201
|
Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neurosci Lett 2009; 461:252-7. [PMID: 19539699 DOI: 10.1016/j.neulet.2009.06.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/21/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022]
Abstract
Neural stem cells (NSCs) are in a complex niche in which cell-extrinsic cues and cell-intrinsic genetic mechanisms in chorus mediate their cellular processes such as self-renewal and differentiation. In this study, we found that inactivation of Erk1/2 with U0126 in NSCs significantly promoted neuronal differentiation and inhibited proliferation. Sustained Erk1/2 inactivity was required in this process. We also found that nerve growth factor (NGF) and collagen could promote the proliferation and inhibit neuronal differentiation by activating phosphorylation of Erk1/2. Cell-cycle regulators such as cyclin-dependent kinase 2 (Cdk2), Cyclin D1 and Hes1 mediated the effect of Erk on NSCs proliferation and differentiation. Our results showed that Erk1/2 played an important role in the interplay between cell-extrinsic cues and cell-intrinsic genetic mechanisms in neural stem cell biology.
Collapse
|
202
|
Nosjean A, Roux P, Perret E, Bohl D. Cholinergic differentiation of neural progenitors in adult mouse motor facial nucleus. J Neurotrauma 2009; 26:1417-27. [PMID: 19505176 DOI: 10.1089/neu.2008.0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental cues are critical determinants of the fate of neural progenitors (NPs) upon transplantation into the central nervous system. In the present study, we assessed the differentiation potential of NPs implanted in a cholinergic environment of the adult mouse brain. Neurospheres containing NPs issued from fetal ganglionic eminences of transgenic mice expressing the green fluorescent protein (GFP) were transplanted either inside or outside the mouse cholinergic facial motor nucleus. In some mice, a pre-degenerated nerve releasing trophic factors was grafted into this nucleus to favor NP survival and improve axonal growth into the graft. The fate of NPs was analyzed 6 to 9 days or 2 months post-transplantation by immunofluorescence under confocal microscopy. Transplanted NPs were observed both inside and outside the facial nucleus after 6 to 9 days, but almost exclusively inside after 2 months regardless of the presence of a pre-degenerated nerve. NPs expressed markers of undifferentiated cells, astrocytes, oligodendrocytes, neurons, or cholinergic cells. The cholinergic phenotype of NPs engrafted inside the facial nucleus increased with time and the presence of a pre-degenerated nerve. Large GFP cholinergic somata and abundant long cholinergic GFP axons projecting into the nerve graft were also observed. Our results show that NPs, isolated from fetal mouse brain and transplanted into the non-neurogenic environment of the adult mouse facial nucleus, differentiate into cholinergic cells capable to project axons. This environment and the nerve graft favored NP differentiation into cholinergic neurons.
Collapse
Affiliation(s)
- Anne Nosjean
- Unité Rétrovirus et Transfert Génétique, Département Neuroscience, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
203
|
Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K. Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol 2009; 219:104-11. [PMID: 19427855 DOI: 10.1016/j.expneurol.2009.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 04/02/2009] [Accepted: 05/02/2009] [Indexed: 10/20/2022]
Abstract
Methyl-CpG-binding protein 2 (MeCP2), a methyl-CpG-binding domain protein family member which is expressed predominantly in neurons in the nervous system, acts as a transcriptional repressor by binding to methylated genes, and mutations in mecp2 cause the neurological disorder known as Rett syndrome (RTT). Although MeCP2 has been reported to regulate neuronal maturation rather than fate specification of neural precursor cells (NPCs), we have previously shown that it inhibits astrocyte differentiation of NPCs when ectopically expressed. Here, we show that expression of MeCP2 in NPCs not only suppresses astrocytic differentiation but actually promotes neuronal differentiation, even in the presence of well-known astrocyte-inducing cytokines. This dual function of MeCP2 was abolished by the MEK inhibitor U0126. Moreover, we observed that a truncated form of MeCP2 found in RTT patients fails to promote neuronal differentiation. We further demonstrate that transplanted MeCP2-expressing NPCs differentiate in vivo into neurons in two non-neurogenic regions, striatum and spinal cord. These results suggest a possible therapeutic application for MeCP2 in neurodegenerative diseases and injuries to the central nervous system.
Collapse
Affiliation(s)
- Keita Tsujimura
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
204
|
Myelin-associated glycoprotein inhibits the neuronal differentiation of neural progenitors. Neuroreport 2009; 20:708-12. [DOI: 10.1097/wnr.0b013e32832aa942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
205
|
Kulbatski I, Tator CH. Region-specific differentiation potential of adult rat spinal cord neural stem/precursors and their plasticity in response to in vitro manipulation. J Histochem Cytochem 2009; 57:405-23. [PMID: 19124840 PMCID: PMC2675070 DOI: 10.1369/jhc.2008.951814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022] Open
Abstract
This study characterized the differentiation of neural stem/precursor cells (NSPCs) isolated from different levels of the spinal cord (cervical vs lumbar cord) and different regions along the neuraxis (brain vs cervical spinal cord) of adult male Wistar enhanced green fluorescent protein rats. The differentiation of cervical spinal cord NSPCs was further examined after variation of time in culture, addition of growth factors, and changes in cell matrix and serum concentration. Brain NSPCs did not differ from cervical cord NSPCs in the percentages of neurons, astrocytes, or oligodendrocytes but produced 26.9% less radial glia. Lumbar cord NSPCs produced 30.8% fewer radial glia and 6.9% more neurons compared with cervical cord NSPCs. Spinal cord NSPC differentiation was amenable to manipulation by growth factors and changes in in vitro conditions. This is the first study to directly compare the effect of growth factors, culturing time, serum concentration, and cell matrix on rat spinal cord NSPCs isolated, propagated, and differentiated under identical conditions.
Collapse
Affiliation(s)
- Iris Kulbatski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
206
|
Gao Y, Xiao Z, Chen B, Wang B, Han J, Zhao Y, Zhang J, Dai J. Effect of different regions of Nogo-A on the differentiation of neural progenitors. Neurosci Lett 2009; 458:132-5. [PMID: 19379790 DOI: 10.1016/j.neulet.2009.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/07/2009] [Accepted: 04/15/2009] [Indexed: 11/20/2022]
Abstract
Nogo-A is an inhibitor of neurite outgrowth and axonal regeneration after CNS injury. Several functional regions including Nogo-66 were identified to mediate the inhibitory effect of Nogo-A. We have reported that Nogo-66 could promote neural progenitors to differentiate into glial cells. Here we exam three other regions of Nogo-A and show two of them also mediate the differentiation of neural progenitors. A 172-residues N-terminal region and a 37-residues C-terminal region of Nogo-A both could inhibit neuronal differentiation and promoted glial cell formation. This study illustrated that Nogo-A had multiple functional domains on the behavior of neuronal cells. The inhibitory effect of neural differentiation of Nogo-A may also contribute to its restraint of CNS repair.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Li H, Han YR, Bi C, Davila J, Goff LA, Thompson K, Swerdel M, Camarillo C, Ricupero CL, Hart RP, Plummer MR, Grumet M. Functional differentiation of a clone resembling embryonic cortical interneuron progenitors. Dev Neurobiol 2009; 68:1549-64. [PMID: 18814314 DOI: 10.1002/dneu.20679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have generated clones (L2.3 and RG3.6) of neural progenitors with radial glial properties from rat E14.5 cortex that differentiate into astrocytes, neurons, and oligodendrocytes. Here, we describe a different clone (L2.2) that gives rise exclusively to neurons, but not to glia. Neuronal differentiation of L2.2 cells was inhibited by bone morphogenic protein 2 (BMP2) and enhanced by Sonic Hedgehog (SHH) similar to cortical interneuron progenitors. Compared with L2.3, differentiating L2.2 cells expressed significantly higher levels of mRNAs for glutamate decarboxylases (GADs), DLX transcription factors, calretinin, calbindin, neuropeptide Y (NPY), and somatostatin. Increased levels of DLX-2, GADs, and calretinin proteins were confirmed upon differentiation. L2.2 cells differentiated into neurons that fired action potentials in vitro, and their electrophysiological differentiation was accelerated and more complete when cocultured with developing astroglial cells but not with conditioned medium from these cells. The combined results suggest that clone L2.2 resembles GABAergic interneuron progenitors in the developing forebrain.
Collapse
Affiliation(s)
- Hedong Li
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 2009; 32:105-14. [PMID: 19569457 PMCID: PMC2678281 DOI: 10.1080/10790268.2009.11760761] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
Affiliation(s)
- Rishi S. Nandoe Tewarie
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andres Hurtado
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ronald H Bartels
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andre Grotenhuis
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin Oudega
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
209
|
Su H, Zhang W, Guo J, Guo A, Yuan Q, Wu W. Lithium enhances the neuronal differentiation of neural progenitor cellsin vitroand after transplantation into the avulsed ventral horn of adult rats through the secretion of brain-derived neurotrophic factor. J Neurochem 2009; 108:1385-98. [DOI: 10.1111/j.1471-4159.2009.05902.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
210
|
Alexanian AR, Maiman DJ, Kurpad SN, Gennarelli TA. In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem Cells Dev 2009; 17:1123-30. [PMID: 18484898 DOI: 10.1089/scd.2007.0212] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cell (MSC)-mediated tissue regeneration is a promising strategy to treat several neurodegenerative diseases and traumatic injuries of the central nervous system. Bone marrow MSCs have great potential as therapeutic agents, since they are easy to isolate and expand and are capable of producing various cell types, including neural cells. Recently we developed a highly efficient methodology to produce neural stem-like and neural precursor-like cells from mice bone marrow-derived MSCs that eventually differentiate into neuronal- and glial-like cells in vitro. The aim of this study is to further elucidate neural expression profile of neurally induced mesenchymal stem cells (NI-MSCs) and their ability to retain neural differentiation potential when grafted into the intact spinal cord of rats. To this end, we further characterized in vitro and in vivo properties of NI-MSCs by immunocytochemistry, Western blot, ELISA, and immunohistochemistry. Immunocytochemical data demonstrated that NI-MSCs express several mature neural markers such as B3T, GFAP MAP-2, NF-200, and NeuN, which were confirmed through Western blot. ELISA data showed that NI-MSCs release nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In vivo studies demonstrated that grafted NI-MSCs survived after transplantation into intact spinal cord and produced cells that expressed neural markers. All these data suggest that neurally modified MSCs, induced by recently developed methodology, could be a potential source of cells to replace damaged neurons and glia in injured spinal cord, and/or to promote cell survival and axonal growth of host tissue.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Neuroscience Research Laboratories, Department of Neurosurgery, Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | | | |
Collapse
|
211
|
Yin ZS, Zu B, Chang J, Zhang H. Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res 2009; 30:480-6. [PMID: 18953739 DOI: 10.1179/174313208x284133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To explore the repair effect of Wnt3a on injured spinal cord in rats. METHODS Moderate spinal cord contusion injury was made in 40 adult Sprague-Dawley rats at T10. Fifteen rats served as contusion controls (Group 1). Fifteen rats were treated with Wnt3a 3 days after injury (Group 2). Ten additional rats received only T10 laminectomies to serve as non-injured controls (Group 0). The functional recovery of the rats was observed through Basso-Beattie-Bresnahan (BBB) open field locomotor score. Rats were killed at 14 or 28 days after injury, then spinal cords were removed for histopathologic examinations, and the expression of the bromodeoxyuridine (BrdU) plus neural cell markers was stained with immunohistochemical method. RESULTS After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, the BBB score for rats in Group 2 is better than that for rats in Group 1 by 7 points (Group 2 = 16.94, after 28 days versus Group 1 = 9.89 points; p < 0.05). Light and electron microscopic works showed that the Wnt3a-treated group had moderate repair effect of myelin and axons. Immunohistochemical analysis showed a significant increase in the number of the inducing differentiated neurons in Wnt3a-treated rats compared with control rats 2 weeks after injury. CONCLUSIONS Exogenous Wnt3a administration can improve axonal conduction and spinal cord function in the injured spinal cord, and the administration of Wnt3a result in the increase in the populations of neurons, suggesting that these cells may be derived from neural precursors and stem cells.
Collapse
Affiliation(s)
- Zong-Sheng Yin
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
212
|
Rauch MF, Hynes SR, Bertram J, Redmond A, Robinson R, Williams C, Xu H, Madri JA, Lavik EB. Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci 2009; 29:132-45. [PMID: 19120441 PMCID: PMC2764251 DOI: 10.1111/j.1460-9568.2008.06567.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two-component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood-spinal cord barrier. No other groups have shown positive staining for the blood-spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.
Collapse
Affiliation(s)
- Millicent Ford Rauch
- Department of Biomedical Engineering, Yale University, Malone Engineering Center 311, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Choi KC, Yoo DS, Cho KS, Huh PW, Kim DS, Park CK. Effect of single growth factor and growth factor combinations on differentiation of neural stem cells. J Korean Neurosurg Soc 2008; 44:375-81. [PMID: 19137082 DOI: 10.3340/jkns.2008.44.6.375] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/28/2008] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF), insulin growth factor-I (IGF-I), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. METHODS Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using beta-tubulin III and NeuN as neural markers. RESULTS Neural differentiations in the presence of individual growth factors for beta-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-1, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for beta-tubulin III and 3.1% for NeuN. For beta-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1%; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). CONCLUSION Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and postmitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.
Collapse
Affiliation(s)
- Kyung-Chul Choi
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | | | | | | | | | | |
Collapse
|
214
|
Mothe AJ, Kulbatski I, Parr A, Mohareb M, Tator CH. Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant 2008; 17:735-51. [PMID: 19044201 DOI: 10.3727/096368908786516756] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) capable of generating new neurons and glia reside in the adult mammalian spinal cord. Transplantation of NSPCs has therapeutic potential for spinal cord injury, although there is limited information on the ability of these cells to survive and differentiate in vivo. Neurospheres cultured from the periventricular region of the adult spinal cord contain NSPCs that are self-renewing and multipotent. We examined the survival, proliferation, migration, and differentiation of adult spinal cord NSPCs generated from green fluorescent protein (GFP) transgenic rats and transplanted into the intact spinal cord. The grafted GFP-expressing cells survived for at least 6 weeks in vivo and migrated from the injection site along the rostro-caudal axis of the spinal cord. Transplanted cells transiently proliferated following transplantation and approximately 17% of the GFP-positive cells were apoptotic at 1 day. Also, better survival was seen with NSPCs transplanted as neurospheres in comparison to NSPCs transplanted as dissociated cells. By 1 week posttransplantation, grafted cells primarily expressed an oligodendrocytic phenotype and only 2% differentiated into astrocytes. Approximately 75% versus 38% of the grafted cells differentiated into oligodendrocytes after transplantation into spinal white versus gray matter, respectively. This is the first report to examine the time course of cell survival, proliferation, apoptosis, and phenotypic differentiation of transplanted NSPSs in the spinal cord. This is also the first report to examine the differences between transplanted NSPCs grafted as neurospheres or dissociated cells, and to compare the differentiation potential after transplantation into spinal cord white versus gray matter.
Collapse
Affiliation(s)
- Andrea J Mothe
- Toronto Western Research Institute and Krembil Neuroscience Centre, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
215
|
Dong Y, Liu W, Gao Y, Wu R, Zhang Y, Wang H, Wei B. Neural Stem Cell Transplantation Rescues Rectum Function in the Aganglionic Rat. Transplant Proc 2008; 40:3646-52. [DOI: 10.1016/j.transproceed.2008.06.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/08/2008] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
|
216
|
Parr AM, Kulbatski I, Wang XH, Keating A, Tator CH. Fate of transplanted adult neural stem/progenitor cells and bone marrow–derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. ACTA ACUST UNITED AC 2008; 70:600-7; discussion 607. [DOI: 10.1016/j.surneu.2007.09.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/21/2007] [Indexed: 02/03/2023]
|
217
|
Teng FYH, Hor CHH, Tang BL. Emerging cues mediating astroglia lineage restriction of progenitor cells in the injured/diseased adult CNS. Differentiation 2008; 77:121-7. [PMID: 19281771 DOI: 10.1016/j.diff.2008.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/30/2008] [Accepted: 08/04/2008] [Indexed: 12/16/2022]
Abstract
Other than specific neurogenic regions, the adult central nervous system (CNS) is not conducive for neuronal regeneration and neurogenesis, particularly at sites of injury or neurodegeneration. Engraftment of neural stem/progenitor cells into non-neurogenic regions or sites of injury/disease invariably results mainly in astroglia differentiation. The reasons for such a lineage restriction have not been well defined. Recent findings have brought to light some underlying novel mechanistic basis for this preferential differentiation into astroglia. The more oxidized state of pathological brain tissue leads to upregulation of the protein deacetylase sirtuin 1 (Sirt1). Sirt1 appears to stabilize a co-repressor complex of Hairy/enhancer of split (Hes)1, thereby suppressing expression of the proneuronal transcription factor Mash1, and directs progenitor cell differentiation towards the glia lineage. Sirt1 upregulated by CNS inflammation may also inhibit neuronal differentiation. Myelin-associated inhibitors such as Nogo, acting through the Nogo-66 receptor (NgR), also appear to promote neural stem/progenitor cell differentiation into astrocytes. Understanding the molecular basis of glia lineage restriction of neural progenitors in the injured or diseased CNS would provide handles to improving the success of stem cell-based transplantation therapy.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | | | | |
Collapse
|
218
|
Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 2008; 3:e3336. [PMID: 18852872 PMCID: PMC2566594 DOI: 10.1371/journal.pone.0003336] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 09/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton's jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury. Methodology/Principal Findings We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair. Conclusions/Significance Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.
Collapse
Affiliation(s)
- Chang-Ching Yang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Miau-Hwa Ko
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Shao-Yun Hsu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan, Republic of China
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (HC); (Y-SF)
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
- * E-mail: (HC); (Y-SF)
| |
Collapse
|
219
|
Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol Ther 2008; 16:1873-82. [PMID: 18781144 DOI: 10.1038/mt.2008.189] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neural precursor cells (NPCs) are regarded as a promising source of donor cells in transplantation-based therapies for neurodegenerative disorders. However, poor survival and limited neuronal differentiation of the transplanted NPCs remain critical limitations for developing therapeutic strategies. In this study, we investigated the effects of the proneural basic helix-loop-helix (bHLH) transcription factors Mash1 and Neurogenin 2 (Ngn2) in neuronal differentiation and survival of NPCs. Induction of Mash1 or Ngn2 expression strikingly enhanced neuronal differentiation of cultured NPCs in vitro. Ngn2-transduced NPCs underwent a rapid cell cycle arrest, which often accompanies differentiation. In contrast, cells continuously expanded upon Mash1 expression during NPC differentiation. Notably, sonic hedgehog (SHH) was upregulated by Mash1 and mediated the proliferative and survival effects of Mash1 on NPCs. Upon transplantation into adult rat brains, Mash1-expressing NPCs yielded large grafts enriched with neurons compared to control LacZ-transduced NPCs. Interestingly, enhancements in neuronal yield, as well as in donor cell survival, were also achieved by transplanting Ngn2-transduced NPCs. We show that a differentiation stage- and cell density-dependent survival effect of Ngn2 involves neurotrophin3 (NT3)/TrkC-mediated signaling. Together, these findings suggest potential benefits of bHLH gene manipulation to develop successful transplantation strategies for brain disorders.
Collapse
|
220
|
Plastic responses to spinal cord injury. Behav Brain Res 2008; 192:114-23. [DOI: 10.1016/j.bbr.2008.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/26/2022]
|
221
|
Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 2008; 213:176-90. [DOI: 10.1016/j.expneurol.2008.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 02/03/2023]
|
222
|
Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci 2008; 28:6557-68. [PMID: 18579729 DOI: 10.1523/jneurosci.0134-08.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes. We now report that expression of MEF2CA, both in vitro and in vivo, under regulation of the nestin enhancer effectively produces "neuronal" progenitor cells that differentiate into a virtually pure population of neurons. Histological, electrophysiological, and behavioral analyses demonstrate that MEF2C-directed neuronal progenitor cells transplanted into a mouse model of cerebral ischemia can successfully differentiate into functioning neurons and ameliorate stroke-induced behavioral deficits.
Collapse
|
223
|
Ben Menachem-Zidon O, Goshen I, Kreisel T, Ben Menahem Y, Reinhartz E, Ben Hur T, Yirmiya R. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology 2008; 33:2251-62. [PMID: 17987063 DOI: 10.1038/sj.npp.1301606] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proinflammatory cytokine interleukin-1 (IL-1) within the brain is critically involved in mediating the memory impairment induced by acute inflammatory challenges and psychological stress. However, the role of IL-1 in memory impairment and suppressed neurogenesis induced by chronic stress exposure has not been investigated before now. We report here that mice that were isolated for 4 weeks displayed a significant elevation in hippocampal IL-1beta levels concomitantly with body weight loss, specific impairment in hippocampal-dependent memory, and decreased hippocampal neurogenesis. To examine the causal role of IL-1 in these effects, we developed a novel approach for long-term delivery of IL-1 receptor antagonist (IL-1ra) into the brain, using transplantation of neural precursor cells (NPCs), obtained from neonatal mice with transgenic overexpression of IL-1ra (IL-1raTG) under the glial fibrillary acidic protein promoter. Four weeks following intrahippocampal transplantation of IL-1raTG NPCs labeled with PKH-26, the transplanted cells were incorporated within the dentate gyrus and expressed mainly astrocytic markers. IL-1ra levels were markedly elevated in the hippocampus, but not in other brain regions, by 10 days and for at least 4 weeks post-transplantation. Transplantation of IL-1raTG NPCs completely rescued the chronic isolation-induced body weight loss, memory impairment, and suppressed hippocampal neurogenesis, compared with isolated mice transplanted with WT cells or sham operated. The transplantation had no effect in group-housed mice. These findings elucidate the role of IL-1 in the pathophysiology of chronic isolation and suggest that transplantation of IL-1raTG NPCs may provide a useful therapeutic procedure for IL-1-mediated memory disturbances in chronic inflammatory and neurological conditions.
Collapse
Affiliation(s)
- Ofra Ben Menachem-Zidon
- Department of Psychology, The Hebrew University of Jerusalem, Department of Neurology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
224
|
Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N, Willing AE, Gemma C, Bickford PC, Miller C, Rossi R, Sanberg PR. Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One 2008; 3:e2494. [PMID: 18575617 PMCID: PMC2429976 DOI: 10.1371/journal.pone.0002494] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 05/21/2008] [Indexed: 02/07/2023] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (106 cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10×106, 25×106 and 50×106, were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice. Methodology/Principal Findings Our results showed that a cell dose of 25×106 cells significantly increased lifespan of mice by 20–25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25×106 cells, although prevalent human Th1 cytokines were indicated in mice with 50×106 cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25×106 (mainly) and 10×106 cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25×106 cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25×106 cells. Conclusions/Significance These results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5-16. [PMID: 18387258 DOI: 10.1179/174313208x284070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Collapse
Affiliation(s)
- J Louro
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
226
|
Li H, Chang YW, Mohan K, Su HW, Ricupero CL, Baridi A, Hart RP, Grumet M. Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen. Glia 2008; 56:646-58. [PMID: 18286610 DOI: 10.1002/glia.20643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radial glia are neural stem cells that exist only transiently during central nervous system (CNS) development, where they serve as scaffolds for neuronal migration. Their instability makes them difficult to study, and therefore we have isolated stabilized radial glial clones from E14.5 cortical progenitors (e.g., L2.3) after expression of v-myc. Activated Notch1 intracellular region (actNotch1) promotes radial glia in the embryonic mouse forebrain (Gaiano et al., (2000), and when it was introduced into E14.5 cortical progenitors or radial glial clone L2.3, the cells exhibited enhanced radial morphology and increased expression of the radial glial marker BLBP. A representative clone of L2.3 cells expressing actNotch1 called NL2.3-4 migrated more extensively than L2.3 cells in culture and in white matter of the adult rat spinal cord. Microarray and RT-PCR comparisons of mRNAs expressed in these closely related clones showed extensive similarities, but differed significantly for certain mRNAs including several cell adhesion molecules. Cell adhesion assays demonstrated significantly enhanced adhesion to laminin of NL2.3-4 by comparison to L2.3 cells. The laminin binding protein nidogen was the most highly induced adhesion molecule in NL2.3-4, and immunological analyses indicated that radial glia synthesize and secrete nidogen. Adhesion of NL2.3-4 cells to laminin was inhibited by anti-nidogen antibodies and required the nidogen binding region in laminin, indicating that nidogen promotes cell adhesion to laminin. The combined results indicate that persistent expression of activated Notch1 maintains the phenotype of radial glial cells, inhibits their differentiation, and promotes their adhesion and migration on a laminin/nidogen complex.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G, Tator CH. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. ACTA ACUST UNITED AC 2008; 43:123-76. [PMID: 18706353 DOI: 10.1016/j.proghi.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/07/2008] [Indexed: 12/18/2022]
Abstract
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Iris Kulbatski
- Krembil Neuroscience Centre, Toronto Western Research Institute, 399 Bathurst Street, McLaughlin Pavilion #12-423, Toronto, Ontario, Canada M5T-2S8.
| | | | | | | | | | | | | |
Collapse
|
228
|
Willerth SM, Rader A, Sakiyama-Elbert SE. The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Res 2008; 1:205-18. [PMID: 19383401 DOI: 10.1016/j.scr.2008.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 01/06/2023] Open
Abstract
The goal of this project was to develop 3-D biomaterial scaffolds that present cues to direct the differentiation of embryonic stem (ES) cell-derived neural progenitor cells, seeded inside the scaffolds, into mature neural phenotypes, specifically neurons and oligodendrocytes. Release studies were performed to determine the appropriate conditions for retention of neurotrophin-3 (NT-3), sonic hedgehog, and platelet-derived growth factor (PDGF) by an affinity-based delivery system incorporated into fibrin scaffolds. Embryoid bodies containing neural progenitors were formed from mouse ES cells, using a 4-/4+ retinoic acid treatment protocol, and then seeded inside fibrin scaffolds containing the drug delivery system. This delivery system was used to deliver various growth factor doses and combinations to the cells seeded inside the scaffolds. Controlled delivery of NT-3 and PDGF simultaneously increased the fraction of neural progenitors, neurons, and oligodendrocytes while decreasing the fraction of astrocytes obtained compared to control cultures seeded inside unmodified fibrin scaffolds with no growth factors present in the medium. These results demonstrate that such a strategy can be used to generate an engineered tissue for the potential treatment of spinal cord injury and could be extended to the study of differentiation in other tissues.
Collapse
Affiliation(s)
- Stephanie M Willerth
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
229
|
Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG. Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 2008; 24:E19. [PMID: 18341395 DOI: 10.3171/foc/2008/24/3-4/e18] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in medical and surgical care, the current clinical therapies for spinal cord injury (SCI) are largely ineffective. During the last 2 decades, the search for new therapies has been revolutionized by the discovery of stem cells, which has inspired scientists and clinicians to search for a stem cell-based reparative approaches to many diseases, including neurotrauma. In the present study, the authors briefly summarize current knowledge related to the pathophysiology of SCI, including the concepts of primary and secondary injury and the importance of posttraumatic demyelination. Key inhibitory obstacles that impede axonal regeneration include the glial scar and a number of myelin inhibitory molecules including Nogo. Recent advancements in cell replacement therapy as a therapeutic strategy for SCI are summarized. The strategies include the use of pluripotent human stem cells, embryonic stem cells, and a number of adult-derived stem and progenitor cells such as mesenchymal stem cells, Schwann cells, olfactory ensheathing cells, and adult-derived neural precursor cells. Although current strategies to repair the subacutely injured cord appear promising, many obstacles continue to render the treatment of chronic injuries challenging. Nonetheless, the future for stem cell-based reparative strategies for treating SCI appears bright.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Spinal Program, Krembil Neuroscience Center, Toronto Western Hospital and Division of Genetics and Development, Toronto Western Research Institute, Canada
| | | | | |
Collapse
|
230
|
Lu H, Li M, Song T, Qian Y, Xiao X, Chen X, Zhang P, Feng X, Parker T, Liu Y. Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro. Brain Res Bull 2008; 77:158-64. [PMID: 19875351 DOI: 10.1016/j.brainresbull.2008.02.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022]
Abstract
Poor survival and insufficient neuronal differentiation are the main obstacles to neural stem cell (NSC) transplantation therapy. Genetic modification of NSCs with neurotrophins is considered a promising approach to overcome these difficulties. In this study, the effects on survival, proliferation and neuronal differentiation of human fetal NSCs (hfNSCs) were observed after infection by a neurotrophin-3 (NT-3) recombinant retrovirus. The hfNSCs, from 12-week human fetal brains formed neurospheres, expressed the stem cell marker nestin and differentiated into the three main cell types of the nervous system. NT-3 recombinant retrovirus (Retro-NT-3) infected hfNSCs efficiently expressed NT-3 gene for at least 8 weeks, presented an accelerated proliferation, and therefore produced an increased number of neurospheres and after differentiation in vitro, contained a higher percentage of neuronal cells. Eight weeks after infection, 37.9+/-4.2% of hfNSCs in the Retro-NT-3 infection group expressed the neuronal marker, this was significantly higher than the control and mock infection groups. NT-3 transduced hfNSCs also displayed longer protruding neurites compared with other groups. Combined these results demonstrate that NT-3 modification promote the survival/proliferation, neuronal differentiation and growth of neurites of hfNSCs in vitro. This study proposes recombinant retrovirus mediated NT-3 modification may provide a promising means to resolve the poor survival and insufficient neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Haixia Lu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
In this review, we describe the current therapeutic strategies to find a cure for paralysis. We use the example of DHEA, a neurosteroid normally produced in the developing neural tube, to raise the hypothesis that such a class of molecules, capable of modulating proliferation of committed neural precursors, could serve as an environmental cue in the adult injured spinal cord to promote re-population of CNS lesion with endogenous dormant precursor cells. Such mechanism may be a part of the natural response to heal the injured CNS and promote recovery of function, suggesting that neurosteroid-treatment could be a promising and novel therapeutic avenue for SCI. We will review pertinent biological activities of DHEA supporting this hypothesis, demonstrate that such activities, dependent on an intact sonic-hedgehog pathway, are responsible for the motor and bladder functional recovery observed after DHEA-treatment in the adult injured spinal cord. We will also raise the current limitations to further development of DHEA- or other neurosteroid-treatments as drug candidates, including the urgent need to further document DHEA long-term safety in CNS indications.
Collapse
Affiliation(s)
- Nathalie A Compagnone
- University of California San Francisco, Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, CA, USA.
| |
Collapse
|
232
|
Wang B, Xiao Z, Chen B, Han J, Gao Y, Zhang J, Zhao W, Wang X, Dai J. Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS One 2008; 3:e1856. [PMID: 18365011 PMCID: PMC2266802 DOI: 10.1371/journal.pone.0001856] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/18/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66. CONCLUSIONS/SIGNIFICANCE These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discovery could have profound impact on the understanding of CNS development and could improve the therapy of CNS injuries.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin Han
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Wang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
233
|
Abstract
Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and reported for failed as well as successful experiments and a rigorous scientific approach taken to evaluate the undeniable promise of stem cell biology.
Collapse
Affiliation(s)
- Tim Magnus
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Ying Liu
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Graham C Parker
- Children's Research Center of Michigan, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of MichiganDetroit, MI 48201, USA
| | - Mahendra S Rao
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
- Corporate Research Laboratories, Invitrogen Corporation1620 Faraday Avenue, Carlsbad, CA 92008, USA
- Author for correspondence ()
| |
Collapse
|
234
|
Ross JJ, Verfaillie CM. Evaluation of neural plasticity in adult stem cells. Philos Trans R Soc Lond B Biol Sci 2008; 363:199-205. [PMID: 17282993 PMCID: PMC2605495 DOI: 10.1098/rstb.2006.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The role of stem cells has long been known in reproductive organs and various tissues including the haematopoietic system and skin. During the last decade, stem cells have also been identified in other organs, including the nervous system, both during development and in post-natal life. More recently, evidence has been presented that stem cells thought to be responsible for the generation of mature differentiated cells of one organ, such as haematopoietic stem cells, may have the ability to also differentiate across lineages and contribute to tissues other than haematopoietic cells, including neuronal tissue, suggesting that easily accessible stem cells sources may one day be useful in the therapy of ischaemic (stroke) and also degenerative diseases of the nervous system. Here, we will evaluate the validity of such claims based on a number of criteria we believe need to be fulfilled to definitively conclude that certain stem cells can give rise to functional neural cells that might be suitable for therapy of neural disorders.
Collapse
Affiliation(s)
- Jeffrey J Ross
- Stem Cell Institute, Cell Biology and Development, University of Minnesota Medical SchoolMN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMN 55455, USA
| | - Catherine M Verfaillie
- Stem Cell Institute, Cell Biology and Development, University of Minnesota Medical SchoolMN 55455, USA
- Division of Hematology, Oncology, and Transplantation, Cell Biology and Development, University of Minnesota Medical SchoolMN 55455, USA
- Author for correspondence ()
| |
Collapse
|
235
|
Yin ZS, Zhang H, Wang W, Hua XY, Hu Y, Zhang SQ, Li GW. Wnt-3a protein promote neuronal differentiation of neural stem cells derived from adult mouse spinal cord. Neurol Res 2008; 29:847-54. [PMID: 17609021 DOI: 10.1179/016164107x223539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Wnt proteins as growth factor have multiple functions in neural development, and especially serve key roles in differentiation and development. Wnt-3a is an intercellular signaling molecule that is involved in a variety of morphogenetic events. The purpose of this study was to investigate the effects of Wnt-3a signal protein on proliferation and differentiation of neural stem cells derived from adult mouse spinal cord. METHODS Adult mouse neural stem cells were cultured with serum free incubation. The recombined plasmid pSecTag2/Hygro B-Wnt3a for eukaryotic expression transfected adult neural stem cell, then the expression protein was detected by Western blot. The differentiation of adult neural stem cells was identified by the immunocytochemical technique. RESULTS The inducing differentiated rates of neurons were improved greatly by Wnt-3a protein compared with control (p<0.05). CONCLUSION Wnt-3a has obvious influence on the neuronal differentiation of adult neural stem cell.
Collapse
Affiliation(s)
- Zong-Sheng Yin
- Department of Orthopaedics, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | | | | | | | | | | | | |
Collapse
|
236
|
Suzuki M, Svendsen CN. Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 2008; 31:192-8. [PMID: 18329734 DOI: 10.1016/j.tins.2008.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons within the brain and spinal cord are lost, leading to paralysis and death. Certain growth factors should, in principle, be able to protect dying motor neurons. However, targeted delivery to the spinal cord or brain has been a constant problem. There is also accumulating evidence that glial cells might play a crucial role in maintaining motor neuron function and survival in ALS. Stem cells isolated and expanded in culture can be modified to release growth factors and generate glial cells following transplantation into the spinal cord or brain. As such, they might be able to both detoxify the local environment around dying motor neurons and deliver trophic factors. Here we examine the feasibility of translating these findings into new treatments for ALS patients.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- The Waisman Center and Departments of Anatomy and Neurology, University of Wisconsin-Madison, Madison, WI 53707-2280, USA
| | | |
Collapse
|
237
|
Zhang J, Wang B, Xiao Z, Zhao Y, Chen B, Han J, Gao Y, Ding W, Zhang H, Dai J. Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling. Neuroscience 2008; 153:406-13. [PMID: 18400409 DOI: 10.1016/j.neuroscience.2008.02.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 02/12/2008] [Accepted: 02/20/2008] [Indexed: 02/02/2023]
Abstract
A population of neural progenitor cells (NPCs) has been known to exist in adult spinal cord and migrate toward the lesion regions during spinal cord injury (SCI). Although there are some positive effects of the transplanted olfactory ensheathing cells (OECs) on axonal regeneration in SCI, little is known about the effects and the underlying mechanism of these grafted OECs on NPCs. In this study, we have investigated how soluble factors derived from rat OECs regulate the proliferation and differentiation of rat NPCs. The conditioned medium from cultured OECs showed its ability to promote proliferation and inhibit neuronal differentiation of NPCs. Notch signaling was apparently involved in this process. With the addition of DAPT, which inhibited Notch signaling, the effects of OEC-conditioned medium on NPCs were blocked. We thus conclude that diffusible factors released from OECs activate the Notch signaling pathway to stimulate the proliferation and suppress neuronal differentiation of NPCs. These findings reveal the likely limitation of using OECs transplantation for SCI repair.
Collapse
Affiliation(s)
- J Zhang
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Bambakidis NC, Butler J, Horn EM, Wang X, Preul MC, Theodore N, Spetzler RF, Sonntag VKH. Stem cell biology and its therapeutic applications in the setting of spinal cord injury. Neurosurg Focus 2008; 24:E20. [DOI: 10.3171/foc/2008/24/3-4/e19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
✓ The development of an acute traumatic spinal cord injury (SCI) inevitably leads to a complex cascade of ischemia and inflammation that results in significant scar tissue formation. The development of such scar tissue provides a severe impediment to neural regeneration and healing with restoration of function. A multimodal approach to treatment is required because SCIs occur with differing levels of severity and over different lengths of time. To achieve significant breakthroughs in outcomes, such approaches must combine both neuroprotective and neuroregenerative treatments. Novel techniques modulating endogenous stem cells demonstrate great promise in promoting neuroregeneration and restoring function.
Collapse
Affiliation(s)
- Nicholas C. Bambakidis
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - John Butler
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Eric M. Horn
- 2Indiana University School of Medicine, Indianapolis, Indiana
| | - Xukui Wang
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Mark C. Preul
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Nicholas Theodore
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Robert F. Spetzler
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Volker K. H. Sonntag
- 1Neural Regeneration Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| |
Collapse
|
239
|
Takeda A, Nakano M, Goris R, Funakoshi K. Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 2008; 151:1132-41. [DOI: 10.1016/j.neuroscience.2007.10.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 10/06/2007] [Accepted: 12/14/2007] [Indexed: 12/20/2022]
|
240
|
Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 2008; 60:263-76. [PMID: 18029050 DOI: 10.1016/j.addr.2007.08.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/22/2007] [Indexed: 01/09/2023]
Abstract
This review presents a summary of the various types of cellular therapy used to treat spinal cord injury. The inhibitory environment and loss of axonal connections after spinal cord injury pose many obstacles to regenerating the lost tissue. Cellular therapy provides a means of restoring the cells lost to the injury and could potentially promote functional recovery after such injuries. A wide range of cell types have been investigated for such uses and the advantages and disadvantages of each cell type are discussed along with the research studying each cell type. Additionally, methods of delivering cells to the injury site are evaluated. Based on the current research, suggestions are given for future investigation of cellular therapies for spinal cord regeneration.
Collapse
|
241
|
Whittemore SR, Zhang YP, Shields CB, Magnuson DSK. Optimizing stem cell grafting into the CNS. Methods Mol Biol 2008; 438:375-382. [PMID: 18369772 DOI: 10.1007/978-1-59745-133-8_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grafting neural stem cell to facilitate repair after central nervous system (CNS) injury is being used in many laboratories. The technical challenges of this approach include the ability to maintain the viability of the cells before grafting, to be minimally invasive with the grafting method so as to not do further damage to the host CNS, and to maintain optimal viability of the cells during the grafting process. We outline an approach to CNS stem cell grafting that has evolved in our laboratories over the past decade (1-7). The best approach to graft a given stem cell population is empirical, but we provide parameters with which to quickly delineate that approach.
Collapse
Affiliation(s)
- Scott R Whittemore
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
242
|
Labeling stem cells in vitro for identification of their differentiated phenotypes after grafting into the CNS. Methods Mol Biol 2008; 438:361-74. [PMID: 18369771 DOI: 10.1007/978-1-59745-133-8_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Grafting neural stem cells is a widely used experimental approach to central nervous system (CNS) repair after trauma or neurodegeneration. It is likely to be a realistic clinical therapy for human CNS disorders in the near future. One of the challenges of this approach is the ability to identify both the survival and differentiated phenotype of various stem cell populations after engraftment into the CNS. There is no single protocol that will work for all cell types and all applications. Labeling stem cells for CNS grafting is an empirical process. The type of stem cell, its fate after engraftment, and the context in which it is anatomically and histologically evaluated all contribute to a decision as to the best approach to take. We have provided the range of conditions under which various labels have been successfully used in CNS grafting studies and delineated the parameters that have to be empirically established. Given a clear understanding of the limitations of the respective labels and the expected outcome of the grafting experiment, these labeling guidelines should enable any investigator to develop a successful approach. Our own personal bias is to use labels that cannot be transferred to host cells. Initially, we preferred 5-bromo-2'-deoxyuridine, or retrovirally delivered enhanced green fluorescent protein or lacZ. More recently, we have found syngeneic grafts of human placental alkaline phosphatase stem cells to work very well. However, each investigator will have to decide what is optimal for his or her cell population and experimental design. We summarize the various approaches to labeling and identifying stem cells, pointing out both the limitations and strengths of the various approaches delineated.
Collapse
|
243
|
Haas SJP, Petrov S, Kronenberg G, Schmitt O, Wree A. Orthotopic transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the substantia nigra of hemiparkinsonian rats induces neuronal differentiation and motoric improvement. J Anat 2007; 212:19-30. [PMID: 18036147 DOI: 10.1111/j.1469-7580.2007.00834.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cell grafting is a promising therapeutic option in the treatment of Parkinson's disease. In previous experiments we grafted temperature-sensitive immortalized CSM14.1 cells, derived from the ventral mesencephalon of E14-rats, bilaterally in the caudate putamen of adult hemiparkinsonian rats. In these studies we were not able to demonstrate either a therapeutic improvement or neuronal differentiation of transplanted cells. Here we examined whether CSM14.1 cells grafted bilaterally orthotopically in the substantia nigra of hemiparkinsonian rats have the potential to differentiate into dopaminergic neurons. Adult male rats received 6-hydroxydopamine into the right medial forebrain bundle, and successful lesions were evaluated with apomorphine-induced rotations 12 days after surgery. Two weeks after a successful lesion the animals received bilateral intranigral grafts consisting of either about 50 000 PKH26-labelled undifferentiated CSM14.1 cells (n = 16) or a sham-graft (n = 9). Rotations were evaluated 3, 6, 9 and 12 weeks post-grafting. Animals were finally perfused with 4% paraformaldehyde. Cryoprotected brain slices were prepared for immunohistochemistry using the freeze-thaw technique to preserve PKH26-labelling. Slices were immunostained against neuronal epitopes (NeuN, tyrosine hydroxylase) or glial fibrillary acidic protein. The CSM14.1-cell grafts significantly reduced the apomorphine-induced rotations 12 weeks post-grafting compared to the sham-grafts (P < 0.05). There was an extensive mediolateral migration (400-700 microm) of the PKH26-labelled cells within the host substantia nigra. Colocalization with NeuN or glial fibrillary acidic protein in transplanted cells was confirmed with confocal microscopy. No tyrosine hydroxylase-immunoreactive grafted cells were detectable. The therapeutic effect of the CSM14.1 cells could be explained either by their glial cell-derived neurotrophic factor-expression or their neural differentiation with positive effects on the basal ganglia neuronal networks.
Collapse
|
244
|
Webber DJ, Bradbury EJ, McMahon SB, Minger SL. Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2007; 2:929-45. [DOI: 10.2217/17460751.2.6.929] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous repair after injury in the adult CNS is limited by a number of factors including cellular loss, inflammation, cavitation and glial scarring. Spinal cord neural progenitor cells (SCNPCs) may provide a valuable cellular source for promoting repair following spinal cord injury. SCNPCs are multipotent, can be expanded in vitro, have the capacity to differentiate into CNS cell lineages and are capable of long-term survival following transplantation. Aims & Method: To determine the extent to which SCNPCs may contribute to spinal cord repair SCNPCs isolated from rat fetal spinal cord were expanded ex vivo and transplanted into the adult rat spinal cord after a dorsal column crush lesion. Results: The survival and distribution of transplanted cells were examined at 24 h, 1, 2 and 6 weeks after injury. Transplanted cells were identified at all time points, located mainly at the lesion perimeter, indicating good post-transplant cell survival. Furthermore, SCNPCs maintained their ability to differentiate in vivo, with approximately 40% differentiating into cells with a glial morphology, whilst 8% displayed a neural morphology. Transplanted animals were also assessed on a number of behavioral tasks measuring sensorimotor and proprioceptive function to determine the extent to which SCNPC transplants might attenuate lesion-induced functional deficits. SCNPCs failed to promote significant functional recovery, with a small improvement observed in only one of the four tasks employed, primarily related to improvements in sensory function. Tracing of the corticospinal tract and ascending dorsal column pathway revealed no regeneration of the axons beyond the lesion site. Conclusions: These data indicate that, although transplanted SCNPCs show good survival in the spinal cord injury environment, combination with other treatment strategies is likely to be required for these cells to fully exert their therapeutic potential.
Collapse
Affiliation(s)
- Daniel J Webber
- University of Cambridge, Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
- King’s College London, Stem Cell Biology Laboratory, Wolfson Centre, Guy’s Campus, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
| | - Stephen B McMahon
- King’s College London, Neurorestoration Group, Wolfson Centre for Age Related Disease, Guy’s Campus, London, SE1 1UL, UK
| | - Stephen L Minger
- King’s College London, Stem Cell Biology Laboratory, Wolfson Centre, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
245
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Brännvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K. Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res 2007; 85:2138-46. [PMID: 17520747 DOI: 10.1002/jnr.21358] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Efficient 3D cell systems for neuronal induction are needed for future use in tissue regeneration. In this study, we have characterized the ability of neural stem/progenitor cells (NS/PC) to survive, proliferate, and differentiate in a collagen type I-hyaluronan scaffold. Embryonic, postnatal, and adult NS/PC were seeded in the present 3D scaffold and cultured in medium containing epidermal growth factor and fibroblast growth factor-2, a condition that stimulates NS/PC proliferation. Progenitor cells from the embryonic brain had the highest proliferation rate, and adult cells the lowest, indicating a difference in mitogenic responsiveness. NS/PC from postnatal stages down-regulated nestin expression more rapidly than both embryonic and adult NS/PC, indicating a faster differentiation process. After 6 days of differentiation in the 3D scaffold, NS/PC from the postnatal brain had generated up to 70% neurons, compared with 14% in 2D. NS/PC from other ages gave rise to approximately the same proportion of neurons in 3D as in 2D (9-26% depending on the source for NS/PC). In the postnatal NS/PC cultures, the majority of betaIII-tubulin-positive cells expressed glutamate, gamma-aminobutyric acid, and synapsin I after 11 days of differentiation, indicating differentiation to mature neurons. Here we report that postnatal NS/PC survive, proliferate, and efficiently form synapsin I-positive neurons in a biocompatible hydrogel.
Collapse
Affiliation(s)
- K Brännvall
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
247
|
Divani AA, Hussain MS, Magal E, Heary RF, Qureshi AI. The Use of Stem Cells’ Hematopoietic Stimulating Factors Therapy Following Spinal Cord Injury. Ann Biomed Eng 2007; 35:1647-56. [PMID: 17641973 DOI: 10.1007/s10439-007-9359-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/13/2007] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) remains one of the most devastating conditions in medicine, particularly due to the loss of productive life years and the high economic burden it places on our society. There are limited therapeutic options available to reduce the morbidity and mortality related to SCI. However, recent work with stem cells in repairing SCI appears to be promising, making this one of the most exciting frontiers in medicine. A brief review of the mechanisms of SCI is presented. Stem cells from a variety of sources have shown effectiveness in improving motor function after SCI in animals. The pre-clinical use of stem cells in SCI and methods of delivery are discussed. The potential use of granulocyte-colony stimulating factor (G-CSF) to increase the number of stem cells engrafting at the site of injury in order to improve neurological and motor function recovery following SCI is introduced. G-CSF, through stimulation of lymphohemopoietic stem cells in peripheral blood, can potentially cause repopulation of the SCI region with neural progenitor cells. This allows for improved functional outcomes. More pre-clinical and translational research exploring this possibility is required.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology and Neurosciences, UMDNJ, New Jersey Medical School, Zeenat Qureshi Stroke Research Center, Newark, NJ 07103, USA.
| | | | | | | | | |
Collapse
|
248
|
Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Gujrati M, Rao JS, Dinh DH. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 2007; 24:391-410. [PMID: 17376002 PMCID: PMC1859845 DOI: 10.1089/neu.2006.0142] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human umbilical cord blood stem cells (hUCB) hold great promise for therapeutic repair after spinal cord injury (SCI). Here, we present our preliminary investigations on axonal remyelination of injured spinal cord by transplanted hUCB. Adult male rats were subjected to moderate SCI using NYU Impactor, and hUCB were grafted into the site of injury one week after SCI. Immunohistochemical data provides evidence of differentiation of hUCB into several neural phenotypes including neurons, oligodendrocytes and astrocytes. Ultrastructural analysis of axons reveals that hUCB form morphologically normal appearing myelin sheaths around axons in the injured areas of spinal cord. Colocalization studies prove that oligodendrocytes derived from hUCB secrete neurotrophic hormones neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF). Cord blood stem cells aid in the synthesis of myelin basic protein (MBP) and proteolipid protein (PLP) of myelin in the injured areas, thereby facilitating the process of remyelination. Elevated levels of mRNA expression were observed for NT3, BDNF, MBP and PLP in hUCB-treated rats as revealed by fluorescent in situ hybridization (FISH) analysis. Recovery of hind limb locomotor function was also significantly enhanced in the hUCB-treated rats based on Basso-Beattie-Bresnahan (BBB) scores assessed 14 days after transplantation. These findings demonstrate that hUCB, when transplanted into the spinal cord 7 days after weight-drop injury, survive for at least 2 weeks, differentiate into oligodendrocytes and neurons, and enable improved locomotor function. Therefore, hUCB facilitate functional recovery after moderate SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
Collapse
Affiliation(s)
- Venkata Ramesh Dasari
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Daniel G. Spomar
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Christopher S. Gondi
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Christopher A. Sloffer
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Jasti S Rao
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
249
|
McLeod M, Hong M, Sen A, Sadi D, Ulalia R, Behie LA, Mendez I. Transplantation of bioreactor-produced neural stem cells into the rodent brain. Cell Transplant 2007; 15:689-97. [PMID: 17269440 DOI: 10.3727/000000006783464426] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The development of new cell replacement strategies using neural stem cells (NSC) may provide an alternative and unlimited cell source for clinical neural transplantation in neurodegenerative diseases such as Parkinson's and Huntington's disease. The clinical application of neural transplantation using NSC will therefore depend upon the availability of clinical grade NSC that are generated in unlimited quantities in a standardized manner. In order to investigate the utility of NSC in clinical neural transplantation, undifferentiated murine NSC were first expanded for an extended period of time in suspension bioreactors containing a serum-free medium. Following expansion in suspension bioreactors, NSC were still able to differentiate in vitro into both astrocytes and neurons after exposure to brain-derived neurotrophic factor (BDNF), suggesting that bioreactor expansion does not alter cell lineage potentiality. Undifferentiated bioreactor-expanded NSC were then transplanted into the rodent striatum. Immunohistochemical examination revealed undifferentiated bioreactor-expanded NSC survived transplantation for up to 8 weeks and expressed the astrocytic immunohistochemical marker glial fibrillary acidic protein (GFAP), suggesting that the host striatal environment influences NSC cell fate upon transplantation. Moreover, no tumor formation was observed within the graft site, indicating that NSC expanded in suspension bioreactors for an extended period of time are a safe source of tissue for transplantation. Future studies should focus on predifferentiating NSC towards specific neuronal phenotypes prior to transplantation in order to restore behavioral function in rodent models of neurodegenerative disease.
Collapse
Affiliation(s)
- M McLeod
- Cell Restoration Laboratory, Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | |
Collapse
|
250
|
Ding S, Messam CA, Li P, Selzer ME, Dichter MA, Haydon PG. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CNS. Cell Transplant 2007; 15:699-710. [PMID: 17269441 DOI: 10.3727/000000006783981468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although neural stem and progenitor cells have been shown to differentiate into neurons, few studies have examined the physiological properties of the differentiated neurons derived from stem cells. Here we show that mouse brain progenitor cells (mBPCs) differentiated in culture by removal of mitogenic factors or addition of BDNF or GDNF express neuronal-specific proteins including MAP-2 and synaptobrevin II. However, these cells demonstrate small voltage-gated Na+ currents and are not able to generate action potentials. When the mBPCs are cocultured with developing rat hippocampal neurons, the stem cells differentiate into neurons expressing MAP-2, develop large voltage-gated Na+ currents, and are able to generate action potentials. To investigate the influence of a mature CNS environment on survival, differentiation, migration, and morphological integration, mBPCs were transplanted into the spinal cord of adult mice. Undifferentiated cells transplanted into the spinal cord exhibited limited migration and expressed NG2, but did not differentiate to express MAP-2. Predifferentiated cells migrated to both gray and white matter with about 23% cells developing MAP-2 immunoreactivity after 8 weeks. These results suggest that both the environment and state of differentiation may dictate migration and the differentiation pathway of stem cells after transplantation.
Collapse
Affiliation(s)
- Shinghua Ding
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|