201
|
Williams NA, Holland PW. Molecular evolution of the brain of chordates. BRAIN, BEHAVIOR AND EVOLUTION 2000; 52:177-85. [PMID: 9787218 DOI: 10.1159/000006562] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of regionalisation and patterning of the developing brain is an area of current intense interest. Members of the Otx, Pax-2/5/8 and Hox gene families appear to play important roles in these processes in vertebrates, but functional divergence and genetic redundancy arising from gene duplication events obscures our view of the roles played by these genes during the evolution of vertebrate brains. Determination of the ancestral gene copy number in chordates through molecular phylogenetics, accompanied by gene expression analysis in all three chordate subphyla (vertebrates, cephalochordates and urochordates) may distinguish between ancestral and derived expression domains and give clues to the roles played by these genes in chordate ancestors. Application of this comparative approach indicates evolutionary homologous brain regions (fore-/midbrain, isthmus/cerebellum and hindbrain) in chordates and supports homology of the frontal eye of cephalochordates to the paired eyes of vertebrates.
Collapse
Affiliation(s)
- N A Williams
- School of Animal and Microbial Sciences, The University of Reading, UK
| | | |
Collapse
|
202
|
Abstract
Some proteins are internalized by live cells by a process that does not involve classical endocytosis and thus gain direct access to the cytoplasm and nucleus. These same proteins are often secreted, despite the absence of a signal peptide. Recent studies of this unexpected mode of intercellular signaling have opened the way for biotechnological developments.
Collapse
Affiliation(s)
- A Prochiantz
- CNRS UMR 8542, Ecole Normale Supérieure, Paris Cedex 5, 75230, France.
| |
Collapse
|
203
|
Abstract
Retinoid signalling has been implicated in regulating a wide variety of processes in vertebrate development. Recent advances from analyses on the synthesis, degradation and distribution of retinoids in combination with functional analysis of signalling components have provided important insights into the regulation of patterning the nervous system and the hindbrain in particular.
Collapse
Affiliation(s)
- A Gavalas
- Division of Developmental Neurobiology, National Institute for Medical research, Mill Hill, UK.
| | | |
Collapse
|
204
|
Ohuchi H, Kimura S, Watamoto M, Itoh N. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Mech Dev 2000; 95:55-66. [PMID: 10906450 DOI: 10.1016/s0925-4773(00)00331-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.
Collapse
Affiliation(s)
- H Ohuchi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| | | | | | | |
Collapse
|
205
|
Matsunaga E, Araki I, Nakamura H. Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 2000; 127:2357-65. [PMID: 10804178 DOI: 10.1242/dev.127.11.2357] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional factors and signaling molecules are responsible for regionalization of the central nervous system. In the early stage of neural development, Pax6 is expressed in the prosencephalon, while En1 and Pax2 are expressed in the mesencephalon. Here, we misexpressed Pax6 in the mesencephalon to elucidate the mechanism of the di-mesencephalic boundary formation. Histological analysis, expression patterns of diencephalic marker genes, and fiber trajectory of the posterior commissure indicated that Pax6 misexpression caused a caudal shift of the di-mesencephalic boundary. Pax6 repressed En1, Pax2 and other tectum (mesencephalon)-related genes such as En2, Pax5, Pax7, but induced Tcf4, a diencephalon marker gene. To know how Pax6 represses En1 and Pax2, we ectopically expressed a dominant-active or negative form of Pax6. The dominant-active form of Pax6 showed a similar but more severe phenotype than Pax6, while the dominant-negative form showed an opposite phenotype, suggesting that Pax6 acts as a transcriptional activator. Thus Pax6 may repress tectum-related genes by activating an intervening repressor. The results of misexpression experiments, together with normal expression patterns of Pax6, En1 and Pax2, suggest that repressive interaction between Pax6 and En1/Pax2 defines the di-mesencephalic boundary.
Collapse
Affiliation(s)
- E Matsunaga
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | | | | |
Collapse
|
206
|
Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18:675-9. [PMID: 10835609 DOI: 10.1038/76536] [Citation(s) in RCA: 916] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates, specifically, hematopoietic, mesodermal, and neurectodermal. In this study, we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore, we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells, expanded these cells and promoted their differentiation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentiation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo, and potentially for understanding and treating neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- S H Lee
- Laboratory of Molecular Biology, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
207
|
Abstract
Regional diversity along the anterior-posterior axis of the central nervous system is established during gastrulation and is subsequently refined by local organizing centres that are located at genetically defined positions. The isthmic organizer possesses midbrain- and cerebellum-inducing properties, and its positioning at the midbrain-hindbrain boundary is a crucial event that controls midbrain and cerebellum development. Recent work has shown that two transcription factors, Otx2 and Gbx2, are instrumental in positioning the isthmic organizer at the midbrain-hindbrain boundary.
Collapse
Affiliation(s)
- A Simeone
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125 Naples, Italy.
| |
Collapse
|
208
|
Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 2000; 127:1833-43. [PMID: 10751172 DOI: 10.1242/dev.127.9.1833] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The midbrain-hindbrain (MHB) junction has the properties of an organizer that patterns the MHB region early in vertebrate development. Fgf8 is thought to mediate this organizer function. In addition to Fgf8, Fgf17 and Fgf18 are also expressed in the MHB junction. Fgf17 is expressed later and broader than either Fgf8 or Fgf18. Disrupting the Fgf17 gene in the mouse decreased precursor cell proliferation in the medial cerebellar (vermis) anlage after E11.5. Loss of an additional copy of Fgf8 enhanced the phenotype and accelerated its onset, demonstrating that both molecules cooperate to regulate the size of the precursor pool of cells that develop into the cerebellar vermis. However, expression patterns of Wnt1, En2, Pax5 and Otx2 were not altered suggesting that specification and patterning of MHB tissue was not perturbed and that these FGFs are not required to pattern the vermis at this stage of development. The consequence of this developmental defect is a progressive, dose-dependent loss of the most anterior lobe of the vermis in mice lacking Fgf17 and in mice lacking Fgf17 and one copy of Fgf8. Significantly, the differentiation of anterior vermis neuroepithelium was shifted rostrally and medially demonstrating that FGF also regulates the polarized progression of differentiation in the vermis anlage. Finally, this developmental defect results in an ataxic gait in some mice.
Collapse
Affiliation(s)
- J Xu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
209
|
Adams KA, Maida JM, Golden JA, Riddle RD. The transcription factor Lmx1b maintains Wnt1 expression within the isthmic organizer. Development 2000; 127:1857-67. [PMID: 10751174 DOI: 10.1242/dev.127.9.1857] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells in the caudal mesencephalon and rostral metencephalon become organized by signals emanating from the isthmus organizer (IsO). The IsO is associated with the isthmus, a morphological constriction of the neural tube which eventually defines the mesencephalic/ metencephalic boundary (MMB). Here we report that the transcription factor Lmx1b is expressed and functions in a distinct region of the IsO. Lmx1b expression is maintained by the glycoprotein Fgf8, a signal capable of mediating IsO signaling. Lmx1b, in turn, maintains the expression of the secreted factor Wnt1. Our conclusions are substantiated by the following: (i) Lmx1b mRNA becomes localized to the isthmus immediately after Fgf8 initiation, (ii) Wnt1 expression is localized to the Lmx1b expression domain, but with slightly later kinetics, (iii) Fgf8-soaked beads generate similar domains of expression for Lmx1b and Wnt1 and (iv) retroviral-mediated expression of Lmx1b (Lmx1b/RCAS) maintains Wnt1 expression in the mesencephalon. Ectopic Lmx1b is insufficient to alter the expression of a number of other genes expressed at the IsO, suggesting that it does not generate a new signaling center. Instead, if we allow Lmx1b/RCAS-infected brains to develop longer, we detect changes in mesencephalic morphology. Since both ectopic and endogenous Lmx1b expression occurs in regions of the isthmus undergoing morphological changes, it could normally play a role in this process. Furthermore, a similar phenotype is not observed in Wnt1/RCAS-infected brains, demonstrating that ectopic Wnt1 is insufficient to mediate the effect of ectopic Lmx1b in our assay. Since Wnt1 function has been linked to the proper segregation of mesencephalic and metencephalic cells, we suggest that Lmx1b and Wnt1 normally function in concert to affect IsO morphogenesis.
Collapse
Affiliation(s)
- K A Adams
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
210
|
Sugiyama S, Funahashi J, Nakamura H. Antagonizing activity of chick Grg4 against tectum-organizing activity. Dev Biol 2000; 221:168-80. [PMID: 10772799 DOI: 10.1006/dbio.2000.9643] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alar plate of chick mesencephalon differentiates into the optic tectum. It has been shown that factors expressed in the mes-metencephalic boundary induce the tectum and give positional specificity. Chick Grg4 is expressed at first in the anterior neural fold. The expression localizes from the posterior diencephalon to the mesencephalon by stage 10. To investigate the function of Grg4 in mesencephalic development, Grg4 overexpression was carried out by in ovo electroporation. After Grg4 overexpression, expression of En-2, Pax5, Fgf8, and EphrinA2 was repressed, and Pax6 was upregulated in the mesencephalic region. Grg4 overexpression caused the morphological change; mesencephalic swelling became smaller and the di-mesencephalic boundary shifted posteriorly, that is, the anterior limit of tectum shifted posteriorly. Importantly, cotransfection of Grg4 with Pax5 canceled the tectum-inducing activity of Pax5. These results suggest that Grg4 works as an antagonist against tectum-organizing activity. It was also shown that transfected N-terminal domains of Grg4 induced En-2 expression. Since N-terminal domains were transported to the nucleus in the neuroepithelium, they could act as dominant negative for endogenous Grg4. These results indicate that Grg4 has repressing activity against the organizing molecules and suggest that Grg4 plays important roles in formation of anterior tectal boundary and polarity.
Collapse
Affiliation(s)
- S Sugiyama
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, 980-8575, Japan.
| | | | | |
Collapse
|
211
|
Acampora D, Gulisano M, Simeone A. Genetic and molecular roles of Otx homeodomain proteins in head development. Gene 2000; 246:23-35. [PMID: 10767524 DOI: 10.1016/s0378-1119(00)00070-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insights into the molecular mechanisms underlying neural development in vertebrates come from the cloning and the functional analysis of genes which are involved in the molecular pathways leading to neural induction, tissue specification and regionalization of the brain. Among them, transcription factors belonging to the orthodenticle family (Otx1, Otx2) play an important role during early and later events required for proper brain development. To better understand their functions, several mouse mutants have been generated by homologous recombination. Their analysis clearly indicates that Otx1 is involved in corticogenesis, sense organ development and pituitary functions, while Otx2 is necessary earlier in development, for the correct anterior neural plate specification and organisation of the primitive streak. A molecular mechanism depending on a precise threshold of OTX proteins is necessary for the correct positioning of the isthmic region and for anterior brain patterning. Finally, vertebrate Otx genes share functional equivalence with the Drosophila homologue otd, indicating that the genetic mechanisms underlying pattern formation in insect and mammalian brain development are evolutionarily conserved.
Collapse
Affiliation(s)
- D Acampora
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125, Naples, Italy
| | | | | |
Collapse
|
212
|
Abstract
The internalization of homeodomains and of homeopeptides derived from the third helix of the homeodomain of Antennapedia, a Drosophila transcription factor, is used by some investigators to target exogenous hydrophilic compounds into live cells. In addition to this very practical aspect of drug delivery, translocation across biologic membranes of peptides subsequently addressed to the cell cytoplasm and nucleus raises several questions. A first series of questions pertains to the mechanism of translocation. Thanks to the synthesis of several peptides derived from the third helix of the Antennapedia homeodomain, we began to investigate the mechanism of translocation and we have shown that it is not dependent upon the presence of a chiral receptor and probably involves the formation of inverted micelles. A second series of questions is related to the physiologic significance of the phenomenon. In a first approach, we demonstrated that some full-length homeoproteins are internalized and secreted in vitro. The mechanism of internalization is probably similar to that of the homeodomain or of its third helix, but secretion involves a different mechanism which requires an association with specialized intracellular membranous structures. The existence of specific mechanisms for homeoprotein internalization and secretion suggests that this class of transcription factors may have important signaling properties.
Collapse
Affiliation(s)
- A Prochiantz
- Ecole Normale Supérieure, CNRS UMR 8542, Paris, France.
| |
Collapse
|
213
|
Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H. Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 2000; 91:43-52. [PMID: 10704829 DOI: 10.1016/s0925-4773(99)00262-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Otx2 is expressed in the mesencephalon and prosencephalon, and Gbx2 is expressed in the rhombencephalon around stage 10. Loss-of-function studies of these genes in mice have revealed that Otx2 is indispensable for the development of the anterior brain segment, and that Gbx2 is required for the development of the isthmus. We carried out gain-of-function experiments of these genes in chick embryos with a newly developed gene transfer system, in ovo electroporation. When Otx2 was ectopically expressed caudally beyond the midbrain-hindbrain boundary (MHB), the alar plate of the metencephalon differentiated into the optic tectum instead of differentiating into the cerebellum. On the other hand, when Gbx2 was ectopically expressed at the mesencephalon, the caudal limit of the tectum shifted rostrally. We looked at the effects of misexpression on the isthmus- and tectum-related molecules. Otx2 and Gbx2 interacted to repress each other's expression. Ectopic Otx2 and Gbx2 repressed endogenous expression of Fgf8 in the isthmus, but induced Fgf8 expression at the interface between Otx2 and Gbx2 expression. Thus, it is suggested that interaction between Otx2 and Gbx2 determines the site of Fgf8 expression and the posterior limit of the tectum.
Collapse
Affiliation(s)
- T Katahira
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
214
|
Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000; 287:864-9. [PMID: 10657302 DOI: 10.1126/science.287.5454.864] [Citation(s) in RCA: 951] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain function requires precisely orchestrated connectivity between neurons. Establishment of these connections is believed to require signals secreted from outgrowing axons, followed by synapse formation between selected neurons. Deletion of a single protein, Munc18-1, in mice leads to a complete loss of neurotransmitter secretion from synaptic vesicles throughout development. However, this does not prevent normal brain assembly, including formation of layered structures, fiber pathways, and morphologically defined synapses. After assembly is completed, neurons undergo apoptosis, leading to widespread neurodegeneration. Thus, synaptic connectivity does not depend on neurotransmitter secretion, but its maintenance does. Neurotransmitter secretion probably functions to validate already established synaptic connections.
Collapse
Affiliation(s)
- M Verhage
- Molecular Neuroscience, Rudolf Magnus Institute, University of Utrecht Medical Centre, Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Affiliation(s)
- H B Sarnat
- Department of Neurology, University of Washington School of Medicine, Seattle, USA.
| | | |
Collapse
|
216
|
Abstract
The retino-tectal system has been used to study developmental aspects of axon growth, synapse formation and the establishment of a precise topographic order as well as degeneration and regeneration of adult retinal ganglion cell (RGC) axons after axonal lesion. This paper reviews some novel findings that provide new insights into the mechanisms of developmental RGC axon growth, pathfinding, and target formation. It also focuses on the cellular and molecular cascades that underlie RGC degeneration following an axonal lesion and on some therapeutic strategies to enhance survival of axotomized RGCs in vivo. In addition, this review deals with problems related to the induction of regeneration after axonal lesion in the adult CNS using the retino-tectal system as model. Different therapeutic approaches to promote RGC regeneration and requirements for specific target formation of regenerating RGCs in vitro and in vivo are discussed.
Collapse
Affiliation(s)
- J Weise
- Neurologische Universitätsklinik, 72076 Tübingen, Germany
| | | | | |
Collapse
|
217
|
Chambers D, Medhurst AD, Walsh FS, Price J, Mason I. Differential display of genes expressed at the midbrain - hindbrain junction identifies sprouty2: an FGF8-inducible member of a family of intracellular FGF antagonists. Mol Cell Neurosci 2000; 15:22-35. [PMID: 10662503 DOI: 10.1006/mcne.1999.0801] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specification and polarization of the midbrain and anterior hindbrain involve planar signals originating from the isthmus. Current evidence suggests that FGF8, expressed at the isthmus, provides this patterning influence. In this study, we have sought to identify novel genes which are involved in the process by which regional identity is imparted to midbrain and anterior hindbrain (rhombomere 1). An enhanced differential display reverse transcription method was used to clone cDNAs derived from transcripts expressed specifically in either rhombomere 1 or midbrain during the period of isthmic patterning activity. This gene expression screen identified 28 differentially expressed cDNAs. A clone upregulated in cDNA derived from rhombomere 1 tissue showed a 91% identity at the nucleotide level to the putative human receptor tyrosine kinase antagonist: sprouty2. In situ hybridization on whole chick embryos showed chick sprouty2 to be expressed initially within the isthmus and rhombomere 1, spatially and temporally coincident with Fgf8 expression. However, at later stages this domain was more extensive than that of Fgf8. Introduction of ligand-coated beads into either midbrain or hindbrain region revealed that sprouty2 could be rapidly induced by FGF8. These data suggest that sprouty2 participates in a negative feedback regulatory loop to modulate the patterning activity of FGF8 at the isthmus.
Collapse
Affiliation(s)
- D Chambers
- MRC Brain Development Programme, Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, SE1 9RT, United Kingdom
| | | | | | | | | |
Collapse
|
218
|
Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000; 127:75-85. [PMID: 10654602 DOI: 10.1242/dev.127.1.75] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.
Collapse
Affiliation(s)
- K Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg
| | | | | | | | | |
Collapse
|
219
|
Wallén A, Zetterström RH, Solomin L, Arvidsson M, Olson L, Perlmann T. Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 1999; 253:737-46. [PMID: 10585298 DOI: 10.1006/excr.1999.4691] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The orphan nuclear receptor NURR1 was previously demonstrated to be required for the generation of mesencephalic dopamine (DA) cells. However, even in the absence of NURR1, which is normally expressed as cells become postmitotic, neuronal differentiation is induced and expression of several genes detected in developing dopamine cells appears normal during early stages of development. These include the homeobox transcription factors engrailed and Ptx-3 as well as aldehyde dehydrogenase 2, here defined as the earliest marker identified in developing DA cells, expressed already in mitotic DA progenitors. We have used the expression of these dopaminergic markers, retrograde axonal tracing, and apoptosis analyses to study the fate of the DA progenitor cells in the absence of NURR1. We conclude that NURR1 plays a critical role in the maturation, migration, striatal target area innervation, and survival of differentiating mesencephalic DA cells.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase, Mitochondrial
- Animals
- Animals, Newborn
- Cell Differentiation/physiology
- Cell Movement/physiology
- Cell Survival/physiology
- Cells, Cultured
- DNA-Binding Proteins
- Dopamine/physiology
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Homeodomain Proteins/genetics
- In Situ Nick-End Labeling
- Male
- Mesencephalon/cytology
- Mice
- Mice, Mutant Strains
- Nerve Tissue Proteins/genetics
- Neurons/cytology
- Neurons/enzymology
- Nuclear Receptor Subfamily 4, Group A, Member 2
- RNA, Messenger/analysis
- Stem Cells/cytology
- Stem Cells/enzymology
- Transcription Factors/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- A Wallén
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, S-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
220
|
Carl M, Wittbrodt J. Graded interference with FGF signalling reveals its dorsoventral asymmetry at the mid-hindbrain boundary. Development 1999; 126:5659-67. [PMID: 10572042 DOI: 10.1242/dev.126.24.5659] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signalling by fibroblast growth factors (FGFs) at the mid-hindbrain boundary (MHB) is of central importance for anteroposterior neural patterning from the isthmic organiser. Graded suppression of FGF signalling by increasing amounts of a dominant negative FGF receptor provides evidence that in addition to anteroposterior patterning, FGF signalling is also involved in patterning along the dorsoventral axis at the MHB. FGF signalling at the MHB is required for the activation of the HH target gene spalt at the MHB. Our results indicate that FGF signalling mediates the competence of the MHB to activate spalt in response to SHH. This interdependence of the two signalling pathways is also found in the outbudding optic vesicle where HH requires functional FGF signalling to activate spalt in the proximal eye region.
Collapse
MESH Headings
- Animals
- Base Sequence
- Body Patterning
- Drosophila Proteins
- Eye/embryology
- Fibroblast Growth Factors/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Hedgehog Proteins
- Homeodomain Proteins/genetics
- Mesencephalon/embryology
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Oryzias/embryology
- Protein-Tyrosine Kinases
- Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Rhombencephalon/embryology
- Signal Transduction
- Trans-Activators
- Transcription Factors/genetics
- Wnt Proteins
- Zebrafish Proteins
Collapse
Affiliation(s)
- M Carl
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, PO Box 10.2209, Germany
| | | |
Collapse
|
221
|
Inobe M, Katsube KI, Miyagoe Y, Nabeshima YI, Takeda S. Identification of EPS8 as a Dvl1-associated molecule. Biochem Biophys Res Commun 1999; 266:216-21. [PMID: 10581192 DOI: 10.1006/bbrc.1999.1782] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dishevelled (Dsh) is involved in both Wingless (Wg) and Frizzled (Fz) signaling pathways. To further determine the function of Dsh, we have performed yeast two-hybrid screening and isolated several genes encoding the molecules associated with the PDZ domain of Dvl1, one of the murine Dsh homologs. During the screening, we found that EPS8, which is a substrate for activated EGF receptor (EGFR), specifically interacted with Dvl1. This interaction was also confirmed in vitro. Through transfection studies, we observed the mutual action between Dvl1 and EPS8. Dvl1 was hyperphosphorylated in the presence of EPS8, whereas the tyrosine phosphorylation of EPS8 by activated EGFR was inhibited in the presence of Dvl1. Immunohistochemistry showed that Dvl1 and EPS8 expression overlap in particular tissues during organogenesis. These results indicate that interaction between Dvl1 and receptor tyrosine kinase signal plays certain roles in developmental events.
Collapse
Affiliation(s)
- M Inobe
- Department of Molecular Genetics, National Institute of Neuroscience, Kodaira, Tokyo, 187-8502, Japan
| | | | | | | | | |
Collapse
|
222
|
Bramblett DE, Huang HP, Tsai MJ. Pancreatic islet development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:255-315. [PMID: 10582089 DOI: 10.1016/s1054-3589(08)60114-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D E Bramblett
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
223
|
Abstract
We report here the development and rescue of the truncated hindbrain of retinoid-deprived quail embryos. The embryo is completely rescued by an injection of retinol into the egg; this confirms retinol, or a related retinoid, as a required molecule in hindbrain development. Staging the retinoid replacement enabled us to determine that the 3-4 somite stage is the period when retinoids are required for normal development. Analysis of the development of the retinoid-deprived hindbrain phenotype through somitogenesis has revealed a pathway of retinoid action in early hindbrain regionalization. The hindbrain of the retinoid-deprived embryo is normal in size, during early somitogenesis, but has a respecified pattern of Krox-20 expression. From the earliest expression of Krox-20, at the 5 somite stage, the rhombomere 3 stripe fills the caudal third of the developing hindbrain to the level of the first somite. Morphologically only 2, instead of the normal 5, rhombomere bulges form. These 2 bulges express genes and, later, develop morphology characteristic of rhombomeres 1 and 2 and rhombomere 3. Posterior hindbrain specific genes, Hoxb-1, Fgf3, MafB, and the rhombomere 5 stripe of Krox-20 are never expressed in the head neuroepithelium of these embryos. From the initial formation of the neural plate, there is no evidence of rhombomere 4-7 specific characteristics. These results indicate the specification of the posterior hindbrain is lost and its cells participate in the formation of an enlarged anterior hindbrain. In our previous study, we reported the absence of the posterior hindbrain in retinoid-deprived quails (Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417-426). Here, we show this phenotype to be the result of respecification of the hindbrain cells. This provides evidence for a region specific response to a single stimulus, retinol, which suggests a pre-rhombomeric regionalization of the hindbrain.
Collapse
Affiliation(s)
- E Gale
- New Hunt's House, King's College London, Guy's Campus, London Bridge, London, UK.
| | | | | |
Collapse
|
224
|
Rubin BP, Tucker RP, Martin D, Chiquet-Ehrismann R. Teneurins: a novel family of neuronal cell surface proteins in vertebrates, homologous to the Drosophila pair-rule gene product Ten-m. Dev Biol 1999; 216:195-209. [PMID: 10588872 DOI: 10.1006/dbio.1999.9503] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized chicken teneurin-1 and teneurin-2, two homologues of the Drosophila pair-rule gene product Ten-m and Drosophila Ten-a. The high degree of conservation between the vertebrate and invertebrate proteins suggests that these belong to a novel family. We propose to name the vertebrate members of this family teneurins, because of their predominant expression in the nervous system. The expression of teneurin-1 and -2 was investigated by in situ hybridization. We show that teneurin-1 and -2 are expressed by distinct populations of neurons during the time of axonal growth. The most prominent site of expression of chicken teneurins is the developing visual system. Recombinant teneurin-2 was expressed to assay its molecular and functional properties. We show that it is a type II transmembrane protein, which can be released from the cell surface by proteolytic cleavage at a furin site. The expression of teneurin-2 in neuronal cells led to a significant increase in the number of filopodia and to the formation of enlarged growth cones. The expression pattern of teneurins in the developing nervous system and the ability of teneurin-2 to reorganize the cellular morphology indicate that these proteins may have an important function in the formation of neuronal connections.
Collapse
Affiliation(s)
- B P Rubin
- Friedrich Miescher Institute, Basel, CH-4002, Switzerland
| | | | | | | |
Collapse
|
225
|
Yoshitake Y, Howard TL, Christian JL, Hollenberg SM. Misexpression of Polycomb-group proteins in Xenopus alters anterior neural development and represses neural target genes. Dev Biol 1999; 215:375-87. [PMID: 10545244 DOI: 10.1006/dbio.1999.9473] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila, the Polycomb-group constitutes a set of structurally diverse proteins that act together to silence target genes. Many mammalian Polycomb-group proteins have also been identified and show functional similarities with their invertebrate counterparts. To begin to analyze the function of Polycomb-group proteins in Xenopus development, we have cloned a Xenopus homolog of Drosophila Polycomblike, XPcl1. XPcl1 mRNA is present both maternally and zygotically, with prominent zygotic expression in the anterior central nervous system. Misexpression of Pcl1 by RNA injection into embryos produces defects in the anterior central nervous system. The forebrain and midbrain contain excess neural tissue at the expense of the ventricle and include greatly thickened floor and roof plates. The eye fields are present but Rx2A, an eye-specific marker, is completely repressed. Overexpression of Pcl1 in Xenopus embryos alters two hindbrain markers, repressing En-2 and shifting it and Krox-20 in a posterior direction. Similar neural phenotypes and effects on the En-2 expression pattern were produced by overexpression of three other structurally unrelated Polycomb-group proteins: M33, XBmi-1, and mPh2. These observations indicate an important role for the Polycomb-group in regulating gene expression in the developing anterior central nervous system.
Collapse
Affiliation(s)
- Y Yoshitake
- Department of Cell and Developmental Biology, Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
226
|
Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. JOURNAL OF NEUROBIOLOGY 1999; 41:281-94. [PMID: 10512984 DOI: 10.1002/(sici)1097-4695(19991105)41:2<281::aid-neu10>3.0.co;2-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pax-2 is a paired box transcription factor expressed in several regions of the developing mammalian central nervous system. First found in the midbrain/hindbrain region, Pax-2 expression is later found in the cerebellum, hindbrain, and spinal cord. We have examined the expression pattern of Pax-2 from embryonic day 12 (E12) through postnatal day 35 (P35) using immunohistochemistry and in situ hybridization. Expression of Pax-2 is found in scattered cells of the cerebellar ventricular zone at E13. Pax-2-expressing cells migrate away from this germinative center to positions in the deep cerebellar nuclei (DCN), internal granule cell layer, molecular layer, and folial white-matter tracts of the cerebellum. Immunocytochemistry of both tissue sections and primary dissociated cultures demonstrates that Pax-2 is expressed by cells of a neuronal lineage, but not by cells of either an astrocytic or oligodendrocytic lineage. Specifically, the presence of Pax-2 identifies the entire population of gamma-aminobutyric acid (GABA)ergic interneurons in the cerebellar cortex (Golgi II, basket and stellate cells) and in the DCN. Bromodeoxyuridase labeling and 4',6-diamino-2-phenylindole (DAPI) staining of cells in M-phase reveals that Pax-2-expressing cells in the folial white-matter tracts of the cerebellum constitute an actively dividing population. We propose that these cells are migratory precursors of the molecular layer interneurons (basket and stellate cells). Our data suggest that the role of Pax-2 in cerebellar development changes after E12, shifting from the specification of an anatomical field to the marking of a specific class of cells. Our findings also suggest a previously uncharacterized relationship among GABAergic interneurons found posterior to the midbrain. Finally, our data support the hypothesis that the basket and stellate cells arise from neuronally restricted, migratory precursors located in the early postnatal cerebellar white matter.
Collapse
Affiliation(s)
- S M Maricich
- Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
227
|
Virgintino D, Ambrosini M, D'Errico P, Bertossi M, Papadaki C, Karagogeos D, Gennarini G. Regional distribution and cell type-specific expression of the mouse F3 axonal glycoprotein: a developmental study. J Comp Neurol 1999; 413:357-72. [PMID: 10502245 DOI: 10.1002/(sici)1096-9861(19991025)413:3<357::aid-cne1>3.0.co;2-s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of the mouse axonal adhesive glycoprotein F3 and of its mRNA was studied on sections of mouse cerebellar cortex, cerebral cortex, hippocampus, and olfactory bulb from postnatal days 0 (P0) to 30 (P30). In cerebellar cortex, a differential expression of F3 in granule versus Purkinje neurons was observed. F3 was highly expressed during migration of and initial axonal growth from cerebellar granule cells. The molecule was then downregulated on cell bodies and remained expressed, although at low levels, on their axonal extensions. On Purkinje cells, F3 was strongly expressed on cell bodies and processes at the beginning of the second postnatal week; by P16 it was restricted to neurites of Purkinje cells subpopulations. In the cerebral cortex, the molecule was highly expressed on migrating neurons at P0; by P16, it was found essentially within the neuropil with a diffuse pattern. In the hippocampal formation, where F3 was expressed on both pyramidal and granule neurons, a clear shift from the cell bodies to neurite extensions was observed on P3. In the olfactory pathway, F3 was expressed mainly on olfactory nerve fibers, mitral cells, and the synaptic glomeruli from P0 to P3, with a sharp decline from P11 to P16. As a whole, the data show that F3 protein expression is regulated at the regional, cellular, and subcellular levels and suggest that, in different regions, it can be proposed as a reliable neuronal differentiation marker.
Collapse
Affiliation(s)
- D Virgintino
- Dipartimento di Farmacologia e Fisiologia Umana, Facoltà di Medicina e Chirurgia, Università degli Studi di Bari, I-70124 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
228
|
Rowitch DH, Kispert A, McMahon AP. Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 117:99-108. [PMID: 10536237 DOI: 10.1016/s0165-3806(99)00104-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of Pax-2 in the mouse gastrula is the first marker of the midbrain-hindbrain region. To address roles played by transcription factors in the process of neural plate pattern formation and to facilitate gain-of-function approaches in the study of midbrain-hindbrain and cerebellar development, we characterized regulatory sequences at the Pax-2 locus using an in vivo transgenic mouse reporter assay. An 8.5 kb fragment of genomic DNA located upstream of Pax-2 directed lacZ expression prior to neurulation (7.5 days post-coitum, dpc) in a region fated to become midbrain and hindbrain, and subsequently in developing neuroepithelium. While similar to the pattern of Pax-2 expression, reporter gene activity extended beyond the boundaries of Pax-2 expression, most probably reflecting purdurance of beta-galactosidase activity and an absence of DNA sequences that restrict Pax-2 expression to rhombomere 1 by 9. 5 dpc. In the fetal and neonatal brain, Pax-2-lacZ activity was confined largely to Purkinje cells and the external granule cell layer (EGL) of the cerebellum. A 4 kb regulatory element, in contrast, initiated neural expression at 8.25 dpc in the anterior hindbrain, but recapitulated all later aspects of Pax-2-lacZ activity observed with the larger transgene. These results indicate the presence of regulatory sequences upstream of the Pax-2 locus capable of directing gene expression in the developing midbrain, first rhombomere of the hindbrain, and its principal derivative, the cerebellum. Successful misexpression of Sonic hedgehog demonstrates that Pax-2 regulatory sequences should prove generally useful for transgenic gain-of-function approaches in mice.
Collapse
Affiliation(s)
- D H Rowitch
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
229
|
Chen CP, Devriendt K, Lee CC, Chen WL, Wang W, Wang TY. Prenatal diagnosis of partial trisomy 3p(3p23→pter) and monosomy 7q(7q36→qter) in a fetus with microcephaly alobar holoprosencephaly and cyclopia. Prenat Diagn 1999. [DOI: 10.1002/(sici)1097-0223(199910)19:10<986::aid-pd672>3.0.co;2-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
230
|
Abstract
Fine structural, computerized three-dimensional (3D) mapping of cell connectivity in the amphioxus nervous system and comparative molecular genetic studies of amphioxus and tunicates have provided recent insights into the phylogenetic origin of the vertebrate nervous system. The results suggest that several of the genetic mechanisms for establishing and patterning the vertebrate nervous system already operated in the ancestral chordate and that the nerve cord of the proximate invertebrate ancestor of the vertebrates included a diencephalon, midbrain, hindbrain, and spinal cord. In contrast, the telencephalon, a midbrain-hindbrain boundary region with organizer properties, and the definitive neural crest appear to be vertebrate innovations.
Collapse
Affiliation(s)
- L Z Holland
- Marine Biology Research Division Scripps Institution of Oceanography University of California at San Diego La Jolla, California, 92093-0202, USA.
| | | |
Collapse
|
231
|
Rhinn M, Dierich A, Le Meur M, Ang S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 1999; 126:4295-304. [PMID: 10477297 DOI: 10.1242/dev.126.19.4295] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that the homeobox gene Otx2 is required first in the visceral endoderm for induction of forebrain and midbrain, and subsequently in the neurectoderm for its regional specification. Here, we demonstrate that Otx2 functions both cell autonomously and non-cell autonomously in neurectoderm cells of the forebrain and midbrain to regulate expression of region-specific homeobox and cell adhesion genes. Using chimeras containing both Otx2 mutant and wild-type cells in the brain, we observe a reduction or loss of expression of Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2 in mutant cells, whereas expression of En2 and Six3 is rescued by surrounding wild-type cells. Forebrain Otx2 mutant cells subsequently undergo apoptosis. Altogether, this study demonstrates that Otx2 is an important regulator of brain patterning and morphogenesis, through its regulation of candidate target genes such as Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2.
Collapse
Affiliation(s)
- M Rhinn
- IGBMC, CNRS/INSERM/Université Louis Pasteur, B.P. 163, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
232
|
Irving C, Mason I. Regeneration of isthmic tissue is the result of a specific and direct interaction between rhombomere 1 and midbrain. Development 1999; 126:3981-9. [PMID: 10457008 DOI: 10.1242/dev.126.18.3981] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The midbrain-hindbrain boundary, or isthmus, is the source of signals that are responsible for regional specification of both the midbrain and anterior hindbrain. Fibroblast growth factor 8 (Fgf8) is expressed specifically at the isthmus and there is now good evidence that it forms at least part of the patterning signal. In this study, we use Fgf8 as a marker for isthmic cells to examine how interactions between midbrain and hindbrain can regenerate isthmic tissue and, thereby, gain insight into the normal formation and/or maintenance of the isthmus. We show that Fgf8-expressing tissue with properties of the isthmic organiser is generated when midbrain and rhombomere 1 tissue are juxtaposed but not when midbrain contacts any other rhombomere. The use of chick/quail chimeras shows that the isthmic tissue is largely derived from rhombomere 1. In a few cases a small proportion of the Fgf8-positive cells were of midbrain origin but this appears to be the result of a local respecification to a hindbrain phenotype, a process mimicked by ectopic FGF8. Studies in vitro show that the induction of Fgf8 is the result of a direct planar interaction between the two tissues and involves a diffusible signal.
Collapse
Affiliation(s)
- C Irving
- MRC Brain Development Programme, Department of Developmental Neurobiology, Guy's, King's and St. Thomas' Hospital Medical School, Hodgkin Building, Guy's Campus, London SE1 9RT, UK
| | | |
Collapse
|
233
|
Broccoli V, Boncinelli E, Wurst W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature 1999; 401:164-8. [PMID: 10490025 DOI: 10.1038/43670] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The homeobox gene Otx2 is expressed in the anterior neural tube with a sharp limit at the midbrain/hindbrain junction (the isthmic organizer). Otx2 inactivation experiments have shown that this gene is essential for the development of its expression domain. Here we investigate whether the caudal limit of Otx2 expression is instrumental in positioning the isthmic organizer and in specifying midbrain versus hindbrain fate, by ectopically expressing Otx2 in the presumptive anterior hindbrain using a knock-in strategy into the En1 locus. Transgenic offspring display a cerebellar ataxia. Morphological and histological studies of adult transgenic brains reveal that most of the anterior cerebellar vermis is missing, whereas the inferior colliculus is complementarily enlarged. During early neural pattern formation expression of the midbrain markers Wnt1 and Ephrin-A5, the isthmic organizer markers Pax2 and Fgf-8 and the hindbrain marker Gbx2 are shifted caudally in the presumptive hindbrain territory. These findings show that the caudal limit of Otx2 expression is sufficient for positioning the isthmic organizer and encoding caudal midbrain fate within the mid/hindbrain domain.
Collapse
Affiliation(s)
- V Broccoli
- GSF-Research Centre for Environment and Health, Institute of Mammalian Genetics, Neuherberg, Germany
| | | | | |
Collapse
|
234
|
Abstract
An overview of cerebellar and brainstem development is provided as a foundation for suggesting hypotheses about developmental defects in Joubert syndrome. Although neuropathologic studies of Joubert syndrome are rare, and the spectrum of brain pathology is not yet known, consistent findings include agenesis of the cerebellar vermis and hypoplasia or fragmentation of several brainstem nuclei (including dentate nuclei, inferior olives, and basis pontis), nuclei and tracts of cranial nerve V, solitary nuclei and tracts, and nuclei gracilis and cuneatus. Two aspects of cerebellar development might be important in the pathogenesis of Joubert syndrome: First, cerebellar development is regulated by a critical region of the embryo called the "midbrain-hindbrain organizer," and both mesencephalic and metencephalic elements take part in normal cerebellar development. While the metencephalon gives rise to the cerebellar hemispheres, the vermis is derived almost exclusively from the mesencephalon. This suggests that Joubert syndrome could involve an abnormality in formation of the pontomesencephalic junction (rhombomere 1). Second, the histogenesis of cranial nerve nuclei and brainstem structures derived from the embryonic rhombic lip (such as the inferior olives, neurons of the basis pontis, and arcuate nuclei) involves the formation, migration, and reorganization of nuclei and tracts during a critical period of development (6 to 8 weeks' gestation). Because these structures are abnormal in Joubert syndrome, an understanding of factors that regulate the proper formation and migration of cells that give rise to them could provide important clues about the pathogenesis of this disorder.
Collapse
Affiliation(s)
- A T Yachnis
- Department of Pathology, University of Florida College of Medicine, Gainesville 32610-0275, USA.
| | | |
Collapse
|
235
|
Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME. Neurogenetics of the cerebellar system. J Child Neurol 1999; 14:574-81; discussion 581-2. [PMID: 10488902 DOI: 10.1177/088307389901400905] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of the cerebellum occurs in four basic steps. During the first epoch, genes that mark the cerebellar territory are expressed in a restricted pattern along the anterioposterior axis of the embryo. In the second, an embryonic region termed the rhombic lip generates precursors of the granule cell population of the cerebellar cortex, and the lateral pontine nucleus and olivary nucleus of the brain stem. In the third period, the program of neurogenesis of the granule neuron gives rise to the formation of the fundamental layers of the cerebellum and to the pattern of foliation. Concomitantly, programs of gene expression define the principal neuronal classes, the granule cell and Purkinje cell, that will establish the cerebellar circuitry in the postnatal period. Understanding the molecular mechanisms underlying these steps of development is likely to yield important insights into malformations such as Joubert syndrome.
Collapse
Affiliation(s)
- K J Millen
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
236
|
Abstract
Cells in the presumptive neural ectoderm of Xenopus are committed to neural fate through a process called neural induction, which may involve proteins that antagonize BMP signaling pathways. To identify genes that are induced by the BMP antagonists and that may be involved in subsequent neural patterning, we used a suppression PCR-based subtraction screen. Here we investigate the prospective activities and functions of one of the genes, a nuclear orphan receptor previously described as xGCNF. In animal cap assays, xGCNF synergizes with ectopic chordin to induce the midbrain-hindbrain marker engrailed-2 (En-2). In Keller explants, which rely on endogenous factors for neural induction, similar increases in En-2 are observed. Expression in embryos of a dominant interfering form of xGCNF reduces the expression of endogenous En-2 and Krox-20. These gain-of-function and prospective loss-of-function experiments, taken with the observation that xGCNF is expressed in the early neural plate and is elevated in the prospective midbrain-hindbrain region, which subsequently expresses En-2, suggest that xGCNF may play a role in regulating En-2 and thus midbrain-hindbrain identity.
Collapse
Affiliation(s)
- K Song
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
237
|
Ristoratore F, Carl M, Deschet K, Richard-Parpaillon L, Boujard D, Wittbrodt J, Chourrout D, Bourrat F, Joly JS. The midbrain-hindbrain boundary genetic cascade is activated ectopically in the diencephalon in response to the widespread expression of one of its components, the medaka gene Ol-eng2. Development 1999; 126:3769-79. [PMID: 10433907 DOI: 10.1242/dev.126.17.3769] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, the engrailed genes are expressed at early neurula stage in a narrow stripe encompassing the midbrain-hindbrain boundary (MHB), a region from which a peculiar structure, the isthmus, is formed. Knock-out experiments in mice demonstrated that these genes are essential for the development of this structure and of its derivatives. In contrast, little is known about the effect of an overexpression of engrailed genes in vertebrate development. Here we report the isolation of Ol-eng2, a medaka fish (Oryzias latipes) engrailed gene. We have monitored the effects of its widespread expression following mRNA injections in 1- and 2-cell medaka and Xenopus embryos. We found that the ectopic expression of Ol-eng2 predominantly results in an altered development of the anterior brain, including an inhibition of optic vesicle formation. No change in the patterns of mesencephalic and telencephalic markers were observed. In contrast, expressions of markers of the diencephalon were strongly repressed in injected embryos. Furthermore, the endogenous Ol-eng2, Pax2, Wnt1 and Fgf8, which are essential components of the MHB genetic cascade, were ectopically expressed in this region. Therefore, we propose that Ol-eng2 induces de novo formation of an isthmus-like structure, which correlates with the development of ectopic midbrain structures, including optic tectum. A competence of the diencephalon to change to a midbrain fate has been demonstrated in isthmic graft experiments. Our data demonstrate that this change can be mimicked by ectopic engrailed expression alone.
Collapse
Affiliation(s)
- F Ristoratore
- Laboratoire de Génétique des Poissons, INRA, France. ristorat@jouy. inra.fr
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
McGrew LL, Takemaru K, Bates R, Moon RT. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev 1999; 87:21-32. [PMID: 10495268 DOI: 10.1016/s0925-4773(99)00136-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The co-activation of Wnt signaling and concomitant inhibition of BMP signaling has previously been implicated in vertebrate neural patterning, as evidenced by the combinatorial induction of engrailed-2 and krox-20 in Xenopus. However, screens have not previously been conducted to identify additional potential target genes. Using a PCR-based screening method we determined that XA-1, xCRISP, UVS.2, two UVS.2-related genes, and xONR1 are induced in response to Xwnt-3a and a BMP-antagonist, noggin. Two additional genes, connexin 30 and retinoic acid receptor gamma were induced by Xwnt-3a alone. To determine whether any of the induced genes are direct targets of Wnt signaling, we focussed on engrailed-2. In the present study we show that the Xenopus engrailed-2 promoter contains three consensus binding sites for LEF/TCF, which are HMG box transcription factors which bind to beta-catenin in response to activation of the Wnt- 1 signaling pathway. An engrailed-2 promoter luciferase reporter construct containing these LEF/TCF sites is induced in embryo explant assays by the combination of Xwnt-3a or beta-catenin and noggin. These LEF/TCF sites are required for expression of engrailed-2, as a dominant negative Xtcf-3 blocks expression of endogenous engrailed-2 as well as expression of the reporter construct. Moreover, mutation of these three LEF/TCF sites abrogates expression of the reporter construct in response to noggin and Xwnt-3a or beta-catenin. We conclude that the engrailed-2 gene is a direct target of the Wnt signaling pathway, and that Wnt signaling works with BMP antagonists to regulate gene expression during patterning of the developing nervous system of Xenopus.
Collapse
Affiliation(s)
- L L McGrew
- Howard Hughes Medical Institute, Department of Pharmacology and Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
239
|
Okafuji T, Funahashi J, Nakamura H. Roles of Pax-2 in initiation of the chick tectal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:41-9. [PMID: 10446345 DOI: 10.1016/s0165-3806(99)00073-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transplantation experiments have shown that the mes-metencephalic boundary (isthmus) acts as an organizer for the development of the optic tectum. We have cloned Pax-2 which is expressed in the isthmus. Previously it was shown that Pax-5, a member of the same Pax subfamily as Pax-2, transformed the diencephalon into a tectum-like structure and induced isthmus- and tectum-related genes both in the mesencephalon and in the diencephalon. In order to define the distinct roles between Pax-2 and Pax-5 in development of the tectum, we expressed Pax-2 ectopically in the mesencephalon and the diencephalon of E2 chick embryos by in ovo electroporation. Histological observation demonstrated that Pax-2 transformed the diencephalon into a tectum-like structure. In Pax-2, transfected embryos the expression of isthmus- and tectum-related genes such as Fgf8 and En-2 was induced in the diencephalon. However, neither Fgf8 nor En-2 expression was induced in the mesencephalon, making a striking contrast with the result of Pax-5 misexpression. In E2 chick embryos, the mesencephalon is committed of its fate to differentiate into the tectum, but the diencephalon has plasticity on its fate. Moreover, Pax-2 expression in the isthmus precedes Pax-5 expression. Taking these results into consideration, it is suggested that Pax-2 plays a crucial role in initiation of the tectal development, and that Pax-5 functions to maintain the state of tectal differentiation.
Collapse
Affiliation(s)
- T Okafuji
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, 980-8575, Japan
| | | | | |
Collapse
|
240
|
Foster GA, Stringer BM. Genetic regulatory elements introduced into neural stem and progenitor cell populations. Brain Pathol 1999; 9:547-67. [PMID: 10416993 PMCID: PMC8098454 DOI: 10.1111/j.1750-3639.1999.tb00541.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genetic manipulation of neural cells has advantage in both basic biology and medicine. Its utility has provided a clearer understanding of how the survival, connectivity, and chemical phenotype of neurones is regulated during, and after, embryogenesis. Much of this achievement has come from the recent generation by genetic means of reproducible and representative supplies of precursor cells which can then be analyzed in a variety of paradigms. Furthermore, advances made in the clinical use of transplantation for neurodegenerative disease have created a demand for an abundant, efficacious and safe supply of neural cells for grafting. This review describes how genetic methods, in juxtaposition to epigenetic means, have been used advantageously to achieve this goal. In particular, we detail how gene transfer techniques have been developed to enable cell immortalization, manipulation of cell differentiation and commitment, and the controlled selection of cells for purification or safety purposes. In addition, it is now also possible to genetically modify antigen presentation on cell surfaces. Finally, there is detailed the transfer of therapeutic products to discrete parts of the central nervous system (CNS), using neural cells as elegant and sophisticated delivery vehicles. In conclusion, once the epigenetic and genetic controls over neural cell production, differentiation and death have been more fully determined, providing a mixture of hard-wired elements and more flexibly expressed characteristics becomes feasible. Optimization of the contributions and interactions of these two controlling systems should lead to improved cell supplies for neurotransplantation.
Collapse
Affiliation(s)
- G A Foster
- Cardiff School of Biosciences, University of Wales, UK.
| | | |
Collapse
|
241
|
Picker A, Brennan C, Reifers F, Clarke JD, Holder N, Brand M. Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection. Development 1999; 126:2967-78. [PMID: 10357940 DOI: 10.1242/dev.126.13.2967] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organizer at the midbrain-hindbrain boundary (MHB organizer) has been proposed to induce and polarize the midbrain during development. We investigate the requirement for the MHB organizer in acerebellar mutants, which lack a MHB and cerebellum, but retain a tectum, and are mutant for fgf8, a candidate inducer and polarizer. We examine the retinotectal projection in the mutants to assay polarity in the tectum. In mutant tecta, retinal ganglion cell (RGC) axons form overlapping termination fields, especially in the ventral tectum, and along both the anterior-posterior and dorsal-ventral axis of the tectum, consistent with a MHB requirement in generating midbrain polarity. However, polarity is not completely lost in the mutant tecta, in spite of the absence of the MHB. Moreover, graded expression of the ephrin family ligand Ephrin-A5b is eliminated, whereas Ephrin-A2 and Ephrin-A5a expression is leveled in acerebellar mutant tecta, showing that ephrins are differentially affected by the absence of the MHB. Some RGC axons overshoot beyond the mutant tectum, suggesting that the MHB also serves a barrier function for axonal growth. By transplanting whole eye primordia, we show that mapping defects and overshooting largely, but not exclusively, depend on tectal, but not retinal genotype, and thus demonstrate an independent function for Fgf8 in retinal development. The MHB organizer, possibly via Fgf8 itself, is thus required for midbrain polarisation and for restricting axonal growth, but other cell populations may also influence midbrain polarity.
Collapse
Affiliation(s)
- A Picker
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
242
|
Rowitch DH, Danielian PS, McMahon AP, Zec N. Cystic malformation of the posterior cerebellar vermis in transgenic mice that ectopically express Engrailed-1, a homeodomain transcription factor. TERATOLOGY 1999; 60:22-8. [PMID: 10413335 DOI: 10.1002/(sici)1096-9926(199907)60:1<22::aid-tera7>3.0.co;2-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In WEXPZ-En-1 transgenic mice, Engrailed-1, a homeodomain-containing transcription factor, is ectopically expressed in the developing brain under control of the Wnt-1 enhancer. En-1 is a developmental regulatory control gene which has an essential role in the formation of the midbrain and cerebellum. Approximately 28% of WEXPZ-En-1 + mice develop cystic malformations of the posterior lobe of the cerebellar vermis, fourth ventricular dilatation, and postnatal hydrocephalus. These anatomic features are also found among the spectrum of posterior fossa malformations in humans. Expression characteristics of the WEXP transgene suggest that the neuropathology observed in WEXPZ-En-1+ mice stems from overexpression of En-1 during fetal and neonatal phases of cerebellar development. These observations raise the possibility that abnormal regulation of Engrailed genes, or targets of Engrailed, may be involved in the pathogenesis of cystic central nervous system malformations of the posterior fossa in humans.
Collapse
Affiliation(s)
- D H Rowitch
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
243
|
Kimura N, Nakashima K, Ueno M, Kiyama H, Taga T. A novel mammalian T-box-containing gene, Tbr2, expressed in mouse developing brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 115:183-93. [PMID: 10407135 DOI: 10.1016/s0165-3806(99)00064-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have identified and characterized a new member of the mammalian brain-specific T-box gene family, Tbr2, which is closely related to mouse Tbr1, and to the Xenopus earliest mesodermal gene, Eomesodermin. As Tbr1, Tbr2 is predominantly expressed in some regions of the developing brain, but in a strikingly complementary manner. On embryonic day 14.5 (E14.5), Tbr2 mRNA expression was observed in the mesencephalon and rhombencephalon in contrast to Tbr1 which was expressed mostly in the telencephalon. At this stage, Tbr2 mRNA was readily detectable in the postmitotic and differentiating neurons located in various brain regions, i.e., oculomotor, red, trigeminal, vestibular, facial, and hypoglossal nuclei. However, expression of Tbr2 in these nuclei became undetectable on E18.5. In contrast, Tbr2 mRNA expression was detected in the hippocampus only from E18.5 onwards. Whereas Tbr2 expression disappeared in most parts of the mature adult brain, it remained detectable in the hippocampus and olfactory bulb, regions where some neuronal precursors retain their differentiation potential. These results suggest that Tbr2 may play a crucial role in differentiating neurons rather than in proliferating or already differentiated neurons. In addition, similarly to Xenopus Eomesodermin, mouse Tbr2 showed biphasic expression; a first peak around E6.5 and a second peak around E14.5, suggesting that Tbr2 may also be important at early stages of gastrulation.
Collapse
Affiliation(s)
- N Kimura
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | |
Collapse
|
244
|
Alder J, Lee KJ, Jessell TM, Hatten ME. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 1999; 2:535-40. [PMID: 10448218 DOI: 10.1038/9189] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cerebellar granule neurons, the most abundant class of CNS neurons, have a critical role in cerebellar function. Granule neurons are generated at the dorsal border of the mesencephalon and metencephalon, the rhombic lip. In the mouse embryo, rhombic lip cells express a number of granule neuron markers, notably the bHLH transcription factor Math1. Dorsal midline cells adjacent to the rhombic lip express Bmp6, Bmp7 and Gdf7, three genes encoding peptide growth factors of the bone morphogenetic protein (BMP) family. These BMPs induced the expression of granule neuron markers in cultured neural tissue. Moreover, BMP-treated neural cells formed mature granule neurons after transplantation into the early postnatal cerebellum, suggesting that BMPs initiate the program of granule cell specification.
Collapse
Affiliation(s)
- J Alder
- Laboratory of Developmental Neurobiology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | | | | | |
Collapse
|
245
|
Heisenberg CP, Brennan C, Wilson SW. Zebrafish aussicht mutant embryos exhibit widespread overexpression of ace (fgf8) and coincident defects in CNS development. Development 1999; 126:2129-40. [PMID: 10207138 DOI: 10.1242/dev.126.10.2129] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.
Collapse
Affiliation(s)
- C P Heisenberg
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
246
|
Xu J, Lawshe A, MacArthur CA, Ornitz DM. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech Dev 1999; 83:165-78. [PMID: 10381577 DOI: 10.1016/s0925-4773(99)00034-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factors are essential molecules for development. Here we characterize Fgfl7, a new member of the fibroblast growth factor (FGF) family. The Fgfl7 gene maps to mouse chromosome 14 and is highly conserved between mouse and human (93% identity). It exhibits 60% amino acid identity with Fgf8 and 50% identity with Fgf8. Both Fgf8 and Fgf17 have a similar structure and a similar pattern of alternative splicing in the 5' coding region. When expressed in 3T3 fibroblasts, mouse FGF17 is transforming, indicating that it can activate the 'c' splice form of either FGF receptor (FGFR) one or two. During midgestation embryogenesis, in situ hybridization analysis localized Fgf17 expression to specific sites in the midline structures of the forebrain, the midbrain-hindbrain junction, the developing skeleton and in developing arteries. Comparison to Fgf8 revealed a striking similarity in expression patterns, especially in the central nervous system (CNS), suggesting that both genes may be important for CNS development, although Fgf17 is expressed somewhat later than Fgf8. In the developing skeleton, both genes are expressed in costal cartilage while Fgf8 is preferentially expressed in long bones. In the developing great vessels Fgfl7 is preferentially expressed, suggesting that it may have a more prominent role in vascular growth.
Collapse
Affiliation(s)
- J Xu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
247
|
Abstract
A number of gene families have recently been identified that play a role in the control of the development of the central nervous system of vertebrates. Many of these genes are homeobox genes. The most well- known and best-studied among them are the Hox genes. Collectively, these control regionalization and cell identity in the developing hindbrain and spinal cord. Other homeobox gene families, including the Otx and Emx genes, control brain development. In particular, Otx2 seems to play a crucial role in the early estab lishment of the rostral brain; Otx1 and Otx2 cooperate to define the posterior boundary of midbrain; and Emx1 and Emx2 play a major role in the developing cerebral cortex. Some of these results may be relevant for the deeper understanding of congenital brain defects and multifactorial brain disorders. NEURO SCIENTIST 5:164-172, 1999
Collapse
Affiliation(s)
- Edoardo Boncinelli
- Department of Biological and Technological Research Istituto Scientifico H San Raffaele, Institute for Cellular and Molecular Pharmacology National Research Council Milan, Italy
| |
Collapse
|
248
|
Abstract
Widespread cell migrations are the hallmark of vertebrate brain development. In the early embryo, morphogenetic movements of precursor cells establish the rhombomeres of the hindbrain, the external germinal layer of the cerebellum, and the regional boundaries of the forebrain. In midgestation, after primary neurogenesis in compact ventricular zones has commenced, individual postmitotic cells undergo directed migrations along the glial fiber system. Radial migrations establish the neuronal layers. Three molecules have been shown to function in glial guided migration--astrotactin, glial growth factor, and erbB. In the postnatal period, a wave of secondary neurogenesis produces huge numbers of interneurons destined for the cerebellar cortex, the hippocampal formation, and the olfactory bulb. Molecular analysis of the genes that mark stages of secondary neurogenesis show similar expression patterns of a number of genes. Thus these three regions may have genetic pathways in common. Finally, we consider emerging studies on neurological mutant mice, such as reeler, and human brain malformations. Positional cloning and identification of mutated genes has led to new insights on laminar patterning in brain.
Collapse
Affiliation(s)
- M E Hatten
- Rockefeller University, New York, New York 10021-6399, USA.
| |
Collapse
|
249
|
Lee KJ, Jessell TM. The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 1999; 22:261-94. [PMID: 10202540 DOI: 10.1146/annurev.neuro.22.1.261] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of distinct classes of neurons at defined positions within the developing vertebrate nervous system depends on inductive signals provided by local cell groups that act as organizing centers. Genetic and embryological studies have begun to elucidate the processes that control the pattern and identity of neuronal cell types. Here we discuss the cellular interactions and molecular mechanisms that direct neuronal cell fates in the dorsal half of the vertebrate central nervous system. The specification of dorsal neuronal cell fates appears to depend on a cascade of inductive signals initiated by cells of the epidermal ectoderm that flank the neural plate and propagated by roof plate cells within the neural tube. Members of the transforming growth factor-beta (TGF beta) family of secreted proteins have a prominent role in mediating these dorsalizing signals. Additional signals involving members of the Wnt and fibroblast growth factor (FGF) families may also contribute to the proliferation and differentiation of dorsal neuronal cell types.
Collapse
Affiliation(s)
- K J Lee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
250
|
Schwarz M, Alvarez-Bolado G, Dressler G, Urbánek P, Busslinger M, Gruss P. Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech Dev 1999; 82:29-39. [PMID: 10354469 DOI: 10.1016/s0925-4773(99)00005-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nested expression patterns of the paired-box containing transcription factors Pax2/5 and Pax6 demarcate the midbrain and forebrain primordium at the neural plate stage. We demonstrate that, in Pax2/5 deficient mice, the mesencephalon/metencephalon primordium is completely missing, resulting in a fusion of the forebrain to the hindbrain. Morphologically, in the alar plate the deletion is characterized by the substitution of the tectum (dorsal midbrain) and cerebellum (dorsal metencephalon) by the caudal diencephalon and in the basal plate by the replacement of the midbrain tegmentum by the ventral metencephalon (pons). Molecularly, the loss of the tectum is demonstrated by an expanded expression of Pax6, (the molecular determinant of posterior commissure), and a rostral shift of the territory of expression of Gbx2 and Otp (markers for the pons), towards the caudal diencephalon. Our results suggest that an intact territory of expression of Pax2/5 in the neural plate, nested between the rostral and caudal territories of expression of Pax6, is necessary for defining the midbrain vesicle.
Collapse
Affiliation(s)
- M Schwarz
- Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|