201
|
Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats. Neurochem Res 2013; 38:1914-20. [PMID: 23793903 PMCID: PMC3732768 DOI: 10.1007/s11064-013-1097-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/14/2013] [Accepted: 06/10/2013] [Indexed: 01/11/2023]
Abstract
The study aims to determine the expression of telomerase reverse transcriptase (TERT) in the glial scar following spinal cord injury in the rat, and to explore its relationship with glial scar formation. A total of 120 Sprague–Dawley rats were randomly divided into three groups: SCI only group (without TERT interference), TERT siRNA group (with TERT interference), and sham group. The TERT siRNA and SCI only groups received spinal cord injury induced by the modified Allen’s weight drop method. In the sham group, the vertebral plate was opened to expose the spinal cord, but no injury was modeled. Five rats from each group were sacrificed under anesthesia at days 1, 3, 5, 7, 14, 28, 42, and 56 after spinal cord injury. Specimens were removed for observation of glial scar formation using hematoxylin-eosin staining and immunofluorescence detection. mRNA and protein expressions of TERT and glial fibrillary acidic protein (GFAP) were detected by reverse-transcription (RT)-PCR and western blotting, respectively. Hematoxylin-eosin staining showed evidence of gliosis and glial scarring in the spinal cord injury zone of the TERT siRNA and SCI only groups, but not in the sham group. Immunofluorescence detection showed a significant increase in GFAP expression at all time points after spinal cord injury in the SCI only group (81 %) compared with the TERT siRNA group (67 %) and sham group (2 %). In contrast, the expression of neurofilament protein 200 (NF-200) was gradually reduced and remained at a stable level until 28 days in the SCI only group. There were no NF-200-labeled cells in the spinal cord glial scar and cavity at day 56 after spinal cord injury. NF-200 expression at each time point was significantly lower in the SCI only group than the TERT siRNA group, while there was no change in the sham group. Western blotting showed that TERT and GFAP protein expressions changed dynamically and showed a linear relationship in the SCI only group (r = 0.765, P < 0.01), while there was no obvious linear relationship in the sham group (r = 0.208, P = 0.121). RT-PCR results showed a dynamic expression of TERT and GFAP mRNA in the SCI only group, exhibiting a linear relationship (r = 0.722, P < 0.01), while there was no linear relationship in the sham group (r = 0.206, P = 0.180). Our data indicate that TERT has a dynamic expression in the spinal cord glial scar, which positively correlates to GFAP expression, and may be important for promoting glial scar formation.
Collapse
|
202
|
Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas. Brain Res 2013; 1519:127-35. [DOI: 10.1016/j.brainres.2013.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022]
|
203
|
Kálmán M, Somiya H, Lazarevic L, Milosevic I, Ari C, Majorossy K. Absence of post-lesion reactive gliosis in elasmobranchs and turtles and its bearing on the evolution of astroglia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:351-67. [DOI: 10.1002/jez.b.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Affiliation(s)
- M. Kálmán
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - Hiro Somiya
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya; Japan
| | | | | | - Csilla Ari
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - K. Majorossy
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| |
Collapse
|
204
|
Abstract
Depression is usually associated with alterations in the monoaminergic system. However, new evidences suggest the involvement of the glutamatergic system in the aetiology of depression. Here we explored the glutamatergic system in a rat model of depression (i.e., the flinders sensitive line (FSL)) to reveal the mechanism underlying the emotional and cognitive aspects associated with the disease. We showed a dramatically elevated level of baseline glutamatergic synaptic transmission by whole-cell recordings as well as impairment in long-term potentiation induced by high-frequency stimulation in hippocampal slices from FSL rats compared with Sprague-Dawley rats. At behavioural level, FSL rats displayed recognition memory impairment in the novel object recognition test. Enantioselective chromatography analysis revealed lower levels of D-serine in the hippocampus of FSL rats and both synaptic plasticity and memory impairments were restored by administration of D-serine. We also observed dysfunctional astrocytic glutamate regulation including downregulation of the glia glutamate transporter GLAST as shown by western blot. One possibility is that the dysfunctional astrocytic glutamate reuptake triggers a succession of events, including the reduction of D-serine production as a safety mechanism to avoid NMDA receptor overactivation, which in turn causes the synaptic plasticity and memory impairments observed. These findings open up new brain targets for the development of more potent and efficient antidepressant drugs.
Collapse
|
205
|
Neria F, del Carmen Serrano-Perez M, Velasco P, Urso K, Tranque P, Cano E. NFATc3 promotes Ca(2+) -dependent MMP3 expression in astroglial cells. Glia 2013; 61:1052-66. [PMID: 23625833 DOI: 10.1002/glia.22494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/14/2013] [Indexed: 12/30/2022]
Abstract
Increase in intracellular calcium ([Ca(2+) ]i ) is a key mediator of astrocyte signaling, important for activation of the calcineurin (CN)/nuclear factor of activated T cells (NFAT) pathway, a central mediator of inflammatory events. We analyzed the expression of matrix metalloproteinase 3 (Mmp3) in response to increases in [Ca(2+) ]i and the role of the CN/NFAT pathway in this regulation. Astrocyte Mmp3 expression was induced by overexpression of a constitutively active form of NFATc3, whereas other MMPs and tissue inhibitor of metalloproteinases (TIMP) were unaffected. Mmp3 mRNA and protein expression was also induced by calcium ionophore (Io) and 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (Bz-ATP) and Mmp3 upregulation was prevented by the CN inhibitor cyclosporin A (CsA). Ca(2+) -dependent astrocyte Mmp3 expression was also inhibited by actinomycin D, and a Mmp3 promoter luciferase reporter was efficiently activated by increased [Ca(2+) ]i , indicating regulation at the transcriptional level. Furthermore, Ca(2+) /CN/NFAT dependent Mmp3 expression was confirmed in pure astrocyte cultures derived from neural stem cells (Ast-NSC), demonstrating that the induced Mmp3 expression occurs in astrocytes, and not microglial cells. In an in vivo stab-wound model of brain injury, MMP3 expression was detected in NFATc3-positive scar-forming astrocytes. Because [Ca(2+) ]i increase is an early event in most brain injuries, these data support an important role for Ca(2+) /CN/NFAT-induced astrocyte MMP3 expression in the early neuroinflammatory response. Understanding the molecular pathways involved in this regulation could provide novel therapeutic targets and approaches to promoting recovery of the injured brain.
Collapse
Affiliation(s)
- Fernando Neria
- Unidad de Neuroinflamación, Área de Biología Celular y del Desarrollo, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
206
|
Michinaga S, Ishida A, Takeuchi R, Koyama Y. Endothelin-1 stimulates cyclin D1 expression in rat cultured astrocytes via activation of Sp1. Neurochem Int 2013; 63:25-34. [PMID: 23619396 DOI: 10.1016/j.neuint.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/25/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022]
Abstract
Endothelins (ETs), a family of vasoconstrictor peptides, are up-regulated in several pathological conditions in the brain, and induce astrocytic proliferation. We previously observed that ET-1 increased the expression of cyclin D1 protein. Thus, we confirmed the intracellular up-regulation of cyclin D1 by ET-1 in rat cultured astrocytes. Real-time PCR analysis indicated that ET-1 (100 nM) and Ala(1,3,11,15)-ET-1 (100 nM), a selective agonist of the ETB receptor, induced a time-dependent and transient increase in cyclin D1 mRNA. The effect of ET-1 was diminished by an ETB antagonist (1 μM BQ788) or inhibitors of Sp1 (500 nM mithramycin), ERK (50 μM PD98059), p38 (20 μM SB203580) and JNK (1 μM SP600125), but not inhibitors of NF-κB (10 μM SN50 and 100 μM pyrrolidine dithiocarbamate). The binding assay for Sp1 indicated that ET-1 increased the binding activity of Sp1 to consensus sequences, and two oligonucleotides of the cyclin D1 promoter including the Sp1-binding sites diminished the effect of ET-1. Western blot analysis showed that ET-1 induced time-dependent and transient phosphorylation of Sp1 on Thr453 and Thr739 via the ETB receptor. ET-1-induced phosphorylation of Sp1 was attenuated by PD98059 and SP600125. Additionally, ET-1 increased the incorporation of bromodeoxyuridine (BrdU) in cultured astrocytes and the number of BrdU-positive cells decreased in the presence of PD98059, SP600125 and mithramycin. These results suggest that ET-1 increases the expression of cyclin D1 via activation of Sp1 and induces astrocytic proliferation.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Faculty of Pharmacy, Laboratory of Pharmacology, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka 584-8540, Japan
| | | | | | | |
Collapse
|
207
|
Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1249-59. [PMID: 23603808 DOI: 10.1016/j.bbadis.2013.04.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/06/2023]
Abstract
DS is the most frequent genetic cause of intellectual disability characterized by the anomalous presence of three copies of chromosome 21. One of the peculiar features of DS is the onset of Alzheimer's disease neuropathology after the age of 40years characterized by deposition of senile plaques and neurofibrillary tangles. Growing studies demonstrated that increased oxidative damage, accumulation of unfolded/damaged protein aggregates and dysfunction of intracellular degradative system are key players in neurodegenerative processes. In this study, redox proteomics approach was used to analyze the frontal cortex from DS subjects under the age of 40 compared with age-matched controls, and proteins found to be increasingly carbonylated were identified. Interestingly, our results showed that oxidative damage targets specifically different components of the intracellular quality control system such as GRP78, UCH-L1, V0-ATPase, cathepsin D and GFAP that couples with decreased activity of the proteasome and autophagosome formation observed. We also reported a slight but consistent increase of Aβ 1-42 SDS- and PBS-soluble form and tau phosphorylation in DS versus CTR. We suggest that disturbance in the proteostasis network could contribute to the accumulation of protein aggregates, such as amyloid deposits and NFTs, which occur very early in DS. It is likely that a sub-optimal functioning of degradative systems occur in DS neurons, which in turn provide the basis for further accumulation of toxic protein aggregates. The results of this study suggest that oxidation of protein members of the proteostatis network is an early event in DS and might contribute to neurodegenerative phenomena.
Collapse
|
208
|
Abstract
Traumatic brain injury (TBI) is a common cause of neurological morbidity globally, and neurologic sequelae may occur even in the setting of mild injury. At present, the tools that guide diagnostic and prognostic evaluation of patients who suffer from TBI remain limited, especially for prehospital evaluation. Biomarkers of brain injury hold promise in facilitating early management and triage decisions in the civilian and military settings. The identification of biomarkers of brain injury may also be helpful in guiding end-of-life decision making and may facilitate the design of neuroprotective trials.
Collapse
Affiliation(s)
- Richa Sharma
- School of Medicine, Duke University Medical Center, Box 2900, Durham, NC 27710, USA
| | | |
Collapse
|
209
|
Mitome-Mishima Y, Miyamoto N, Tanaka R, Oishi H, Arai H, Hattori N, Urabe T. Differences in phosphodiesterase 3A and 3B expression after ischemic insult. Neurosci Res 2013; 75:340-8. [DOI: 10.1016/j.neures.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
|
210
|
Potokar M, Stenovec M, Jorgačevski J, Holen T, Kreft M, Ottersen OP, Zorec R. Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 2013; 61:917-28. [DOI: 10.1002/glia.22485] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/28/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Torgeir Holen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | | - Ole Petter Ottersen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | |
Collapse
|
211
|
Marin-Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cereb Blood Flow Metab 2013; 33:175-82. [PMID: 23072752 PMCID: PMC3564188 DOI: 10.1038/jcbfm.2012.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-(13)C(3)]heptanoate was examined in the normal mouse brain and in G1D by (13)C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in (13)C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and (13)C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Rare Brain Disorders Clinic and Laboratory, Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | | | | | | | | |
Collapse
|
212
|
Hayes DM, Deeny MA, Shaner CA, Nixon K. Determining the threshold for alcohol-induced brain damage: new evidence with gliosis markers. Alcohol Clin Exp Res 2013; 37:425-34. [PMID: 23347220 DOI: 10.1111/j.1530-0277.2012.01955.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 07/26/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic intake of ethanol (EtOH) has been linked to serious health consequences such as cardiac and liver problems, cognitive impairments, and brain damage. Alcohol's detrimental effects depend upon the dose, duration, and pattern of exposure with binge drinking as one of the most common, but most damaging, patterns of intake. Little is known about the threshold of the damaging effects of alcohol. Therefore, these experiments sought to determine a threshold for brain damage using various markers of neurodegeneration. METHODS Adult male Sprague-Dawley rats were administered nutritionally complete liquid diet containing either EtOH (25% w/v) or isocaloric dextrose every 8 hours for either 1 (mean dose, 13.4 ± 0.3 g/kg/d; mean blood EtOH concentration (BEC), 336.2 ± 18.8 mg/dl) or 2 days (mean dose, 10.9 ± 0.3 g/kg/d; mean BEC, 369.8 ± 18.1 mg/dl). On the basis of a known time course of various neurodegeneration-associated events, rats were perfused transcardially immediately following, 2 days after, or 7 days post EtOH exposure. To label actively dividing cells, some animals were injected with BromodeoxyUridine (BrdU) 2 hours prior to perfusion. Tissue was then analyzed for the presence of BrdU (cell proliferation), FluoroJade B (degenerative neurons), and vimentin (reactive astrogliosis) immunoreactivity. RESULTS One or 2 days of EtOH exposure failed to alter cell proliferation at any of the time points analyzed. However, significant 2- to 9-fold increases in neuronal degeneration in limbic cortex and clear evidence of reactive gliosis as indicated by a 2- to 8-fold upregulation in vimentin immunoreactivity in the hippocampus were observed following as little as 1 day of binge EtOH exposure. CONCLUSIONS These results indicate that as little as 1 day (24 hours) of high BEC, binge-like EtOH exposure is enough to elicit signs of alcohol-induced brain damage in adult rats. Further, reactive gliosis may be a more sensitive marker of alcohol-induced damage in the hippocampus.
Collapse
Affiliation(s)
- Dayna M Hayes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
213
|
Peng BH, Borisevich V, Popov VL, Zacks MA, Estes DM, Campbell GA, Paessler S. Production of IL-8, IL-17, IFN-gamma and IP-10 in human astrocytes correlates with alphavirus attenuation. Vet Microbiol 2013; 163:223-34. [PMID: 23428380 PMCID: PMC7117234 DOI: 10.1016/j.vetmic.2012.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/06/2012] [Accepted: 11/22/2012] [Indexed: 01/30/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995 indicate that VEEV still poses a serious public health threat. Astrocytes may be target cells in human and mouse infection and they play an important role in repair through gliosis. In this study, we report that virulent VEEV efficiently infects cultured normal human astrocytes, three different murine astrocyte cell lines and astrocytes in the mouse brain. The attenuation of virus replication positively correlates with the increased levels of production of IL-8, IL-17, IFN-gamma and IP-10. In addition, VEEV infection induces release of basic fibroblast growth factor and production of potent chemokines such as RANTES and MIP-1-beta from cultured human astrocytes. This growth factor and cytokine profile modeled by astrocytes in vitro may contribute to both neuroprotection and repair and may play a role in leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Bi-Hung Peng
- Department of Pathology/Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 2013; 219:293-302. [PMID: 23288255 DOI: 10.1007/s00429-012-0500-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Physical exercise has an important influence on brain plasticity, which affects the neuron-glia interaction. Astrocytes are susceptible to plasticity, and induce and stabilize synapses, regulate the concentration of various molecules, and support neuronal energy metabolism. The aim of our study was to investigate whether physical exercise is capable of altering the morphology, density and expression of glial fibrillary acidic protein (GFAP) in astrocytes from the CA1 region of rat hippocampus. Thirteen male rats were divided in two groups: sedentary (n = 6) and exercise (n = 7). The animals in the exercise group were submitted to a protocol of daily physical exercise on a treadmill for four consecutive weeks. GFAP immunoreactivity was evaluated using optical densitometry and the morphological analyses were an adaptation of Sholl's concentric circles method. Our results show that physical exercise is capable of increasing the density of GFAP-positive astrocytes as well as the regional and cellular GFAP expression. In addition, physical exercise altered astrocytic morphology as shown by the increase observed in the degree of ramification in the lateral quadrants and in the length of the longest astrocytic processes in the central quadrants. Our data demonstrate important changes in astrocytes promoted by physical exercise, supporting the idea that these cells are involved in regulating neural activity and plasticity.
Collapse
|
215
|
Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 2013; 32:14489-510. [PMID: 23077035 DOI: 10.1523/jneurosci.1256-12.2012] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.
Collapse
|
216
|
Mishra MK, Kumawat KL, Basu A. Japanese encephalitis virus differentially modulates the induction of multiple pro-inflammatory mediators in human astrocytoma and astroglioma cell-lines. Cell Biol Int 2013; 32:1506-13. [DOI: 10.1016/j.cellbi.2008.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/10/2008] [Accepted: 08/19/2008] [Indexed: 12/31/2022]
|
217
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wu JL, Fisher D, Dong H, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Overexpressing TrkC into Neuron-Like Cells in Transected Spinal Cord of Rats. Cell Transplant 2013; 22:65-86. [DOI: 10.3727/096368912x655037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our previous study indicated that electroacupuncture (EA) could increase neurotrophin-3 (NT-3) levels in the injured spinal cord, stimulate the differentiation of transplanted bone marrow mesenchymal stem cells (MSCs), and improve functional recovery in the injured spinal cord of rats. However, the number of neuron-like cells derived from the MSCs is limited. It is known that NT-3 promotes the survival and differentiation of neurons by preferentially binding to its receptor TrkC. In this study, we attempted to transplant TrkC gene-modified MSCs (TrkC-MSCs) into the spinal cord with transection to investigate whether EA treatment could promote NT-3 secretion in the injured spinal cord and to determine whether increased NT-3 could further enhance transplanted MSCs overexpressing TrkC to differentiate into neuron-like cells, resulting in increased axonal regeneration and functional improvement in the injured spinal cord. Our results showed that EA increased NT-3 levels; furthermore, it promoted neuron-phenotype differentiation, synaptogenesis, and myelin formation of transplanted TrkC-MSCs. In addition, TrkC-MSC transplantation combined with EA (the TrkC-MSCs + EA group) treatment promoted the growth of the descending BDA-labeled corticospinal tracts (CSTs) and 5-HT-positive axonal regeneration across the lesion site into the caudal cord. In addition, the conduction of cortical motor-evoked potentials (MEPs) and hindlimb locomotor function increased as compared to controls (treated with the LacZ-MSCs, TrkC-MSCs, and LacZ-MSCs + EA groups). In the TrkC-MSCs + EA group, the injured spinal cord also showed upregulated expression of the proneurogenic factors laminin and GAP-43 and downregulated GFAP and chondroitin sulfate proteoglycans (CSPGs), major inhibitors of axonal growth. Together, our data suggest that TrkC-MSC transplantation combined with EA treatment spinal cord injury not only increased MSC survival and differentiation into neuron-like cells but also promoted CST regeneration across injured sites to the caudal cord and functional improvement, perhaps due to increase of NT-3 levels, upregulation of laminin and GAP-43, and downregulation of GFAP and CSPG proteins.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing Yan
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Qing Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Si-Fan Huang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jiao Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danny Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
218
|
Reactive Astrocytes, Astrocyte Intermediate Filament Proteins, and Their Role in the Disease Pathogenesis. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
219
|
Abstract
Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander's disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.
Collapse
|
220
|
Parrilla M, Lillo C, Herrero-Turrión M, Arévalo R, Aijón J, Lara J, Velasco A. Pax2+ astrocytes in the fish optic nerve head after optic nerve crush. Brain Res 2013; 1492:18-32. [DOI: 10.1016/j.brainres.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/31/2012] [Accepted: 11/10/2012] [Indexed: 12/21/2022]
|
221
|
The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment. BMC Res Notes 2012; 5:693. [PMID: 23259929 PMCID: PMC3544725 DOI: 10.1186/1756-0500-5-693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/18/2012] [Indexed: 01/22/2023] Open
Abstract
Background Increased expression of glial fibrillary acidic protein (GFAP) within macroglia is commonly seen as a hallmark of glial activation after damage within the central nervous system, including the retina. The increased expression of GFAP in glia is also considered part of the pathologically inhibitory environment for regeneration of axons from damaged neurons. Recent studies have raised the possibility that reactive gliosis and increased GFAP cannot automatically be assumed to be negative events for the surrounding neurons and that the context of the reactive gliosis is critical to whether neurons benefit or suffer. We utilized transgenic mice expressing a range of Gfap to titrate the amount of GFAP in retinal explants to investigate the relationship between GFAP concentration and the regenerative potential of retinal ganglion cells. Findings Explants from Gfap-/- and Gfap+/- mice did not have increased neurite outgrowth compared with Gfap+/+ or Gfap over-expressing mice as would be expected if GFAP was detrimental to axon regeneration. In fact, Gfap over-expressing explants had the most neurite outgrowth when treated with a neurite stimulatory media. Transmission electron microscopy revealed that neurites formed bundles, which were surrounded by larger cellular processes that were GFAP positive indicating a close association between growing axons and glial cells in this regeneration paradigm. Conclusions We postulate that glial cells with increased Gfap expression support the elongation of new neurites from retinal ganglion cells possibly by providing a scaffold for outgrowth.
Collapse
|
222
|
Benkler C, Ben-Zur T, Barhum Y, Offen D. Altered astrocytic response to activation in SOD1G93Amice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 2012; 61:312-26. [DOI: 10.1002/glia.22428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022]
|
223
|
Ando T, Sato S, Toyooka T, Kobayashi H, Nawashiro H, Ashida H, Obara M. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats. PLoS One 2012; 7:e51744. [PMID: 23272155 PMCID: PMC3522723 DOI: 10.1371/journal.pone.0051744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
- * E-mail:
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Kobayashi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Ashida
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Minoru Obara
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
224
|
Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI, Lal R, Jin S. Magnetic targeting of nanoparticles across the intact blood-brain barrier. J Control Release 2012; 164:49-57. [PMID: 23063548 PMCID: PMC4440873 DOI: 10.1016/j.jconrel.2012.09.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/20/2012] [Accepted: 09/29/2012] [Indexed: 12/17/2022]
Abstract
Delivery of therapeutic or diagnostic agents across an intact blood-brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field.
Collapse
Affiliation(s)
- Seong Deok Kong
- Materials Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
| | - Jisook Lee
- Department of Surgery, School of Medicine, UC San Diego, San Diego, CA 92103, USA
| | | | - Brian P. Eliceiri
- Department of Surgery, School of Medicine, UC San Diego, San Diego, CA 92103, USA
| | - Veronica I. Shubayev
- Department of Anesthesiology, School of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Ratnesh Lal
- Materials Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
- Department of Mechanical & Aerospace Engineering, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Sungho Jin
- Materials Science & Engineering, UC San Diego, La Jolla, CA 92093, USA
- Department of Mechanical & Aerospace Engineering, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
225
|
Abstract
Astrocytes are the most abundant cell type in the adult central nervous system (CNS), and their functional diversity in response to injury is now being appreciated. Astrocytes have long been considered the main player in the inhibition of CNS repair via the formation of the gliotic scar, but now it is accepted that astrocyte can play an important role in CNS repair and remyelination. Interest in the relationship between astrocytes and myelination focused initially on attempts to understand how the development of plaques of astroglial scar tissue in multiple sclerosis was related to the failure of these lesions to remyelinate. It is now considered that this is an end stage pathological response to injury, and that normally astrocytes play important roles in supporting the development and maintenance of CNS myelin. This review will focus on how this new understanding may be exploited to develop new strategies to enhance remyelination in multiple sclerosis and other diseases.
Collapse
Affiliation(s)
- Susan C Barnett
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
226
|
Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 2012; 7:28-36. [PMID: 23093800 DOI: 10.4161/pri.22512] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growing evidence indicates that astrocytes cannot be just considered as passive supportive cells deputed to preserve neuronal activity and survival, but rather they are involved in a striking number of active functions that are critical to the performance of the central nervous system (CNS). As a consequence, it is becoming more and more evident that the peculiar properties of these cells can actively contribute to the extraordinary functional complexity of the brain and spinal cord. This new perception of the functioning of the CNS opens up a wide range of new possibilities to interpret various physiological and pathological events, and moves the focus beyond the neuronal compartment toward astrocyte-neuron interactions. With this in mind, here we provide a synopsis of the activities astrocytes perform in normal conditions, and we try to discuss what goes wrong with these cells in specific pathological conditions, such as Alzheimer Disease, prion diseases and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | | | | |
Collapse
|
227
|
The potential for cellular therapy combined with growth factors in spinal cord injury. Stem Cells Int 2012; 2012:826754. [PMID: 23091499 PMCID: PMC3471462 DOI: 10.1155/2012/826754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/19/2012] [Accepted: 08/28/2012] [Indexed: 12/18/2022] Open
Abstract
Any traumatic spinal cord injury (SCI) may cause symptoms ranging from pain to complete loss of motor and sensory functions below the level of the injury. Currently, there are over 2 million SCI patients worldwide. The cost of their necessary continuing care creates a burden for the patient, their families, and society. Presently, few SCI treatments are available and none have facilitated neural regeneration and/or significant functional improvement. Research is being conducted in the following areas: pathophysiology, cellular therapies (Schwann cells, embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells), growth factors (BDNF), inhibitory molecules (NG2, myelin protein), and combination therapies (cell grafts and neurotrophins, cotransplantation). Results are often limited because of the inhibitory environment created following the injury and the limited regenerative potential of the central nervous system. Therapies that show promise in small animal models may not transfer to nonhuman primates and humans. None of the research has resulted in remarkable improvement, but many areas show promise. Studies have suggested that a combination of therapies may enhance results and may be more effective than a single therapy. This paper reviews and discusses the most promising new SCI research including combination therapies.
Collapse
|
228
|
Tada M, de Tribolet N. Immunobiology of malignant gliomas. J Clin Neurosci 2012; 3:102-13. [PMID: 18638850 DOI: 10.1016/s0967-5868(96)90001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1995] [Accepted: 05/25/1995] [Indexed: 12/19/2022]
Abstract
The immune system of patients with malignant gliomas is profoundly suppressed. The suppression involves both the cellular and humoral immunity and it is mainly attributable to selective depletion and malfunction of helper T cells. Malignant glioma cells express potent immunosuppressive factors such as transforming growth factor-beta(2), inteleukin-10 and prostaglandin E(2). Malignant glioma cells also produce chemoattractants and immunostimulatory cytokines which may activate the immune cells. However, the production of these stimulatory cytokines is not self-destructive to glioma cells because of the immunosuppression. Rather, the tumour cells use them to gain a growth advantage. Indeed the cytokines may act as a growth stimulator of the tumour cells themselves (autocrine mechanism), they may act as angiogenic factors to endothelial cells (paracrine mechanism) or induce the attracted immune cells to secrete angiogenic factors. Some cytokines produced by malignant glioma cells are known to be growth inhibitory to normal astrocytes. Recent studies on tumour suppressor genes suggest a close link between the aberrant genes and the immunobiologic features of malignant glioma cells.
Collapse
Affiliation(s)
- M Tada
- Department of Neurosurgery, University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
229
|
McKillop WM, Dragan M, Schedl A, Brown A. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 2012; 61:164-77. [PMID: 23027386 DOI: 10.1002/glia.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/31/2012] [Indexed: 11/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) found in perineuronal nets and in the glial scar after spinal cord injury have been shown to inhibit axonal growth and plasticity. Since we have previously identified SOX9 as a transcription factor that upregulates the expression of a battery of genes associated with glial scar formation in primary astrocyte cultures, we predicted that conditional Sox9 ablation would result in reduced CSPG expression after spinal cord injury and that this would lead to increased neuroplasticity and improved locomotor recovery. Control and Sox9 conditional knock-out mice were subject to a 70 kdyne contusion spinal cord injury at thoracic level 9. One week after injury, Sox9 conditional knock-out mice expressed reduced levels of CSPG biosynthetic enzymes (Xt-1 and C4st), CSPG core proteins (brevican, neurocan, and aggrecan), collagens 2a1 and 4a1, and Gfap, a marker of astrocyte activation, in the injured spinal cord compared with controls. These changes in gene expression were accompanied by improved hind limb function and locomotor recovery as evaluated by the Basso Mouse Scale (BMS) and rodent activity boxes. Histological assessments confirmed reduced CSPG deposition and collagenous scarring at the lesion of Sox9 conditional knock-out mice, and demonstrated increased neurofilament-positive fibers in the lesion penumbra and increased serotonin immunoreactivity caudal to the site of injury. These results suggest that SOX9 inhibition is a potential strategy for the treatment of SCI.
Collapse
Affiliation(s)
- William M McKillop
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
230
|
Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 2012; 124:531-46. [PMID: 22576081 PMCID: PMC3444707 DOI: 10.1007/s00401-012-0992-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 01/10/2023]
Abstract
Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell–cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF–brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma–CSF interphase.
Collapse
Affiliation(s)
- Ruth Roales-Buján
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Patricia Páez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Montserrat Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sara Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karin Vío
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ailec Ho-Plagaro
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María García-Bonilla
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Luis-Manuel Rodríguez-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María-Dolores Domínguez-Pinos
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Esteban-Martín Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José-Manuel Pérez-Fígares
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Antonio-Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
231
|
Meshulam L, Galron R, Kanner S, De Pittà M, Bonifazi P, Goldin M, Frenkel D, Ben-Jacob E, Barzilai A. The role of the neuro-astro-vascular unit in the etiology of ataxia telangiectasia. Front Pharmacol 2012; 3:157. [PMID: 23060792 PMCID: PMC3443819 DOI: 10.3389/fphar.2012.00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022] Open
Abstract
The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuroglia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T), a human genetic disorder that induces severe motor impairment. We found that A-T-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.
Collapse
Affiliation(s)
- Leenoy Meshulam
- School of Physics and Astronomy, Tel Aviv UniversityRamat Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv UniversityRamat Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv UniversityRamat Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv UniversityRamat Aviv, Israel
| | - Sivan Kanner
- Sagol School of Neuroscience, Tel Aviv UniversityRamat Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv UniversityRamat Aviv, Israel
| | - Maurizio De Pittà
- School of Physics and Astronomy, Tel Aviv UniversityRamat Aviv, Israel
| | - Paolo Bonifazi
- School of Physics and Astronomy, Tel Aviv UniversityRamat Aviv, Israel
| | - Miri Goldin
- School of Physics and Astronomy, Tel Aviv UniversityRamat Aviv, Israel
| | - Dan Frenkel
- Sagol School of Neuroscience, Tel Aviv UniversityRamat Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv UniversityRamat Aviv, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, Tel Aviv UniversityRamat Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv UniversityRamat Aviv, Israel
| | - Ari Barzilai
- Sagol School of Neuroscience, Tel Aviv UniversityRamat Aviv, Israel
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv UniversityRamat Aviv, Israel
| |
Collapse
|
232
|
Witcher MR, Ellis TL. Astroglial networks and implications for therapeutic neuromodulation of epilepsy. Front Comput Neurosci 2012; 6:61. [PMID: 22952462 PMCID: PMC3429855 DOI: 10.3389/fncom.2012.00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is a common chronic neurologic disorder affecting approximately 1% of the world population. More than one-third of all epilepsy patients have incompletely controlled seizures or debilitating medication side effects in spite of optimal medical management. Medically refractory epilepsy is associated with excess injury and mortality, psychosocial dysfunction, and significant cognitive impairment. Effective treatment options for these patients can be limited. The cellular mechanisms underlying seizure activity are incompletely understood, though we here describe multiple lines of evidence supporting the likely contribution of astroglia to epilepsy, with focus on individual astrocytes and their network functions. Of the emerging therapeutic modalities for epilepsy, one of the most intriguing is the field of neuromodulation. Neuromodulatory treatment, which consists of administering electrical pulses to neural tissue to modulate its activity leading to a beneficial effect, may be an option for these patients. Current modalities consist of vagal nerve stimulation, open and closed-loop stimulation, and transcranial magnetic stimulation. Due to their unique properties, we here present astrocytes as likely important targets for the developing field of neuromodulation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Mark R Witcher
- Department of Neurosurgery, Wake Forest University Winston-Salem, NC, USA
| | | |
Collapse
|
233
|
Barreto GE, White RE, Xu L, Palm CJ, Giffard RG. Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 2012; 238:284-96. [PMID: 22940431 DOI: 10.1016/j.expneurol.2012.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/01/2012] [Accepted: 08/11/2012] [Indexed: 01/08/2023]
Abstract
Astrocyte activation is a hallmark of the response to brain ischemia consisting of changes in gene expression and morphology. Heat shock protein 72 (Hsp72) protects from cerebral ischemia, and although several protective mechanisms have been investigated, effects on astrocyte activation have not been studied. To identify potential mechanisms of protection, microarray analysis was used to assess gene expression in the ischemic hemispheres of wild-type (WT) and Hsp72-overexpressing (Hsp72Tg) mice 24 h after middle cerebral artery occlusion or sham surgery. After stroke both genotypes exhibited changes in genes related to apoptosis, inflammation, and stress, with more downregulated genes in Hsp72Tg and more inflammation-related genes increased in WT mice. Genes indicative of astrocyte activation were also upregulated in both genotypes. To measure the extent and time course of astrocyte activation after stroke, detailed histological and morphological analyses were performed in the cortical penumbra. We observed a marked and persistent increase in glial fibrillary acidic protein (GFAP) and a transient increase in vimentin. No change in overall astrocyte number was observed based on glutamine synthetase immunoreactivity. Hsp72Tg and WT mice were compared for density of astrocytes expressing activation markers and astrocytic morphology. In animals with comparable infarct size, overexpression of Hsp72 reduced the density of GFAP- and vimentin-expressing cells, and decreased astrocyte morphological complexity 72 h following stroke. However, by 30 days astrocyte activation was similar between genotypes. These data indicate that early modulation of astrocyte activation provides an additional novel mechanism associated with Hsp72 overexpression in the setting of ischemia.
Collapse
Affiliation(s)
- George E Barreto
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
234
|
Vartak-Sharma N, Ghorpade A. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration. J Neuroinflammation 2012; 9:195. [PMID: 22884085 PMCID: PMC3488579 DOI: 10.1186/1742-2094-9-195] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive astrogliosis is a ubiquitous but poorly understood hallmark of central nervous system pathologies such as trauma and neurodegenerative diseases. In vitro and in vivo studies have identified proinflammatory cytokines and chemokines as mediators of astrogliosis during injury and disease; however, the molecular mechanism remains unclear. In this study, we identify astrocyte elevated gene-1 (AEG-1), a human immunodeficiency virus 1 or tumor necrosis factor α-inducible oncogene, as a novel modulator of reactive astrogliosis. AEG-1 has engendered tremendous interest in the field of cancer research as a therapeutic target for aggressive tumors. However, little is known of its role in astrocytes and astrocyte-mediated diseases. Based on its oncogenic role in several cancers, here we investigate the AEG-1-mediated regulation of astrocyte migration and proliferation during reactive astrogliosis. METHODS An in vivo brain injury mouse model was utilized to show AEG-1 induction following reactive astrogliosis. In vitro wound healing and cell migration assays following AEG-1 knockdown were performed to analyze the role of AEG-1 in astrocyte migration. AEG-1-mediated regulation of astrocyte proliferation was assayed by quantifying the levels of cell proliferation markers, Ki67 and proliferation cell nuclear antigen, using immunocytochemistry. Confocal microscopy was used to evaluate nucleolar localization of AEG-1 in cultured astrocytes following injury. RESULTS The in vivo mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein and AEG-1 colocalization at the wound site. AEG-1 knockdown in cultured human astrocytes significantly reduced astrocyte migration into the wound site and cell proliferation. Confocal analysis showed colocalization of AEG-1 to the nucleolus of injured cultured human astrocytes. CONCLUSIONS The present findings report for the first time the novel role of AEG-1 in mediating reactive astrogliosis and in regulating astrocyte responses to injury. We also report the nucleolar localization of AEG-1 in human astrocytes in response to injury. Future studies may be directed towards elucidating the molecular mechanism of AEG-1 action in astrocytes during reactive astrogliosis.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, USA
| | | |
Collapse
|
235
|
Pitanga BPS, Nascimento RP, Silva VDA, Costa SL. The Role of Astrocytes in Metabolism and Neurotoxicity of the Pyrrolizidine Alkaloid Monocrotaline, the Main Toxin of Crotalaria retusa. Front Pharmacol 2012; 3:144. [PMID: 22876233 PMCID: PMC3411086 DOI: 10.3389/fphar.2012.00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/05/2012] [Indexed: 01/19/2023] Open
Abstract
The metabolic interactions and signaling between neurons and glial cells are necessary for the development and maintenance of brain functions and structures and for neuroprotection, which includes protection from chemical attack. Astrocytes are essential for cerebral detoxification and present an efficient and specific cytochrome P450 enzymatic system. Whilst Crotalaria (Fabaceae, Leguminosae) plants are used in popular medicine, they are considered toxic and can cause damage to livestock and human health problems. Studies in animals have shown cases of poisoning by plants from the genus Crotalaria, which induced damage to the central nervous system. This finding has been attributed to the toxic effects of the pyrrolizidine alkaloid (PA) monocrotaline (MCT). The involvement of P450 enzymatic systems in MCT hepatic and pulmonary metabolism and toxicity has been elucidated, but little is known about the pathways implicated in the bioactivation of these systems and the direct contribution of these systems to brain toxicity. This review will present the main toxicological aspects of the Crotalaria genus that are established in the literature and recent findings describing the mechanisms involved in the neurotoxic effects of MCT, which was extracted from Crotalaria retusa, and its interaction with neurons in isolated astrocytes.
Collapse
Affiliation(s)
- Bruno Penas Seara Pitanga
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia Salvador, Brazil
| | | | | | | |
Collapse
|
236
|
Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus. Neuroscience 2012; 218:317-25. [DOI: 10.1016/j.neuroscience.2012.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/05/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023]
|
237
|
Increased cellular distribution of vimentin and Ret in the cingulum induced by developmental hypothyroidism in rat offspring maternally exposed to anti-thyroid agents. Reprod Toxicol 2012; 34:93-100. [DOI: 10.1016/j.reprotox.2012.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/19/2012] [Accepted: 03/16/2012] [Indexed: 12/16/2022]
|
238
|
Li P, Huang JJ, Ni JJ, Sun FY. WITHDRAWN: VEGF evokes reactive astroglia to convert into neuronal cells by affecting the biological function of MeCP2 in adult rat brain after cerebral ischemia. Neurochem Int 2012:S0197-0186(12)00231-8. [PMID: 22819795 DOI: 10.1016/j.neuint.2012.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pan Li
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.
| | | | | | | |
Collapse
|
239
|
Yu M, Suo H, Liu M, Cai L, Liu J, Huang Y, Xu J, Wang Y, Zhu C, Fei J, Huang F. NRSF/REST neuronal deficient mice are more vulnerable to the neurotoxin MPTP. Neurobiol Aging 2012; 34:916-27. [PMID: 22766071 DOI: 10.1016/j.neurobiolaging.2012.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/08/2012] [Accepted: 06/02/2012] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is characterized by progressing loss of dopaminergic neurons in the midbrain. Abnormal gene expression plays a critical role in its pathogenesis. Neuron-restrictive silencer factor (NRSF)/neuronal repressor element-1 silencing transcription factor (REST), a member of the zinc finger transcription factors, inhibits the expression of neuron-specific genes in nonneuronal cells, and regulates neurogenesis. Our previous work showed that 1-methyl-4-phenyl-pyridinium ion triggers dynamic changes of messenger RNA and protein expression of NRSF in human dopaminergic SH-SY5Y cells, and alteration of NRSF expression exacerbates 1-methyl-4-phenyl-pyridinium ion-induced cell death. The purpose of this study was to explore the in vivo role of NRSF in the progress of PD by using NRSF/REST neuron-specific conditional knockout mice (cKO). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was adopted to generate PD models in the cKO mice and wild type littermates. At 1, 3, 7, 14, 21, and 28 days after MPTP injection, behavioral tests were performed, and cKO mice displayed some impairments in locomotor activities. Also, the reduction of tyrosine hydroxylase protein in the striatum and the loss of dopaminergic neurons in the substantia nigra were more severe in the cKO mice. Meanwhile, the cKO mice exhibited a more dramatic depletion of striatal dopamine, accompanied by an increase in glial fibrillary acidic protein (GFAP) expression and sustained interleukin-1β transcription. These results suggested that NRSF/REST neuronal cKO mice are more vulnerable to the dopaminergic neurotoxin MPTP. Disturbance of the homeostasis of NRSF and its target genes, gliogenesis, and inflammation may contribute to the higher MPTP sensitivity in NRSF/REST neuronal cKO mice.
Collapse
Affiliation(s)
- Mei Yu
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 2012; 46:251-64. [PMID: 22684804 DOI: 10.1007/s12035-012-8287-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Reactive astrogliosis is a pathologic hallmark of spinal cord injury (SCI). It is characterised by profound morphological, molecular, and functional changes in astrocytes that occur within hours of SCI and evolves as time elapses after injury. Astrogliosis is a defense mechanism to minimize and repair the initial damage but eventually leads to some detrimental effects. Reactive astrocytes secrete a plethora of both growth promoting and inhibitory factors after SCI. However, the production of inhibitory components surpasses the growth stimulating factors, thus, causing inhibitory effects. In severe cases of injury, astrogliosis results in the formation of irreversible glial scarring that acts as regeneration barrier due to the expression of inhibitory components such as chondroitin sulfate proteoglycans. Scar formation was therefore recognized from a negative perspective for many years. Accumulating evidence from pharmacological and genetic studies now signifies the importance of astrogliosis and its timing for spinal cord repair. These studies have advanced our knowledge regarding signaling pathways and molecular mediators, which trigger and modulate reactive astrocytes and scar formation. In this review, we discuss the recent advances in this field. We also review therapeutic strategies that have been developed to target astrocytes reactivity and glial scaring in the environment of SCI. Astrocytes play pivotal roles in governing SCI mechanisms, and it is therefore crucial to understand how their activities can be targeted efficiently to harness their potential for repair and regeneration after SCI.
Collapse
Affiliation(s)
- Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Departments of Physiology and Biochemistry and Medical Genetics, the Spinal Cord Research Center, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | | |
Collapse
|
241
|
Emmetsberger J, Tsirka SE. Microglial inhibitory factor (MIF/TKP) mitigates secondary damage following spinal cord injury. Neurobiol Dis 2012; 47:295-309. [PMID: 22613732 DOI: 10.1016/j.nbd.2012.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 01/20/2023] Open
Abstract
Spinal cord injury (SCI) induces an immune response during which microglia, the resident immunocompetent cells of the central nervous system, become activated and migrate to the site of damage. Depending on their state of activation, microglia secrete neurotoxic or neurotrophic factors that influence the surrounding environment and have a detrimental or restorative effect following SCI, including causing or protecting bystander damage to nearby undamaged tissue. Subsequent infiltration of macrophages contributes to the SCI outcome. We show here that suppressing microglia/macrophage activation using the tripeptide macrophage/microglia inhibitory factor (MIF/TKP) reduced secondary injury around the lesion epicenter in the murine dorsal hemisection model of SCI; it decreased the hypertrophic change of astrocytes and caused an increase in the number of axons present within the lesion epicenter. Moreover, timely inhibition of microglial/macrophage activation prevented demyelination and axonal dieback by modulating oligodendrocyte survival and oligodendrocyte precursor maturation. Microglia/macrophages located within or proximal to the lesion produced neurotoxic factors, such as tumor necrosis factor alpha (TNF-α). These results suggest that microglia/macrophages within the epicenter at early time points post injury are neurotoxic, contributing to demyelination and axonal degeneration and that MIF/TKP could be used in combination with other therapies to promote functional recovery.
Collapse
Affiliation(s)
- Jaime Emmetsberger
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794‐8651, USA
| | | |
Collapse
|
242
|
Abstract
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.
Collapse
Affiliation(s)
- Francesca Mackenzie
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, UK
| | | |
Collapse
|
243
|
Wohl SG, Schmeer CW, Isenmann S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog Retin Eye Res 2012; 31:213-42. [DOI: 10.1016/j.preteyeres.2012.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
244
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
245
|
Seidel K, Vinet J, Dunnen WFAD, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HWGM, Rüb U, Kampinga HH, Carra S. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 2012; 38:39-53. [PMID: 21696420 DOI: 10.1111/j.1365-2990.2011.01198.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.
Collapse
Affiliation(s)
- K Seidel
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Aras R, Barron AM, Pike CJ. Caspase activation contributes to astrogliosis. Brain Res 2012; 1450:102-15. [PMID: 22436850 PMCID: PMC3319728 DOI: 10.1016/j.brainres.2012.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
Caspases, a family of cysteine proteases, are widely activated in neurons and glia in the injured brain, a response thought to induce apoptosis. However, caspase activation in astrocytes following injury is not strongly associated with apoptosis. The present study investigates the potential role of caspase activation in astrocytes with another characteristic response to neural injury, astrogliosis. Caspase activity and morphological and biochemical indices of astrogliosis and apoptosis were assessed in (i) cultured neonatal rat astrocytes treated with astrogliosis-inducing stimuli (dibutryl cAMP, β-amyloid peptide), and (ii) cultures of adult rat hippocampal astrocytes generated from control and kainate-lesioned rats. The effects of broad spectrum and specific pharmacological caspase inhibitors were assessed on indicators of astrogliosis, including stellate morphology and expression of glutamine synthetase and fibroblast growth factor-2. Reactive neonatal and adult astrocytes demonstrated an increase in total caspase activity with a corresponding increase in the expression of active caspase-3 in the absence of cell death. Broad spectrum caspase inhibition with zVAD significantly attenuated increases in glutamine synthetase and fibroblast growth factor-2 in the reactive astrocytes. In the reactive neonatal astrocyte cultures, specific inhibition of caspases-3 and -11 also attenuated glutamine synthetase and fibroblast growth factor-2 expression, but did not reverse the morphological reactive phenotype. Astrogliosis is observed in all forms of brain injury and despite extensive study, its molecular triggers remain largely unknown. While previous studies have demonstrated active caspases in astrocytes following acute brain injury, here we present evidence functionally implicating the caspases in astrogliosis.
Collapse
Affiliation(s)
- Radha Aras
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Anna M. Barron
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
247
|
Plantman S, Ng KC, Lu J, Davidsson J, Risling M. Characterization of a novel rat model of penetrating traumatic brain injury. J Neurotrauma 2012; 29:1219-32. [PMID: 22181060 DOI: 10.1089/neu.2011.2182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A penetrating traumatic brain injury (pTBI) occurs when an object impacts the head with sufficient force to penetrate the skin, skull, and meninges, and inflict injury directly to the brain parenchyma. This type of injury has been notoriously difficult to model in small laboratory animals such as rats or mice. To this end, we have established a novel non-fatal model for pTBI based on a modified air rifle that accelerates a pellet, which in turn impacts a small probe that then causes the injury to the experimental animal's brain. In the present study, we have focused on the acute phase and characterized the tissue destruction, including increasing cavity formation, white matter degeneration, hemorrhage, edema, and gliosis. We also used a battery of behavioral models to examine the neurological outcome, with the most noteworthy finding being impairment of reference memory function. In conclusion, we have described a number of events taking place after pTBI in our model. We expect this model will prove useful in our efforts to unravel the biological events underlying injury and regeneration after pTBI and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
248
|
Salgado IK, Serrano M, García JO, Martínez NA, Maldonado HM, Báez-Pagán CA, Lasalde-Dominicci JA, Silva WI. SorLA in glia: shared subcellular distribution patterns with caveolin-1. Cell Mol Neurobiol 2012; 32:409-21. [PMID: 22127416 PMCID: PMC3753200 DOI: 10.1007/s10571-011-9771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
SorLA is an established sorting and trafficking protein in neurons with demonstrated relevance to Alzheimer's disease (AD). It shares these roles with the caveolins, markers of membrane rafts microdomains. To further our knowledge on sorLA's expression and traffic, we studied sorLA expression in various cultured glia and its relation to caveolin-1 (cav-1), a caveolar microdomain marker. RT-PCR and immunoblots demonstrated sorLA expression in rat C6 glioma, primary cultures of rat astrocytes (PCRA), and human astrocytoma 1321N1 cells. PCRA were determined to express the highest levels of sorLA's message. Induction of differentiation of C6 cells into an astrocyte-like phenotype led to a significant decrease in sorLA's mRNA and protein expression. A set of complementary experimental approaches establish that sorLA and cav-1 directly or indirectly interact in glia: (1) co-fractionation in light-density membrane raft fractions of rat C6 glioma, PCRA, and human 1321N1 astrocytoma cells; (2) a subcellular co-localization distribution pattern in vesicular perinuclear compartments seen via confocal imaging in C6 and PCRA; (3) additional confocal analysis in C6 cells suggesting that the perinuclear compartments correspond to their co-localization in early endosomes and the trans-Golgi; and; (4) co-immunoprecipitation data strongly supporting their direct or indirect physical interaction. These findings further establish that sorLA is expressed in glia and that it shares its subcellular distribution pattern with cav-1. A direct or indirect cav-1/sorLA interaction could modify the trafficking and sorting functions of sorLA in glia and its proposed neuroprotective role in AD.
Collapse
Affiliation(s)
- Iris K. Salgado
- Department of Physiology, UPR-School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067 USA
| | - Melissa Serrano
- Department of Physiology, UPR-School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067 USA
| | - José O. García
- Department of Physiology, UPR-School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067 USA
| | - Namyr A. Martínez
- Department of Physiology, UPR-School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067 USA
| | - Héctor M. Maldonado
- Department of Pharmacology, Universidad Central del Caribe, School of Medicine, Bayamón, PR USA
| | - Carlos A. Báez-Pagán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR USA
| | | | - Walter I. Silva
- Department of Physiology, UPR-School of Medicine, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067 USA
| |
Collapse
|
249
|
Li BC, Xu C, Zhang JY, Li Y, Duan ZX. Differing Schwann Cells and Olfactory Ensheathing Cells Behaviors, from Interacting with Astrocyte, Produce Similar Improvements in Contused Rat Spinal Cord's Motor Function. J Mol Neurosci 2012; 48:35-44. [DOI: 10.1007/s12031-012-9740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
250
|
Yang L, Fang JS, Wang W, Chen RK, Shen CF. Transplantation of Schwann cells differentiated from adipose-derived stem cells modifies reactive gliosis after contusion brain injury in rats. J Int Med Res 2012; 39:1344-57. [PMID: 21986135 DOI: 10.1177/147323001103900421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study investigated whether transplantation of Schwann cells differentiated from adipose-derived stem cells (ADSC-SCs) of rats could promote functional improvement after contusion brain injury, with a focus on the effect on reactive gliosis. ADSCs were isolated and expanded from groin adipose tissue of Sprague-Dawley rats and then differentiated into Schwann cells. ADSCSCs were transplanted into the contused rat brain. Immunofluorescence and Western blotting were used to analyse reactive gliosis, and locomotor function of the rats was assessed. Hemiparalysed rats transplanted with ADSC-SCs showed significant locomotor function recovery compared with rats transplanted with undifferentiated ADSCs or control rats injected with medium alone. Transplanted ADSC-SCs significantly reduced glial scar formation and neurocan protein levels compared with transplanted undifferentiated ADSCs. In conclusion, transplantation of ADSC-SCs can effectively promote locomotor functional recovery and reduce reactive gliosis after contusion brain injury in rats.
Collapse
Affiliation(s)
- L Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|