201
|
Jászai J, Janich P, Farkas LM, Fargeas CA, Huttner WB, Corbeil D. Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice. Histochem Cell Biol 2007; 128:409-19. [PMID: 17874118 DOI: 10.1007/s00418-007-0334-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2007] [Indexed: 01/11/2023]
Abstract
The major cephalic exocrine glands share many morphological and functional features and so can be simultaneously affected in certain autoimmune- and inherited disorders leading to glandular hypofunction. Phenotypic characterization of these exocrine glands is not only an interesting biological issue, but might also be of considerable clinical relevance. The major salivary and lacrimal glands might therefore be potential subjects of future cell-based regenerative/tissue engineering therapeutic approaches. In the present study, we described the expression of the stem and progenitor cell marker Prominin-1 and those of its paralogue, Prominin-2, in the three pairs of major salivary glands, i.e., submandibular-, major sublingual-, and parotid glands in adult mice. We have also documented their expression in the extraorbital lacrimal and meibomian glands (Glandulae tarsales) of the eyelid (Palpebra). Our analysis revealed that murine Prominin-1 and Prominin-2 were differentially expressed in these major cephalic exocrine organs. Expression of Prominin-1 was found to be associated with the duct system, while Prominin-2 expression was mostly, but not exclusively, found in the acinar compartment of these organs with marked differences among the various glands. Finally, we report that Prominin-2, like Prominin-1, is released into the human saliva associated with small membrane particles holding the potential for future diagnostic applications.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotec, University of Technology Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
202
|
Gottschling S, Eckstein V, Saffrich R, Jonás A, Uhrig M, Krause U, Seckinger A, Miesala K, Horsch K, Straub BK, Ho AD. Primitive and committed human hematopoietic progenitor cells interact with primary murine neural cells and are induced to undergo self-renewing cell divisions. Exp Hematol 2007; 35:1858-71. [PMID: 17697743 DOI: 10.1016/j.exphem.2007.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/04/2007] [Accepted: 06/18/2007] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Studies in animal models have indicated that hematopoietic progenitor cells (HPC) migrate and home to the central nervous system and might acquire neural features under specific circumstances. The interaction between HPC and the neural environment and the functional effect on hematopoiesis have not yet been defined. METHODS CD34(+)133(+) cells from mobilized peripheral blood were cocultured with primary murine neurons or astrocytes. Chemotaxis and adhesive interactions were studied by applying beta(1)- and beta(2)-integrin function-blocking anibodies. The impact of neural feeder layers on integrin expression of HPC and the presence of appropriate adhesion ligands on neural cells were determined by immunostaining and flow cytometry. The hematopoietic long-term fate was monitored by time-lapse microscopy of individual cell-division history followed by long-term culture-initiating cell (LTC-IC) and colony-forming cell (CFC) assays. Neural differentiation was assessed by immunostaining against specific neuronal and glial antigens. RESULTS The 23.0% +/- 4.9% of HPC showed stromal cell-derived factor-1-induced migration toward neural cells, and 20.2% +/- 1.6% displayed firm beta(1)-integrin-mediated adhesion to astrocytes. The latter expressed appropriate adhesion ligands, stabilized beta(1)-integrin expression, and increased beta(2)-integrin expression of HPC. Neural differentiation of HPC could not be identified but astrocytes were able to induce limited self-renewing cell divisions of HPC and thus maintain 25.8% +/- 3.4% of the initial LTC-IC and 80.7% +/- 1.9% of the initial CFC. CONCLUSION Human HPC are able to interact with neural cells and interaction maintains, albeit to a limited extent, the self-renewal capability of HPC.
Collapse
Affiliation(s)
- Sandra Gottschling
- Department of Medicine V, Ruprecht-Karls University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Yang C, Yang Y, Gupta N, Liu X, He A, Liu L, Zuo J, Chang Y, Fang F. Pentaspan membrane glycoprotein, prominin-1, is involved in glucose metabolism and cytoskeleton alteration. BIOCHEMISTRY (MOSCOW) 2007; 72:854-62. [DOI: 10.1134/s000629790708007x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
204
|
Fargeas CA, Huttner WB, Corbeil D. Nomenclature of prominin-1 (CD133) splice variants - an update. ACTA ACUST UNITED AC 2007; 69:602-6. [PMID: 17498271 DOI: 10.1111/j.1399-0039.2007.00825.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prominin-1 (CD133), a pentaspan membrane glycoprotein that constitutes an important cell surface marker of various, either normal or cancerous, stem cell populations is widely used to isolate or characterize such cells in different systems. Occurring throughout the metazoan evolution with a remarkably conserved genomic organization, it may be expressed as different splice variants with distinctive characteristics. A rational nomenclature has been proposed earlier for their consistent designation across species. Although generally accepted, it seems to be misunderstood in view of the recent report of novel prominin-1 complementary DNAs in rhesus monkey and humans with improper naming. As this may lead to confusion, we have reexamined the genomic organization of prominin-1 in various primates to provide an update that should further clarify the rationale of the nomenclature for prominin-1 gene products. This report comprises (i) the determination of the genomic organization of prominin-1 gene in two non-human primates, i.e. Macaca mulatta and Pan troglodytes, commonly used in research, (ii) the mapping of a new exon that creates an alternative cytoplasmic C-terminal end of prominin-1, (iii) the identification of various potential PDZ-binding domains generated by alternative cytoplasmic C-terminal tails, suggesting that different prominin-1 splice variants might interact with distinct protein partners, and (iv) a summing up of the different prominin-1 splice variants.
Collapse
Affiliation(s)
- C A Fargeas
- Tissue Engineering Laboratories, BIOTEC, Technical University of Dresden, Dresden, Germany
| | | | | |
Collapse
|
205
|
Tsujimura A, Fujita K, Komori K, Takao T, Miyagawa Y, Takada S, Matsumiya K, Nonomur N, Okuyama A. Prostatic stem cell marker identified by cDNA microarray in mouse. J Urol 2007; 178:686-91. [PMID: 17574614 DOI: 10.1016/j.juro.2007.03.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Indexed: 01/10/2023]
Abstract
PURPOSE Identifying prostatic stem cells is important to elucidate the mechanisms by which the prostate develops and control prostate cancer. We recently reported that the proximal region of the mouse prostate contains a population of stem cells. However, to our knowledge the specific marker of stem cells in the proximal region remains unknown. MATERIALS AND METHODS We performed cDNA microarray analysis of cells obtained from the proximal region and from the remaining regions in dorsal prostates to identify several candidate stem cell markers. After we focused on 1 candidate among them we confirmed the expression of this candidate gene by reverse transcriptase-polymerase chain reaction analysis and immunohistochemistry. We also investigated the relation between positive cells for this marker and those for telomerase reverse transcriptase. Finally, we investigated the functional potential of prominin positive cells in 3-dimensional culture. RESULTS Seven of 4,800 genes analyzed showed proximal/remaining ratios greater than 20. Of these genes we focused on prominin because it is a cell surface marker widely used to identify and isolate stem cells from various organs. We found a prominin positive cell population enriched in the basal cell layer in the proximal region, and the coincidence of prominin and telomerase reverse transcriptase immunostaining. We also found that prominin positive cells gave rise to numerous and large-branched ducts, whereas prominin negative cells formed far fewer such structures in 3-dimensional culture. CONCLUSIONS A small population of prominin positive cells in the mouse prostate basal layer of the proximal region represents a stem cell population.
Collapse
Affiliation(s)
- Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Suita and Osaka Police Hospital, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 2007; 67:3153-61. [PMID: 17409422 DOI: 10.1158/0008-5472.can-06-4429] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding normal and cancer stem cells may provide insight into the origin of and new therapeutics for prostate cancer. Normal and cancer stem cells in prostate have recently been identified with a CD44(+)/alpha(2)beta(1)(high)/CD133(+) phenotype. Stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, have multiple essential functions, including homing of stem cells and metastasis of cancer cells. We show here that human telomerase reverse transcriptase (hTERT)-immortalized primary nonmalignant (RC-165N/hTERT) and malignant (RC-92a/hTERT) tumor-derived human prostate epithelial cell lines retain stem cell properties with a CD133(+)/CD44(+)/alpha(2)beta(1)(+)/34betaE12(+)/CK18(+)/p63(-)/androgen receptor (AR)(-)/PSA(-) phenotype. Higher CD133 expression was detected in the hTERT-immortalized cells than in primary prostate cells. These immortalized cells exhibited "prostaspheres" in nonadherent culture systems and also maintained higher CD133 expression. The CD133(+) cells from these immortalized cell lines had high proliferative potential and were able to differentiate into AR(+) phenotype. In three-dimensional culture, the CD133(+) cells from RC-165N/hTERT cells produced branched structures, whereas the CD133(+) cells from RC-92a/hTERT cells produced large irregular spheroids with less branched structures. SDF-1 induced, but anti-CXCR4 antibody inhibited, migration of CD133(+) cells from RC-92a/hTERT cells, which coexpressed CXCR4. CXCR4/SDF-1 may sustain tumor chemotaxis in cancer stem cells. Furthermore, immunostaining of clinical prostate specimens showed that CD133 expression was detected in a subpopulation of prostate cancer cells and corresponded to the loss of AR. Expression of CXCR4 was also detected in CD133(+) cancer cells. These novel in vitro models may offer useful tools for the study of the biological features and functional integration of normal and cancer stem cells in prostate.
Collapse
Affiliation(s)
- Jun Miki
- Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
The research on cancer stem cells is a new hot spot in at present. The hypothesis indicates cancer stem cells, which were possibly the origin of the cancer, come from normal stem cells. For their special characters, normal stem cells can differentiate into tumor cells more easily than adult cells. Stem cells transform into malignant cancer stem cells possibly because of gene mutation, abnormal asymmetry and cell fusion. It is a main method to obtain cancer stem cells by flow cytometer using different protein markers and fluorescent probes. It is demonstrated that cancer stem cells are very powerful in self-renewal, proliferation, and differentiation. Targeting on cancer stem cells, early diagnosis for cancers might be achieved.
Collapse
|
208
|
Abstract
The study of human brain tumors has characteristically emphasized the molecular and cellular analysis of the bulk tumor. There is increasing evidence in brain tumors and other malignancies that the tumor clone is functionally heterogeneous, however, existing in a cellular hierarchy based on small subpopulations of stem cells. These concepts were first definitively demonstrated in human acute myelogenous leukemia, in which regeneration of a diversely heterogeneous human leukemia cell population in a xenograft mouse model occurred only after injection of a rare relatively homogeneous population of leukemic cells that expressed hematopoietic stem cell markers. Recently, through advances in understanding of normal neural stem cell biology, the use of techniques for cell purification by flow cytometry, and the development of cell functional assays in vivo, the time was made ripe for several groups to characterize brain tumor stem cells (BTSCs). The BTSC resides in the cell fraction expressing the neural precursor cell surface marker CD133.
Collapse
Affiliation(s)
- Sheila Singh
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Suite 1503, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
209
|
Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CAM. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007; 43:935-46. [PMID: 17320377 DOI: 10.1016/j.ejca.2007.01.017] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/27/2006] [Accepted: 01/12/2007] [Indexed: 12/15/2022]
Abstract
The failure to eradicate most cancers and in particular melanoma may be as fundamental as a misidentification of the target. The identification of cancer stem/initiating cells within the tumour population with a crucial role for tumour formation may open new pharmacological perspectives. Our data show three main novelties for human melanoma: firstly, melanoma biopsy contains a subset of cells expressing CD133 (CD133+) and the latter is able to develop a Mart-1 positive tumour in NOD-SCID mice. Secondly, the WM115, a human melanoma cell line, has been found to express both CD133 and ABCG2 markers. This cell line grows as floating spheroids, expresses typical progenitors and mature neuronal/oligodendrocyte markers and is able to transdifferentiate into astrocytes or mesenchymal lineages under specific growth conditions. As in xenografts generated with CD133+ biopsy melanoma cells, those produced by the cell line displayed lower levels of CD133 and ABCG2. Thirdly, the WM115 cells express the most important angiogenic and lymphoangiogenic factors such as notch 4, prox1 and podoplanin which can cooperate in the development of the tumourigenic capability of melanoma in vivo. Therefore, in this study, we demonstrate the presence of stem/initiating subsets in melanoma both in biopsy and in an established melanoma cell line grown in vitro and in xenografts. Interestingly, considering that melanoma gives metastasis primarily through lymphatic vessels, herein, we demonstrated that a melanoma cell line expresses typical lymphoangiogenic factors.
Collapse
Affiliation(s)
- Elena Monzani
- Department of Biomolecular Science and Biotechnology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U, Camussi G. CD133+ renal progenitor cells contribute to tumor angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2223-35. [PMID: 17148683 PMCID: PMC1762463 DOI: 10.2353/ajpath.2006.060498] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we tested the hypothesis that resident progenitor cells may contribute to tumor vascularization and growth. CD133+ cells were isolated from 30 human renal carcinomas and characterized as renal resident progenitor cells on the basis of the expression of renal embryonic and mesenchymal stem cell markers. CD133+ progenitors differentiated into endothelial and epithelial cells as the normal CD133+ counterpart present in renal tissue. In the presence of tumor-derived growth factors, these cells were committed to differentiate into endothelial cells able to form vessels in vivo in SCID mice. Undifferentiated CD133+ progenitors were unable to form tumors when transplanted alone in SCID mice. When co-transplanted with renal carcinoma cells, CD133+ progenitors significantly enhanced tumor development and growth. This effect was not attributable to the tumorigenic nature of CD133+ progenitor cells because the same results were obtained with CD133+ cells from normal kidney. CD133+ progenitors contributed to tumor vascularization as the majority of neoformed vessels present within the transplanted tumors were of human origin and derived from the co-transplanted CD133+ progenitors. In conclusion, these results indicate the presence of a renal progenitor cell population in renal carcinomas that may differentiate in endothelial cells and favor vascularization and tumor growth.
Collapse
Affiliation(s)
- Stefania Bruno
- Cattedra di Nefrologia, Dipartimento di Medicina Interna, Università di Torino, Ospedale Maggiore S. Giovanni Battista, Corso Dogliotti 14, 10126, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
211
|
Kneller JM, Ehlen T, Matisic JP, Miller D, Van Niekerk D, Lam WL, Marra M, Richards-Kortum R, Follen M, MacAulay C, Jones SJ. Using LongSAGE to Detect Biomarkers of Cervical Cancer Potentially Amenable to Optical Contrast Agent Labelling. Biomark Insights 2007. [DOI: 10.1177/117727190700200020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sixteen longSAGE libraries from four different clinical stages of cervical intraepithelial neoplasia have enabled us to identify novel cell-surface biomarkers indicative of CIN stage. By comparing gene expression profiles of cervical tissue at early and advanced stages of CIN, several genes are identified to be novel genetic markers. We present fifty-six cell-surface gene products differentially expressed during progression of CIN. These cell surface proteins are being examined to establish their capacity for optical contrast agent binding. Contrast agent visualization will allow real-time assessment of the physiological state of the disease process bringing vast benefit to cancer care. The data discussed in this publication have been submitted to NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ ) and are accessible through GEO Series accession number GSE6252.
Collapse
Affiliation(s)
- Julie M. Kneller
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Thomas Ehlen
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jasenka P. Matisic
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Dianne Miller
- Department of Gynaecologic Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dirk Van Niekerk
- Cervical Cancer Screening Program, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wan L. Lam
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marco Marra
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | - Michelle Follen
- University of Texas M.D. Anderson Cancer Center, Department of Gynecologic Oncology and Biomedical Engineering Center, Houston, TX, U.S.A
| | - Calum MacAulay
- Cancer Imaging, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
212
|
Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J, McNiece IK. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 2006; 7:509-19. [PMID: 16306013 DOI: 10.1080/14653240500363216] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human mesenchymal stem cells (hMSC) have been isolated and characterized extensively for a variety of clinical applications. Yet it is unclear how the phenomenon of hMSC plasticity can be safely and reasonably exploited for therapeutic use. METHODS We have generated mesenchymal stem cells (MSC) from normal human BM and identified a novel cell population with a transformed phenotype. This cell population was characterized by morphologic, immunophenotypic, cytogenetic analyzes and telomerase expression. Its tumorigenicity in NOD/SCID mice was also studied. RESULTS A subpopulation of cells in hMSC culture was noted to appear morphologically distinct from typical MSC. The cells were spherical, cuboidal to short spindle in shape, adherent and exhibited contact independent growth. Phenotypically the cells were CD133(+), CD34(-), CD45(-), CD90(low), CD105(-), VEGFR2(+). Cytogenetic analysis showed chromosome aneuploidy and translocations. These cells also showed a high level of telemerase activity compared with typical MSC. Upon transplantation into NOD/SCID mice, multiple macroscopic solid tumors formed in multiple organs or tissues. Histologically, these tumors were very poorly differentiated and showed aggressive growth with large areas of necrosis. DISCUSSION The possible explanations for the origin of this cell population are: (1) the cells represent a transformed population of MSC that developed in culture; (2) abnormal cells existed in the donor BM at rare frequency and subsequently expanded in culture. In either case, the MSC culture may provide a suitable environment for transformed cells to expand or propagate in vitro. In summary, our data demonstrate the potential of transformed cells in hMSC culture and highlight the need for karyotyping as a release criteria for clinical use of MSC.
Collapse
Affiliation(s)
- Y Wang
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
The concept of an Endothelial Progenitor Cell (EPC) that participates in adult angiogenesis is less than a decade old, yet it has received a great deal of attention due to its potential for cell-based clinical therapies in many pathologies. However, controversy remains as to the identity of this bone marrow-derived cell type and its ability to give rise to new endothelium in the adult. Reports on the contribution of EPCs to new vessels in ischemic tissue or tumors vary widely, ranging from 80-90% to negligible. As researchers hone their ability to identify, isolate, and expand these cells by their markers and functionality, mounting evidence suggests that they might constitute multiple, but related cell types. At least two general phenotypes have emerged from studies of bone marrow-derived cells contributing to angiogenesis: one that incorporates into the endothelial wall directly contributing to vascular expansion and another that is able to home to neovessels, but it locates behind the endothelial wall. Nonetheless, experimental evidence indicates that this second cell type supports the viability of newly formed vessels and thus it is equally relevant to neovascular growth. As our understanding of neovascularization in pathologic states expands, a more clear definition of the multiple cellular components required for the process will shed light into new models of therapeutic intervention. The identification of a cell type that could be isolated, expanded and infused into a patient would be very useful for promoting angiogenesis in ischemia, myocardial infarct and other pathologies.
Collapse
Affiliation(s)
- Chad L Barber
- Molecular Biology Institute, University of California, Los Angeles, 90095, USA
| | | |
Collapse
|
214
|
Fargeas CA, Fonseca AV, Huttner WB, Corbeil D. Prominin-1 (CD133): from progenitor cells to human diseases. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.2.213] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
215
|
Abstract
The prostate gland is the site of the most commonly diagnosed cancer in men in USA and UK, accounting for one in five of new cases of male cancer. Common with many other cancer types, prostate cancer is believed to arise from a stem cell that shares characteristics with the normal stem cell. Normal prostate epithelial stem cells were recently identified and found to have a basal cell phenotype together with expression of CD133. Preliminary data have now emerged for a prostate cancer stem cell that also expresses cell surface CD133 but lacks expression of the androgen receptor. Here we examine the evidence supporting the existence of prostate cancer stem cells and discuss possible mechanisms of stem cell maintenance.
Collapse
Affiliation(s)
- S Rizzo
- The Bob Champion Prostate Stem Cell Laboratory, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, UK, SM2 5NG
| | | | | |
Collapse
|
216
|
Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005; 118:2849-58. [PMID: 15976444 DOI: 10.1242/jcs.02439] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apical plasma membrane constituents of mammalian neural stem/progenitor cells have recently been implicated in maintaining their stem/progenitor cell state. Here, we report that in the developing embryonic mouse brain, the fluid in the lumen of the neural tube contains membrane particles carrying the stem cell marker prominin-1 (CD133), a pentaspan membrane protein found on membrane protrusions of the apical surface of neuroepithelial cells. Two size classes of prominin-1-containing membrane particles were observed in the ventricular fluid: approximately 600-nm particles, referred to as P2 particles, and 50-80-nm vesicles, referred to as P4 particles. The P2 and P4 particles appeared in the ventricular fluid at the very onset and during the early phase of neurogenesis, respectively. Concomitant with their appearance, the nature of the prominin-1-containing apical plasma membrane protrusions of neuroepithelial cells changed, in that microvilli were lost and large pleiomorphic protuberances appeared. P4 particles were found in various body fluids of adult humans, including saliva, seminal fluid and urine, and were released by the epithelial model cell line Caco-2 upon differentiation. Importantly, P4 particles were distinct from exosomes. Our results demonstrate the widespread occurrence of a novel class of extracellular membrane particles containing proteins characteristic of stem cells, and raise the possibility that the release of the corresponding membrane subdomains from the apical surface of neural progenitors and other epithelial cells may have a role in tissue development and maintenance. Moreover, the presence of prominin-1-containing membrane particles in human body fluids may provide the basis for a protein-based diagnosis of certain diseases.
Collapse
Affiliation(s)
- Anne-Marie Marzesco
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
217
|
Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB, Corbeil D. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 2005; 583:897-902. [PMID: 15976444 DOI: 10.1016/j.febslet.2009.01.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/24/2009] [Accepted: 01/27/2009] [Indexed: 01/11/2023] Open
Abstract
Apical plasma membrane constituents of mammalian neural stem/progenitor cells have recently been implicated in maintaining their stem/progenitor cell state. Here, we report that in the developing embryonic mouse brain, the fluid in the lumen of the neural tube contains membrane particles carrying the stem cell marker prominin-1 (CD133), a pentaspan membrane protein found on membrane protrusions of the apical surface of neuroepithelial cells. Two size classes of prominin-1-containing membrane particles were observed in the ventricular fluid: approximately 600-nm particles, referred to as P2 particles, and 50-80-nm vesicles, referred to as P4 particles. The P2 and P4 particles appeared in the ventricular fluid at the very onset and during the early phase of neurogenesis, respectively. Concomitant with their appearance, the nature of the prominin-1-containing apical plasma membrane protrusions of neuroepithelial cells changed, in that microvilli were lost and large pleiomorphic protuberances appeared. P4 particles were found in various body fluids of adult humans, including saliva, seminal fluid and urine, and were released by the epithelial model cell line Caco-2 upon differentiation. Importantly, P4 particles were distinct from exosomes. Our results demonstrate the widespread occurrence of a novel class of extracellular membrane particles containing proteins characteristic of stem cells, and raise the possibility that the release of the corresponding membrane subdomains from the apical surface of neural progenitors and other epithelial cells may have a role in tissue development and maintenance. Moreover, the presence of prominin-1-containing membrane particles in human body fluids may provide the basis for a protein-based diagnosis of certain diseases.
Collapse
Affiliation(s)
- Anne-Marie Marzesco
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|