201
|
Bulchand S, Grove EA, Porter FD, Tole S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev 2001; 100:165-75. [PMID: 11165475 DOI: 10.1016/s0925-4773(00)00515-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We are interested in the early mechanisms that initiate regional patterning in the dorsal telencephalon, which gives rise to cerebral cortex. Members of the LIM-homeodomain (LIM-HD) family of transcription factors are implicated in patterning and cell fate specification in several systems including the mammalian forebrain. Mice in which Lhx2 is disrupted were reported to have reduced telencephalic development, and the hippocampal primordium appeared to be missing, by morphological observation. We hypothesized that this may be due to a defect in the cortical hem, a Wnt- and Bmp-rich putative signaling center in the medial telencephalon, a source of regulatory signals for hippocampal development. We asked if the expression of any known hem-specific signaling molecule is deficient in Lhx2-/- mice. Our results reveal, unexpectedly, that at embryonic day (E)12.5, what appears to be some spared 'lateral' cortex is instead an expanded cortical hem. Normally restricted to the extreme medial edge of the telencephalon, the hem covers almost the entire dorsal telencephalon in the Lhx2-/- mice. This indicates a role for Lhx2 in the regulation of the extent of the cortical hem. In spite of an expanded, mislocated hem in the Lhx2-/- telencephalon, a potential source of ectopic dorsalizing cues, no hippocampal differentiation is detected in tissue adjacent to the mutant hem, nor does the overall dorsoventral patterning appear perturbed. We propose that Lhx2 is involved at a crucial early step in patterning the telencephalon, where the neuroepithelium is first divided into presumptive cortical tissue, and the cortical hem. The defect in the Lhx2-/- telencephalon appears to be at this step.
Collapse
Affiliation(s)
- S Bulchand
- Department of Biological Sciences, Tata Institute of Fundamental Research, 400005, Mumbai, India
| | | | | | | |
Collapse
|
202
|
Matsuda H, Yokoyama H, Endo T, Tamura K, Ide H. An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev Biol 2001; 229:351-62. [PMID: 11150239 DOI: 10.1006/dbio.2000.9973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The results of recent studies have supported the idea that the ability to organize the formation of axes such as the anteroposterior and proximodistal axes corresponds to limb regeneration ability in Xenopus. In this study, we investigated the mechanism by which the dorsoventral (D-V) axis of regenerating Xenopus limbs is established and the relationships between D-V patterning and regenerative ability. Transplantation experiments were performed to study which epidermis or mesenchyme is responsible for the D-V patterning in regenerating limbs. Naked mesenchyme of a donor limb was rotated and implanted on a host opposite-side limb stump to make a reversed recombination about the D-V axis. The resultant regenerates had a normal-looking D-V pattern, including Lmx-1 expression, muscle pattern, and joints, in stage 52 recombinants and a reversed D-V pattern in stage 55 recombinants. Further experiments in recombination at stage 52 and stage 55 showed that the epidermal signal is responsible for producing the D-V pattern in the regenerating blastema. These results, together with the finding that Lmx-1 expression is absent in the froglet forelimb blastema, suggest that D-V axis formation is a key step in understanding the loss of regenerative ability.
Collapse
Affiliation(s)
- H Matsuda
- Biological Institute, Graduate School of Science, Tohoku University, Aoba-yama Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
203
|
Daluiski A, Yi SE, Lyons KM. The molecular control of upper extremity development: implications for congenital hand anomalies. J Hand Surg Am 2001; 26:8-22. [PMID: 11172363 DOI: 10.1053/jhsu.2001.9419] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the molecular aspects of limb development are being unraveled, more of the congenital anomalies seen by hand surgeons in the clinical setting will have an identifiable molecular basis. The majority of the data available regarding the molecular development of the upper extremity have come from experimental animal studies, specifically the mouse and chicken. These findings are being discovered by either direct surgical and molecular manipulation of the developing limb or by production of mice deficient in specific genes. Relatively few specific human mutations that cause limb abnormalities have been identified. Hand surgeons should be aware of the basic molecular pathways controlling limb development because they are in a unique position to be able to identify patients with such deformities. In turn, detailed clinical descriptions of congenital anomalies affecting the upper extremity will advance the understanding of the cellular events controlled by the molecular pathways of limb development. This review describes the general molecular basis of limb development and correlates it with disease processes affecting the upper extremity.
Collapse
Affiliation(s)
- A Daluiski
- Department of Orthopaedic Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | |
Collapse
|
204
|
Ghazi A, Anant S, VijayRaghavan K. Apterous mediates development of direct flight muscles autonomously and indirect flight muscles through epidermal cues. Development 2000; 127:5309-18. [PMID: 11076753 DOI: 10.1242/dev.127.24.5309] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.
Collapse
Affiliation(s)
- A Ghazi
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | | |
Collapse
|
205
|
Kawakami Y, Wada N, Nishimatsu S, Nohno T. Involvement of frizzled-10 in Wnt-7a signaling during chick limb development. Dev Growth Differ 2000; 42:561-9. [PMID: 11142678 DOI: 10.1046/j.1440-169x.2000.00545.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dorsal ectoderm of the limb bud is known to regulate anterior-posterior patterning as well as dorsal-ventral patterning during vertebrate limb morphogenesis. Wnt-7a, expressed in the dorsal ectoderm, encodes a key molecule implicated in these events. In the present study, chicken frizzled-10 (Fz-10) encoding a Wnt receptor was used to study mechanisms of Wnt-7a signaling during chick limb patterning, because its expression is restricted to the posterior-distal region of the dorsal limb bud. Fz-10 transcripts colocalize with Sonic hedgehog (Shh) in the dorsal side of stages 18-23 chick limb buds. It was demonstrated that Fz-10 interacts with Wnt-7a to induce synergistically the expression of Wnt-responsive genes, such as Siamois and Xnr3, in Xenopus animal cap assays. In the chick limb bud, Fz-10 expression is regulated by Shh and a signal from the dorsal ectoderm, presumably Wnt-7a, but not by signals from the apical ectodermal ridge. These results suggest that Fz-10 acts as a receptor for Wnt-7a and has a positive effect on Shh expression in the chick limb bud.
Collapse
Affiliation(s)
- Y Kawakami
- Department of Molecular Biology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | |
Collapse
|
206
|
Seufert DW, Kos R, Erickson CA, Swalla BJ. p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:193-204. [PMID: 11069138 DOI: 10.1002/1097-010x(20001015)288:3<193::aid-jez1>3.0.co;2-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The p68 DEAD-box RNA helicases have been identified in diverse organisms, including yeast, invertebrates, and mammals. DEAD-box RNA helicases are thought to unwind duplexed RNAs, and the p68 family may participate in initiating nucleolar assembly. Recent evidence also suggests that they are developmentally regulated in chordate embryos. bobcat, a newly described member of this gene family, has been found in eggs and developing embryos of the ascidian urochordate, Molgula oculata. Antisense RNA experiments have implicated this gene in establishing basic chordate features, including the notochord and neural tube in ascidians (Swalla et al. 1999). We have isolated p68 homologs from chick and Xenopus in order to investigate their possible role in vertebrate development. We show that embryonic expression of p68 in chick, frog, and ascidian embryos is high in the developing brain and spinal cord as well as in the sensory vesicles. In frog embryos, p68 expression also marks the streams of migrating cranial neural crest cells throughout neural tube development and in tailbud stages, but neural crest expression is faint in chick embryos. Ascidian embryos also show mesodermal p68 expression during gastrulation and neurulation, and we document some p68 mesodermal expression in both chick and frog. Thus, as shown in these studies, p68 is expressed in early neural development and in various mesodermal tissues in a variety of chordate embryos, including chick, frog, and ascidian. Further functional experiments will be necessary to understand the role(s) p68 may play in vertebrate development.
Collapse
Affiliation(s)
- D W Seufert
- Institute for Molecular and Evolutionary Genetics, Biology Department, Pennsylvania State University, University Park 16802, USA.
| | | | | | | |
Collapse
|
207
|
Farrell ER, Münsterberg AE. csal1 is controlled by a combination of FGF and Wnt signals in developing limb buds. Dev Biol 2000; 225:447-58. [PMID: 10985862 DOI: 10.1006/dbio.2000.9852] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While some of the signaling molecules that govern establishment of the limb axis have been characterized, little is known about the downstream effector genes that interpret these signals. In Drosophila, the spalt gene is involved in cell fate determination and pattern formation in different tissues. We have cloned a chick homologue of Drosophila spalt, which we have termed csal1, and this study focuses on the regulation of csal1 expression in the limb bud. csal1 is expressed in limb buds from HH 17 to 26, in both the apical ectodermal ridge and the distal mesenchyme. Signals from the apical ridge are essential for csal1 expression, while the dorsal ectoderm is required for csal1 expression at a distance from the ridge. Our data indicate that both FGF and Wnt signals are required for the regulation of csal1 expression in the limb. Mutations in the human homologue of csal1, termed Hsal1/SALL1, result in a condition known as Townes-Brocks syndrome (TBS), which is characterized by preaxial polydactyly. The developmental expression of csal1 together with the digit phenotype in TBS patients suggests that csal1 may play a role in some aspects of distal patterning.
Collapse
Affiliation(s)
- E R Farrell
- Department of Anatomy and Physiology, Division of Cell and Developmental Biology, University of Dundee, Wellcome Trust Biocenter, Dow Street, Dundee, DD1 5EH, United Kingdom
| | | |
Collapse
|
208
|
Abstract
The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage.
Collapse
Affiliation(s)
- A M DeLise
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
209
|
Kania A, Johnson RL, Jessell TM. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 2000; 102:161-73. [PMID: 10943837 DOI: 10.1016/s0092-8674(00)00022-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Motor neurons extend axons along specific trajectories, but the molecules that control their pathfinding remain poorly defined. We show that two LIM homeodomain transcription factors, Lim1 and Lmx1b, control the initial trajectory of motor axons in the developing mammalian limb. The expression of Lim1 by a lateral set of lateral motor column (LMC) neurons ensures that their axons select a dorsal trajectory in the limb. In a complementary manner, the expression of Lmx1b by dorsal limb mesenchymal cells controls the dorsal and ventral axonal trajectories of medial and lateral LMC neurons. In the absence of these two proteins, motor axons appear to select dorsal and ventral trajectories at random. Thus, LIM homeodomain proteins act within motor neurons and cells that guide motor axons to establish the fidelity of a binary choice in axonal trajectory.
Collapse
Affiliation(s)
- A Kania
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
210
|
Abstract
Long bones of the appendicular skeleton are formed from a cartilage template in a process known as endochondral bone development. Chondrocytes within this template undergo a progressive program of differentiation from proliferating to postmitotic prehypertrophic to hypertrophic chondrocytes, while mesenchymal cells immediately surrounding the early cartilage template form the perichondrium. Recently, members of the Wnt family of secreted signaling molecules have been implicated in regulating chondrocyte differentiation. We find that Wnt-5a, Wnt-5b and Wnt-4 genes are expressed in chondrogenic regions of the chicken limb: Wnt-5a is expressed in the perichondrium, Wnt-5b is expressed in a subpopulation of prehypertrophic chondrocytes and in the outermost cell layer of the perichondrium, and Wnt-4 is expressed in cells of the joint region. Misexpression experiments demonstrate that two of these Wnt molecules, Wnt-5a and Wnt-4, have opposing effects on the differentiation of chondrocytes and that these effects are mediated through divergent signaling pathways. Specifically, Wnt-5a misexpression delays the maturation of chondrocytes and the onset of bone collar formation, while Wnt-4 misexpression accelerates these two processes. Misexpression of a stabilized form of beta-catenin also results in accelerated chondrogenesis, suggesting that a beta-catenin/TCF-LEF complex is involved in mediating the positive regulatory effect of Wnt-4. A number of the genes involved in Wnt signal tranduction, including two members of the Frizzled gene family, which are believed to encode Wnt-receptors, show very dynamic and distinct expression patterns in cartilaginous elements of developing chicken limbs. Misexpression of putative dominant-negative forms of the two Frizzled proteins results in severe shortening of the infected cartilage elements due to a delay in chondrocyte maturation, indicating that an endogenous Wnt signal does indeed function to promote chondrogenic differentiation.
Collapse
Affiliation(s)
- C Hartmann
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
211
|
Muñoz-Sanjuán I, Fallon JF, Nathans J. Expression and regulation of chicken fibroblast growth factor homologous factor (FHF)-4 at the base of the developing limbs. Mech Dev 2000; 95:101-12. [PMID: 10906454 DOI: 10.1016/s0925-4773(00)00336-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor homologous factors (FHFs) have been implicated in limb and nervous system development. In this paper we describe the expression of the cFHF-4 gene during early chicken development. cFHF-4 is expressed in the paraxial mesoderm, lateral ridge, and, most prominently, in the posterior-dorsal side of the base of each limb bud. The expression pattern of cFHF-4 at the base of the limbs is not altered by tissue grafts containing the zone of polarizing activity (ZPA), by implants of Shh-expressing cells, or by implants of beads containing retinoic acid, nor does it depend on the distal growth of the limb as it is not altered in limb buds that are surgically truncated. In three chicken mutants affecting limb patterning - talpid(2), limbless, and wingless - altered patterns of cFHF-4 expression are correlated with abnormal nerve plexus formation and altered patterns of limb bud innervation. Similarly, ectopic expression of cFHF-4 is correlated with a local induction of limb-like innervation patterns when beads containing FGF-2 are implanted in the flank. In these experiments, both ectopic innervation and ectopic expression of cFHF-4 in the flank were observed regardless of the size of the FGF-2-induced outgrowths. By contrast, ectopic expression of Shh and HoxD13 are seen only in the larger FGF-2-induced outgrowths. Taken together, these data suggest that cFHF-4 regulates or is coregulated with early events related to innervation at the base of the limbs.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 805 PCTB, 725 North Wolfe Street, MD 21205, Baltimore, USA
| | | | | |
Collapse
|
212
|
Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 2000. [PMID: 10817753 DOI: 10.1101/gad.14.10.1181] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The formation of the hair follicle and its cyclical growth, quiescence, and regeneration depend on reciprocal signaling between its epidermal and dermal components. The dermal organizing center, the dermal papilla (DP), regulates development of the epidermal follicle and is dependent on signals from the epidermis for its development and maintenance. GFP specifically expressed in DP cells of a transgenic mouse was used to purify this population and study the signals required to maintain it. We demonstrate that specific Wnts, but not Sonic hedgehog (Shh), maintain anagen-phase gene expression in vitro and hair inductive activity in a skin reconstitution assay.
Collapse
Affiliation(s)
- J Kishimoto
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
213
|
Meyer RA, Cohen MF, Recalde S, Zakany J, Bell SM, Scott WJ, Lo CW. Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud. DEVELOPMENTAL GENETICS 2000; 21:290-300. [PMID: 9438343 DOI: 10.1002/(sici)1520-6408(1997)21:4<290::aid-dvg6>3.0.co;2-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Gja1 gene encoding the gap junction connexin 43 (Cx43) is dynamically regulated during limb morphogenesis. Transcript expression is found in many regions of the limb bud known to be important in regulating limb growth and patterning. In the newly emerged limb bud, Gja1 transcripts are first expressed in the ventrodistal margin of the ectoderm, and later transcript expression is localized to the apical ectodermal ridge (AER). Interestingly, transcript expression in the ventrodistal ectoderm is initiated left/right asymmetrically, with some strain backgrounds showing reverse sidedness in the fore vs. hindlimb buds. In legless, a mouse mutant exhibiting both limb and left/right patterning defects, Gja1 transcripts could not be detected in this region. However, in the i.v./i.v. embryo, a mutant with randomization of body situs the same pattern of Gja1 asymmetry was found in the limb ectoderm regardless of body situs. This suggests that Gja1 transcript expression is not directly linked to signaling pathways involved in specification of the left/right axis. In addition to transcript expression in the apical ectodermal ridge, Gja1 transcripts were also found at high levels in the ventral ectoderm. In the limb bud mesenchyme, Gja1 transcripts were distributed in a posterior distal gradient, coincident with tissue known to have polarizing activity. With limb outgrowth and the initiation of limb mesenchyme condensation. Gja1 transcripts were localized in the presumptive progress zone, and in the condensing mesenchyme. In more proximal regions of the limb where mesenchyme differentiation has been initiated, Gja1 transcripts were expressed only in the outer mesenchymal cells comprising the presumptive perichondrium. Further analysis of transgenic mice ectopically expressing Wnt-1 in the limb mesenchyme revealed alterations in the pattern of Gja1 transcript expression in conjunction with the perturbation of limb mesenchyme condensation and differentiation. Together, these findings indicate that Cx43 gap junctions may mediate cell-cell interactions important in cell signaling processes involved in limb growth and patterning.
Collapse
Affiliation(s)
- R A Meyer
- Department of Biology, Rutgers University, Camden, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Chen H, Ovchinnikov D, Pressman CL, Aulehla A, Lun Y, Johnson RL. Multiple calvarial defects in lmx1b mutant mice. DEVELOPMENTAL GENETICS 2000; 22:314-20. [PMID: 9664684 DOI: 10.1002/(sici)1520-6408(1998)22:4<314::aid-dvg2>3.0.co;2-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vertebrate cranial vault, or calvaria, forms during embryonic development from cranial mesenchyme of multiple embryonic origins. Inductive interactions are thought to specify the number and location of the calvarial bones, including interactions between the neuroepithelium and cranial mesenchyme. An important feature of calvarial development is the local inhibition of osteogenic potential which occurs between specific bones and results in the formation of the cranial sutures. These sutures allow for postnatal growth of the skull to accommodate postnatal increase in brain size. The molecular genetic mechanisms responsible for the patterning of individual calvarial bones and for the specification of the number and location of sutures are poorly understood at the molecular genetic level. Here we report on the function and expression pattern of the LIM-homeodomain gene, lmx1b, during calvarial development. Lmx1b is expressed in the neuroepithelium underlying portions of the developing skull and in cranial mesenchyme which contributes to portions of the cranial vault. Lmx1b is essential for proper patterning and morphogenesis of the calvaria since the supraoccipital and interparietal bones of lmx1b mutant mice are either missing or severely reduced. Moreover, lmx1b mutant mice have severely abnormal sutures between the frontal, parietal, and interparietal bones. Our results indicate that lmx1b is required for multiple events in calvarial development and suggest possible genetic interaction with other genes known to regulate skull development and suture formation.
Collapse
Affiliation(s)
- H Chen
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
215
|
Altabef M, Logan C, Tickle C, Lumsden A. Engrailed-1 misexpression in chick embryos prevents apical ridge formation but preserves segregation of dorsal and ventral ectodermal compartments. Dev Biol 2000; 222:307-16. [PMID: 10837120 DOI: 10.1006/dbio.2000.9659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using lineage tracers, we recently showed dorsal and ventral ectodermal compartments along the sides of the body in chick embryos. The compartments are formed both in presumptive limb-forming regions where they position the apical ridge and also in presumptive interlimb (flank). Here we show, using a novel technique combining fate mapping and in situ hybridisation, that the ventral compartment coincides with the Engrailed-1 (En-1) domain of expression. This coincidence suggests that En-1 could maintain the ventral compartment and be necessary for apical ridge formation. To test this hypothesis, we ectopically expressed En-1 via retroviral transfer and then examined limb development and cell lineage restriction in the ectoderm. En-1 misexpression can completely prevent formation of both normal limbs and ectopic limbs induced in the flank by application of FGF-2. In both cases, there are no morphological signs of apical ectodermal ridge formation and expression of ridge-associated genes is undetectable. In striking contrast, the lineage restriction between dorsal and ventral ectoderm is not altered. Therefore, En-1 is involved in the regulation of ridge formation but not compartment maintenance.
Collapse
Affiliation(s)
- M Altabef
- Department of Developmental Neurobiology, King's College, Guy's Campus, London, SE1 9RT, United Kingdom.
| | | | | | | |
Collapse
|
216
|
Kimmel RA, Turnbull DH, Blanquet V, Wurst W, Loomis CA, Joyner AL. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 2000. [DOI: 10.1101/gad.14.11.1377] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proximal–distal outgrowth of the vertebrate limb bud is regulated by the apical ectodermal ridge (AER), which forms at an invariant position along the dorsal–ventral (D/V) axis of the embryo. We have studied the genetic and cellular events that regulate AER formation in the mouse. In contrast to implications from previous studies in chick, we identified two distinct lineage boundaries in mouse ectoderm prior to limb bud outgrowth using a Cre/loxP-based fate-mapping approach and a novel retroviral cell-labeling technique. One border is transient and at the limit of expression of the ventral gene En1, which corresponds to the D/V midline of the AER, and the second border corresponds to the dorsal AER margin. Labeling of AER precursors using an inducible Cre showed that not all cells that initially express AER genes form the AER, indicating that signaling is required to maintain an AER phenotype. Misexpression of En1 at moderate levels specifically in the dorsal AER of transgenic mice was found to produce dorsally shifted AER fragments, whereas high levels ofEn1 abolished AER formation. In both cases, the dorsal geneWnt7a was repressed in cells adjacent to theEn1-expressing cells, demonstrating that signaling regulated by EN1 occurs across the D/V border. Finally, fate mapping of AER domains in these mutants showed that En1 plays a part in positioning and maintaining the two lineage borders.
Collapse
|
217
|
Charité J, McFadden DG, Olson EN. The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 2000; 127:2461-70. [PMID: 10804186 DOI: 10.1242/dev.127.11.2461] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Limb outgrowth and patterning of skeletal elements are dependent on complex tissue interactions involving the zone of polarizing activity (ZPA) in the posterior region of the limb bud and the apical ectodermal ridge. The peptide morphogen Sonic hedgehog (SHH) is expressed specifically in the ZPA and, when expressed ectopically, is sufficient to mimic its functions, inducing tissue growth and formation of posterior skeletal elements. We show that the basic helix-loop-helix transcription factor dHAND is expressed posteriorly in the developing limb prior to Shh and subsequently occupies a broad domain that encompasses the Shh expression domain. In mouse embryos homozygous for a dHAND null allele, limb buds are severely underdeveloped and Shh is not expressed. Conversely, misexpression of dHAND in the anterior region of the limb bud of transgenic mice results in formation of an additional ZPA, revealed by ectopic expression of Shh and its target genes, and resulting limb abnormalities that include preaxial polydactyly with duplication of posterior skeletal elements. Analysis of mouse mutants in which Hedgehog expression is altered also revealed a feedback mechanism in which Hedgehog signaling is required to maintain the full dHAND expression domain in the developing limb. Together, these findings identify dHAND as an upstream activator of Shh expression and important transcriptional regulator of limb development.
Collapse
Affiliation(s)
- J Charité
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
218
|
Fernandez-Teran M, Piedra ME, Kathiriya IS, Srivastava D, Rodriguez-Rey JC, Ros MA. Role of dHAND in the anterior-posterior polarization of the limb bud: implications for the Sonic hedgehog pathway. Development 2000; 127:2133-42. [PMID: 10769237 DOI: 10.1242/dev.127.10.2133] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
dHAND is a basic helix-loop-helix (bHLH) transcription factor essential for cardiovascular development. Here we analyze its pattern of expression and functional role during chick limb development. dHAND expression was observed in the lateral plate mesoderm prior to emergence of the limb buds. Coincident with limb initiation, expression of dHAND became restricted to the posterior half of the limb bud. Experimental procedures that caused mirror-image duplications of the limb resulted in mirror-image duplications of the pattern of dHAND expression along the anterior-posterior axis. Retroviral overexpression of dHAND in the limb bud produced preaxial polydactyly, corresponding to mild polarizing activity at the anterior border. At the molecular level, misexpression of dHAND caused ectopic activation of members of the Sonic hedgehog (Shh) pathway, including Gli and Patched, in the anterior limb bud. A subset of infected embryos displayed ectopic anterior activation of Shh. Other factors implicated in anterior-posterior polarization of the bud such as the most 5′ Hoxd genes and Bmp2 were also ectopically activated at the anterior border. Our results indicate a role for dHAND in the establishment of anterior-posterior polarization of the limb bud.
Collapse
Affiliation(s)
- M Fernandez-Teran
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Spain
| | | | | | | | | | | |
Collapse
|
219
|
Adams KA, Maida JM, Golden JA, Riddle RD. The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 2000; 127:1857-67. [PMID: 10751174 DOI: 10.1242/dev.127.9.1857] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells in the caudal mesencephalon and rostral metencephalon become organized by signals emanating from the isthmus organizer (IsO). The IsO is associated with the isthmus, a morphological constriction of the neural tube which eventually defines the mesencephalic/ metencephalic boundary (MMB). Here we report that the transcription factor Lmx1b is expressed and functions in a distinct region of the IsO. Lmx1b expression is maintained by the glycoprotein Fgf8, a signal capable of mediating IsO signaling. Lmx1b, in turn, maintains the expression of the secreted factor Wnt1. Our conclusions are substantiated by the following: (i) Lmx1b mRNA becomes localized to the isthmus immediately after Fgf8 initiation, (ii) Wnt1 expression is localized to the Lmx1b expression domain, but with slightly later kinetics, (iii) Fgf8-soaked beads generate similar domains of expression for Lmx1b and Wnt1 and (iv) retroviral-mediated expression of Lmx1b (Lmx1b/RCAS) maintains Wnt1 expression in the mesencephalon. Ectopic Lmx1b is insufficient to alter the expression of a number of other genes expressed at the IsO, suggesting that it does not generate a new signaling center. Instead, if we allow Lmx1b/RCAS-infected brains to develop longer, we detect changes in mesencephalic morphology. Since both ectopic and endogenous Lmx1b expression occurs in regions of the isthmus undergoing morphological changes, it could normally play a role in this process. Furthermore, a similar phenotype is not observed in Wnt1/RCAS-infected brains, demonstrating that ectopic Wnt1 is insufficient to mediate the effect of ectopic Lmx1b in our assay. Since Wnt1 function has been linked to the proper segregation of mesencephalic and metencephalic cells, we suggest that Lmx1b and Wnt1 normally function in concert to affect IsO morphogenesis.
Collapse
Affiliation(s)
- K A Adams
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
220
|
Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A 2000; 97:4520-4. [PMID: 10781055 PMCID: PMC18267 DOI: 10.1073/pnas.97.9.4520] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between the Wnt (wingless) and hedgehog signaling pathways were first described as playing a role in establishing boundaries between ectodermal cells in Drosophila segmentation. During the initiation of mammalian tooth development, boundaries that distinguish oral from dental ectoderm must be formed to correctly position the sites of tooth formation. We describe a reciprocal relationship between the expression of Wnt-7b in presumptive oral ectoderm and Shh in presumptive dental ectoderm in mouse embryos that mark boundaries between these cells with different developmental fates. By using a murine retrovirus to ectopically express Wnt-7b in presumptive dental ectoderm in mandibular arch explants, we show that Shh expression in the ectoderm and Ptc expression in the underlying ectomesenchyme are down-regulated, and tooth development is subsequently arrested. This suggests that Wnt-7b acts to repress Shh expression in oral ectoderm, thus maintaining the boundaries between oral and dental ectodermal cells. Implantation of beads soaked in Shh protein into Wnt-7b-infected explants resulted in complete rescue of tooth development, confirming that the repressive action of Wnt-7b specifically affects Shh signaling.
Collapse
Affiliation(s)
- L Sarkar
- Department of Craniofacial Development, GKT Dental Institute, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | |
Collapse
|
221
|
Zhang Z, Yu X, Zhang Y, Geronimo B, Lovlie A, Fromm SH, Chen Y. Targeted misexpression of constitutively active BMP receptor-IB causes bifurcation, duplication, and posterior transformation of digit in mouse limb. Dev Biol 2000; 220:154-67. [PMID: 10753507 DOI: 10.1006/dbio.2000.9637] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.
Collapse
Affiliation(s)
- Z Zhang
- Department of Oral Biology, University of Oslo, Oslo, 0316, Norway
| | | | | | | | | | | | | |
Collapse
|
222
|
Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, Pawson T. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat Genet 2000; 24:420-3. [PMID: 10742110 DOI: 10.1038/74279] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity. Shp2 can potentiate signalling through the MAP-kinase pathway and is required during early mouse development for gastrulation. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.
Collapse
Affiliation(s)
- T M Saxton
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
223
|
Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 2000; 220:62-75. [PMID: 10720431 DOI: 10.1006/dbio.2000.9623] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used Pax-2 mRNA expression and Lim 1/2 antibody staining as markers for the conversion of chick intermediate mesoderm (IM) to pronephric tissue and Lmx-1 mRNA expression as a marker for mesonephros. Pronephric markers were strongly expressed caudal to the fifth somite by stage 9. To determine whether the pronephros was induced by adjacent tissues and, if so, to identify the inducing tissues and the timing of induction, we microsurgically dissected one side of chick embryos developing in culture and then incubated them for up to 3 days. The undisturbed contralateral side served as a control. Most embryos cut parallel to the rostrocaudal axis between the trunk paraxial mesoderm and IM before stage 8 developed a pronephros on the control side only. Embryos manipulated after stage 9 developed pronephric structures on both sides, but the caudal pronephric extension was attenuated on the cut side. These results suggest that a medial signal is required for pronephric development and show that the signal is propagated in a rostral to caudal sequence. In manipulated embryos cultured for 3 days in ovo, the mesonephros as well as the pronephros failed to develop on the experimental side. In contrast, embryos cut between the notochord and the trunk paraxial mesoderm formed pronephric structures on both sides, regardless of the stage at which the operation was performed, indicating that the signal arises from the paraxial mesoderm (PM) and not from axial mesoderm. This cut also served as a control for cuts between the PM and the IM and showed that signaling itself was blocked in the former experiments, not the migration of pronephric or mesonephric precursor cells from the primitive streak. Additional control experiments ruled out the need for signals from lateral plate mesoderm, ectoderm, or endoderm. To determine whether the trunk paraxial mesoderm caudal to the fifth somite maintains its inductive capacity in the absence of contact with more rostral tissue, embryos were transected. Those transected below the prospective level of the fifth somite expressed Pax-2 in both the rostral and the caudal isolates, whereas embryos transected rostral to this level expressed Pax-2 in the caudal isolate only. Thus, a rostral signal is not required to establish the normal pattern of Pax-2 expression and pronephros formation. To determine whether paraxial mesoderm is sufficient for pronephros induction, stage 7 or earlier chick lateral plate mesoderm was cocultured with caudal stage 8 or 9 quail somites in collagen gels. Pax-2 was expressed in chick tissues in 21 of 25 embryos. Isochronic transplantation of stage 4 or 5 quail node into caudal chick primitive streak resulted in the generation of ectopic somites. These somites induced ectopic pronephroi in lateral plate mesoderm, and the IM that received signals from both native and ectopic somites formed enlarged pronephroi with increased Pax-2 expression. We conclude that signals from a localized region of the trunk paraxial mesoderm are both required and sufficient for the induction of the pronephros from the chick IM. Studies to identify the molecular nature of the induction are in progress.
Collapse
Affiliation(s)
- T J Mauch
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | | | | | |
Collapse
|
224
|
Abstract
The LIM domain is a zinc finger structure that is present in several types of proteins, including homeodomain transcription factors, kinases and proteins that consist of several LIM domains. Proteins containing LIM domains have been discovered to play important roles in a variety of fundamental biological processes including cytoskeleton organization, cell lineage specification and organ development, but also for pathological functions such as oncogenesis, leading to human disease. The LIM domain has been demonstrated to be a protein-protein interaction motif that is critically involved in these processes. The recent isolation and analysis of more LIM domain-containing proteins from several species have confirmed and broadened our knowledge about LIM protein function. Furthermore, the identification and characterization of factors that interact with LIM domains illuminates mechanisms of combinatorial developmental regulation.
Collapse
Affiliation(s)
- I Bach
- Center for Molecular Neurobiology, University of Hamburg, Martinistrasse 85, 20246, Hamburg, Germany.
| |
Collapse
|
225
|
Ladher RK, Church VL, Allen S, Robson L, Abdelfattah A, Brown NA, Hattersley G, Rosen V, Luyten FP, Dale L, Francis-West PH. Cloning and expression of the Wnt antagonists Sfrp-2 and Frzb during chick development. Dev Biol 2000; 218:183-98. [PMID: 10656762 DOI: 10.1006/dbio.1999.9586] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Wnt genes are known to play fundamental roles during patterning and development of a number of embryonic structures. Receptors for Wnts are members of the Frizzled family of proteins containing a cysteine-rich domain (CRD) that binds the Wnt protein. Recently several secreted frizzled-related proteins (Sfrps) that also contain a CRD have been identified and some of these can both bind and antagonise Wnt proteins. In this paper we report the expression patterns of the chick homologues of Frzb, a known Wnt antagonist, and Sfrp-2. Both genes are expressed in areas where Wnts are known to play a role in development, including the neural tube, myotome, cartilage, and sites of epithelial-mesenchymal interactions. Initially, Sfrp-2 and Frzb are expressed in overlapping areas in the neural plate and neural tube, whereas later, they have distinct patterns. In particular Sfrp-2 is associated with myogenesis while Frzb is associated with chondrogenesis, suggesting that they play different roles during development. Finally, we have used the early Xenopus embryo as an in vivo assay to show that Sfrp-2, like Frzb, is a Wnt antagonist. These results suggest that Sfrp-2 and Frzb may function in the developing embryo by modulating Wnt signalling.
Collapse
Affiliation(s)
- R K Ladher
- Department of Craniofacial Development, Guy's, King's and St. Thomas' School of Dentistry, Guy's Tower, Floor 27, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
Homeobox genes play fundamental roles in development. They can be subdivided into several subfamilies, one of which is the LIM-homeobox subfamily. The primary structure of LIM-homeobox genes has been remarkably conserved through evolution. Have their functions similarly been conserved? A host of new data has been derived from mutational analysis in diverse organisms, such as nematodes, flies and vertebrates. These studies have revealed a prominent involvement of LIM-homeodomain proteins in tissue patterning and differentiation, and their function in neural patterning is evident in all organisms studied to date. Here, we summarize the recent findings on LIM-homeobox gene function, compare the function of these genes from different organisms and describe specific co-factor requirements.
Collapse
Affiliation(s)
- O Hobert
- Columbia University, College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, 701 W.168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
227
|
Elisa Piedra M, Borja Rivero1 F, Fernandez-Teran M, Ros MA. Pattern formation and regulation of gene expressions in chick recombinant limbs. Mech Dev 2000; 90:167-79. [PMID: 10640702 DOI: 10.1016/s0925-4773(99)00247-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant limbs were performed by ensembling dissociated-reaggregated wing bud mesoderm inside an ectodermal hull. The zone of polarizing activity was excluded from the mesoderm used to perform the recombinant limbs (non-polarized recombinants), and grafted when desired (polarized recombinants). Reorganization of patterning progressively occurred in the newly formed progress zone under the influence of the apical ectodermal ridge (AER), explaining the proximo-distal gradient of morphogenesis observed in developed recombinant limbs. The AER, without the influence of the polarizing region (ZPA), was sufficient to direct outgrowth and appropriate proximo-distal patterning, as observed in the expression of the Hoxa-11 and Hoxa-13 genes. The development of the recombinant limbs coursed with symmetric AER and downregulation of Bmp expression in the mesoderm supporting a negative effect of Bmp signaling upon the apical ridge. The recombinant ectoderm maintained previously established compartments of gene expressions and organized a correct dorso-ventral patterning in the recombinant progress zone. Finally, the ZPA effect was only detected on Bmp expression and pattern formation along the antero-posterior axis.
Collapse
Affiliation(s)
- M Elisa Piedra
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | | | | | | |
Collapse
|
228
|
Pressman CL, Chen H, Johnson RL. lmx1b, a LIM homeodomain class transcription factor, is necessary for normal development of multiple tissues in the anterior segment of the murine eye. Genesis 2000. [DOI: 10.1002/(sici)1526-968x(200001)26:1<15::aid-gene5>3.0.co;2-v] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
229
|
Milán M, Cohen SM. Notch signaling is not sufficient to define the affinity boundary between dorsal and ventral compartments. Mol Cell 1999; 4:1073-8. [PMID: 10635331 DOI: 10.1016/s1097-2765(00)80235-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developing limbs of Drosophila are subdivided into distinct cells populations known as compartments. Short-range interaction between cells in adjacent compartments induces expression of signaling molecules at the compartment boundaries. In addition to serving as the sources of long-range signals, compartment boundaries prevent mixing of the adjacent cell populations. One model for boundary formation proposes that affinity differences between compartments are defined autonomously as one aspect of compartment-specific cell identity. An alternative is that the affinity boundary depends on signaling between compartments. Here, we present evidence that the dorsal selector gene apterous plays a role in establishing the dorsoventral affinity boundary that is independent of Notch-mediated signaling between dorsal and ventral cells.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
230
|
Ohuchi H, Nakagawa T, Itoh N, Noji S. FGF10 can induce Fgf8 expression concomitantly with En1 and R-fng expression in chick limb ectoderm, independent of its dorsoventral specification. Dev Growth Differ 1999; 41:665-73. [PMID: 10646796 DOI: 10.1046/j.1440-169x.1999.00466.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.
Collapse
Affiliation(s)
- H Ohuchi
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto City, Japan
| | | | | | | |
Collapse
|
231
|
Clough MV, Hamlington JD, McIntosh I. Restricted distribution of loss-of-function mutations within the LMX1B genes of nail-patella syndrome patients. Hum Mutat 1999; 14:459-65. [PMID: 10571942 DOI: 10.1002/(sici)1098-1004(199912)14:6<459::aid-humu3>3.0.co;2-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nail-patella syndrome (NPS) is a pleiotropic condition characterized by dysplasia of the nails, hypoplasia of the patellae, elbow dysplasia, and progressive kidney disease. The syndrome is inherited in an autosomal dominant manner and has been shown to result from mutations in the LIM-homeodomain encoding LMX1B gene. The LMX1B transcription factor plays a role in defining the development of dorsal-specific structures during limb development. To date, a total of 64 point mutations and small deletions or insertions have been reported, concentrated within either the LIM or homeodomains. No NPS mutations have been observed within the carboxy-terminal third of the coding sequence, suggesting that mutations in this region are not inactivating. These findings support the hypothesis that NPS results from a 50% reduction in LMX1B function via a reduction in synthesis, disruption of secondary structure, or failure to bind DNA.
Collapse
Affiliation(s)
- M V Clough
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21287-4922, USA
| | | | | |
Collapse
|
232
|
Yuan S, Schoenwolf GC. The spatial and temporal pattern of C-Lmx1 expression in the neuroectoderm during chick neurulation. Mech Dev 1999; 88:243-7. [PMID: 10534624 DOI: 10.1016/s0925-4773(99)00185-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Lmx1 has been shown to be a key regulatory gene for specification of dorsoventral pattern during vertebrate limb development. Here, we describe its earlier pattern of expression during and shortly after neurulation. Transcripts are first expressed in the mesoderm of the head process and rostral tip of the primitive streak at the late gastrula/early neurula stage (stage 4). As neurulation occurs with shaping of the neural plate, C-Lmx1 is expressed in a butterfly-like pattern in the lateral neuroectoderm. During bending of the neural plate, C-Lmx1 expression becomes localized to three areas of the bending neuroectoderm: the median hingepoint (future floor plate of the neural tube) and the paired dorsolateral regions of the neuroepithelium, including the dorsolateral hingepoints and the adjacent neuroectodermal and epidermal ectodermal components of the neural folds. After closure of the neural groove and formation of the primary brain vesicles, C-Lmx1 is expressed in the dorsal neural tube along the entire length of the neuraxis, as well as in the floor plate at the brain but not spinal cord levels. At the midbrain and rostral hindbrain levels, C-Lmx1 is heavily expressed. Here, in addition to expression in the dorsal neural tube and floor plate, it is expressed in the lateral walls of the neural tube, with the exception of the levels of rhombomeres 2 and 4. C-Lmx1 is also expressed in several other discrete domains during and shortly after neurulation, including the prechordal plate and rostral head mesenchyme, foregut endoderm, otic placode and vesicle, dorsal somitic mesoderm, midline endoderm at the level of the caudal spinal cord, mesonephroi and limb bud mesoderm.
Collapse
Affiliation(s)
- S Yuan
- Department of Neurobiology and Anatomy, 50 North Medical Drive, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
233
|
Wright M, Aikawa M, Szeto W, Papkoff J. Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 1999; 263:384-8. [PMID: 10491302 DOI: 10.1006/bbrc.1999.1344] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-catenin signal transduction pathway, which can be activated by secreted Wnt proteins, plays a key role in normal embryonic development and in malignant transformation of the mammary gland and colon. Here we demonstrate, for the first time, that Wnt and beta-catenin signaling also function in cells of the vasculature. RT-PCR analysis showed that primary endothelial and smooth muscle cell cultures, of both mouse and human origin, express members of the Wnt and Wnt receptor (Frizzled) gene families. Transfection of an expression vector for Wnt-1 into primary endothelial cells increased both the free pool of beta-catenin and the transcription from a Lef/tcf-dependent reporter gene construct. Expression of Wnt-1, but not Wnt-5a, also stimulated proliferation of primary endothelial cell cultures. These data show that Wnt and Frizzled proteins can regulate signal transduction, via beta-catenin, in endothelial cells. These findings suggest that Wnt signaling may feature in normal differentiation of the vasculature as well as in pathological settings where endothelial and smooth muscle proliferation is disturbed.
Collapse
Affiliation(s)
- M Wright
- Valentis Corporation, 863A Mitten Road, Burlingame, California, 94010, USA
| | | | | | | |
Collapse
|
234
|
Abstract
Intercellular signaling by a subset of Wnts is mediated by stabilization of cytoplasmic beta-catenin and its translocation to the nucleus. Immunolocalization of beta-catenin in developing chick skin reveals that this signaling pathway is active in a dynamic pattern from the earliest stages of feather bud development. Forced activation of this pathway by expression of a stabilized beta-catenin in the ectoderm results in the ectopic formation of feather buds. This construct is sufficient to induce bud formation since it does so both within presumptive feather tracts and in normally featherless regions where tract-specific signals are absent. It is also insensitive to the lateral inhibition that mediates the normal spacing of buds and can induce ectopic buds in interfollicular skin. However, additional patterning signals cooperate with this pathway to regulate gene expression within domains of stabilized beta-catenin expression. Localized activation of this pathway within the bud as it develops is required for normal morphogenesis and ectopic activation of the pathway leads to abnormally oriented buds and growths on the feather filaments. These results suggest that activation of the beta-catenin pathway initiates follicle development in embryonic skin and plays important roles in the subsequent morphogenesis of the bud.
Collapse
Affiliation(s)
- S Noramly
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
235
|
Bach I, Rodriguez-Esteban C, Carrière C, Bhushan A, Krones A, Rose DW, Glass CK, Andersen B, Izpisúa Belmonte JC, Rosenfeld MG. RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex. Nat Genet 1999; 22:394-9. [PMID: 10431247 DOI: 10.1038/11970] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
LIM domains are required for both inhibitory effects on LIM homeodomain transcription factors and synergistic transcriptional activation events. The inhibitory actions of the LIM domain can often be overcome by the LIM co-regulator known as CLIM2, LDB1 and NLI (referred to hereafter as CLIM2; refs 2-4). The association of the CLIM cofactors with LIM domains does not, however, improve the DNA-binding ability of LIM homeodomain proteins, suggesting the action of a LIM-associated inhibitor factor. Here we present evidence that LIM domains are capable of binding a novel RING-H2 zinc-finger protein, Rlim (for RING finger LIM domain-binding protein), which acts as a negative co-regulator via the recruitment of the Sin3A/histone deacetylase corepressor complex. A corepressor function of RLIM is also suggested by in vivo studies of chick wing development. Overexpression of the gene Rnf12, encoding Rlim, results in phenotypes similar to those observed after inhibition of the LIM homeodomain factor LHX2, which is required for the formation of distal structures along the proximodistal axis, or by overexpression of dominant-negative CLIM1. We conclude that Rlim is a novel corepressor that recruits histone deacetylase-containing complexes to the LIM domain.
Collapse
Affiliation(s)
- I Bach
- Howard Hughes Medical Institute, Eukaryotic Regulatory Biology Program, University of California, San Diego, School of Medicine, La Jolla 92093-0648, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yonei-Tamura S, Endo T, Yajima H, Ohuchi H, Ide H, Tamura K. FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. Dev Biol 1999; 211:133-43. [PMID: 10373311 DOI: 10.1006/dbio.1999.9290] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors.
Collapse
Affiliation(s)
- S Yonei-Tamura
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
237
|
Hashimoto K, Yokouchi Y, Yamamoto M, Kuroiwa A. Distinct signaling molecules control Hoxa-11 and Hoxa-13 expression in the muscle precursor and mesenchyme of the chick limb bud. Development 1999; 126:2771-83. [PMID: 10331987 DOI: 10.1242/dev.126.12.2771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The limb muscles, originating from the ventrolateral portion of the somites, exhibit position-specific morphological development through successive splitting and growth/differentiation of the muscle masses in a region-specific manner by interacting with the limb mesenchyme and the cartilage elements. The molecular mechanisms that provide positional cues to the muscle precursors are still unknown. We have shown that the expression patterns of Hoxa-11 and Hoxa-13 are correlated with muscle patterning of the limb bud (Yamamoto et al., 1998) and demonstrated that muscular Hox genes are activated by signals from the limb mesenchyme. We dissected the regulatory mechanisms directing the unique expression patterns of Hoxa-11 and Hoxa-13 during limb muscle development. HOXA-11 protein was detected in both the myogenic cells and the zeugopodal mesenchymal cells of the limb bud. The earlier expression of HOXA-11 in both the myogenic precursor cells and the mesenchyme was dependent on the apical ectodermal ridge (AER), but later expression was independent of the AER. HOXA-11 expression in both myogenic precursor cells and mesenchyme was induced by fibroblast growth factor (FGF) signal, whereas hepatocyte growth factor/scatter factor (HGF/SF) maintained HOXA-11 expression in the myogenic precursor cells, but not in the mesenchyme. The distribution of HOXA-13 protein expression in the muscle masses was restricted to the posterior region. We found that HOXA-13 expression in the autopodal mesenchyme was dependent on the AER but not on the polarizing region, whereas expression of HOXA-13 in the posterior muscle masses was dependent on the polarizing region but not on the AER. Administration of BMP-2 at the anterior margin of the limb bud induced ectopic HOXA-13 expression in the anterior region of the muscle masses followed by ectopic muscle formation close to the source of exogenous BMP-2. In addition, NOGGIN/CHORDIN, antagonists of BMP-2 and BMP-4, downregulated the expression of HOXA-13 in the posterior region of the muscle masses and inhibited posterior muscle development. These results suggested that HOXA-13 expression in the posterior muscle masses is activated by the posteriorizing signal from the posterior mesenchyme via BMP-2. On the contrary, the expression of HOXA-13 in the autopodal mesenchyme was affected by neither BMP-2 nor NOGGIN/CHORDIN. Thus, mesenchymal HOXA-13 expression was independent of BMP-2 from polarizing region, but was under the control of as yet unidentified signals from the AER. These results showed that expression of Hox genes is regulated differently in the limb muscle precursor and mesenchymal cells.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
238
|
Widelitz RB, Jiang TX, Chen CW, Stott NS, Jung HS, Chuong CM. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. Development 1999; 126:2577-87. [PMID: 10331970 DOI: 10.1242/dev.126.12.2577] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.
Collapse
Affiliation(s)
- R B Widelitz
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
239
|
Abstract
The evolution of snakes involved major changes in vertebrate body plan organization, but the developmental basis of those changes is unknown. The python axial skeleton consists of hundreds of similar vertebrae, forelimbs are absent and hindlimbs are severely reduced. Combined limb loss and trunk elongation is found in many vertebrate taxa, suggesting that these changes may be linked by a common developmental mechanism. Here we show that Hox gene expression domains are expanded along the body axis in python embryos, and that this can account for both the absence of forelimbs and the expansion of thoracic identity in the axial skeleton. Hindlimb buds are initiated, but apical-ridge and polarizing-region signalling pathways that are normally required for limb development are not activated. Leg bud outgrowth and signalling by Sonic hedgehog in pythons can be rescued by application of fibroblast growth factor or by recombination with chick apical ridge. The failure to activate these signalling pathways during normal python development may also stem from changes in Hox gene expression that occurred early in snake evolution.
Collapse
Affiliation(s)
- M J Cohn
- Division of Zoology, School of Animal and Microbial Sciences, University of Reading, UK.
| | | |
Collapse
|
240
|
Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398:714-8. [PMID: 10227294 DOI: 10.1038/19539] [Citation(s) in RCA: 1726] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p63 gene, a homologue of the tumour-suppressor p53, is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63-/- mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.
Collapse
Affiliation(s)
- A Yang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Hobert O, Tessmar K, Ruvkun G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 1999; 126:1547-62. [PMID: 10068647 DOI: 10.1242/dev.126.7.1547] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe here the functional analysis of the C. elegans LIM homeobox gene lim-6, the ortholog of the mammalian Lmx-1a and b genes that regulate limb, CNS, kidney and eye development. lim-6 is expressed in a small number of sensory-, inter- and motorneurons, in epithelial cells of the uterus and in the excretory system. Loss of lim-6 function affects late events in the differentiation of two classes of GABAergic motorneurons which control rhythmic enteric muscle contraction. lim-6 is required to specify the correct axon morphology of these neurons and also regulates expression of glutamic acid decarboxylase, the rate limiting enzyme of GABA synthesis in these neurons. Moreover, lim-6 gene activity and GABA signaling regulate neuroendocrine outputs of the nervous system. In the chemosensory system lim-6 regulates the asymmetric expression of a probable chemosensory receptor. lim-6 is also required in epithelial cells for uterine morphogenesis. We compare the function of lim-6 to those of other LIM homeobox genes in C. elegans and suggest that LIM homeobox genes share the common theme of controlling terminal neural differentiation steps that when disrupted lead to specific neuroanatomical and neural function defects.
Collapse
Affiliation(s)
- O Hobert
- Massachusetts General Hospital, Department of Molecular Biology, Harvard Medical School, Department of Genetics, Boston, MA 02114, USA.
| | | | | |
Collapse
|
242
|
Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126:1211-23. [PMID: 10021340 DOI: 10.1242/dev.126.6.1211] [Citation(s) in RCA: 683] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis depends on the precise control of basic cellular processes such as cell proliferation and differentiation. Wnt5a may regulate these processes since it is expressed in a gradient at the caudal end of the growing embryo during gastrulation, and later in the distal-most aspect of several structures that extend from the body. A loss-of-function mutation of Wnt5a leads to an inability to extend the A-P axis due to a progressive reduction in the size of caudal structures. In the limbs, truncation of the proximal skeleton and absence of distal digits correlates with reduced proliferation of putative progenitor cells within the progress zone. However, expression of progress zone markers, and several genes implicated in distal outgrowth and patterning including Distalless, Hoxd and Fgf family members was not altered. Taken together with the outgrowth defects observed in the developing face, ears and genitals, our data indicates that Wnt5a regulates a pathway common to many structures whose development requires extension from the primary body axis. The reduced number of proliferating cells in both the progress zone and the primitive streak mesoderm suggests that one function of Wnt5a is to regulate the proliferation of progenitor cells.
Collapse
Affiliation(s)
- T P Yamaguchi
- Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
243
|
Galceran J, Fariñas I, Depew MJ, Clevers H, Grosschedl R. Wnt3a-/--like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev 1999; 13:709-17. [PMID: 10090727 PMCID: PMC316557 DOI: 10.1101/gad.13.6.709] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Members of the LEF-1/TCF family of transcription factors have been implicated in the transduction of Wnt signals. However, targeted gene inactivations of Lef1, Tcf1, or Tcf4 in the mouse do not produce phenotypes that mimic any known Wnt mutation. Here we show that null mutations in both Lef1 and Tcf1, which are expressed in an overlapping pattern in the early mouse embryo, cause a severe defect in the differentiation of paraxial mesoderm and lead to the formation of additional neural tubes, phenotypes identical to those reported for Wnt3a-deficient mice. In addition, Lef1(-/-)Tcf1(-/-) embryos have defects in the formation of the placenta and in the development of limb buds, which fail both to express Fgf8 and to form an apical ectodermal ridge. Together, these data provide evidence for a redundant role of LEF-1 and TCF-1 in Wnt signaling during mouse development.
Collapse
Affiliation(s)
- J Galceran
- Howard Hughes Medical Institute and Departments of Microbiology and Biochemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
244
|
Rincón-Limas DE, Lu CH, Canal I, Calleja M, Rodríguez-Esteban C, Izpisúa-Belmonte JC, Botas J. Conservation of the expression and function of apterous orthologs in Drosophila and mammals. Proc Natl Acad Sci U S A 1999; 96:2165-70. [PMID: 10051612 PMCID: PMC26754 DOI: 10.1073/pnas.96.5.2165] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1998] [Accepted: 01/08/1999] [Indexed: 11/18/2022] Open
Abstract
The Drosophila apterous (ap) gene encodes a protein of the LIM-homeodomain family. Many transcription factors of this class have been conserved during evolution; however, the functional significance of their structural conservation is generally not known. ap is best known for its fundamental role as a dorsal selector gene required for patterning and growth of the wing, but it also has other important functions required for neuronal fasciculation, fertility, and normal viability. We isolated mouse (mLhx2) and human (hLhx2) ap orthologs, and we used transgenic animals and rescue assays to investigate the conservation of the Ap protein during evolution. We found that the human protein LHX2 is able to regulate correctly ap target genes in the fly, causes the same phenotypes as Ap when ectopically produced, and most importantly rescues ap mutant phenotypes as efficiently as the fly protein. In addition, we found striking similarities in the expression patterns of the Drosophila and murine genes. Both mLhx2 and ap are expressed in the respective nerve cords, eyes, olfactory organs, brain, and limbs. These results demonstrate the conservation of Ap protein function across phyla and argue that aspects of its expression pattern have also been conserved from a common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- D E Rincón-Limas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
245
|
Bertuzzi S, Porter FD, Pitts A, Kumar M, Agulnick A, Wassif C, Westphal H. Characterization of Lhx9, a novel LIM/homeobox gene expressed by the pioneer neurons in the mouse cerebral cortex. Mech Dev 1999; 81:193-8. [PMID: 10330499 DOI: 10.1016/s0925-4773(98)00233-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to explain the phenotype observed in Lhx2 mutant embryos, we previously proposed that an Lhx2 related gene might exist. We now have cloned a new LIM/homeobox gene called Lhx9. Lhx9 is closely related to Lhx2 and is expressed in the developing central nervous system (CNS). Lhx9 and Lhx2 have expression patterns that overlap in some areas but are distinct in others. Thus, in some developmental domains these two highly related proteins may be functionally redundant. Lhx9 is expressed in the pioneer neurons of the cerebral cortex, while Lhx2 is expressed throughout the cortical layers. Postnatally, Lhx9 is expressed in the inner nuclei of the cerebellum, while Lhx2 is in the granular layer. In the developing limbs, both genes are highly expressed in a similar pattern. Based on the expression pattern and the developmental regulation of Lhx9, we propose that Lhx9 may be involved in the specification or function of the pioneer neurons of the cerebral cortex. We show that both Lhx9 and Lhx2 bind the LIM domain binding protein Ldb1/Nli1/Clim2.
Collapse
Affiliation(s)
- S Bertuzzi
- Laboratory of Mammalian Genes and Development, NICHD, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
246
|
Stratford T, Logan C, Zile M, Maden M. Abnormal anteroposterior and dorsoventral patterning of the limb bud in the absence of retinoids. Mech Dev 1999; 81:115-25. [PMID: 10330489 DOI: 10.1016/s0925-4773(98)00231-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe here how the early limb bud of the quail embryo develops in the absence of retinoids, including retinoic acid. Retinoid-deficient embryos develop to about stage 20/21, thus allowing patterns of early gene activity in the limb bud to be readily examined. Genes representing different aspects of limb polarity were analysed. Concerning the anteroposterior axis, Hoxb-8 was up-regulated and its border was shifted anteriorly whereas shh and the mesodermal expression of bmp-2 were down-regulated in the absence of retinoids. Concerning the apical ectodermal genes, fgf-4 was down-regulated whereas fgf-8 and the ectodermal domain of bmp-2 were unaffected. Genes involved in dorsoventral polarity were all disrupted. Wnt-7a, normally confined to the dorsal ectoderm, was ectopically expressed in the ventral ectoderm and the corresponding dorsal mesodermal gene Lmx-1 spread into the ventral mesoderm. En-1 was partially or completely absent from the ventral ectoderm. These dorsoventral patterns of expression resemble those seen in En-1 knockout mouse limb buds. Overall, the patterns of gene expression are also similar to the Japanese limbless mutant. These experiments demonstrate that the retinoid-deficient embryo is a valuable tool for dissecting pathways of gene activity in the limb bud and reveal for the first time a role for retinoic acid in the organisation of the dorsoventral axis.
Collapse
Affiliation(s)
- T Stratford
- Developmental Biology Research Centre, Biomedical Sciences Division, King's College London, London, UK
| | | | | | | |
Collapse
|
247
|
Bamshad M, Watkins WS, Dixon ME, Le T, Roeder AD, Kramer BE, Carey JC, Jorde LB. Reconstructing the history of human limb development: lessons from birth defects. Pediatr Res 1999; 45:291-9. [PMID: 10088644 DOI: 10.1203/00006450-199903000-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major goal of biology has been to understand the developmental mechanisms behind evolutionary trends. This has led to a growing interest in studying the molecular basis of the evolution of developmental programs such as those mediating the diversification of tetrapod limbs. Over the last 10 y, it has become clear that the genes and general developmental programs used to build a limb are strongly conserved among widely disparate species. This finding suggests that altered regulation of the timing and locations of developmental events may be responsible for the morphologic variation observed among some species. However, genetic analyses of the regulatory regions of genes controlling vertebrate developmental programs are very limited. Characterization of the genetic basis of human birth defects of the limb provides an opportunity to dissect the developmental programs used to modify the architecture of the hominoid limb. This may allow us to assess the relative contributions of altered gene regulation to morphologic variation among species and reconstruct the evolutionary history of the hominid limb. Such insight is also important because morphologic differences in the hominid upper limb have been correlated with the use of tools, and tool making is often regarded as the milestone that marked the emergence of the genus Homo.
Collapse
Affiliation(s)
- M Bamshad
- Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City 84113, USA
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Kawakami Y, Wada N, Nishimatsu SI, Ishikawa T, Noji S, Nohno T. Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ 1999; 41:29-40. [PMID: 10445500 DOI: 10.1046/j.1440-169x.1999.00402.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Wnt family are known to play diverse roles in the organogenesis of vertebrates. The full-coding sequences of chicken Wnt-5a were identified and the role it plays in limb development was examined by comparing its expression pattern with that of two other Wnt members, Wnt-4 and Wnt-11, and by misexpressing it with a retrovirus vector in the limb bud. Wnt-5a expression is detected in the limb-forming region at stage 14, and in the apical ectodermal ridge and distal mesenchyme of the limb bud. The signal was graded along the proximal-distal axis at stages 20-28 and also along the anterior-posterior axis during early stages. It disappeared in the cartilage-forming region after stage 26, and was restricted to the region surrounding the phalanges at stage 34. Wnt-4 and Wnt-11, other members of the Wnt-5a-subclass, were expressed with a distinct spatiotemporal pattern during the later phase. Wnt-4 was expressed in the articular structure and Wnt-11 was expressed in the dorsal and ventral mesenchyme adjacent to the ectoderm. Wnt-5a expression was partially reduced after apical ectodermal ridge removal, whereas Wnt-11 expression was down-regulated by dorsal ectoderm removal. Therefore, expression of these Wnt was differentially regulated by the ectodermal signal. Misexpression of Wnt-5a in the limb bud with the retrovirus resulted in truncation of long bones predominantly in the zeugopod because of retarded chondrogenic differentiation. Distal elements, such as the phalanges and metacarpals, were not significantly reduced in size. These results suggest that Wnt-5a is involved in pattern formation along the proximal-distal axis by regulation of chondrogenic differentiation.
Collapse
Affiliation(s)
- Y Kawakami
- Department of Molecular Biology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | |
Collapse
|
249
|
Tucker AS, Al Khamis A, Ferguson CA, Bach I, Rosenfeld MG, Sharpe PT. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development. Development 1999; 126:221-8. [PMID: 9847236 DOI: 10.1242/dev.126.2.221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.
Collapse
Affiliation(s)
- A S Tucker
- Department of Craniofacial Development, GKT Dental Institute, Kings College, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
250
|
|