP-4 was added to culture medium throughout the suspension period. Cultures were observed daily with an inverted microscope for the appearance of contracting clusters. At the early, intermediate and terminal stages of differentiation, the choronotropic responses of cardiomyocytes to cardioactive drugs were assessed, and the cardiomyocytes immunostained for cardiac troponin I, desmin, alpha-actinin and nebulin. The contracting clusters were isolated for ultrastructural evaluation, at day 14 after plating. Moreover, total RNA extracted from contracting EBs of early and terminal stages of differentiation were examined for oct-4, alpha- and beta-myosin heavy chain, myosin light chain-2V and atrial natriuretic factor expression. The BMP-4 treatment resulted in a decrease in the percent of beating EBs and the percent of developing cardiomyocytes per EBs. As a whole, the chronotropic responses of beating cardiac clusters to cardioactive drugs in control group were better than BMP-4 treated group. The cardiomyocytes of both groups were positive immunostained for applied antibodies except for nebulin. Moreover, in the BMP-4 treated group, the ultrastructural characteristics and cardiac-specific genes expression were all retarded in the terminal stage of cardiomyocytes development. In conclusion, BMP-4 had an inhibitory effect on cardiomyocyte differentiation from the mouse ESCs in terms of ultrastructural characteristics, genes expression and functional properties.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | | |
Collapse
|
245
|
Risebro CA, Smart N, Dupays L, Breckenridge R, Mohun TJ, Riley PR. Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart. Development 2006; 133:4595-606. [PMID: 17050624 DOI: 10.1242/dev.02625] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise origins of myocardial progenitors and their subsequent contribution to the developing heart has been an area of considerable activity within the field of cardiovascular biology. How these progenitors are regulated and what signals are responsible for their development are, however, much less well understood. Clearly, not only is there a need to identify factors that regulate the transition from proliferation of cardioblasts to differentiation of cardiac muscle, but it is also necessary to identify factors that maintain an adequate pool of undifferentiated myocyte precursors as a prerequisite to preventing organ hypoplasia and congenital heart disease. Here, we report how upregulation of the basic helix-loop-helix (bHLH) transcription factor Hand1, restricted exclusively to Hand1-expressing cells, brings about a significant extension of the heart tube and extraneous looping caused by the elevated proliferation of cardioblasts in the distal outflow tract. This activity is independent of the further recruitment of extracardiac cells from the secondary heart field and permissive for the continued differentiation of adjacent myocardium. Culture studies using embryonic stem (ES) cell-derived cardiomyocytes revealed that, in a Hand1-null background, there is significantly elevated cardiomyocyte differentiation, with an apparent default mesoderm pathway to a cardiomyocyte fate. However, Hand1 gain of function maintains proliferating precursors resulting in delayed and significantly reduced cardiomyocyte differentiation that is mediated by the prevention of cell-cycle exit, by G1 progression and by increased cell division. Thus, this work identifies Hand1 as a crucial cardiac regulatory protein that controls the balance between proliferation and differentiation in the developing heart, and fills a significant gap in our understanding of how the myocardium of the embryonic heart is established.
Collapse
|
246
|
Vong L, Bi W, O'Connor-Halligan KE, Li C, Cserjesi P, Schwarz JJ. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev Dyn 2006; 235:1809-21. [PMID: 16680724 DOI: 10.1002/dvdy.20828] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeted deletion of the mef2c gene results in a small left ventricle and complete loss of the right ventricle (Lin et al. [1997] Science 276:1404-1407). Absence of the right ventricle is from defective differentiation of cells from the secondary heart field. Our studies of the dysmorphogenesis of the left ventricle uncovered morphological and transcriptional abnormalities at the transition from the cardiac crescent to the linear-tube stage heart. Use of the cgata6LacZ transgene demonstrated that lacZ-positive cells, which normally mark the precursors to the atrioventricular canal and adjacent regions of the left ventricle and atria, remain in the sinoatrial region of the mutant. This, along with the absence of a morphologically distinct atrioventricular canal, indicates a misapportioning of cells between the inflow and outflow segments. The underlying genetic program was also affected with altered expression of mlc2a, mlc2v, and irx4 in outflow segment precursors of the primary heart field. In addition, the sinoatrial-enriched transcription factor, tbx5, was ectopically expressed in the primitive ventricle and ventricle-specific splicing of mef2b was lost, suggesting that the mutant ventricle had acquired atrial-specific characteristics. Collectively, these results suggest a fundamental role of MEF2C in ventricular cardiomyocyte differentiation and apportioning of cells between inflow and outflow precursors in the primary heart field.
Collapse
Affiliation(s)
- Linh Vong
- Center for Cardiovascular Sciences, Albany Medical Center, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
247
|
Soufan AT, van den Berg G, Ruijter JM, de Boer PAJ, van den Hoff MJB, Moorman AFM. Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 2006; 99:545-52. [PMID: 16888243 DOI: 10.1161/01.res.0000239407.45137.97] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increase in cell size and proliferation of myocytes are key processes in cardiac morphogenesis, yet their regionalization during development of the heart has been described only anecdotally. We have made quantitative reconstructions of embryonic chicken hearts ranging in stage from the fusion of the heart-forming fields to early formation of the chambers. These reconstructions reveal that the early heart tube is recruited from a pool of rapidly proliferating cardiac precursor cells. The proliferation of these small precursor cells ceases as they differentiate into overt cardiomyocytes, producing a slowly proliferating straight heart tube composed of cells increasing in size. The largest cells were found at the ventral side of the heart tube, which corresponds to the site of the forming ventricle, as well as the site where proliferation is reinitiated. The significance of these observations is 2-fold. First, they support a model of early cardiac morphogenesis in 2 stages. Second, they demonstrate that regional increase in size of myocytes contributes significantly to chamber formation.
Collapse
Affiliation(s)
- Alexandre T Soufan
- Molecular and Experimental Cardiology Group, Academic Medical Centre, University of Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
248
|
Rivera-Feliciano J, Tabin CJ. Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev Biol 2006; 295:580-8. [PMID: 16730346 PMCID: PMC2680002 DOI: 10.1016/j.ydbio.2006.03.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/23/2006] [Accepted: 03/30/2006] [Indexed: 01/12/2023]
Abstract
A hallmark of heart-valve development is the swelling and deposition of extracellular matrix in the heart-valve region. Only myocardium overlying this region can signal to underlying endothelium and cause it to lose cell-cell contacts, delaminate, and invade the extracellular space abutting myocardium and endocardium to form endocardial cushions (EC) in a process known as epithelial to mesenchymal transformation (EMT). The heart-valve myocardium expresses bone morphogenetic protein-2 (Bmp2) coincident with development of valve mesenchyme. BMPs belong to the transforming growth factor beta superfamily (TGF-beta) and play a wide variety of roles during development. We show that conditional ablation of Bmp2 in cardiac progenitors results in cell fate changes in which the heart-valve region adopts the identity of differentiated chamber myocardium. Moreover, Bmp2-deficient hearts fail to induce production and deposition of matrix at the heart-valve-forming region, resulting in the inability of the endothelium to swell and impairing the development of ECs. Furthermore, in collagen invasion assays, Bmp2 mutant endothelium is incapable of undergoing EMT, and addition of BMP2 protein to mutant heart explants rescues this phenotype. Our results demonstrate that Bmp2 is both necessary and sufficient to specify a field of cardiac progenitor cells as the heart-valve-inducing region amid developing atria and ventricles.
Collapse
Affiliation(s)
| | - Clifford J. Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
249
|
Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, Klingensmith J, Meyers EN. Fgf8 is required for anterior heart field development. Development 2006; 133:2435-45. [PMID: 16720880 DOI: 10.1242/dev.02408] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mouse embryo, the splanchnic mesodermal cells of the anterior heart field (AHF) migrate from the pharynx to contribute to the early myocardium of the outflow tract (OT) and right ventricle (RV). Recent studies have attempted to distinguish the AHF from other precardiac populations, and to determine the genetic and molecular mechanisms that regulate its development. Here, we have used an Fgf8lacZ allele to demonstrate that Fgf8is expressed within the developing AHF. In addition, we use both a hypomorphic Fgf8 allele (Fgf8neo) and Cre-mediated gene ablation to show that Fgf8 is essential for the survival and proliferation of the AHF. Nkx2.5Cre is expressed in the AHF, primary heart tube and pharyngeal endoderm, while TnT-Cre is expressed only within the specified heart tube myocardium. Deletion of Fgf8 by Nkx2.5Cre results in a significant loss of the Nkx2.5Cre lineage and severe OT and RV truncations by E9.5, while the remaining heart chambers (left ventricle and atria) are grossly normal. These defects result from significant decreases in cell proliferation and aberrant cell death in both the pharyngeal endoderm and splanchnic mesoderm. By contrast, ablation of Fgf8 in the TnT-Cre domain does not result in OT or RV defects, providing strong evidence that Fgf8 expression is crucial in the pharyngeal endoderm and/or overlying splanchnic mesoderm of the AHF at a stage prior to heart tube elongation. Analysis of downstream signaling components, such as phosphorylated-Erk and Pea3, identifies the AHF splanchnic mesoderm itself as a target for Fgf8 signaling.
Collapse
Affiliation(s)
- Roger Ilagan
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Togi K, Yoshida Y, Matsumae H, Nakashima Y, Kita T, Tanaka M. Essential role of Hand2 in interventricular septum formation and trabeculation during cardiac development. Biochem Biophys Res Commun 2006; 343:144-51. [PMID: 16530167 DOI: 10.1016/j.bbrc.2006.02.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 02/17/2006] [Indexed: 10/25/2022]
Abstract
Interventricular septum (IVS) formation is one of the key events in the development of a four-chambered heart. We previously showed that the basic helix-loop-helix transcription factor Hand1 plays an important role in the formation of the IVS. Here, we found that the other Hand gene, Hand2, regulated expansion, trabeculation, and IVS formation in the embryonic heart. In transgenic embryos expressing Hand2 in the whole ventricles, the boundary region between the left and right ventricles expanded outwards, resulting in complete absence of the IVS. Moreover, trabecular formation was observed even in a region where the IVS was expected to form. In some transgenic embryos with heterogeneous expression of the transgene, a muscular septum did not form in a region where Hand2 was expressed, but an incomplete septum was identifiable in a region where Hand2 was not expressed, suggesting that septum formation was strictly regulated by the expression domain of Hand2. Furthermore, expression of trabecular markers including ANF, BNP, and connexin40 was significantly up-regulated in the ventricles of Hand2 transgenic embryos as well as in H9c2 cells over-expressing Hand2. These results suggested that the absence of Hand2 expression in the interventricular boundary region inhibits expansion and trabeculation in this area, contributing to the proper formation of the IVS.
Collapse
Affiliation(s)
- Kiyonori Togi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|