201
|
Affiliation(s)
- Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke Sherbrooke, Québec JIH 5N4, Canada
| |
Collapse
|
202
|
Fohrer H, Audit IM, Sainz A, Schmitt C, Dezutter-Dambuyant C, Dalloul AH. Analysis of transcription factors in thymic and CD34+ progenitor-derived plasmacytoid and myeloid dendritic cells: evidence for distinct expression profiles. Exp Hematol 2004; 32:104-12. [PMID: 14725907 DOI: 10.1016/j.exphem.2003.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The expression of mRNA for pre-Talpha is specific for human plasmacytoid dendritic cells (PDC), a population ontogenically close to T cells. The latter need Gata-3 transcription factor to develop. PU1 and RelB are two transcription factors involved in the development of murine myeloid DC (MDC). To determine the lineage origin of human thymic DC, the expression of these genes was investigated. MATERIALS AND METHODS Fresh thymic DC, CD34(+)CD1a(-) progenitors, and progenitor-derived DC populations were sorted, analyzed, and compared to blood DC. RESULTS Three DC populations were found in the thymus. 1) CD123(-/lo)HLA-DR(hi) DC expressing PU1 and RelB; 2) CD123(hi)HLA-DR(+) DC expressing only pre-Talpha, the expression of which was similar to that of MDC and PDC from peripheral blood; and 3) a new mature CD123(hi)HLA-DR(hi) PDC population with pre-Talpha, PU1 and RelB mRNAs. In culture, most CD34(+)CD1a(-) progenitors remained CD1a(-)CD123(-); had a T and natural killer cell differentiation potential; and expressed Gata-3 mRNA contrary to DC precursors. A few cells (10%) became CD1a(+)CD123(+) expressing pre-Talpha, PU1, and RelB mRNAs and were able to differentiate into typical Langerhans cells with transforming growth factor-beta. Coculture of thymic progenitors on a murine cell line generated CD123(hi)CD1a(-) cells with typical PDC morphology, expressing pre-Talpha but not PU1 and RelB transcripts. Activated PDC acquired myeloid antigens, and up-regulated PU1 and RelB mRNAs while down-regulating pre-Talpha mRNA expression. CONCLUSION Both DC maturation pathways may arise from distinct precursors but are interconnected. DC differentiation seems to occur from Gata-3(-) precursors upstream of T and natural killer precursors.
Collapse
Affiliation(s)
- Hélène Fohrer
- INSERM U543, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
203
|
Hsu K, Look AT, Kanki JP. Lessons from Transgenic Zebrafish Expressing the Green Fluorescent Protein (GFP) in the Myeloid Lineage. Methods Cell Biol 2004; 77:333-47. [PMID: 15602920 DOI: 10.1016/s0091-679x(04)77018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Karl Hsu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
204
|
Affiliation(s)
- Bruce C Trapnell
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
205
|
Schweitzer BL, DeKoter RP. Analysis of Gene Expression and Ig Transcription in PU.1/Spi-B-Deficient Progenitor B Cell Lines. THE JOURNAL OF IMMUNOLOGY 2003; 172:144-54. [PMID: 14688320 DOI: 10.4049/jimmunol.172.1.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.
Collapse
Affiliation(s)
- Brock L Schweitzer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 3006, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
206
|
Salas M, Eckhardt LA. Critical Role for the Oct-2/OCA-B Partnership in Ig-Secreting Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6589-98. [PMID: 14662861 DOI: 10.4049/jimmunol.171.12.6589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B and T lymphocytes arise from a common precursor in the bone marrow, but ultimately acquire very different functions. The difference in function is largely attributable to the expression of tissue-specific transcription factors that activate discrete sets of genes. In previous studies we and others have shown that the specialized genes expressed by Ig-secreting cells cease transcription when these cells are fused to a T lymphoma. The extinguished genes include those encoding Ig, J chain, and the transcription factors Oct-2, PU.1, and the coactivator OCA-B. Remarkably, if we sustain Oct-2 expression during cell fusion, all the other tissue-specific genes of the Ig-secreting cell simultaneously escape silencing. This suggests that Oct-2 plays a central role in maintaining the gene expression program of these cells. In the present studies we have investigated the roles of the transcription factor PU.1 and the coactivator OCA-B within the hierarchy of regulatory factors that sustain Ig-secreting cell function. Our results show that OCA-B and Oct-2 are regulatory partners in this process and that PU.1 plays a subordinate role at this cell stage.
Collapse
Affiliation(s)
- Mabel Salas
- Department of Biological Sciences, Hunter College and Graduate Center of City University of New York, New York, NY 10021, USA
| | | |
Collapse
|
207
|
Rekhtman N, Choe KS, Matushansky I, Murray S, Stopka T, Skoultchi AI. PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 2003; 23:7460-74. [PMID: 14559995 PMCID: PMC207581 DOI: 10.1128/mcb.23.21.7460-7474.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PU.1 and GATA-1 are two hematopoietic specific transcription factors that play key roles in development of the myeloid and erythroid lineages, respectively. The two proteins bind to one another and inhibit each other's function in transcriptional activation and promotion of their respective differentiation programs. This mutual antagonism may be an important aspect of lineage commitment decisions. PU.1 can also act as an oncoprotein since deregulated expression of PU.1 in erythroid precursors causes erythroleukemias in mice. Studies of cultured mouse erythroleukemia cell lines indicate that one aspect of PU.1 function in erythroleukemogenesis is its ability to block erythroid differentiation by repressing GATA-1 (N. Rekhtman, F. Radparvar, T. Evans, and A. I. Skoultchi, Genes Dev. 13:1398-1411, 1999). We have investigated the mechanism of PU.1-mediated repression of GATA-1. We report here that PU.1 binds to GATA-1 on DNA. We localized the repression activity of PU.1 to a small acidic N-terminal domain that interacts with the C pocket of pRB, a well-known transcriptional corepressor. Repression of GATA-1 by PU.1 requires pRB, and pRB colocalizes with PU.1 and GATA-1 at repressed GATA-1 target genes. PU.1 and pRB also cooperate to block erythroid differentiation. Our results suggest that one of the mechanisms by which PU.1 antagonizes GATA-1 is by binding to it at GATA-1 target genes and tethering to these sites a corepressor that blocks transcriptional activity and thereby erythroid differentiation.
Collapse
Affiliation(s)
- Natasha Rekhtman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
208
|
Ishii H, Sen R, Pazin MJ. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins. J Biol Chem 2003; 279:7331-8. [PMID: 14660676 DOI: 10.1074/jbc.m308973200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNase I-hypersensitive sites in cellular chromatin are usually believed to be nucleosome-free regions generated by transcription factor binding. Using a cell-free system we show that hypersensitivity does not simply correlate with the number of DNA-bound proteins. Specifically, the leucine zipper containing basic helix-loop-helix protein TFE3 was sufficient to induce a DNase I-hypersensitive site at the immunoglobulin heavy chain micro enhancer in vitro. TFE3 enhanced binding of an ETS protein PU.1 to the enhancer. However, PU.1 binding erased the DNase I-hypersensitive site without abolishing TFE3 binding. Furthermore, TFE3 binding enhanced transcription in the presence and absence of a hypersensitive site, whereas endonuclease accessibility correlated strictly with DNase I hypersensitivity. We infer that chromatin constraints for transcription and nuclease sensitivity can differ.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
209
|
Suzuki M, Yamada T, Kihara-Negishi F, Sakurai T, Oikawa T. Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression. Oncogene 2003; 22:8688-98. [PMID: 14647463 DOI: 10.1038/sj.onc.1207182] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PU.1, a member of the Ets family of transcription factors, is implicated in hematopoietic cell differentiation through its interactions with other transcriptional factors and cofactors. To identify a novel protein(s) binding to PU.1, we carried out affinity purification using a column of Glutathione-Sepharose beads bound to GST-PU.1 fusion protein and isolated several individual proteins using murine erythroleukemia (MEL) cell extracts. Sequence analysis of these proteins revealed that one was MeCP2 a methyl CpG binding protein. GST-pull-down assay and immunoprecipitation assay showed that PU.1 bound directly to MeCP2 via its Ets domain and MeCP2 bound to PU.1 via either its amino terminal domain or trans-repression domain. MeCP2 repressed transcriptional activity of PU.1 on a reporter construct with trimerized PU.1 binding sites. This downregulation was recovered in the presence of histone deacetylase inhibitor, trichostatin A (TSA). MeCP2 was integrated in PU.1-mSin3A-HDAC complex but not in PU.1-CBP complex. Chromatin immunoprecipitation (ChIP) assays showed that PU.1 and MeCP2 were collocated at the PU.1 binding site on the reporter construct and the PU.1 binding site of the intervening sequence 2 (IVS2) region in the intron of the beta-globin gene, which has been proposed to regulate expression of the gene, in undifferentiated MEL cells. The complex disappeared from the region during the course of erythroid differentiation of MEL cells. Our results suggest that MeCP2 acts as a corepressor of PU.1 probably due to facilitating complex formation with mSin3A and HDACs.
Collapse
Affiliation(s)
- Mitsuhiro Suzuki
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | |
Collapse
|
210
|
Marden C, Cunninghame Graham D, Thrasher A, Casimir C. A functional ISRE is required for myeloid transcription of the p47phox gene. ACTA ACUST UNITED AC 2003; 1630:117-22. [PMID: 14654241 DOI: 10.1016/j.bbaexp.2003.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of p47(phox), a component of the phagocytic NADPH oxidase, is both tissue-specific and developmentally regulated. We have investigated transcription from the p47(phox) gene promoter by reporter gene analysis of myeloid PLB985 cells stably transfected with a series of p47(phox) promoter constructs. Stable transfection with constructs containing up to 3100 bp of proximal promoter sequence demonstrated that as little as 144 bp of proximal promoter sequence was able to direct significant reporter gene activity in myeloid cells, but not in HeLa cells. Mutation of a previously uncharacterised interferon-stimulated response element (ISRE) consensus located at positions -104 to-116, or of an established binding site for the Ets family transcription factor, PU.1 (located at positions -39 to -44), abolished transcription in stably transfected myeloid cells. Electrophoretic mobility shift analysis (EMSA) with myeloid cell nuclear extracts demonstrated that an oligonucleotide containing the p47(phox) ISRE consensus was able to compete binding at another bona fide ISRE. Complexes formed on the p47(phox) ISRE itself were competed by other ISRE consensus sequences. We conclude that transcription of p47(phox) in myeloid cells requires a functional ISRE in addition to the previously identified PU.1 binding site.
Collapse
Affiliation(s)
- Chloe Marden
- Department of Haematology, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
211
|
Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SMN, Paw BH, Zon LI, Lieschke GJ. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 2003; 102:3238-40. [PMID: 12869502 DOI: 10.1182/blood-2003-03-0966] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3 kilobase promoter fragment immediately upstream of the spi1 coding sequence was sufficient to drive expression of enhanced green fluorescent protein (EGFP) in injected embryos in a manner that largely recapitulated the native spi1 gene expression pattern. This fragment was successfully used to produce a germ line transgenic line of zebrafish with EGFP-expressing myeloid cells. These TG(spi1:EGFP)pA301 transgenic zebrafish represent a valuable tool for further studies of myeloid development and its perturbation.
Collapse
Affiliation(s)
- Alister C Ward
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2003; 103:1883-90. [PMID: 14592841 DOI: 10.1182/blood-2003-06-1978] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Constitutively activating mutations of FMS-like tyrosine kinase 3 (FLT3) occur in approximately one third of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Altered FLT3 signaling leads to antiapoptotic and proliferative signaling pathways. We recently showed that these mutations can also contribute to the differentiation arrest that characterizes leukemia. In this report we investigated the mechanism by which internal tandem duplication (ITD) mutation of FLT3 signaling blocks differentiation. Normally, myeloid differentiation requires the induction of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and PU.1 expression. Expression of both genes was repressed by FLT3/ITD signaling in 32Dcl3 (32D) cells and this repression was overcome by treatment with a FLT3 inhibitor, allowing differentiation to proceed. We also observed increased expression of C/EBPalpha and PU.1 accompanied by signs of differentiation in 2 of 3 primary AML samples from patients with FLT3/ITD mutations receiving a FLT3 inhibitor, CEP-701, as part of a clinical trial. Forced expression of C/EBPalpha was also able to overcome FLT3/ITD-mediated differentiation block, further proving the importance of C/EBPalpha in this process.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | |
Collapse
|
213
|
Ano S, Pereira R, Pironin M, Lesault I, Milley C, Lebigot I, Quang CT, Ghysdael J. Erythroblast transformation by FLI-1 depends upon its specific DNA binding and transcriptional activation properties. J Biol Chem 2003; 279:2993-3002. [PMID: 14570912 DOI: 10.1074/jbc.m303816200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FLI-1 is a transcriptional regulator of the ETS family of proteins. Insertional activation at the FLI-1 locus is an early event in F-murine leukemia virus-induced erythroleukemia. Consistent with its essential role in erythroid transformation, enforced expression of FLI-1 in primary erythroblasts strongly impairs the response of these cells to erythropoietin (Epo), a cytokine essential to erythropoiesis. We show here that point mutations in the ETS domain that abolished FLI-1 binding to specific DNA elements (ETS-binding sites) suppressed the ability of FLI-1 to transform erythroblasts. The exchange of the entire ETS domain (DNA binding domain) of FLI-1 for that of PU.1 changed the DNA binding specificity of FLI-1 for that of PU.1 and impaired FLI-1 transforming properties. In contrast, ETS domain swapping mutants that maintained the DNA binding specificity of FLI-1 did not affect the ability of FLI-1 to transform erythroblasts. Deletion and swapping mutants that failed to inhibit the DNA binding activity of FLI-1 but impaired its transcriptional activation properties were also transformation-defective. Taken together, these results show that both the ability of FLI-1 to inhibit Epo-induced differentiation of erythroblasts and to confer enhanced cell survival in the absence of Epo critically depend upon FLI-1 ETS-binding site-dependent transcriptional activation properties.
Collapse
Affiliation(s)
- Sabine Ano
- CNRS UMR 146, Institut Curie, Centre Universitaire, Bâatiment 110, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Kummalue T, Friedman AD. Cross-talk between regulators of myeloid development: C/EBPalpha binds and activates the promoter of the PU.1 gene. J Leukoc Biol 2003; 74:464-70. [PMID: 12949251 DOI: 10.1189/jlb.1202622] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP)alpha and PU.1 are required for myelopoiesis. Examination of the murine PU.1 promoter revealed several potential C/EBP-binding sites. Gel-shift assay demonstrated that C/EBPalpha expressed in 293T cells bound the site centered at -68 most potently. C/EBPalpha from 32D cl3 myeloid cell nuclear extracts also bound this site strongly, and endogenous C/EBPbeta did so to a lesser extent, whereas these C/EBP isoforms bound the neutrophil elastase promoter with equal affinity. The -68 site in the murine PU.1 promoter is conserved in the human PU.1 promoter. Mutation of the -68 C/EBP-binding site in a -85/+152 promoter segment linked to the luciferase cDNA reduced promoter activity fourfold in 293T cells in the presence of cotransfected C/EBPalpha and twofold in 32D cl3 myeloid cells. Induction of endogenous PU.1 RNA by C/EBPalpha-estradiol receptor (ER) in the presence of cycloheximide is obviated by mutation of the C/EBPalpha DNA-binding domain, and chromosomal immunoprecipitation demonstrated specific interaction of C/EBPalpha and C/EBPalpha-ER with the PU.1 promoter. Finally, PU.1 RNA is reduced several-fold in immortalized C/EBPalpha (-/-) compared with (+/-) cells. Together, these findings indicate that C/EBPalpha binds and activates the endogenous PU.1 gene in myeloid cells. Induction of PU.1 by C/EBPalpha may account for increased levels of PU.1 in myeloid as compared with B lymphoid cells and in this way, may contribute to the specification of myeloid progenitors.
Collapse
Affiliation(s)
- Tanawan Kummalue
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
215
|
Iwasaki H, Mizuno SI, Wells RA, Cantor AB, Watanabe S, Akashi K. GATA-1 Converts Lymphoid and Myelomonocytic Progenitors into the Megakaryocyte/Erythrocyte Lineages. Immunity 2003; 19:451-62. [PMID: 14499119 DOI: 10.1016/s1074-7613(03)00242-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GATA-1 is an essential transcription factor for megakaryocyte and erythrocyte (MegE) development. Here we show that hematopoietic progenitors can be reprogrammed by the instructive action of GATA-1. Enforced expression of GATA-1 in hematopoietic stem cells led to loss of self-renewal activity and the exclusive generation of MegE lineages. Strikingly, ectopic GATA-1 reprogrammed common lymphoid progenitors as well as granulocyte/monocyte (GM) progenitors to differentiate into MegE lineages, while inhibiting normal lymphoid or GM differentiation. GATA-1 upregulated critical MegE-related transcription factors such as FOG-1 and GATA-2 in lymphoid and GM progenitors, and their MegE development did not require "permissive" erythropoietin signals. Furthermore, GATA-1 induced apoptosis of proB and myelomonocytic cells, which could not be prevented by enforced permissive Bcl-2 or myeloid cytokine signals. Thus, GATA-1 specifically instructs MegE commitment while excluding other fate outcomes in stem and progenitor cells, suggesting that regulation of GATA-1 is critical in maintaining multilineage homeostasis.
Collapse
Affiliation(s)
- Hiromi Iwasaki
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
Based on knockout models, the transcription factor PU.1 has been shown to be important for the maturation of neutrophils. As the list of genes PU.1 directly regulates in neutrophils is still quite limited, defining PU.1 target genes for this lineage will provide valuable insight into how this factor regulates neutrophil development and terminal function. Using the combined techniques of representational difference analysis and a cDNA library screen, we identified four genes that were differentially expressed in the PU.1-expressing 503PU myeloid cell line but not the PU.1 null parent cell line 503. Two of these genes, glutathione peroxidase (GPx) and serine leukoprotease inhibitor, are involved in protecting neutrophils from the products they make to destroy pathogens and were analyzed further to determine if PU.1 directly regulates their expression. These studies showed that PU.1 directly regulated the expression of only the GPx gene through binding sites in the promoter and a 3' regulatory region. Thus, PU.1 not only regulates the expression of molecules involved in the production of reactive oxygen species but also a gene that protects the neutrophils from these same destructive enzymes.
Collapse
Affiliation(s)
- Stacy L Throm
- Department of Microbiology and Immunology, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | |
Collapse
|
217
|
Carlsson R, Persson C, Leanderson T. SPI-C, a PU-box binding ETS protein expressed temporarily during B-cell development and in macrophages, contains an acidic transactivation domain located to the N-terminus. Mol Immunol 2003; 39:1035-43. [PMID: 12749910 DOI: 10.1016/s0161-5890(03)00032-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice deficient for SPI-group ETS transcription factors PU.1 or SPI-B fail to generate lymphocytes or do not mount normal antibody mediated immune responses, respectively. PU.1 expression is restricted to B-, T-lymphocytes and macrophages, while SPI-B is expressed in B- and T-lymphocytes. SPI-C is an ETS transcription factor closely related to PU.1 and SPI-B, and expressed temporarily during B-cell development and in macrophages. By deletion and mutation analysis we show that the SPI-C protein has a transactivation domain located to the N-terminus, and that the transactivation activity is reduced to that of the DNA binding domain (DBD) alone when four aspartic acid residues are mutated to alanines. PU.1 and SPI-B regulate transcription from acidic domains located to the N-terminus and by recruiting the co-activator PIP to adjacent sites in a sequence specific manner. In contrast to PU.1 and PIP, SPI-C and PIP were unable to form a distinct ternary complex on the Ig lambda light chain lambda(2-4) enhancer element, suggesting that SPI-C could act both as a positive and negative transcriptional regulator during B-lymphocyte differentiation.
Collapse
Affiliation(s)
- Robert Carlsson
- Section for Immunology, CMB, Lund University, BMC I:13, 22184, Lund, Sweden.
| | | | | |
Collapse
|
218
|
Marden CM, Stefanidis D, Cunninghame-Graham DS, Casimir CM. Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity. Biochem Biophys Res Commun 2003; 305:193-202. [PMID: 12732216 DOI: 10.1016/s0006-291x(03)00727-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p47(phox) gene encodes a cytosolic component of the phagocytic NADPH oxidase complex. Expression of p47(phox) is both tissue-specific and developmentally regulated. Stable transfection of the myeloid cell lines PLB985 and HL60, with reporter gene constructs containing as little as 58 bp of proximal promoter sequence, was capable of directing significant reporter gene activity in myeloid cells, which increased significantly on induction of myeloid differentiation. EMSA analysis of a binding site for the Ets family member, PU.1, located at positions -39 to -44 revealed that the pattern of complex formation changed significantly on induction of myeloid differentiation. All EMSA complexes were competed by a functional PU.1 binding site and could be supershifted in the presence of polyclonal anti-PU.1 antibody. Reaction of EMSA complexes with anti-phosphoserine antibody, treatment with phosphatase, or Western blotting of proteins captured on the PU.1 binding site, was used to demonstrate that the changes in PU.1 complex formation dependent on myeloid differentiation were associated with increased levels of PU.1 phosphorylation. Furthermore, the more highly phosphorylated forms of PU.1 were shown to have a greater affinity for the p47(phox) PU.1 consensus binding site. Up-regulated transcriptional activity in response to myeloid differentiation can therefore be correlated with increased levels of PU.1 phosphorylation and a greater binding affinity.
Collapse
Affiliation(s)
- Chloe M Marden
- Department of Haematology, Faculty of Medicine, Imperial College of Science Technology and Medicine, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
219
|
Dekoninck A, Calomme C, Nizet S, de Launoit Y, Burny A, Ghysdael J, Van Lint C. Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene 2003; 22:2882-96. [PMID: 12771939 DOI: 10.1038/sj.onc.1206392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine leukemia virus (BLV) is a B-lymphotropic oncogenic retrovirus whose transcriptional promoter is located in the viral 5' long terminal repeat (LTR). To date, no B-lymphocyte-specific cis-regulatory element has been identified in this region. Since ETS proteins are known to regulate transcription of numerous retroviruses, we searched for the presence in the BLV promoter region of binding sites for PU.1/Spi-1, a B-cell- and macrophage-specific ETS family member. In this report, nucleotide sequence analysis of the viral LTR identified a PUbox located at -95/-84 bp. We demonstrated by gel shift and supershift assays that PU.1 and the related Ets transcription factor Spi-B interacted specifically with this PUbox. A 2-bp mutation (GGAA-->CCAA) within this motif abrogated PU.1/Spi-B binding. This mutation caused a marked decrease in LTR-driven basal gene expression in transient transfection assays of B-lymphoid cell lines, but did not impair the responsiveness of the BLV promoter to the virus-encoded transactivator Tax(BLV). Moreover, ectopically expressed PU.1 and Spi-B proteins transactivated the BLV promoter in a PUbox-dependent manner. Taken together, our results provide the first demonstration of regulation of the BLV promoter by two B-cell-specific Ets transcription factors, PU.1 and Spi-B. The PU.1/Spi-B binding site identified here could play an important role in BLV replication and B-lymphoid tropism.
Collapse
Affiliation(s)
- Ann Dekoninck
- Laboratoire de Virologie Moléculaire, Service de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
220
|
Wang JM, Lai MZ, Yang-Yen HF. Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol 2003; 23:1896-909. [PMID: 12612065 PMCID: PMC149468 DOI: 10.1128/mcb.23.6.1896-1909.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated that the antiapoptotic gene mcl-1 is activated by interleukin-3 (IL-3) in Ba/F3 pro-B cells through two promoter elements designated the CRE-2 and SIE motifs. While the CRE-2-binding complex contains the CREB protein and is activated by IL-3 through the phosphatidylinositol 3-kinase/Akt-dependent pathway, the identity and cytokine activation pathway of the SIE-binding complex remains unclear. In this report, we demonstrated that PU.1 is one component of the SIE-binding complex. A chromatin immunoprecipitation assay further confirmed that PU.1 binds to the mcl-1 promoter region containing the SIE motif in vivo. While IL-3 stimulation does not significantly alter the SIE-binding activity of PU.1, it markedly increases PU.1's transactivation activity. The latter effect coincides with the increased phosphorylation of PU.1 following IL-3 activation of a p38 mitogen-activated protein kinase (p38(MAPK))-dependent pathway. A serine-to-alanine substitution at position 142 significantly weakens PU.1's ability to be phosphorylated by the p38(MAPK) immunocomplex. Furthermore, this S142A mutant is impaired in the ability to be further stimulated by IL-3 to transactivate the mcl-1 reporter through the SIE motif. Taken together, our results demonstrate that IL-3 stimulation of mcl-1 gene transcription through the SIE motif involves phosphorylation of PU.1 at serine 142 by a p38(MAPK)-dependent pathway.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Institute of Molecular Biology, Academia Sinica, 128 Yen-Jiou Yuan Road, Section 2, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
221
|
Shimokawa T, Ra C. C/EBP alpha and Ets protein family members regulate the human myeloid IgA Fc receptor (Fc alpha R, CD89) promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2564-72. [PMID: 12594283 DOI: 10.4049/jimmunol.170.5.2564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fc alpha R (CD89), the FcR for IgA, is expressed exclusively in myeloid cells, including monocytes/macrophages, neutrophils, and eosinophils, and is thought to mediate IgA-triggered cellular functions in immunity. Here we demonstrate that the Fc alpha R 5'-flanking region from -102 to -64 relative to the ATG translation initiation codon is essential for promoter activity and contains two functional binding motifs for C/EBP and Ets family members at -74 and -92, respectively. EMSAs and cotransfection experiments show that C/EBP alpha acts as a major activator of the Fc alpha R promoter at least in immature myeloid cells. In addition, we found two additional functional targets of C/EBP alpha at -139 and -127. On the other hand, the Fc alpha R Ets binding motif could bind Elf-1 and mediate the trans-activation by cotransfected Elf-1, but a major component of the complex forming on this site appears to be an unidentified Ets-like nuclear protein that is preferentially detected in cells of hemopoietic origin. Furthermore, separation of the C/EBP and Ets binding sites reduces Fc alpha R promoter activity, suggesting some functional interaction between these factors. As the in vivo role of Fc alpha R is still incompletely defined, these findings reveal the features controlling the Fc alpha R promoter in myeloid lineage and provide a foundation for clarifying regulatory mechanisms of Fc alpha R gene expression associated with its potential roles.
Collapse
Affiliation(s)
- Toshibumi Shimokawa
- Allergy Research Center and Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
222
|
Guyot B, Mouchiroud G. Characterization of promoter elements directing Mona/Gads molecular adapter expression in T and myelomonocytic cells: involvement of the AML-1 transcription factor. J Leukoc Biol 2003; 73:263-72. [PMID: 12554803 DOI: 10.1189/jlb.0502244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocytic adaptor (Mona, also called Gads) is a molecular adaptor implicated in T cell activation and macrophage differentiation. The objective of this study was to identify elements regulating specific expression of Mona/Gads in human T cell and myelomonocytic cell lines. We first confirmed that the -2000 to +150 genomic region relative to the Mona gene transcription start site is sufficient to direct specific reporter gene expression in T cell lines, Jurkat, and MOLT-4 and in the immature myeloid cell lines, KG1a and RC2A. Deletion analysis and electrophoresis mobility shift assay identified several cis regulatory elements: overlapping initiator sequences, one interferon response factor-2 (IRF-2)-binding site at position -154, one GC box recognized by Sp1 and Sp3 at position -52, and two acute myeloid leukemia (AML)-1 binding sites at positions -70 and -13. Site-directed mutagenesis experiments indicated a key role of AML-1 for driving Mona expression in T cells and myeloid cells, and involvement of Sp1/Sp3 and IRF-2 transcription factors to modulate Mona expression in a cell-specific manner.
Collapse
Affiliation(s)
- B Guyot
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Claude Bernard Lyon-1, Bâtiment Gregor Mendel, 16 rue Raphael Dubois, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
223
|
McKercher SR, Lombardo CR, Bobkov A, Jia X, Assa-Munt N. Identification of a PU.1-IRF4 protein interaction surface predicted by chemical exchange line broadening. Proc Natl Acad Sci U S A 2003; 100:511-6. [PMID: 12518046 PMCID: PMC141026 DOI: 10.1073/pnas.0136910100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 11/13/2002] [Indexed: 11/18/2022] Open
Abstract
Relaxation values reflecting residue-specific line broadening revealed amino acids in the DNA-binding domain of PU.1 on a surface potentially involved in protein-protein interactions. Mutation of these amino acids did not cause protein unfolding but destabilized PU.1-DNA binding. Addition of IFN response factor 4 to form the ternary complex recovered binding stability. Fluorescence quenching experiments proved that this surface of PU.1 interacts with IFN response factor 4 during binding. Our results provide evidence that residues that display increased conformational exchange can be used to predict areas of protein-protein interactions.
Collapse
Affiliation(s)
- Scott R McKercher
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA
| | | | | | | | | |
Collapse
|
224
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
225
|
Akagawa E, Muto A, Arai KI, Watanabe S. Analysis of the 5' promoters for human IL-3 and GM-CSF receptor alpha genes. Biochem Biophys Res Commun 2003; 300:600-8. [PMID: 12504125 DOI: 10.1016/s0006-291x(02)02890-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The receptors for human interleukin-3 (hIL-3R) and granulocyte-macrophage colony-stimulating factor (hGM-CSFR) consist of an alpha subunit, specific for each cytokine, and a beta subunit, common to IL-3, GM-CSF, and IL-5. We cloned genomic DNA covering 1.5 kb of the 5' flanking region of the hIL-3R alpha gene and identified multiple transcription start sites by 5(')-RACE and primer extension analyses. By use of transient transfection experiments, two regions (nt -363 to -331 and -106 to -92) of the hIL-3R alpha promoter appeared to have significant transcription-enhancing activities. Electrophoresis mobility shift assays revealed the binding of Sp1 and unidentified proteins to these regions. Deletion of a putative PU.1 binding site did not affect the promoter activity. We then analyzed 2.5 kb of the hGM-CSFR alpha gene and found the proximal PU.1 binding site to be important for transcription-enhancing activity, as previously reported. These results suggest that different transcriptional activation mechanisms are employed for the transcriptional regulation of hIL-3 and hGM-CSF receptor alpha genes.
Collapse
Affiliation(s)
- Eiji Akagawa
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
226
|
Bush TS, St Coeur M, Resendes KK, Rosmarin AG. GA-binding protein (GABP) and Sp1 are required, along with retinoid receptors, to mediate retinoic acid responsiveness of CD18 (beta 2 leukocyte integrin): a novel mechanism of transcriptional regulation in myeloid cells. Blood 2003; 101:311-7. [PMID: 12485937 DOI: 10.1182/blood.v101.1.311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD18 (beta(2) leukocyte integrin) is transcriptionally regulated in myeloid cells, but the mechanisms that increase its expression in response to retinoic acid (RA) have not been defined. The CD18 promoter was activated by RA treatment in stably transfected U937 myeloid cells. We identified a retinoic acid response element (RARE) that lies nearly 900 nucleotides upstream of the CD18 transcriptional start site that was bound by the RA receptors, retinoic acid receptor (RAR) and retinoic X receptor (RXR). This RARE accounted for one half of the RA responsiveness of CD18. However, unexpectedly, one half of the dynamic response to RA was mediated by the 96-nucleotide CD18 minimal promoter, which lacks a recognizable RARE. Binding sites for the ets transcription factor, GA-binding protein (GABP), and Sp1 were required for full RA responsiveness of both the CD18 minimal promoter and the full-length promoter. The ets sites conferred RA responsiveness on an otherwise unresponsive heterologous promoter, and RA responsiveness was directly related to the number of ets sites. The transcriptional coactivator p300/CBP physically interacted with GABP in vivo, and p300 increased the responsiveness of the CD18 promoter to RA. These studies demonstrate a novel role for non-RAR transcription factors in mediating RA activation in myeloid cells. They support the concept that transcription factors other than RARs are required for RA-activated gene expression. We hypothesize that a multiprotein complex--an enhanceosome--that includes GABP, other transcription factors, and coactivators, dynamically regulates CD18 expression in myeloid cells.
Collapse
Affiliation(s)
- Thomas S Bush
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
227
|
Bain M, Mendelson M, Sinclair J. Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 2003; 84:41-49. [PMID: 12533699 DOI: 10.1099/vir.0.18633-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repression of human cytomegalovirus immediate-early (IE) lytic gene expression is crucial for the maintenance of the latent viral state. By using conditionally permissive cell lines, which provide a good model for the differentiation state-dependent repression of IE gene expression, we have identified several cellular factors that bind to the major immediate-early promoter (MIEP) and whose expression is down-regulated after differentiation to a permissive phenotype. Here we show that the cellular protein Ets-2 Repressor Factor (ERF) physically interacts with the MIEP and represses MIEP activity in undifferentiated non-permissive T2 embryonal carcinoma cells. This factor binds to the dyad element and the 21 bp repeats within the MIEP - regions known to be important for the negative regulation of MIEP activity. Finally, we show that following differentiation to a permissive phenotype ERF's repressive effects are severely abrogated.
Collapse
Affiliation(s)
- Mark Bain
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Marc Mendelson
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
228
|
Pileri SA, Gaidano G, Zinzani PL, Falini B, Gaulard P, Zucca E, Pieri F, Berra E, Sabattini E, Ascani S, Piccioli M, Johnson PWM, Giardini R, Pescarmona E, Novero D, Piccaluga PP, Marafioti T, Alonso MA, Cavalli F. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:243-253. [PMID: 12507907 PMCID: PMC1851125 DOI: 10.1016/s0002-9440(10)63815-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2002] [Indexed: 11/29/2022]
Abstract
Although primary mediastinal (thymic) large B-cell lymphoma has been primarily studied, its precise phenotype, molecular characteristics, and histogenesis are still a matter of debate. The International Extranodal Lymphoma Study Group collected 137 such cases for extensive pathological review. Histologically, the lymphomatous growth was predominantly diffuse with fibrosis that induced compartmentalized cell aggregation. It consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. On immunohistochemistry, the following phenotype was observed: CD45(+), CD20(+), CD79a(+), PAX5/BSAP(+), BOB.1(+), Oct-2(+), PU.1(+), Bcl-2(+), CD30(+), HLA-DR(+), MAL protein(+/-), Bcl-6(+/-), MUM1/IRF4(+/-), CD10(-/+), CD21(-), CD15(-), CD138(-), CD68(-), and CD3(-). Immunoglobulins were negative both at immunohistochemistry and in situ hybridization. Molecular analysis, performed in 45 cases, showed novel findings. More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgV(H) gene mutations and Bcl-6 and/or MUM1/IRF4 expression. The present study supports the concept that a sizable fraction of cases of this lymphoma are from activated germinal center or postgerminal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective immunoglobulin production despite the expression of OCT-2, BOB.1, and PU.1 transcription factors and the lack of IgV(H) gene crippling mutations.
Collapse
Affiliation(s)
- Stefano A Pileri
- Istituto di Ematologia e Oncologia Medica, L. e A. Seràgnoli Unità Cliniche e di Anatomia Patologica, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
It is generally accepted that dendritic cells can be generated from either myeloid or lymphoid derived progenitors. Ample information has been collected on the development and nature of myeloid DC type 1 (DC1). In contrast, our current understanding on the origin and function of the lymphoid derived DC type 2 (DC2) is still limited but is increasing rapidly. Here we will summarize recent findings on the developmental origin of the precursor of DC2 (pre-DC2). The presence of pre-DC2 has been revealed in bone marrow, fetal liver, and cord blood, where they develop from hematopoietic stem cells (HSC) most likely via an intermediate pro-DC2 stage. Both in human and mouse, development of pre-DC2 depends on the cytokine FLT3-ligand (FLT3-L). In addition, transcription factors such as Spi-B and members of the basic helix-loop helix (bHLH) family have been shown to be involved in the proper differentiation of HSC into pre-DC2. The human thymus contains a population of cells that closely resembles the peripheral pre-DC2, including interferon (INF)-a production after viral stimulation. Some phenotypic differences have been observed however. Furthermore, we have shown that the thymic microenvironment is able to support development of pre-DC2 from HSC in vivo. A thymus independent pathway of pre-DC2 development exists as well, although at present it is not clear where these extrathymic pre-DC2 are generated. In regard of the absence of a phenotypic defined pro-DC2 population in the thymus, we speculate that development of thymic pre-DC2 may differ from peripheral pre-DC2. The challenge of the near future will be to determine the role of pre-DC2 during thymic T cell development.
Collapse
Affiliation(s)
- Bianca Blom
- Division of Immunology, Plesmanlaan 121, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
230
|
Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom-Himes JA, Ackerman SJ. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 2002; 277:43481-94. [PMID: 12202480 DOI: 10.1074/jbc.m204777200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and the ets factor PU.1 have been reported to functionally antagonize one another in the regulation of erythroid versus myeloid gene transcription and development. The CCAAT enhancer binding protein epsilon (C/EBPepsilon) is expressed as multiple isoforms and has been shown to be essential to myeloid (granulocyte) terminal differentiation. We have defined a novel synergistic, as opposed to antagonistic, combinatorial interaction between GATA-1 and PU.1, and a unique repressor role for certain C/EBPepsilon isoforms in the transcriptional regulation of a model eosinophil granulocyte gene, the major basic protein (MBP). The eosinophil-specific P2 promoter of the MBP gene contains GATA-1, C/EBP, and PU.1 consensus sites that bind these factors in nuclear extracts of the eosinophil myelocyte cell line, AML14.3D10. The promoter is transactivated by GATA-1 alone but is synergistically transactivated by low levels of PU.1 in the context of optimal levels of GATA-1. The C/EBPepsilon(27) isoform strongly represses GATA-1 activity and completely blocks GATA-1/PU.1 synergy. In vitro mutational analyses of the MBP-P2 promoter showed that both the GATA-1/PU.1 synergy, and repressor activity of C/EBPepsilon(27) are mediated via protein-protein interactions through the C/EBP and/or GATA-binding sites but not the PU.1 sites. Co-immunoprecipitations using lysates of AML14.3D10 eosinophils show that both C/EBPepsilon(32/30) and epsilon(27) physically interact in vivo with PU.1 and GATA-1, demonstrating functional interactions among these factors in eosinophil progenitors. Our findings identify novel combinatorial protein-protein interactions for GATA-1, PU.1, and C/EBPepsilon isoforms in eosinophil gene transcription that include GATA-1/PU.1 synergy and repressor activity for C/EBPepsilon(27).
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Escalante CR, Brass AL, Pongubala JMR, Shatova E, Shen L, Singh H, Aggarwal AK. Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell 2002; 10:1097-105. [PMID: 12453417 DOI: 10.1016/s1097-2765(02)00703-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ets and IRF transcription factor families contain structurally divergent members, PU.1, Spi-B and IRF-4 (Pip), IRF-8 (ICSBP), respectively, which have evolved to cooperatively assemble on composite DNA elements and regulate gene expression in the immune system. Whereas PU.1 recruits IRF-4 or IRF-8 to DNA, it exhibits an anticooperative interaction with IRF-1 and IRF-2. We report here the structure of the ternary complex formed with the DNA binding domains of PU.1 and IRF-4 on a composite DNA element. The DNA in the complex contorts into an unusual S shape that juxtaposes PU.1 and IRF-4 for selective electrostatic and hydrophobic interactions across the central minor groove. Together, the protein-protein and protein-DNA interactions provide insights into the stereochemical basis of cooperativity and anti-cooperativity between Ets and IRF factors.
Collapse
Affiliation(s)
- Carlos R Escalante
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Kuwata T, Gongora C, Kanno Y, Sakaguchi K, Tamura T, Kanno T, Basrur V, Martinez R, Appella E, Golub T, Ozato K. Gamma interferon triggers interaction between ICSBP (IRF-8) and TEL, recruiting the histone deacetylase HDAC3 to the interferon-responsive element. Mol Cell Biol 2002; 22:7439-48. [PMID: 12370291 PMCID: PMC135656 DOI: 10.1128/mcb.22.21.7439-7448.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 04/08/2002] [Accepted: 07/24/2002] [Indexed: 11/20/2022] Open
Abstract
ICSBP (IRF-8) is a transcription factor of the IRF family expressed only in the immune system. It is induced in macrophages by gamma interferon (IFN-gamma) and contributes to macrophage functions. By interacting with Ets family protein PU.1, ICSBP binds to the IRF/Ets composite element and stimulates transcription. ICSBP binds to another DNA element, the IFN-stimulated response element (ISRE), a common target of the IRF family. Limited knowledge as to how ICSBP and other IRF proteins regulate ISRE-dependent transcription in IFN-gamma-activated macrophages is available. By mass-spectrometric analysis of ISRE-bound proteins in macrophages, we identified TEL, another Ets member, as a factor recruited to the element in an IFN-gamma-dependent manner. In vitro analysis with recombinant proteins indicated that this recruitment is due to a direct interaction between ICSBP and TEL, which is enhanced by the presence of ISRE. Significantly, the interaction with TEL in turn resulted in the recruitment of the histone deacetytase HDAC3 to the ISRE, causing increased repression of IFN-gamma-mediated reporter activity through the ISRE. This repression may provide a negative-feedback mechanism operating after the initial transcriptional activation by IFN-gamma. By associating with two different Ets family proteins, ICSBP exerts a dual function in IFN-gamma-dependent gene regulation in an immune system-specific manner.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Eklund EA, Goldenberg I, Lu Y, Andrejic J, Kakar R. SHP1 protein-tyrosine phosphatase regulates HoxA10 DNA binding and transcriptional repression activity in undifferentiated myeloid cells. J Biol Chem 2002; 277:36878-88. [PMID: 12145285 DOI: 10.1074/jbc.m203917200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The homeodomain protein HoxA10 interacts with negative cis elements to repress gene transcription in undifferentiated myeloid cells. The CYBB and NCF2 genes, which encode the gp91(PHOX) and p67(PHOX) proteins, are two such HoxA10 target genes. During interferon gamma-induced myeloid differentiation, tyrosine phosphorylation decreases HoxA10 DNA binding affinity and transcriptional repression. Therefore, decreased HoxA10 repression contributes to increased CYBB and NCF2 transcription in differentiating myeloid cells. The current studies investigate modulation of HoxA10 repression activity during myelopoiesis. We determine that phosphorylation of tyrosine residues in the conserved homeodomain decreases HoxA10-DNA binding. We also determine that interaction of the homeodomain phosphotyrosine residues with an adjacent domain in the HoxA10 protein is necessary for decreased DNA binding affinity. Since SHP1 protein-tyrosine phosphatase antagonizes myeloid differentiation and decreases CYBB and NCF2 transcription, we investigated the influence of SHP1-protein-tyrosine phosphatase (PTP) on HoxA10 tyrosine phosphorylation. We find that SHP1-PTP activity increases HoxA10 target gene repression in undifferentiated myeloid cells. Consistent with this, SHP1-PTP interacts with HoxA10 and decreases homeodomain-tyrosine phosphorylation. These investigations suggest that SHP1-PTP activity, in undifferentiated myeloid cells, influences HoxA10 repression of myeloid-specific genes. Therefore, increased HoxA10 repression of myeloid gene transcription is a molecular mechanism for SHP1 inhibition of myeloid differentiation.
Collapse
Affiliation(s)
- Elizabeth A Eklund
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
234
|
Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, Behre G, Hiddemann W, Ito Y, Tenen DG. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100:998-1007. [PMID: 12130514 DOI: 10.1182/blood.v100.3.998] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 is required for normal blood cell development. PU.1 regulates the expression of a number of crucial myeloid genes, such as the macrophage colony-stimulating factor (M-CSF) receptor, the granulocyte colony-stimulating factor (G-CSF) receptor, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. Myeloid cells derived from PU.1(-/-) mice are blocked at the earliest stage of myeloid differentiation, similar to the blast cells that are the hallmark of human acute myeloid leukemia (AML). These facts led us to hypothesize that molecular abnormalities involving the PU.1 gene could contribute to the development of AML. We identified 10 mutant alleles of the PU.1 gene in 9 of 126 AML patients. The PU.1 mutations comprised 5 deletions affecting the DNA-binding domain, and 5 point mutations in 1) the DNA-binding domain (2 patients), 2) the PEST domain (2 patients), and 3) the transactivation domain (one patient). DNA binding to and transactivation of the M-CSF receptor promoter, a direct PU.1 target gene, were deficient in the 7 PU.1 mutants that affected the DNA-binding domain. In addition, these mutations decreased the ability of PU.1 to synergize with PU.1-interacting proteins such as AML1 or c-Jun in the activation of PU.1 target genes. This is the first report of mutations in the PU.1 gene in human neoplasia and suggests that disruption of PU.1 function contributes to the block in differentiation found in AML patients.
Collapse
|
235
|
Reddy VA, Iwama A, Iotzova G, Schulz M, Elsasser A, Vangala RK, Tenen DG, Hiddemann W, Behre G. Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 2002; 100:483-90. [PMID: 12091339 DOI: 10.1182/blood.v100.2.483] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors have been implicated as playing a role in myelopoiesis. PU.1, an ets-family transcription factor, is required for the development of myeloid and lymphoid lineages, whereas the transcription factor CCAAT-enhancer binding protein family member C/EBPalpha is essential for granulocyte development. We present here the first evidence that C/EBPalpha blocks the function of PU.1. PU.1 and C/EBPalpha interact physically and colocalize in myeloid cells. As a consequence of this interaction, C/EBPalpha can inhibit the function of PU.1 to activate a minimal promoter containing only PU.1 DNA-binding sites. We further demonstrate that the leucine zipper in the DNA-binding domain of C/EBPalpha interacts with the beta3/beta4 region in the DNA-binding domain of PU.1 and as a result displaces the PU.1 coactivator c-Jun. Finally, C/EBPalpha blocks PU.1-induced dendritic cell development from CD34+ human cord blood cells. The functional blocking of PU.1 by C/EBPalpha could be the mechanism by which C/EBPalpha inhibits cell fates specified by PU.1 and directs cell development to the granulocyte lineage.
Collapse
Affiliation(s)
- Venkateshwar A Reddy
- Department of Medicine III, Ludwig-Maximilians-University and GSF-National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Li SL, Valente AJ, Qiang M, Schlegel W, Gamez M, Clark RA. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002; 99:4578-87. [PMID: 12036891 DOI: 10.1182/blood.v99.12.4578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p40(phox) protein, a regulatory component of the phagocyte NADPH oxidase, is preferentially expressed in cells of myeloid lineage. We investigated transcriptional regulation of the p40(phox) gene in HL-60 myeloid cells. Deletion analysis of approximately 6 kb of the 5'-flanking sequence of the gene demonstrated that the proximal 106 base pair of the promoter exhibited maximum reporter activity. This region contains 3 potential binding sites for PU.1, a myeloid-restricted member of the ets family of transcription factors. Mutation or deletion of each PU.1 site decreased promoter activity, and the level of activity mediated by each site correlated with its binding avidity for PU.1, as determined by gel shift competition assays. Mutation of all 3 sites abolished promoter activity in myeloid cells. PU.1-dependent expression was also observed in the Raji B-cell line, whereas the moderate level of promoter reporter activity in the nonmyeloid HeLa cell line was independent of PU.1. Chromatin immunoprecipitation assay demonstrated occupation of the PU.1 sites by PU.1 in vivo in HL-60 cells. Cotransfection of the pGL3-p40-106 reporter construct with a dominant-negative PU.1 mutant dramatically reduced promoter activity, whereas the overexpression of PU.1 increased promoter activity. Promoter activity and transcript levels of p40(phox) increased in HL-60 cells during dimethyl sulfoxide-induced differentiation toward the granulocyte phenotype, and this was associated with increased cellular levels of PU.1 protein. Our findings demonstrate that PU.1 binding at multiple sites is required for p40(phox) gene transcription in myeloid cells and that granulocytic differentiation is associated with the coordinated up-regulation of PU.1 and p40(phox) expression.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Medicine, University of Texas Health Science Center and the South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
237
|
Boulton E, Cleary H, Plumb M. Myeloid, B and T lymphoid and mixed lineage thymic lymphomas in the irradiated mouse. Carcinogenesis 2002; 23:1079-85. [PMID: 12082032 DOI: 10.1093/carcin/23.6.1079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thymic lymphoma is a very common spontaneous and/or induced malignancy in both inbred mice and in transgenic mouse models of human cancer. Although a thymic lymphoma is defined as thymus-dependent T-cell malignancy, diagnostic criteria vary between studies and considerable heterogeneity has been reported. To define and classify the thymic lymphomas that arose in our study of X-irradiated (CBA/HxC57BL/6)F1, F1 backcross and F1 intercross mice, 66 thymic lymphomas were immunogenotyped for immunoglobulin heavy chain (IgH) and T-cell receptor beta (TCRbeta) gene rearrangements, and/or analysed for expression of lineage-specific markers and allelic loss on chromosome 4. The data indicate that 33% of the thymic lymphomas are very similar to mouse radiation-induced acute myeloid (AML) and mixed lineage (IgH(R), TCRbeta(G)) pre-B lympho-myeloid (L-MLs) leukaemias, 33% are mixed lineage (IgH(R), TCRbeta(R)) B/T lymphoid and <33% can be described as single lineage (IgH(G), TCRbeta(R)) T-cell malignancies. As the myeloid and L-ML leukaemias are not thymus-dependent this suggests that a malignant myeloid or pre-B lympho-myeloid cell can colonize the spleen to give an AML or L-ML leukaemia, or can colonize the thymus where TCRbeta gene rearrangement(s) may be induced to give the mixed lineage thymic lymphomas. Thus, assuming the single lineage T-cell thymic lymphomas fulfil the criteria of a thymus-dependent T-cell malignancy, thymic lymphomas are comprised of at least three distinct malignancies.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Chromosome Deletion
- Crosses, Genetic
- Gene Rearrangement, B-Lymphocyte
- Genetic Markers
- Genotype
- Loss of Heterozygosity
- Lymphoma/genetics
- Lymphoma/immunology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Thymus Neoplasms/genetics
- Thymus Neoplasms/immunology
- X-Rays
Collapse
Affiliation(s)
- Emma Boulton
- MRC Radiation and Genome Stability Unit, Chilton Didcot, Oxfordshire OX11 ORD, UK
| | | | | |
Collapse
|
238
|
Abstract
A common myeloid progenitor gives rise to both granulocytes and monocytes. The early stages of granulopoiesis are mediated by the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and the later stages require C/EBPepsilon, PU.1, and CDP. Monocyte development requires PU.1 and interferon consensus sequence binding protein and can be induced by Maf-B, c-Jun, or Egr-1. Cytokine receptor signals modulate transcription factor activities but do not determine cell fates. Several mechanisms orchestrate the myeloid developmental program, including cooperative gene regulation, protein:protein interactions, regulation of factor levels, and induction of cell cycle arrest.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
239
|
Abstract
Interleukin-12 is a cytokine produced by antigen-presenting cells that is essential for host defense against intracellular microbial infection and control of malignancy by virtue of its ability to stimulate both innate and adaptive immune effector cells. The immune potentiating capacity of IL-12 and its mandatory requirement in host defense predispose it to rigorous regulation. The time, localization, and magnitude of IL-12 production during an immune response strongly influence the type, extent, and, ultimately, the fate of the response. Disturbance of this evolutionarily maintained "balance of power" frequently leads to immunologic disorders. This article reviews the intricate pathways that have been uncovered in which IL-12 production is modulated by numerous pathogens and immunological regulators. The understanding of IL-12 regulation in physiological settings will undoubtedly lend valuable support to the design of therapeutic applications of IL-12.
Collapse
Affiliation(s)
- X Ma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
240
|
Abstract
Granulocytes and monocytes develop from a common myeloid progenitor. Early granulopoiesis requires the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and terminal neutrophil differentiation is dependent upon C/EBPepsilon, PU.1, Sp1, CDP, and HoxA10. Monopoiesis can be induced by Maf-B, c-Jun, or Egr-1 and is dependent upon PU.1, Sp1, and ICSBP. Signals eminating from cytokine receptors modulate factor activities but do not determine cell fates. Orchestration of the myeloid developmental program is achieved via cooperative gene regulation, via synergistic and inhibitory protein-protein interactions, via promoter auto-regulation and cross-regulation, via regulation of factor levels, and via induction of cell cycle arrest: For example, c-Myb and C/EBPalpha cooperate to activate the mim-1 and NE promoters, PU.1, C/EBPalpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes. PU.1:GATA-1 interaction and C/EBP suppression of FOG transcription inhibits erythroid and megakaryocyte gene expression. c-Jun:PU.1, ICSBP:PU.1, and perhaps Maf:Jun complexes induce monocytic genes. PU.1 and C/EBPalpha activate their own promoters, C/EBPalpha rapidly induces PU.1 and C/EBPepsilon RNA expression, and RARalpha activates the C/EBPepsilon promoter. Higher levels of PU.1 are required for monopoiesis than for B-lymphopoiesis, and higher C/EBP levels may favor granulopoiesis over monopoiesis. CBF and c-Myb stimulate proliferation whereas C/EBPalpha induces a G1/S arrest; cell cycle arrest is required for terminal myelopoiesis, perhaps due to expression of p53 or hypo-phosphorylated Rb.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA.
| |
Collapse
|
241
|
Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 2002; 64:775-802. [PMID: 11826288 DOI: 10.1146/annurev.physiol.64.090601.113847] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies in transgenic mice have revealed important insights into the roles of GM-CSF in regulation of surfactant homeostasis and lung host defense. Interruption of the GM-CSF signaling pathway by targeted ablation of the GM-CSF gene or its receptor (GM(-/-) or GM Rbetac(-/-) mice, respectively) resulted in pulmonary alveolar proteinosis (PAP) but no hematologic abnormalities. Alveolar macrophages from GM(-/-) mice have reduced capacity for surfactant catabolism, cell adhesion, phagocytosis, bacterial killing, Toll-receptor signaling, and expression of various pathogen-associated molecular pattern recognition receptors, suggesting arrest at an early stage of differentiation. PAP and abnormalities of alveolar macrophage function were corrected by local expression of GM-CSF in the lung, and expression of the transcription factor PU.1 in alveolar macrophages of GM(-/-) mice rescued most defects. Recently, a strong association of auto-antibodies to GM-CSF or GM-CSF receptor gene mutations with PAP has implicated GM-CSF signaling abnormalities in the pathogenesis of PAP in humans. Together, these observations demonstrate that GM-CSF has a critical role in regulation of surfactant homeostasis and alveolar macrophage innate immune functions in the lung.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | |
Collapse
|
242
|
Sibinga NES, Feinberg MW, Yang H, Werner F, Jain MK. Macrophage-restricted and interferon gamma-inducible expression of the allograft inflammatory factor-1 gene requires Pu.1. J Biol Chem 2002; 277:16202-10. [PMID: 11861656 DOI: 10.1074/jbc.m200935200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of allograft inflammatory factor-1 (Aif-1), a 17-kDa protein bearing an EF-hand Ca(2+) binding motif, increases markedly in monocytes and macrophages participating in allo- and autoimmune reactions, including the perivascular inflammation in transplanted hearts, microglial infiltrates in experimental autoimmune neuritis, and the inflamed pancreas of prediabetic BB rats. To investigate the mechanism of this regulation, we isolated the mouse aif-1 gene and determined its genomic organization. The gene has six exons distributed over 1.6 kilobases, an interferon gamma-inducible DNase I-hypersensitive site near -900, and flanking sequences on either side predicted to associate with nuclear matrix. Reporter gene analyses identified sequences between -902 and -789, including consensus Ets and interferon regulatory factor elements, required for macrophage-specific and interferon gamma-inducible transcriptional activity. Pu.1 bound to the Ets site in electromobility shift assay and forced expression of Pu.1 activated the aif-1 promoter in 3T3 fibroblasts, in which it is normally inactive. However, the transcriptional activity of a concatamer of the Ets site alone did not increase with interferon gamma treatment. Cooperation between Pu.1 and proteins binding to the interferon regulatory factor element appears to be necessary for both macrophage-specific and interferon gamma-inducible expression of the aif-1 gene.
Collapse
Affiliation(s)
- Nicholas E S Sibinga
- Department of Medicine, Cardiovascular Division, Albert Einstein College of Medicine, Bronx, New York 10461,
| | | | | | | | | |
Collapse
|
243
|
Nishiyama C, Hasegawa M, Nishiyama M, Takahashi K, Akizawa Y, Yokota T, Okumura K, Ogawa H, Ra C. Regulation of human Fc epsilon RI alpha-chain gene expression by multiple transcription factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4546-52. [PMID: 11971001 DOI: 10.4049/jimmunol.168.9.4546] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional regulation of the gene-encoding human Fc epsilon RI alpha-chain was analyzed in detail. EMSA revealed that either YY1 or PU.1 bound to the region close to that recognized by Elf-1. The alpha-chain promoter activity was up-regulated approximately 2-fold by exogenously expressed YY1 or PU.1 and approximately 7-fold by GATA-1, respectively, in KU812 cells. In contrast, coexpression of GATA-1 with either of PU.1 or YY1 dramatically activated the promoter approximately 41- or approximately 27-fold, respectively. Especially synergic activation by GATA-1 and PU.1 was surprising, because these transcription factors are known to inhibit the respective transactivating activities of each other. These up-regulating effects of PU.1 and YY1 with GATA-1 were inhibited by overexpression of Elf-1, indicating that Elf-1 serves as a repressor for the alpha-chain gene expression. Transcriptional regulation of the alpha-chain gene through four transcriptional factors is discussed.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Allergy (Atopy) Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Dahl R, Ramirez-Bergeron DL, Rao S, Simon M. Spi-B can functionally replace PU.1 in myeloid but not lymphoid development. EMBO J 2002; 21:2220-30. [PMID: 11980719 PMCID: PMC125373 DOI: 10.1093/emboj/21.9.2220] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 02/01/2002] [Accepted: 03/05/2002] [Indexed: 11/13/2022] Open
Abstract
Mature macrophages, neutrophils and lymphoid cells do not develop in PU.1(-/-) mice. In contrast, mice lacking the highly related protein Spi-B generate all hematopoietic lineages but display a B-cell receptor signaling defect. These distinct phenotypes could result from functional differences between PU.1 and Spi-B or their unique temporal and tissue-specific expression (PU.1: myeloid and B cells; Spi-B: B cells only). To address this question, we introduced the Spi-B cDNA into the murine PU.1 locus by homologous recombination. In the absence of PU.1, Spi-B rescued macrophage and granulocyte development when assayed by in vitro differentiation of embryonic stem cells. Adherent, CD11b(+)/F4/80(+) cells capable of phagocytosis were detected in PU.1(Spi-B/Spi-B) embryoid bodies, and myeloid colonies were present in hematopoietic progenitor assays. Despite its ability to rescue myeloid differentiation, Spi-B did not rescue lymphoid development in a RAG-2(-/-) complementation assay. These results demonstrate an important difference between PU.1 and Spi-B. Careful comparison of these Ets factors will delineate important functional domains of PU.1 involved in lymphocyte lineage commitment and/or maturation.
Collapse
Affiliation(s)
- Richard Dahl
- Abramson Family Cancer Research Institute and Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 and Department of Pathology, University of Chicago, Chicago, IL 60637, USA Corresponding author e-mail: R.Dahl and D.L.Ramirez-Bergeron contributed equally to this work
| | - Diana L. Ramirez-Bergeron
- Abramson Family Cancer Research Institute and Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 and Department of Pathology, University of Chicago, Chicago, IL 60637, USA Corresponding author e-mail: R.Dahl and D.L.Ramirez-Bergeron contributed equally to this work
| | - Sridhar Rao
- Abramson Family Cancer Research Institute and Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 and Department of Pathology, University of Chicago, Chicago, IL 60637, USA Corresponding author e-mail: R.Dahl and D.L.Ramirez-Bergeron contributed equally to this work
| | - M.Celeste Simon
- Abramson Family Cancer Research Institute and Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 and Department of Pathology, University of Chicago, Chicago, IL 60637, USA Corresponding author e-mail: R.Dahl and D.L.Ramirez-Bergeron contributed equally to this work
| |
Collapse
|
245
|
Jundt F, Kley K, Anagnostopoulos I, Schulze Pröbsting K, Greiner A, Mathas S, Scheidereit C, Wirth T, Stein H, Dörken B. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood 2002; 99:3060-2. [PMID: 11929801 DOI: 10.1182/blood.v99.8.3060] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin transcription is impaired in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin disease (cHD). We recently demonstrated that defective immunoglobulin promoter transcription correlates with the down-regulation of the B-cell transcription factors Oct2 and BOB.1/OBF.1. These results prompted us to investigate whether immunoglobulin enhancer activity is also impaired in HRS cells and whether as yet unidentified factors could be necessary for immunoglobulin enhancer activity in HRS cells of cHD. Here we analyzed 30 cases of cHD for expression of the Ets family member PU.1 that is known to collaborate with multiple transcription factors and to regulate expression of immunoglobulin genes. We show that PU.1 is not expressed in primary and cultured HRS cells. Reintroduction of PU.1 and Oct2 in cultured HRS cells restored the activity of cotransduced immunoglobulin enhancer constructs. Our study identifies PU.1 deficiency as a recurrent defect in HRS cells that might contribute to their impairment of immunoglobulin transcription.
Collapse
Affiliation(s)
- Franziska Jundt
- Charité, Robert-Rössle-Klinik, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
During embryogenesis there is a sequential, temporal appearance of increasingly more-complex hematopoietic cells beginning with unipotential progenitors, proceeding to multipotential (myeloid, erythroid and lymphoid) progenitors and culminating with adult-repopulating hematopoietic stem cells. Current research has established an important role for the aorta-gonads-mesonephros region of the mouse embryo in the generation of multipotential progenitors and hematopoietic stem cells. Comparisons of normal and hematopoietic-cell-mutant mouse embryos have revealed several genes pivotal in hematopoietic stem cell generation/function. Other genes have been implicated in the critical generation of lymphoid lineage potential. Thus, an understanding of the cellular and molecular interactions within the midgestation aorta-gonads-mesonephros region offers insight into the mechanisms of hematopoietic lineage specification during ontogeny and perhaps will lead to a more complete knowledge of the adult hematopoietic system.
Collapse
Affiliation(s)
- Kam-Wing Ling
- Department of Cell Biology and Genetics, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
247
|
Silverman ES, Le L, Baron RM, Hallock A, Hjoberg J, Shikanai T, Storm van's Gravesande K, Auron PE, Lu W. Cloning and functional analysis of the mouse 5-lipoxygenase promoter. Am J Respir Cell Mol Biol 2002; 26:475-83. [PMID: 11919084 DOI: 10.1165/ajrcmb.26.4.4747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
5-lipoxygenase (ALOX5), an enzyme essential for the formation of all leukotrienes, is highly regulated at multiple levels, including gene transcription. The human ALOX5 promoter sequence has been cloned and is well characterized. Several important cis-acting elements have been identified including a G+C-rich sequence approximately 145-179 base pairs (bp) upstream from the ATG start codon. This region contains consensus-binding sites for the transcription factor serum protein 1, a zinc-finger transcription factor (SP1) and early growth-response protein 1, a zinc-finger transcription factor (EGR-1) and is unique in that functionally significant polymorphisms alter these sequences. To further understand the significance of these polymorphisms and other regulatory sequences in the promoter we cloned approximately 2,000 bp of the mouse promoter sequence from a 129/SvJ BAC library for direct comparison with the human gene. Like the human promoter, the mouse Alox5 promoter lacks a TATA box and has multiple start sites. The first 292 bp immediately upstream of the translational start site function as a core promoter that is capable of mediating high basal transcription in RAW cells but not 3T3 cells. There are vast differences in the distribution of consensus cis elements between human and mouse genes; however, three areas of strong homology exist and they contain consensus-binding sites for the SP1, GATA, GGAGA, and ETS family of transcription factors. We show that Sp1/Sp3 is essential for constitutive promoter-reporter activity.
Collapse
Affiliation(s)
- Eric S Silverman
- Pulmonary and Critical Care Division and Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Heusohn F, Wirries G, Schmidt RE, Gessner JE. The Pmed1 gene promoter of human Fc gamma RIIIA can function as a NK/T cell-specific restriction element, which involves binding of Sp1 transcription factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2857-64. [PMID: 11884455 DOI: 10.4049/jimmunol.168.6.2857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-affinity receptor for IgG (human FcgammaRIIIA) is selectively expressed by a subset of T lymphocytes, NK cells, and macrophages. To understand the mechanisms underlying this pattern of cell type-specific expression, we initially identified alternative promoters, Pmed1/2 and Pprox, in the 5' end of the FcgammaRIIIA gene. In this study, we focused on the Pmed1 promoter and demonstrated this 93-bp region to be highly specific in governing restriction to NK/T cell lines. This property of Pmed1 is context independent and can extend to a disparate promoter. Deletion analysis defined a contribution of two separate elements located to the 5' 21-bp (-942/-922) and 3' 72-bp (-921/-850) regions of Pmed1 in conferring NK/T cell specificity. The 5' part of Pmed1 contains binding sites for Sp1 and NK element-recognizing factors and substitution mapping studies revealed a critical requirement of the Sp1-I site. The importance of Sp1 protein to regulate maximal Pmed1 promoter activity was further established by EMSAs and cotransfection experiments in Sp1-null Drosophila SL2 cells. Our data suggest that Sp1 can contribute, in part, to NK/T cell restriction and further indicate that the FcgammaRIIIA Pmed1 sequence might be useful to direct the NK/T cell-specific expression of heterologous genes.
Collapse
MESH Headings
- 3' Untranslated Regions/immunology
- 5' Untranslated Regions/immunology
- Base Sequence
- Binding Sites, Antibody/genetics
- Cell Line
- Electrophoresis, Polyacrylamide Gel
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Silencing/immunology
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids/genetics
- Plasmids/immunology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Response Elements/immunology
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- TATA Box/immunology
- Transfection
Collapse
Affiliation(s)
- Frank Heusohn
- Department of Clinical Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
249
|
Jones LC, Lin ML, Chen SS, Krug U, Hofmann WK, Lee S, Lee YH, Koeffler HP. Expression of C/EBPbeta from the C/ebpalpha gene locus is sufficient for normal hematopoiesis in vivo. Blood 2002; 99:2032-6. [PMID: 11877276 DOI: 10.1182/blood.v99.6.2032] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are critical transcriptional regulators of differentiation of hematopoietic cells. Previous studies have shown that targeted disruption of the C/ebpalpha gene results in a lack of granulocytic differentiation with an arrest at the stage of immature myeloblasts. By using a gene replacement strategy in which C/EBPbeta was expressed from the C/ebpalpha gene locus of C/EBPalpha-null mice, we have evaluated the ability of C/EBPbeta to function for C/EBPalpha in directing differentiation along the granulocytic pathway. We show that the morphology and the differential cell counts of the bone marrow and peripheral blood cells from C/EBPbeta knockin mice are indistinguishable from those of their wild-type littermates, indicating that hematopoiesis occurs normally in these animals. Additionally, we analyzed expression of 21 myeloid-specific genes, including markers for distinct stages of granulocytic differentiation, and found no significant differences in their levels of expression in the bone marrow of C/EBPbeta knockin and wild-type mice. These results imply that C/EBPbeta can substitute for C/EBPalpha during hematopoiesis when expressed from the C/ebpalpha gene locus.
Collapse
Affiliation(s)
- Letetia C Jones
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, 8700 Beverly Blvd, Rm. 109, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK. NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 2002; 291:1071-80. [PMID: 11866474 DOI: 10.1006/bbrc.2002.6562] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the functional antagonism between the regulator of the heat shock response, HSF1, and NF-IL6, which plays a major role in control of the acute phase response (APR). Agents that activate HSF1 such as heat shock and sodium salicylate inhibit NF-IL6 induced transcription while NF-IL6 activators such as lipopolysaccharide (LPS) and interleukin 6 (IL-6) repressed the stress responsive HSP70B promoter. In transfection studies, the inhibitory effects of HSF1 and NF-IL6 on the c-fms promoter were shown to be highly dose-dependent. Furthermore, heat shock is inhibitory to differentiation-linked expression of macrophage colony stimulating factor (M-CSF) receptor, product of the c-fms gene, which is transcriptionally activated by NF-IL6 but repressed by HSF1. Our studies suggest a strong mutual antagonism between the heat shock response and APR, which may influence the sensitivity and duration of inflammatory responses.
Collapse
Affiliation(s)
- Yue Xie
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|