201
|
Davies JM, Cai YP, Weir RC, Rowley MJ. Characterization of epitopes for virus-neutralizing monoclonal antibodies to Ross River virus E2 using phage-displayed random peptide libraries. Virology 2000; 275:67-76. [PMID: 11017788 DOI: 10.1006/viro.2000.0474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Collapse
Affiliation(s)
- J M Davies
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
202
|
Abstract
All enveloped viruses must bud through a cellular membrane in order to acquire their lipid bilayer, but little is known about this important stage in virus biogenesis. We have developed a quantitative biochemical assay to monitor the budding of Semliki Forest virus (SFV), an enveloped alphavirus that buds from the plasma membrane in a reaction requiring both viral spike proteins and nucleocapsid. The assay was based on cell surface biotinylation of newly synthesized virus spike proteins and retrieval of biotinylated virions using streptavidin-conjugated magnetic particles. Budding of biotin-tagged SFV was continuous for at least 2 h, independent of microfilaments and microtubules, strongly temperature dependent, and relatively independent of continued exocytic transport. Studies of cell surface spike proteins at early times of infection showed that these spikes did not efficiently bud into virus particles and were rapidly degraded. In contrast, at later times of infection, spike protein degradation was markedly reduced and efficient budding was then observed. The previously described cholesterol requirement in SFV exit was shown to be due to a block in budding in the absence of cholesterol and correlated with the continued degradation of spike proteins at all times of virus infection in sterol-deficient cells.
Collapse
Affiliation(s)
- Y E Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
203
|
de Haan CA, Vennema H, Rottier PJ. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol 2000; 74:4967-78. [PMID: 10799570 PMCID: PMC110848 DOI: 10.1128/jvi.74.11.4967-4978.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral membrane proteins M and E are the minimal requirements for the budding of coronavirus particles. Since the E protein occurs in particles only in trace amounts, the lateral interactions between the M proteins apparently generate the major driving force for envelope formation. By using coimmunoprecipitation and envelope incorporation assays, we provide extensive evidence for the existence of such M-M interactions. In addition, we determined which domains of the M protein are involved in this homotypic association, using a mutagenetic approach. Mutant M proteins which were not able to assemble into viruslike particles (VLPs) by themselves (C. A. M. de Haan, L. Kuo, P. S. Masters, H. Vennema, and P. J. M. Rottier, J. Virol. 72:6838-6850, 1998) were tested for the ability to associate with other M proteins and to be rescued into VLPs formed by assembly-competent M proteins. We found that M proteins lacking parts of the transmembrane cluster, of the amphipathic domain, or of the hydrophilic carboxy-terminal tail, or M proteins that had their luminal domain replaced by heterologous ectodomains, were still able to associate with assembly-competent M proteins, resulting in their coincorporation into VLPs. Only a mutant M protein in which all three transmembrane domains had been replaced lost this ability. The results indicate that M protein molecules interact with each other through multiple contact sites, particularly at the transmembrane level. Finally, we tested the stringency with which membrane proteins are selected for incorporation into the coronavirus envelope by probing the coassembly of some foreign proteins. The observed efficient exclusion from budding of the vesicular stomatitis virus G protein and the equine arteritis virus M protein indicates that envelope assembly is indeed a highly selective sorting process. The low but detectable incorporation of CD8 molecules, however, demonstrated that this process is not perfect.
Collapse
Affiliation(s)
- C A de Haan
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | |
Collapse
|
204
|
Tellinghuisen TL, Kuhn RJ. Nucleic acid-dependent cross-linking of the nucleocapsid protein of Sindbis virus. J Virol 2000; 74:4302-9. [PMID: 10756045 PMCID: PMC111947 DOI: 10.1128/jvi.74.9.4302-4309.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of the alphavirus nucleocapsid core is a multistep event requiring the association of the nucleocapsid protein with nucleic acid and the subsequent oligomerization of capsid proteins into an assembled core particle. Although the mechanism of assembly has been investigated extensively both in vivo and in vitro, no intermediates in the core assembly pathway have been identified. Through the use of both truncated and mutant Sindbis virus nucleocapsid proteins and a variety of cross-linking reagents, a possible nucleic acid-protein assembly intermediate has been detected. The cross-linked species, a covalent dimer, has been detected only in the presence of nucleic acid and with capsid proteins capable of binding nucleic acid. Optimum nucleic acid-dependent cross-linking was seen at a protein-to-nucleic-acid ratio identical to that required for maximum binding of the capsid protein to nucleic acid. Identical results were observed when cross-linking in vitro assembled core particles of both Sindbis and Ross River viruses. Purified cross-linked dimers of truncated proteins and of mutant proteins that failed to assemble were found to incorporate into assembled core particles when present as minor components in assembly reactions, suggesting that the cross-linking traps an authentic intermediate in nucleocapsid core assembly. Endoproteinase Lys-C mapping of the position of the cross-link indicated that lysine 250 of one capsid protein was cross-linked to lysine 250 of an adjacent capsid protein. Examination of the position of the cross-link in relation to the existing model of the nucleocapsid core suggests that the cross-linked species is a cross-capsomere contact between a pentamer and hexamer at the quasi-threefold axis or is a cross-capsomere contact between hexamers at the threefold axis of the icosahedral core particle and suggests several possible assembly models involving a nucleic acid-bound dimer of capsid protein as an early step in the assembly pathway.
Collapse
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
205
|
Pralle A, Keller P, Florin EL, Simons K, Hörber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997-1008. [PMID: 10704449 PMCID: PMC2174552 DOI: 10.1083/jcb.148.5.997] [Citation(s) in RCA: 740] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.
Collapse
Affiliation(s)
- A. Pralle
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - P. Keller
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - E.-L. Florin
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - K. Simons
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - J.K.H. Hörber
- Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|
206
|
Robison CS, Whitt MA. The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 2000; 74:2239-46. [PMID: 10666254 PMCID: PMC111705 DOI: 10.1128/jvi.74.5.2239-2246.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that the glycoprotein of vesicular stomatitis virus (VSV G) contains within its extracellular membrane-proximal stem (GS) a domain that is required for efficient VSV budding. To determine a minimal sequence in GS that provides for high-level virus assembly, we have generated a series of recombinant DeltaG-VSVs which express chimeric glycoproteins having truncated stem sequences. The recombinant viruses having chimeras with 12 or more membrane-proximal residues of the G stem, and including the G protein transmembrane-cytoplasmic tail domains, produced near-wild-type levels of particles. In contrast, viruses encoding chimeras with shorter or no G-stem sequences produced approximately 10- to 20-fold less. This budding domain when present in chimeric glycoproteins also promoted their incorporation into the VSV envelope. We suggest that the G-stem budding domain promotes virus release by inducing membrane curvature at sites where virus budding occurs or by recruiting condensed nucleocapsids to sites on the plasma membrane which are competent for efficient virus budding.
Collapse
Affiliation(s)
- C S Robison
- Department of Microbiology and Immunology, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
207
|
Kim KH, Strauss EG, Strauss JH. Adaptive mutations in Sindbis virus E2 and Ross River virus E1 that allow efficient budding of chimeric viruses. J Virol 2000; 74:2663-70. [PMID: 10684281 PMCID: PMC111755 DOI: 10.1128/jvi.74.6.2663-2670.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus glycoproteins E2 and E1 form a heterodimer that is required for virus assembly. We have studied adaptive mutations in E2 of Sindbis virus (SIN) and E1 of Ross River virus (RR) that allow these two glycoproteins to interact more efficiently in a chimeric virus that has SIN E2 but RR E1. These mutations include K129E, K131E, and V237F in SIN E2 and S310F and C433R in RR E1. Although RR E1 and SIN E2 will form a chimeric heterodimer, the chimeric virus is almost nonviable, producing about 10(-7) as much virus as SIN at 24 h and 10(-5) as much after 48 h. Chimeras containing one adaptive change produced 3 to 20 times more virus than did the parental chimera, whereas chimeras with two changes produced 10 to 100 times more virus and chimeras containing three mutations produced yields that were 180 to 250 times better. None of the mutations had significant effects upon the parental wild-type viruses, however. Passage of the triple variants eight or nine times resulted in variants that produced virus rapidly and were capable of producing >10(8) PFU/ml of culture fluid within 24 h. These further-adapted variants possessed one or two additional mutations, including E2-V116K, E2-S110N, or E1-T65S. The RR E1-C433R mutation was studied in more detail. This Cys is located in the putative transmembrane domain of E1 and was shown to be palmitoylated. Mutation to Arg-433 resulted in loss of palmitoylation of E1. The positively charged arginine residue within the putative transmembrane domain of E1 would be expected to alter the conformation of this domain. These results suggest that interactions within the transmembrane region are important for the assembly of the E1/E2 heterodimer, as are regions of the ectodomains possibly identified by the locations of adaptive mutations in these regions. Further, the finding that four or five changes in the chimera allow virus production that approaches the levels seen with the parental SIN and exceeds that of the parental RR illustrates that the structure and function of SIN and RR E1s have been conserved during the 50% divergence in sequence that has occurred.
Collapse
Affiliation(s)
- K H Kim
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
208
|
Mancini EJ, Clarke M, Gowen BE, Rutten T, Fuller SD. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell 2000; 5:255-66. [PMID: 10882067 DOI: 10.1016/s1097-2765(00)80421-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Semliki Forest virus serves as a paradigm for membrane fusion and assembly. Our icosahedral reconstruction combined 5276 particle images from 48 cryo-electron micrographs and determined the virion structure to 9 A resolution. The improved resolution of this map reveals an N-terminal arm linking capsid subunits and defines the spike-capsid interaction sites. It illustrates the paired helical nature of the transmembrane segments and the elongated structures connecting them to the spike projecting domains. A 10 A diameter density in the fusion protein lines the cavity at the center of the spike. These clearly visible features combine with the variation in order between the layers to provide a framework for understanding the structural changes during the life cycle of an enveloped virus.
Collapse
Affiliation(s)
- E J Mancini
- The Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
209
|
Kielian M, Chatterjee PK, Gibbons DL, Lu YE. Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Subcell Biochem 2000; 34:409-55. [PMID: 10808340 DOI: 10.1007/0-306-46824-7_11] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- M Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
210
|
Abstract
This chapter focuses on the work carried out with tick-borne encephalitis (TBE) virus, the structurally best characterized of the flaviviruses. The data is related to those obtained with other flaviviruses, which are assumed to have a conserved structural organization, and compare the characteristics of flavivirus fusion to those of other enveloped viruses. Fusion proteins from several different virus families, including Orthomyxoviridae , Paramyxoviridae , Retroviridae , and Filoviridae have been shown to exhibit striking structural similarities; they all use a common mechanism for inducing membrane fusion, and the same general model applies to all of these cases. The flavivirus genome is a positive-stranded RNA molecule consisting of a single, long open reading frame of more than 10,000 nucleotides flanked by noncoding regions at the 5′ and 3′ ends. The fusion properties of flaviviruses have been investigated using several different assay systems, including virus-induced cell–cell fusion and virus–liposome fusion. All of these studies indicate that flaviviruses require an acidic pH for fusion, consistent with their proposed mode of entry.
Collapse
Affiliation(s)
- F X Heinz
- Institute of Virology, University of Vienna, Austria
| | | |
Collapse
|
211
|
|
212
|
Xing L, Kato K, Li T, Takeda N, Miyamura T, Hammar L, Cheng RH. Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes. Virology 1999; 265:35-45. [PMID: 10603315 DOI: 10.1006/viro.1999.0005] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-dimensional structure of a self-assembled, recombinant hepatitis E virus particle has been solved to 22-A resolution by cryo-electron microscopy and three-dimensional image reconstruction. The single subunit of 50 kDa is derived from a truncated version of the open reading frame-2 gene of the virus expressed in a baculovirus system. This is the first structure of a T = 1 particle with protruding dimers at the icosahedral two-fold axes solved by cryo-electron microscopy. The protein shell of these hollow particles extends from a radius of 50 A outward to a radius of 135 A. In the reconstruction, the capsid is dominated by dimers that define the 30 morphological units. The outer domain of the homodimer forms a protrusion, which corresponds to the spike-like density seen in the cryo-electron micrograph. This particle retains native virus epitopes, suggesting its potential value as a vaccine.
Collapse
Affiliation(s)
- L Xing
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, 14157, Sweden
| | | | | | | | | | | | | |
Collapse
|
213
|
Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63:862-922, table of contents. [PMID: 10585969 PMCID: PMC98980 DOI: 10.1128/mmbr.63.4.862-922.1999] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.
Collapse
Affiliation(s)
- T S Baker
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
214
|
Ahn A, Klimjack MR, Chatterjee PK, Kielian M. An epitope of the Semliki Forest virus fusion protein exposed during virus-membrane fusion. J Virol 1999; 73:10029-39. [PMID: 10559317 PMCID: PMC113054 DOI: 10.1128/jvi.73.12.10029-10039.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.
Collapse
Affiliation(s)
- A Ahn
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
215
|
Tellinghuisen TL, Hamburger AE, Fisher BR, Ostendorp R, Kuhn RJ. In vitro assembly of alphavirus cores by using nucleocapsid protein expressed in Escherichia coli. J Virol 1999; 73:5309-19. [PMID: 10364277 PMCID: PMC112586 DOI: 10.1128/jvi.73.7.5309-5319.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of the alphavirus virion is a multistep event requiring the assembly of the nucleocapsid core in the cytoplasm and the maturation of the glycoproteins in the endoplasmic reticulum and the Golgi apparatus. These components associate during the budding process to produce the mature virion. The nucleocapsid proteins of Sindbis virus and Ross River virus have been produced in a T7-based Escherichia coli expression system and purified. In the presence of single-stranded but not double-stranded nucleic acid, the proteins oligomerize in vitro into core-like particles which resemble the native viral nucleocapsid cores. Despite their similarities, Sindbis virus and Ross River virus capsid proteins do not form mixed core-like particles. Truncated forms of the Sindbis capsid protein were used to establish amino acid requirements for assembly. A capsid protein starting at residue 19 [CP(19-264)] was fully competent for in vitro assembly, whereas proteins with further N-terminal truncations could not support assembly. However, a capsid protein starting at residue 32 or 81 was able to incorporate into particles in the presence of CP(19-264) or could inhibit assembly if its molar ratio relative to CP(19-264) was greater than 1:1. This system provides a basis for the molecular dissection of alphavirus core assembly.
Collapse
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
216
|
Wengler G, Wengler G, Rey FA. The isolation of the ectodomain of the alphavirus E1 protein as a soluble hemagglutinin and its crystallization. Virology 1999; 257:472-82. [PMID: 10329557 DOI: 10.1006/viro.1999.9661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alphaviruses are isometric enveloped viruses approximately 70 nm in diameter. The viral surface contains 80 glycoprotein spikes arranged in a T = 4 lattice. Each of these spikes consists of three heterodimers of the viral membrane proteins E1 (approximately 49 kDa) and E2 (approximately 51 kDa). Cryoelectron microscopic analyses have shown that the spikes form a protein shell on the viral surface. We have made an attempt to isolate biologically active protein fragments from this surface and to grow crystals from such fragments. To this end membrane proteins were extracted with Nonidet-P40 from the Semliki Forest alphavirus and the proteins were separated from detergent by centrifugation. A protein complex containing the E1 and E2 molecules in quantitative yield was obtained by this procedure. This complex has the following properties: It sediments at approximately 30S, it chromatographs with an apparent molecular mass of approximately 580,000 Da during gel filtration, it cannot be dissociated by either nonionic detergents or 6 M urea, and at acid pH it is a highly active hemagglutinin. The data indicate that this 30S hemagglutinin complex, which has not been hitherto described for alphaviruses, may represent a variant form of the protein lattice present on the alphavirus surface. Cleavage of this complex by subtilisin selectively removes carboxy-terminal sequences from the E1 and E2 proteins, which contain the cytoplasmic and transmembrane segments of the proteins and a small part of their ectodomain. The remaining ectodomains are called E1DeltaS and E2DeltaS. This proteolysis also leads to dissociation of the 30S complex. The cleavage products accumulate in the form of a heterodimer of the E1DeltaS and E2DeltaS proteins. Treatment of the heterodimer with PNGase F leads to rapid removal of carbohydrate from the E2DeltaS protein and a dissociation of the complex into the constituent molecules, which can be separated by chromatography. The finding that the heterodimer and the purified E1DeltaS protein both function as hemagglutinin at acid pH indicates that the E1 protein represents the alphavirus hemagglutinin. We have obtained crystals of the E1DeltaS protein and are currently in the process of determining the atomic structure of this protein by the isomorphous replacement method.
Collapse
Affiliation(s)
- G Wengler
- Institut für Virologie, Justus-Liebig-Universität Giessen, Giessen, 35392, Germany
| | | | | |
Collapse
|
217
|
Helin J, Caldentey J, Kalkkinen N, Bamford DH. Analysis of the multimeric state of proteins by matrix assisted laser desorption/ionization mass spectrometry after cross-linking with glutaraldehyde. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1999; 13:185-190. [PMID: 10048230 DOI: 10.1002/(sici)1097-0231(19990215)13:3<185::aid-rcm481>3.0.co;2-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have undertaken a systematic study on the suitability of matrix-assisted laser desorption/ionization mass spectrometry to analyze and determine the multimericity of several proteins after cross-linking with glutaraldehyde. Using both commercially available proteins and others of viral origin currently being characterized in our laboratory, we studied the range of concentrations of cross-linker and protein for optimal analysis. Under the conditions developed during this study, we confirmed the multimeric states of three phage PRD1 structural proteins with monomeric masses ranging from 13.5 to 63 kDa. In addition, we addressed the question of the general applicability of the method by using it successfully to confirm the stoichiometry of the heptameric chaperonin GroEL, a bacterial protein with a mass well over 450 kDa.
Collapse
Affiliation(s)
- J Helin
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
218
|
Takimoto T, Bousse T, Coronel EC, Scroggs RA, Portner A. Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol 1998; 72:9747-54. [PMID: 9811709 PMCID: PMC110485 DOI: 10.1128/jvi.72.12.9747-9754.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the assembly of paramyxoviruses, interactions between viral proteins are presumed to be specific. The focus of this study is to elucidate the protein-protein interactions during the final stage of viral assembly that result in the incorporation of the viral envelope proteins into virions. To this end, we examined the specificity of HN incorporation into progeny virions by transiently transfecting HN cDNA genes into Sendai virus (SV)-infected cells. SV HN expressed from cDNA was efficiently incorporated into progeny Sendai virions, whereas Newcastle disease virus (NDV) HN was not. This observation supports the theory of a selective mechanism for HN incorporation. To identify the region on HN responsible for the selective incorporation, we constructed chimeric SV and NDV HN cDNAs and evaluated the incorporation of expressed proteins into progeny virions. Chimera HN that contained the SV cytoplasmic domain fused to the transmembrane and external domains of the NDV HN was incorporated to SV particles, indicating that amino acids in the cytoplasmic domain are responsible for the observed specificity. Additional experiments using the chimeric HNs showed that 14 N-terminal amino acids are sufficient for the specificity. Further analysis identified five consecutive amino acids (residues 10 to 14) that were required for the specific incorporation of HN into SV. These residues are conserved among all strains of SV as well as those of its counterpart, human parainfluenza virus type 1. These results suggest that this region near the N terminus of HN interacts with another viral protein(s) to lead to the specific incorporation of HN into progeny virions.
Collapse
Affiliation(s)
- T Takimoto
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
219
|
Abstract
Enveloped viruses mature by budding at cellular membranes. It has been generally thought that this process is driven by interactions between the viral transmembrane proteins and the internal virion components (core, capsid, or nucleocapsid). This model was particularly applicable to alphaviruses, which require both spike proteins and a nucleocapsid for budding. However, genetic studies have clearly shown that the retrovirus core protein, i.e., the Gag protein, is able to form enveloped particles by itself. Also, budding of negative-strand RNA viruses (rhabdoviruses, orthomyxoviruses, and paramyxoviruses) seems to be accomplished mainly by internal components, most probably the matrix protein, since the spike proteins are not absolutely required for budding of these viruses either. In contrast, budding of coronavirus particles can occur in the absence of the nucleocapsid and appears to require two membrane proteins only. Biochemical and structural data suggest that the proteins, which play a key role in budding, drive this process by forming a three-dimensional (cage-like) protein lattice at the surface of or within the membrane. Similarly, recent electron microscopic studies revealed that the alphavirus spike proteins are also engaged in extensive lateral interactions, forming a dense protein shell at the outer surface of the viral envelope. On the basis of these data, we propose that the budding of enveloped viruses in general is governed by lateral interactions between peripheral or integral membrane proteins. This new concept also provides answers to the question of how viral and cellular membrane proteins are sorted during budding. In addition, it has implications for the mechanism by which the virion is uncoated during virus entry.
Collapse
Affiliation(s)
- H Garoff
- Department of Biosciences at Novum, S-141 57 Huddinge, Sweden.
| | | | | |
Collapse
|
220
|
Ferlenghi I, Gowen B, de Haas F, Mancini EJ, Garoff H, Sjöberg M, Fuller SD. The first step: activation of the Semliki Forest virus spike protein precursor causes a localized conformational change in the trimeric spike. J Mol Biol 1998; 283:71-81. [PMID: 9761674 DOI: 10.1006/jmbi.1998.2066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the particle formed by the SFVmSQL mutant of Semliki Forest virus (SFV) has been defined by cryo-electron microscopy and image reconstruction to a resolution of 21 A. The SQL mutation blocks the cleavage of p62, the precursor of the spike proteins E2 and E3, which normally occurs in the trans-Golgi. The uncleaved spike protein is insensitive to the low pH treatment that triggers membrane fusion during entry of the wild-type virus. The conformation of the spike in the SFVmSQL particle should correspond to that of the inactive precursor found in the early stages of the secretory pathway. Comparison of this "precursor" structure with that of the mature, wild-type, virus allows visualization of the changes that lead to activation, the first step in the pathway toward fusion. We find that the conformational change in the spike is dramatic but localized. The projecting domains of the spikes are completely separated in the precursor and close to generate a cavity in the mature spike. E1, the fusion peptide-bearing protein, interacts only with the p62 in its own third of the trimer before cleavage and then collapses to form a trimer of heterotrimers (E1E2E3)3 surrounding the cavity, poised for the pH-induced conformational change that leads to fusion. The capsid, transmembrane regions and the spike skirts (thin layers of protein that link spikes above the membrane) remain unchanged by cleavage. Similarly, the interactions of the spikes with the nucleocapsid through the transmembrane domains remain constant. Hence, the interactions that lead to virus assembly are unaffected by the SFVmSQL mutation.
Collapse
Affiliation(s)
- I Ferlenghi
- Structural Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Abstract
Alphavirus vectors use RNA replication in the cell cytoplasm to direct gene expression. New developments of vectors put persistency of expression and infection of specific cells in focus. Furthermore, a new application shows that the system can be used for production of retrovirus vectors carrying genes with introns and control/regulatory regions.
Collapse
Affiliation(s)
- H Garoff
- Department of Biosciences at Novum, Huddinge, Sweden.
| | | |
Collapse
|
223
|
Skoging U, Liljeström P. Role of the C-terminal tryptophan residue for the structure-function of the alphavirus capsid protein. J Mol Biol 1998; 279:865-72. [PMID: 9642067 DOI: 10.1006/jmbi.1998.1817] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Semliki Forest virus capsid protein is a multifunctional protein which packages genomic RNA into nucleocapsid structures and binds to viral spike protein during budding. In addition, the capsid protein has an autoproteolytic activity whereby the C-terminal tryptophan is used as the substrate for cotranslational cleavage of the viral structure polyprotein. The autoproteolytic domain of the capsid protein has a chymotrypsin-like fold but has two additional short beta-strands which place the tryptophan into the active site. Here, we have substituted the C-terminal tryptophan of Semliki Forest virus capsid protein for alanine, arginine and phenylalanine and analysed the effects on different functions of the C protein such as nucleocapsid formation, spike binding and autoproteolytic activity. We found that (i) tryptophan is a better substrate for the autoproteolytic activity, (ii) the wild-type tryptophan is the only residue that allows efficient viral growth and (iii) an aromatic residue is important for correct initial folding and stability of the protein.
Collapse
Affiliation(s)
- U Skoging
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, S-171 77, Sweden
| | | |
Collapse
|
224
|
Affiliation(s)
- K M Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
225
|
Fox JM, Wang G, Speir JA, Olson NH, Johnson JE, Baker TS, Young MJ. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction. Virology 1998; 244:212-8. [PMID: 9581792 DOI: 10.1006/viro.1998.9107] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryoelectron microscopy and three-dimensional image reconstruction analysis has been used to determine the structure of native and in vitro assembled cowpea chlorotic mottle virus (CCMV) virions and capsids to 25-A resolution. Purified CCMV coat protein was used in conjunction with in vitro transcribed viral RNAs to assemble RNA 1 only, RNA 2 only, RNA 3/4 only, and empty (RNA lacking) virions. The image reconstructions demonstrate that the in vitro assembled CCMV virions are morphologically indistinguishable from native virions purified from infected plants. The viral RNA (vRNA) is packaged similarly within the different types of virions. The centers of all assembled particles are generally devoid of density and the vRNA packs against the interior surface of the virion shell. The vRNA appears to adopt an ordered conformation at each of the quasi-threefold axes.
Collapse
Affiliation(s)
- J M Fox
- Department of Plant Pathology, Montana State University-Bozeman, 59717, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Ryan C, Ivanova L, Schlesinger MJ. Mutations in the Sindbis virus capsid gene can partially suppress mutations in the cytoplasmic domain of the virus E2 glycoprotein spike. Virology 1998; 243:380-7. [PMID: 9568036 DOI: 10.1006/viro.1998.9074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Assembly and budding of alphaviruses are postulated to occur by protein-protein interactions between sites on the cytoplasmic domain of the transmembranal envelope E2 glycoprotein and on the surface of the nucleocapsid protein subunits. Genetic data to support this model have been obtained by isolating revertants of two slow-growth mutants of Sindbis virus and analyzing the sequences of the genes encoding their structural proteins. The slow-growth phenotypes of the mutants were previously shown to result from site-directed mutations of 2 amino acids in the sequence corresponding to the 33 amino acids at the carboxyl terminus of E2, which are localized to the cytoplasmic face of the plasma membrane. Putative revertants of these two mutants with faster growth rates were isolated by sequential passaging of virus grown on insect cells or chicken embryo fibroblasts. Sequence analysis of plaque-purified viruses that grew significantly better than the original mutant revealed that the original E2 mutation was present and that there were additional amino acid changes in the virus capsid. Two of the latter were introduced separately into the wild-type virus cDNA and into the genomes of the original mutants. The new strains of virus that contained both capsid and E2 mutations produced many more extracellular particles than those with the E2 mutations alone, indicating substantial suppression of the original E2 mutation. Both capsid mutations appear to be localized near a hydrophobic pocket of the capsid, which is postulated to be the site for docking of hydrophobic amino acids of the E2 cytoplasmic domain. This genetic study provides strong support for the current models of alphavirus assembly.
Collapse
Affiliation(s)
- C Ryan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.
| | | | | |
Collapse
|
227
|
Tubulekas I, Liljeström P. Suppressors of cleavage-site mutations in the p62 envelope protein of Semliki Forest virus reveal dynamics in spike structure and function. J Virol 1998; 72:2825-31. [PMID: 9525602 PMCID: PMC109727 DOI: 10.1128/jvi.72.4.2825-2831.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The E2 spike glycoprotein of Semliki Forest virus is produced as a p62 precursor protein, which is cleaved by host proteases to its mature form, E2. Cleavage is not necessary for particle formation or release but is necessary for infectivity. Previous results had shown that phenotypic revertants of cleavage-deficient p62 mutants are generated, and here we show that these may contain second-site suppressor mutations in the vicinity of the cleavage site. These hot-spot sites were mutated to abolish the generation of such suppressor mutations; however, secondary mutations in another distant domain of the E2 protein appeared instead, all of which still caused cleavage-deficient mutations. Such mutants grew very poorly and were inefficient in virus entry and release. The mutated sites define domains of the spike protein which probably interact to regulate its structure and function. Because of their highly attenuated phenotype and the lower probability of reversion, the new mutations close to the cleavage site were used to make new helper vectors for packaging of recombinant RNA into infectious particles, thus increasing further the biosafety of the vector system based on the Semliki Forest virus replicon.
Collapse
Affiliation(s)
- I Tubulekas
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
228
|
Weclewicz K, Ekström M, Kristensson K, Garoff H. Specific interactions between retrovirus Env and Gag proteins in rat neurons. J Virol 1998; 72:2832-45. [PMID: 9525603 PMCID: PMC109728 DOI: 10.1128/jvi.72.4.2832-2845.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this work we have studied the intracellular localization properties of the Gag and Env proteins of Moloney murine leukemia virus (MLV) and human immunodeficiency virus (HIV) in dorsal root ganglion (DRG) neurons of rat. These neurons form thick bundles of axons, which facilitates protein localization studies by immunofluorescence analyses. When such neuron cultures were infected with recombinant Semliki Forest virus particles carrying the gag genes of either retrovirus, the expressed Gag proteins were localized to both the somatic and the axonal regions of the DRG neurons. In contrast, the Env proteins were confined only to the somatic region. When the Gag and Env proteins were coexpressed, the Gag proteins were also excluded from the axons. This effect of the Env proteins was shown to be dependent on the concentration of the Gag proteins in the neuron and also to be specific for homologous pairs of retrovirus proteins. Therefore, the results suggest that there are specific interactions between the Env and the Gag proteins of MLV and HIV in the DRG neurons.
Collapse
Affiliation(s)
- K Weclewicz
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
229
|
Paredes AM, Heidner H, Thuman-Commike P, Prasad BV, Johnston RE, Chiu W. Structural localization of the E3 glycoprotein in attenuated Sindbis virus mutants. J Virol 1998; 72:1534-41. [PMID: 9445057 PMCID: PMC124635 DOI: 10.1128/jvi.72.2.1534-1541.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
We have determined the three-dimensional structures of the wild-type Sindbis virus and two of its mutants that retain the E3 sequence within PE2. Using difference imaging between these mutants and the wild-type virus, we have assigned a location for the 64-amino-acid sequence corresponding to E3 in the mutant spike complex. In the wild-type virus, the spike is composed of an E1-E2 heterotrimer. The E3 protein was found to protrude midway between the center of the spike complex and the tips. Based on these results and the work of others, we propose a distribution for the functional domains of the spike proteins within the structure of wild-type Sindbis virus. Within the structure of the virus, the E1 domains form the central portion of the spike complex, while the tips are formed by the E2 domains that flare out from the center of the complex. The structural similarity between these Sindbis virus mutants and Ross River virus suggests that E3 may also be present in the latter, which is also a member of the Alphavirus genus.
Collapse
Affiliation(s)
- A M Paredes
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
230
|
Yao J, Strauss EG, Strauss JH. Molecular genetic study of the interaction of Sindbis virus E2 with Ross River virus E1 for virus budding. J Virol 1998; 72:1418-23. [PMID: 9445043 PMCID: PMC124621 DOI: 10.1128/jvi.72.2.1418-1423.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycoprotein PE2 of Sindbis virus will form a heterodimer with glycoprotein E1 of Ross River virus that is cleaved to an E2/E1 heterodimer and transported to the cell plasma membrane, but this chimeric heterodimer fails to interact with Sindbis virus nucleocapsids, and very little budding to produce mature virus occurs upon infection with chimeric viruses. We have isolated in both Sindbis virus E2 and in Ross River virus E1 a series of suppressing mutations that adapt these two proteins to one another and allow increased levels of chimeric virus production. Two adaptive E1 changes in an ectodomain immediately adjacent to the membrane anchor and five adaptive E2 changes in a 12-residue ectodomain centered on Asp-242 have been identified. One change in Ross River virus E1 (Gln-411-->Leu) and one change in Sindbis virus E2 (Asp-248-->Tyr) were investigated in detail. Each change individually leads to about a 10-fold increase in virus production, and combined the two changes lead to a 100-fold increase in virus. During passage of a chimeric virus containing Ross River virus E1 and Sindbis virus E2, the E2 change was first selected, followed by the E1 change. Heterodimers containing these two adaptive mutations have a demonstrably increased degree of interaction with Sindbis virus nucleocapsids. In the parental chimera, no interaction between heterodimers and capsids was visible at the plasma membrane in electron microscopic studies, whereas alignment of nucleocapsids along the plasma membrane, indicating interaction of heterodimers with nucleocapsids, was readily seen in the adapted chimera. The significance of these findings in light of our current understanding of alphavirus budding is discussed.
Collapse
Affiliation(s)
- J Yao
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
231
|
Vashishtha M, Phalen T, Marquardt MT, Ryu JS, Ng AC, Kielian M. A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit. J Cell Biol 1998; 140:91-9. [PMID: 9425157 PMCID: PMC2132589 DOI: 10.1083/jcb.140.1.91] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1997] [Revised: 10/08/1997] [Indexed: 02/05/2023] Open
Abstract
Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.
Collapse
Affiliation(s)
- M Vashishtha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
232
|
Asturias FJ, Chang W, Li Y, Kornberg RD. Electron crystallography of yeast RNA polymerase II preserved in vitreous ice. Ultramicroscopy 1998; 70:133-43. [PMID: 9499590 DOI: 10.1016/s0304-3991(97)00108-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2-D) crystals of yeast RNA polymerase preserved in vitreous ice were studied by electron crystallographic and single-particle techniques. An electron density projection map of the enzyme was calculated from the data, which extended to a resolution of about 12 A, but was unexpectedly weak at resolutions higher than about 20 A. Multivariate statistics analysis revealed a large amount of variability in unit-cell structure in the polymerase crystals, partially related to high mobility of certain polymerase domains. Those same domains were previously identified as being involved in a conformational transition in the enzyme that controls DNA processivity and access to the active center cleft. Electron microscopic studies of other large multiprotein complexes are likely to require similar approaches to those described here.
Collapse
Affiliation(s)
- F J Asturias
- Department of Structural Biology, Stanford University School of Medicine, CA 94305-5400, USA.
| | | | | | | |
Collapse
|
233
|
Chapter 20 Viral membranes. Microbiology (Reading) 1998. [DOI: 10.1016/s1569-2582(97)80004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
234
|
Andersson H, Barth BU, Ekström M, Garoff H. Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus. J Virol 1997; 71:9654-63. [PMID: 9371630 PMCID: PMC230274 DOI: 10.1128/jvi.71.12.9654-9663.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spikes of alphaviruses are composed of three copies of an E2-E1 heterodimer. The E1 protein possesses membrane fusion activity, and the E2 protein, or its precursor form, p62 (sometimes called PE2), controls this function. Both proteins are, together with the viral capsid protein, translated from a common C-p62-E1 coding unit. In an earlier study, we showed that the p62 protein of Semliki Forest virus (SFV) dimerizes rapidly and efficiently in the endoplasmic reticulum (ER) with the E1 protein originating from the same translation product (so-called heterodimerization in cis) (B.-U. Barth, J. M. Wahlberg, and H. Garoff, J. Cell Biol. 128:283-291, 1995). In the present work, we analyzed the ER translocation and folding efficiencies of the p62 and E1 proteins of SFV expressed from separate coding units versus a common one. We found that the separately expressed p62 protein translocated and folded almost as efficiently as when it was expressed from a common coding unit, whereas the independently expressed E1 protein was inefficient in both processes. In particular, we found that the majority of the translocated E1 chains were engaged in disulfide-linked aggregates. This result suggests that the E1 protein needs to form a complex with p62 to avoid aggregation. Further analyses of the E1 aggregation showed that it occurred very rapidly after E1 synthesis and could not be avoided significantly by the coexpression of an excess of p62 from a separate coding unit. These latter results suggest that the p62-E1 heterodimerization has to occur very soon after E1 synthesis and that this is possible only in a cis-directed reaction which follows the synthesis of p62 and E1 from a common coding unit. We propose that the p62 protein, whose synthesis precedes that of the E1 protein, remains in the translocon of the ER and awaits the completion of E1. This strategy enables the p62 protein to complex with the E1 protein immediately after the latter has been made and thereby to control (suppress) its fusion activity.
Collapse
Affiliation(s)
- H Andersson
- Department of Biosciences at Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
235
|
Abstract
Many enveloped viruses are released from infected cells by maturing and budding at the plasma membrane. During this process, viral core components are incorporated into membrane vesicles that contain viral transmembrane proteins, termed 'spike' proteins. For many years these spike proteins, which are required for infectivity, were believed to be incorporated into virions via a direct interaction between their cytoplasmic domains and viral core components. More recent evidence shows that, while such direct interactions drive budding of alphaviruses, this may not be the case for negative strand RNA viruses and retroviruses. These viruses can bud particles in the absence of spike proteins, using only viral core components to drive the process. In some cases the spike proteins, without the viral core, can be released as virus-like particles. Optimal budding and release may, therefore, depend on a 'push-and-pull' concerted action of core and spike, where oligomerization of both components plays a crucial role.
Collapse
Affiliation(s)
- Tamarra L. Cadd
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | - Ulrica Skoging
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | - Peter Liljeström
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
- Department of Vaccine Research, Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| |
Collapse
|
236
|
Spencer SM, Sgro JY, Dryden KA, Baker TS, Nibert ML. IRIS explorer software for radial-depth cueing reovirus particles and other macromolecular structures determined by cryoelectron microscopy and image reconstruction. J Struct Biol 1997; 120:11-21. [PMID: 9361260 DOI: 10.1006/jsbi.1997.3902] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structures of biological macromolecules determined by transmission cryoelectron microscopy (cryo-TEM) and three-dimensional image reconstruction are often displayed as surface-shaded representations with depth cueing along the viewed direction (Z cueing). Depth cueing to indicate distance from the center of virus particles (radial-depth cueing, or R cueing) has also been used. We have found that a style of R cueing in which color is applied in smooth or discontinuous gradients using the IRIS Explorer software is an informative technique for displaying the structures of virus particles solved by cryo-TEM and image reconstruction. To develop and test these methods, we used existing cryo-TEM reconstructions of mammalian reovirus particles. The newly applied visualization techniques allowed us to discern several new structural features, including sites in the inner capsid through which the viral mRNAs may be extruded after they are synthesized by the reovirus transcriptase complexes. To demonstrate the broad utility of the methods, we also applied them to cryo-TEM reconstructions of human rhinovirus, native and swollen forms of cowpea chlorotic mottle virus, truncated core of pyruvate dehydrogenase complex from Saccharomyces cerevisiae, and flagellar filament of Salmonella typhimurium. We conclude that R cueing with color gradients is a useful tool for displaying virus particles and other macromolecules analyzed by cryo-TEM and image reconstruction.
Collapse
Affiliation(s)
- S M Spencer
- Institute for Molecular Virology, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|
237
|
Barth BU, Garoff H. The nucleocapsid-binding spike subunit E2 of Semliki Forest virus requires complex formation with the E1 subunit for activity. J Virol 1997; 71:7857-65. [PMID: 9311874 PMCID: PMC192141 DOI: 10.1128/jvi.71.10.7857-7865.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alphaviruses, such as Semliki Forest virus (SFV), mature by budding at the plasma membrane (PM) of infected cells and enter uninfected ones by a membrane fusion process in the endosomes. Both processes are directed by the p62/E2-E1 membrane protein heterodimer of the virus. The p62 protein, or its mature form E2, provides a cytoplasmic protein domain for interaction with the nucleocapsid (NC) of the virus, and the E1 protein functions as a membrane fusogen. We have previously shown that the p62/E2 protein of SFV controls the membrane fusion activity of E1 through its complex formation with the latter (A. Salminen, J. M. Wahlberg, M. Lobigs, P. Liljeström, and H. Garoff, J. Cell Biol. 116:349-357, 1992). In the present work, we show that the E1 protein controls the NC-binding activity of p62/E2. We have studied E1 expression-deficient SFV variants and shown that although the p62/E2 proteins can be transported to the PM they cannot establish stable NC associations.
Collapse
Affiliation(s)
- B U Barth
- Department of Biosciences at Novum, Huddinge, Sweden
| | | |
Collapse
|
238
|
Belnap DM, Olson NH, Baker TS. A method for establishing the handedness of biological macromolecules. J Struct Biol 1997; 120:44-51. [PMID: 9356290 DOI: 10.1006/jsbi.1997.3896] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When biological macromolecules are imaged in the transmission electron microscope (TEM), their inherent handedness is lost because the three-dimensional (3D) structure is projected onto a two-dimensional (2D) plane, and identical 2D projections can be made from either 3D enantiomer. Nevertheless, tilt experiments in the TEM can be used to determine handedness. These experiments have been performed successfully on negatively stained specimens. More recently, the method was applied to unstained, frozen-hydrated specimens imaged by means of cryoelectron microscopy (cryoTEM) methods. Tilt experiments involve recording two micrographs of the same particles at different tilt angles, computing enantiomeric reconstructions from particle images in one micrograph, predicting orientations of corresponding particles in the second micrograph, and comparing model projections with particle images in the second micrograph. In principle, this procedure can be used to determine the handedness of any biological macromolecule imaged by cryoTEM, provided the enantiomeric reconstructions are distinguishable.
Collapse
Affiliation(s)
- D M Belnap
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
239
|
Fuller SD, Wilk T, Gowen BE, Kräusslich HG, Vogt VM. Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 1997; 7:729-38. [PMID: 9368755 DOI: 10.1016/s0960-9822(06)00331-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS and the subject of intense study. The immature HIV-1 particle is traditionally described as having a well ordered, icosahedral structure made up of uncleaved Gag protein surrounded by a lipid bilayer containing envelope proteins. Expression of the Gag protein in eukaryotic cells leads to the budding of membranous virus-like particles (VLPs). RESULTS We have used cryo-electron microscopy of VLPs from insect cells and lightly fixed, immature HIV-1 particles from human lymphocytes to determine their organization. Both types of particle were heterogeneous in size, varying in diameter from 1200-2600 A. Larger particles appeared to be broken into semi-spherical sectors, each having a radius of curvature of approximately 750 A. No evidence of icosahedral symmetry was found, but local order was evidenced by small arrays of Gag protein that formed facets within the curved sectors. A consistent 270 A radial density was seen, which included a 70 A wide low density feature corresponding to the carboxy-terminal portion of the membrane attached matrix protein and the amino-terminal portion of the capsid protein. CONCLUSIONS Immature HIV-1 particles and VLPs both have a multi-sector structure characterized, not by an icosahedral organization, but by local order in which the structures of the matrix and capsid regions of Gag change upon cleavage. We propose a model in which lateral interactions between Gag protein molecules yields arrays that are organized into sectors for budding by RNA.
Collapse
Affiliation(s)
- S D Fuller
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
240
|
Mancini EJ, de Haas F, Fuller SD. High-resolution icosahedral reconstruction: fulfilling the promise of cryo-electron microscopy. Structure 1997; 5:741-50. [PMID: 9261076 DOI: 10.1016/s0969-2126(97)00229-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two recent papers have defined the secondary structure of the hepatitis virus capsid using a combination of cryo-electron microscopy and icosahedral image reconstruction. These two papers do more than reveal a new fold for a virus protein; they herald a new era in which image reconstruction of single particles will provide reliable high-resolution structural information. In revealing the promise of these techniques to the structural biology community, their two papers should play a seminal role for single particle work, similar to that of the work of Unwin and Henderson on bacteriorhodopsin in revealing the potential of electron microscopy of membrane protein crystals. Indeed, the success of these single particle methods owes much to the development of high-resolution techniques for two-dimensional crystals. This review will summarize some of the history of icosahedral reconstruction from cryo-electron micrographs, compare the two different approaches used to obtain the recent results and outline some of the challenges and promises for the future.
Collapse
Affiliation(s)
- E J Mancini
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
241
|
Owen KE, Kuhn RJ. Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 1997; 230:187-96. [PMID: 9143274 DOI: 10.1006/viro.1997.8480] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction between the nucleocapsid core and the glycoprotein spikes is a critical component in the budding process of alphaviruses. A molecular model was previously proposed which suggested that this interaction was mediated by the binding of the cytoplasmic domain of glycoprotein E2 into a hydrophobic pocket found on the surface of the nucleocapsid protein [S. Lee, K. E. Owen, H.-K. Choi, H. Lee, G. Lu, G. Wengler, D. T. Brown, M. G. Rossmann, and R. J. Kuhn (1996) Structure 4, 531-541; U. Skoging, M. Vihinen, L. Nilsson, and P. Liljeström (1996) Structure 4, 519-529]. Two hydrophobic amino acids in the cytoplasmic domain of E2 were predicted to be important in the contact between the proteins. One of the residues, Y400 (Sindbis virus numbering), had previously been shown by mutational studies to be important in the budding of Semliki Forest virus [H. Zhao, B. Lindqvist, H. Garoff, C. H. von Bonsdorf, and P. Liljeström (1994) EMBO J. 13, 4204-4211]. The role of the second residue, L402, had not been examined. By creating a panel of amino acid substitutions at this residue, followed by phenotypic analysis of rescued mutant viruses, we now show that L402 is critical for the production of Sindbis virus. Substitutions at this amino acid inhibit budding, and the data suggest the L402 plays an important role in the interaction, between the glycoprotein and the nucleocapsid core. These data support the model and suggest that the proposed molecular interactions are important for the budding of alphaviruses from the cell.
Collapse
Affiliation(s)
- K E Owen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
242
|
Dubuisson J, Lustig S, Ruggli N, Akov Y, Rice CM. Genetic determinants of Sindbis virus neuroinvasiveness. J Virol 1997; 71:2636-46. [PMID: 9060616 PMCID: PMC191385 DOI: 10.1128/jvi.71.4.2636-2646.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
After peripheral inoculation of mice, Sindbis virus replicates in a variety of tissues, leading to viremia. In some cases, the virus can enter the central nervous system (CNS) and cause lethal encephalitis. The outcome of infection is age and virus strain dependent. Recently, two pairs of Sindbis virus variants differing in neurovirulence and neuroinvasiveness were derived by limited serial passaging in mouse brain. Two early passage isolates (SVA and SVB) were neurotropic but did not cause lethal encephalitis. SVB, but not SVA, was neuroinvasive. A second independent pair of isolates (SVN and SVNI), which had undergone more extensive mouse brain passaging, were highly neurotropic and caused lethal encephalitis. Only SVNI could reach the brain after peripheral inoculation. From these isolates, virion RNAs were obtained and used to construct full-length cDNA clones from which infectious RNA transcripts could be recovered. The strains recovered from these clones were shown to retain the appropriate phenotypes in weanling mice. Construction and analysis of recombinant viruses were used to define the genetic loci determining neuroinvasion. For SVB, neuroinvasiveness was determined by a single residue in the E2 glycoprotein (Gln-55). For SVNI, neuroinvasive loci were identified in both the 5' noncoding region (position 8) and the E2 glycoprotein (Met-190). Either of these changes on the SVN background was sufficient to confer a neuroinvasive phenotype, although these recombinants were less virulent. To completely mimic the SVNI phenotype, three SVNI-specific substitutions on the SVN background were required: G at position 8, E2 Met-190, and Lys-260, which by itself had no effect on neuroinvasion. These genetically defined strains should be useful for dissecting the molecular mechanisms leading to Sindbis virus invasion of the CNS.
Collapse
Affiliation(s)
- J Dubuisson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | | | |
Collapse
|
243
|
Abstract
Alphaviruses are enveloped, insect-borne viruses, which contains a positive-sense RNA genome. The protein capsid is surrounded by a lipid membrane, which is penetrated by glycoprotein spikes. The structure of the Sindbis virus (SINV) (the type virus) core protein (SCP) was previously determined and found to have a chymotrypsin-like structure. SCP is a serine proteinase which cleaves itself from a polyprotein. Semliki Forest virus (SFV) is among the most distantly related alphaviruses to SINV. Similar to SCP, autocatalysis is inhibited in SFCP after cleavage of the polyprotein by leaving the carboxy-terminal tryptophan in the specificity pocket. The structures of two different crystal forms (I and II) of SFV core protein (SFCP) have been determined to 3.0 A and 3.3 A resolution, respectively. The SFCP monomer backbone structure is very similar to that of SCP. The dimeric association between monomers, A and B, found in two different crystal forms of SCP is also present in both crystal forms of SFCP. However, a third monomer, C, occurs in SFCP crystal form I. While monomers A and B make a tail-to-tail dimer contact, monomers B and C make a head-to-head dimer contact. A hydrophobic pocket on the surface of the capsid protein, the proposed site of binding of the E2 glycoprotein, has large conformational differences with respect to SCP and, in contrast to SCP, is found devoid of bound peptide. In particular, Tyr184 is pointing out of the hydrophobic pocket in SFCP, whereas the equivalent tyrosine in SCP is pointing into the pocket. The conformation of Tyr184, found in SFCP, is consistent with its availability for iodination, as observed in the homologous SINV cores. This suggests, by comparison with SCP, that E2 binding to cores causes major conformational changes, including the burial of Tyr184, which would stabilize the intact virus on budding from an infected cell. The head-to-tail contacts found in the pentameric and hexameric associations within the virion utilize in the same monomer surface regions as found in the crystalline dimer interfaces.
Collapse
Affiliation(s)
- H K Choi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
244
|
Stoops JK, Cheng RH, Yazdi MA, Maeng CY, Schroeter JP, Klueppelberg U, Kolodziej SJ, Baker TS, Reed LJ. On the unique structural organization of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. J Biol Chem 1997; 272:5757-64. [PMID: 9038189 PMCID: PMC4134267 DOI: 10.1074/jbc.272.9.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dihydrolipoamide acyltransferase (E2), a catalytic and structural component of the three functional classes of multienzyme complexes that catalyze the oxidative decarboxylation of alpha-keto acids, forms the central core to which the other components attach. We have determined the structures of the truncated 60-mer core dihydrolipoamide acetyltransferase (tE2) of the Saccharomyces cerevisiae pyruvate dehydrogenase complex and complexes of the tE2 core associated with a truncated binding protein (tBP), intact binding protein (BP), and the BP associated with its dihydrolipoamide dehydrogenase (BP.E3). The tE2 core is a pentagonal dodecahedron consisting of 20 cone-shaped trimers interconnected by 30 bridges. Previous studies have given rise to the generally accepted belief that the other components are bound on the outside of the E2 scaffold. However, this investigation shows that the 12 large openings in the tE2 core permit the entrance of tBP, BP, and BP.E3 into a large central cavity where the BP component apparently binds near the tip of the tE2 trimer. The bone-shaped E3 molecule is anchored inside the central cavity through its interaction with BP. One end of E3 has its catalytic site within the surface of the scaffold for interaction with other external catalytic domains. Though tE2 has 60 potential binding sites, it binds only about 30 copies of tBP, 15 of BP, and 12 of BP.E3. Thus, E2 is unusual in that the stoichiometry and arrangement of the tBP, BP, and E3.BP components are determined by the geometric constraints of the underlying scaffold.
Collapse
Affiliation(s)
- J K Stoops
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Abstract
According to the present model for assembly of alphaviruses, e.g. Semliki Forest virus (SFV), the viral genome is first encapsidated into a nucleocapsid (NC) in cytoplasm and this is then used for budding at plasma membrane (PM). The preformed NC is thought to act as a template on which the viral envelope can be organized. In the present work we have characterized two SFV deletion mutants which did not assemble NCs in the cytoplasm but which instead appeared to form NCs at the PM simultaneously with virus budding. The deletions were introduced in a conserved 14 residue long linker peptide that joins the amino-terminal RNA-binding domain with the carboxy-terminal serine-protease domain of the capsid protein. Despite the deletions and the change in morphogenesis, wild-type (wt)-like particles were produced with almost wt efficiency. It is suggested that the NC assembly defect of the mutants is rescued through spike-capsid interactions at PM. The results show that the preassembly of NCs in the cytoplasm is not a prerequisite for alphavirus budding. The apparent similarities of the morphogenesis pathways of wt and mutant SFV with those of type D and type C retroviruses are discussed.
Collapse
Affiliation(s)
- K Forsell
- Department of Bioscience at Novum, Huddinge, Sweden
| | | | | |
Collapse
|
246
|
Smyth J, Suomalainen M, Garoff H. Efficient multiplication of a Semliki Forest virus chimera containing Sindbis virus spikes. J Virol 1997; 71:818-23. [PMID: 8985423 PMCID: PMC191124 DOI: 10.1128/jvi.71.1.818-823.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using the Semliki Forest virus (SFV) and Sindbis virus (SIN) cDNAs we have constructed recombinants in which the spike genes were exchanged. Analyses of expression showed that the SFV/SIN(spike) RNA directed efficient assembly of infectious virus, whereas the reciprocal SIN/SFV(spike) RNA was completely unable to assemble virus. This was apparently due to a defective capsid-spike interaction.
Collapse
Affiliation(s)
- J Smyth
- Department of Biosciences at Novum, Huddinge, Sweden
| | | | | |
Collapse
|
247
|
Bachmann MF, Zinkernagel RM. The influence of virus structure on antibody responses and virus serotype formation. IMMUNOLOGY TODAY 1996; 17:553-8. [PMID: 8991286 DOI: 10.1016/s0167-5699(96)10066-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M F Bachmann
- Dept of Pathology, University of Zürich, Switzerland.
| | | |
Collapse
|
248
|
Yao JS, Strauss EG, Strauss JH. Interactions between PE2, E1, and 6K required for assembly of alphaviruses studied with chimeric viruses. J Virol 1996; 70:7910-20. [PMID: 8892914 PMCID: PMC190863 DOI: 10.1128/jvi.70.11.7910-7920.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During the assembly of alphaviruses, a preassembled nucleocapsid buds through the cell plasma membrane to acquire an envelope containing two virally encoded glycoproteins, E2 and E1. Using two chimeric viruses, we have studied interactions between E1, E2, and a viral peptide called 6K, which are required for budding. A chimeric Sindbis virus (SIN) in which the 6K gene had been replaced with that from Ross River virus (RR) produced wild-type levels of nucleocapsids and abundant PE2/E1 heterodimers that were processed and transported to the cell surface. However, only about 10% as much chimeric virus as wild-type virus was assembled, demonstrating that there is a sequence-specific interaction between 6K and the glycoproteins required for efficient virus assembly. In addition, the conformation of E1 in the E2/E1 heterodimer on the cell surface was different for the chimeric virus from that for the wild type, suggesting that one function of 6K is to promote proper folding of E1 in the heterodimer. A second chimeric SIN, in which both the 6K and E1 genes, as well as the 3' nontranslated region, were replaced with the corresponding regions of RR also resulted in the production of large numbers of intracellular nucleocapsids and of PE2/E1 heterodimers that were cleaved and transported to the cell surface. Budding of this chimera was severely impaired, however, and the yield of the chimera was only approximately 10(-7) of the SIN yield in a parallel infection. The conformation of the SIN E2/RR E1 heterodimer on the cell surface was different from that of the SIN E2/SIN E1 heterodimer, and no interaction between viral glycoproteins and nucleocapsids at the cell plasma membrane could be detected in the electron microscope. We suggest that proper folding of the E2/E1 heterodimer must occur before the E2 tail is positioned properly in the cytoplasm for budding and before heterodimer trimerization can occur to drive virus budding.
Collapse
Affiliation(s)
- J S Yao
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
249
|
Abstract
Significant progress has been made in elucidating the mechanisms of viral membrane fusion proteins; both those that function at low, as well as those that function at neutral, pH. For many viral fusion proteins evidence now suggests that a triggered conformational change that exposes a previously cryptic fusion peptide, along with a rearrangement of the fusion protein oligomer, allows the fusion peptide to gain access to the target bilayer and thus initiate the fusion reaction. Although the topologically equivalent process of cell-cell fusion is less well understood, several cell surface proteins, including members of the newly described ADAM gene family, have emerged as candidate adhesion/fusion proteins.
Collapse
Affiliation(s)
- L D Hernandez
- Department of Cell Biology, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
250
|
Cosson P. Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 1996; 15:5783-8. [PMID: 8918455 PMCID: PMC452325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The incorporation of the envelope (env) glycoprotein of the human immunodeficiency virus type 1 (HIV-1) into budding virions has been proposed to be mediated by an interaction between its cytoplasmic domain and the matrix protein of HIV-1. However, this interaction was never directly demonstrated and its role in the biogenesis of HIV-1 virions is still debated. Here, a direct interaction is reported between the matrix protein of HIV-1 and the cytoplasmic domain of the env protein of HIV-1. No interaction was seen with the env cytoplasmic domain of other retroviruses. The region of the HIV-1 env involved in the interaction was delineated by mutagenesis and is comprised of the C-terminal 67 amino acid residues of env. These results, as well as the analysis of mutants of the matrix protein, suggest that the interaction between the HIV-1 env and matrix proteins accounts for the specific incorporation of the env glycoprotein into HIV-1 virions.
Collapse
Affiliation(s)
- P Cosson
- Basel Institute for Immunology, Switzerland
| |
Collapse
|