201
|
Ivan A, Herman H, Balta C, Hadaruga DI, Mihali CV, Ardelean A, Hermenean A. Berberis vulgaris extract/β-cyclodextrin complex increases protection of hepatic cells via suppression of apoptosis and lipogenesis pathways. Exp Ther Med 2017; 13:2143-2150. [PMID: 28565821 PMCID: PMC5443287 DOI: 10.3892/etm.2017.4240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/20/2016] [Indexed: 01/21/2023] Open
Abstract
Berberis vulgaris (Bv) is well known worldwide for its healing properties. However, limited information is available concerning its mechanism of action and the increased hepatoprotective activity of formulated extracts. This study evaluated the protective effect of Bv bark extract against CCl4-induced cytotoxicity in Huh7 cells, as well whether β-cyclodextrin complexation of the extract resulted in increased hepatoprotective effects. Huh7 cells were incubated for 48 h with 5, 7.5 and 10 µg/ml of unformulated or formulated Bv extract alone and in co-treatment with CCl4. The effects on Huh7 cell growth and apoptosis were evaluated by MTT assay, caspase-3/7 activity and caspase-3 expression, whereas fatty acid changes were investigated by Oil red O staining and the detection of peroxisome proliferator-activated receptor-γ (PPARγ) expression using immunofluorescence. Ultrastructural alterations were observed by electron microscopy. The MTT assay showed that co-exposure to CCl4 and 7.5 µg/ml formulated extract led to a 1.25-fold increase in cell viability compared with the non-formulated extract. Caspase-3/7 activity decreased by 50% and 70% following co-treatment with unformulated or formulated extract, compared with that in cells treated with CCl4 alone. Furthermore, hepatocyte ultrastructure was protected from CCl4-induced injury in the two co-treated groups, intracytoplasmic lipid accumulation decreased significantly and PPARγ expression was restored, in comparison with CCl4-treated cells alone. Formulated and unformulated extracts were efficient against the anti-proliferative and pro-apoptotic actions of CCl4 through suppression of CCl4-induced caspase-3 activation and lipid accumulation. The protective effect of the formulated extract was more pronounced than that of the unformulated one, which may be due to its increased solubility.
Collapse
Affiliation(s)
- Alexandra Ivan
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania.,Department of Functional Sciences, Victor Babeş University of Medicine and Pharmacy, 300041 Timişoara, Romania
| | - Hildegard Herman
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Cornel Balta
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Daniel I Hadaruga
- Department of Applied Chemistry and Organic-Natural Compounds Engineering, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 300006 Timişoara, Romania
| | - Ciprian-Valentin Mihali
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Aurel Ardelean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| |
Collapse
|
202
|
Sun X, Wei Y, Hou B, Zhou G. A New Microextraction Technique for the Assay of Alkaloids in Chinese Compound Formula-Based Polyether Sulfone Membrane Fiber Decorated by TiO2 Nanoparticles. J Chromatogr Sci 2017; 55:366-372. [PMID: 27903554 DOI: 10.1093/chromsci/bmw177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/15/2022]
Abstract
A new nanocomposite membrane was used to clean up impurities from complex samples and the obvious synergy was obtained in this paper. The nanocomposite membrane was prepared by dispersing TiO2 nanoparticles in chloroform and filled in the pores and lumen of polyether sulfone membrane fiber. The novel microextraction method showed the ideal selective extraction effect for alkaloids in the formulae composed of Rhizoma coptidis and the excellent clean-up efficiency compared with the single membrane method. The optimum extraction conditions were as follows: chloroform as accepted phase; the number of nanocomposite membrane fiber bars, 7; extraction time, 30 min; pH of the sample solution, 10.55; desorption solvent, methanol. The limit of detection for the described alkaloids was estimated at 0.122 μg mL-1. The recovery of the four alkaloids in complex samples ranged from 93.24% to 97.94% with relative standard deviation of <4.99 (n = 5). The validated method had been successfully applied to study the transfer rate of alkaloids in the producing process of Qihuang capsule and the ideal transfer rate of alkaloids was obtained in this paper.
Collapse
Affiliation(s)
- Xinjie Sun
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, China
| | - Baojuan Hou
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, China
| | - Guowei Zhou
- Shandong Provincial Key Laboratory of Fine Chemicals, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
203
|
Aziz MA, Khan AH, Adnan M, Izatullah I. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:268-281. [PMID: 28108383 DOI: 10.1016/j.jep.2017.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/08/2017] [Accepted: 01/14/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the study area, knowledge related to the traditional uses of medicinal plants is totally in the custody of elder community members and local herbalists. The younger generation is unaware of the traditional knowledge, however with only few exceptions. Therefore, this study was planned with objective to document the medicinal importance of plants, conserve this precious indigenous knowledge, and share it among other communities through published literature. MATERIALS AND METHODS Data was collected through semi-structured interviews from the community members and local herbalists. The reported plants were collected post interviews and later on pressed on herbarium vouchers for reference. Afterwards, the data was analyzed through Use value (UV) and Relative Frequency of Citation (RFC). RESULTS In total, 79 medicinal plant species were used for the treatment of different ailments in the study region. Out of the total plant species, 28 species were not reported from any other mountainous communities across the country. In this study, the ethno-medicinal value of Opuntia littoralis (Engelm.) Cockerell and Viola indica W.Becker was reported for the first time, which have moderate confidential level in terms of their medicinal uses in the study area. Important medicinal plants of the region with high UV are Berberis lycium Royle (0.94), V. indica (0.90), Isodon rugosus (Wall. ex Benth.) Codd (0.88), Foeniculum vulgare Mill. (0.87), Peganum harmala L (0.86), Solanum virginianum L. (0.85), and Cassia fistula L. (0.79). Medicinal plants with higher RFC values are Calotropis procera (Aiton) Dryand. (0.86), Cannabis sativa L. (0.82), Mentha piperita L. (0.82), Mentha longifolia (L.) Huds. (0.76), Allium sativum L. (0.73), Coriandrum sativum L. (0.73), and F. vulgare (0.72). CONCLUSIONS Traditional knowledge on folk medicines is directly linked to the local culture, faith and perception. This knowledge is gaining high threat of extinction because of its limitation to a small portion of the society in the region. Therefore, future studies are recommended in similar regions for the documentation of this precious knowledge. Moreover, our study has also identified some important and newly reported medicinal plants from the ethno-medicinal perspective, which needs to be studied pharmacologically and toxicologically.
Collapse
Affiliation(s)
- Muhammad Abdul Aziz
- Department of Botany, Kohat University of Science and Technologyó, Kohat-26000 Pakistan.
| | - Amir Hasan Khan
- Department of Botany, Shaheed Benazir Bhuto University Sheringal, District Dir (Upper), Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technologyó, Kohat-26000 Pakistan.
| | | |
Collapse
|
204
|
Li P, Liao S, Wang J, Zhang Q, Xu D, Lv Y, Yang M, Kong L. Protection by Huang-Lian-Jie-Du decoction and its constituent herbs of lipopolysaccharide-induced acute kidney injury. FEBS Open Bio 2017; 7:221-236. [PMID: 28174688 PMCID: PMC5292670 DOI: 10.1002/2211-5463.12178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/20/2023] Open
Abstract
Sepsis, characterized by systemic inflammation, often leads to end-organ dysfunction, such as acute kidney injury (AKI). Despite of the severity and frequency of septic AKI in clinic, its pathogenesis is still poorly understood. Combined with histopathology evaluations, mortality assessments, biochemical evaluations, reverse transcription (RT) reaction and quantitative real-time PCR, and western blot, 1H NMR-based metabolomics approach was applied to investigate effects of Huang-Lian-Jie-Du-Decotion (HLJDD), a traditional Chinese medicine prescription, and its four component herbs on lipopolysaccharide (LPS)-induced septic AKI and the underlying mechanism. LPS induced kidney dysfunction via activation of NF-κB and mitogen-activated protein kinases (MAPKs), by excessive production of IL-6, tumor necrosis factor-α, inducible nitric oxide synthase, and COX-2, producing perturbance in energy metabolism and oxidative stress. HLJDD and its component herbs could effectively inhibit LPS-induced AKI in mice by inhibiting NF-κB and MAPK activation and activating the Akt/HO-1 pathway, and by markedly ameliorating disturbances in oxidative stress and energy metabolism induced by LPS. The four-component herbs could complement each other.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Shan‐Ting Liao
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Jun‐Song Wang
- Center for Molecular MetabolismNanjing University of Science and TechnologyChina
| | - Qian Zhang
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Ding‐Qiao Xu
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Yan Lv
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Ming‐Hua Yang
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| | - Ling‐Yi Kong
- State Key Laboratory of Natural MedicinesDepartment of Natural Medicinal ChemistryChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
205
|
Zou K, Li Z, Zhang Y, Zhang HY, Li B, Zhu WL, Shi JY, Jia Q, Li YM. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol Sin 2017; 38:157-167. [PMID: 27917872 PMCID: PMC5309756 DOI: 10.1038/aps.2016.125] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
Abstract
It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity.
Collapse
Affiliation(s)
- Kun Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao-yue Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei-liang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ji-ye Shi
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l'Alleud, Belgium
- Kellogg College, University of Oxford, Oxford, OX2 6PN, United Kingdom
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
206
|
Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan-Zuojin Formulas. Molecules 2017; 22:molecules22020214. [PMID: 28146096 PMCID: PMC6155683 DOI: 10.3390/molecules22020214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Zuojin formula (ZJ) is a traditional Chinese medicine (TCM) prescription consisted of Coptidis Rhizoma (CR) and Euodiae Fructus (EF), and has been used to treat gastrointestinal (GI) disease for more than 700 years. Fan-Zuojin formula (FZJ) is a related TCM prescription also consisted of CR and EF with the opposite proportion. In recent years, ZJ was getting more attention for its antitumor potential, but the indeterminate pharmacokinetic (PK) behavior restricted its clinical applications, and the PK differences between ZJ and FZJ were also largely unknown. Consequently it is necessary to carry out a full-scale PK study to demonstrate the physiological disposition of ZJ, as well as the comparative PK study between ZJ and FZJ to illustrate the compatibility dose effects. Therefore a liquid chromatographic–tandem mass spectrometry (LC–MS/MS) method was established and validated for the determinations of coptisine, epiberberine, palmatine, berberine, 8-oxocoptisine, 8-oxoepiberberine, noroxyhydrastinine, corydaldine, dehydroevodiamine, evodiamine, wuchuyuamide-I, and evocarpine in rat plasma. PK characteristics of 12 alkaloids after oral administration of ZJ and FZJ were compared, and the result was analyzed and discussed with the help of an in silico study. Then an integrated PK study was carried out with the AUC-based weighting method and the total drug concentration method. The established method has been successfully applied to reveal the PK profiles of the 12 alkaloids in rat plasma after oral administration of ZJ and FZJ. The results showed that: (1) double peaks were observed in the plasma concentration-time (C–T) curves of the alkaloids after ZJ administration; but the C–T curves approximately matched the two-compartment model after FZJ administration; (2) There were wide variations in the absorption levels of these alkaloids; and even for a certain alkaloid, the dose modified systemic exposure levels and elimination rate also varied significantly after administration of ZJ and FZJ extracts. The results could be interpreted as follows: firstly, inhibition effect on GI motility caused by the high content CR alkaloids (especially berberine) in ZJ could delay the Tmax, and increase the absorption and systemic exposure levels of the other alkaloids, and also lead to the double peak phenomenon of these alkaloids. However, for quaternary protoberberine alkaloids (QPA), double peaks were primarily caused by the different Ka value in two intestinal absorption sites; Secondly, absorption was the major obstacle to the systemic exposure level of the alkaloids from CR and EF. In silico and PK studies suggested that the absorption of these alkaloids, except QPAs, mainly depended on their solubility rather than permeability; Thirdly, EF could promote the absorption and accelerate the elimination of QPAs, and had a greater influence on the former than the latter. At last the integrated PK analysis suggested that berberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviors of CR and EF alkaloids after administration of ZJ and FZJ. In conclusion, the absorption, elimination and systemic exposure level of these alkaloids were mainly influenced by the proportion of EF and CR, the pharmacological effect on GI motility, and the physicochemical property of these alkaloids. These findings would be helpful for a better understanding of the activities and clinical applications of ZJ, FZJ and other related TCM prescriptions.
Collapse
|
207
|
Synthesis and anti-inflammatory effects of a series of novel 9-O-substituted berberine derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
208
|
Yang B, Lv W, Deng Y. Drug loaded poly(glycerol sebacate) as a local drug delivery system for the treatment of periodontal disease. RSC Adv 2017. [DOI: 10.1039/c7ra02796f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A simple, cost-efficient method to load drugs into poly(glycerol sebacate) polymer. Drugs were able to sustained release for up to 60 days. The drugs loaded polymer showed cytocompatibility and antimicrobial activities.
Collapse
Affiliation(s)
- Bo Yang
- Biomedical Engineering Program
- University of South Dakota
- Sioux Falls
- USA
| | - Wei Lv
- Biomedical Engineering Program
- University of South Dakota
- Sioux Falls
- USA
| | - Ying Deng
- Biomedical Engineering Program
- University of South Dakota
- Sioux Falls
- USA
| |
Collapse
|
209
|
Zhou X, Chen M, Zheng Z, Zhu GY, Jiang ZH, Bai LP. Synthesis and evaluation of novel 12-aryl berberine analogues with hypoxia-inducible factor-1 inhibitory activity. RSC Adv 2017. [DOI: 10.1039/c7ra02238g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Seven novel 12-phenyl berberines (3a–3f, 3k) showed more potent inhibitory effect on hypoxia-induced HIF-1 transcriptional activity than the parent berberine.
Collapse
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| |
Collapse
|
210
|
Fabrication of Novel Hydrogel with Berberine-Enriched Carboxymethylcellulose and Hyaluronic Acid as an Anti-Inflammatory Barrier Membrane. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3640182. [PMID: 28119926 PMCID: PMC5227121 DOI: 10.1155/2016/3640182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023]
Abstract
An antiadhesion barrier membrane is an important biomaterial for protecting tissue from postsurgical complications. However, there is room to improve these membranes. Recently, carboxymethylcellulose (CMC) incorporated with hyaluronic acid (HA) as an antiadhesion barrier membrane and drug delivery system has been reported to provide excellent tissue regeneration and biocompatibility. The aim of this study was to fabricate a novel hydrogel membrane composed of berberine-enriched CMC prepared from bark of the P. amurense tree and HA (PE-CMC/HA). In vitro anti-inflammatory properties were evaluated to determine possible clinical applications. The PE-CMC/HA membranes were fabricated by mixing PE-CMC and HA as a base with the addition of polyvinyl alcohol to form a film. Tensile strength and ultramorphology of the membrane were evaluated using a universal testing machine and scanning electron microscope, respectively. Berberine content of the membrane was confirmed using a UV-Vis spectrophotometer at a wavelength of 260 nm. Anti-inflammatory property of the membrane was measured using a Griess reaction assay. Our results showed that fabricated PE-CMC/HA releases berberine at a concentration of 660 μg/ml while optimal plasticity was obtained at a 30 : 70 PE-CMC/HA ratio. The berberine-enriched PE-CMC/HA had an inhibited 60% of inflammation stimulated by LPS. These results suggest that the PE-CMC/HA membrane fabricated in this study is a useful anti-inflammatory berberine release system.
Collapse
|
211
|
Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies. Biomed Pharmacother 2016; 86:262-270. [PMID: 28006752 DOI: 10.1016/j.biopha.2016.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs' expression profiles have recently gained major attention as far as cancer research is concerned. MicroRNAs are able to inhibit target gene expression via binding to the 3' UTR of target mRNA, resulting in target mRNA cleavage or translation inhibition. MicroRNAs play significant parts in a myriad of biological processes; studies have proven, on the other hand, that aberrant microRNA expression is, more often than not, associated with the growth and progression of cancers. MicroRNAs could act as oncogenes (oncomir) or tumor suppressors and can also be utilized as biomarkers for diagnosis, prognosis, and cancer therapy. Recent studies have shown that such herbal extracts as Shikonin, Sinomenium acutum, curcumin, Olea europaea, ginseng, and Coptidis Rhizoma could alter microRNA expression profiles through inhibiting cancer cell development, activating the apoptosis pathway, or increasing the efficacy of conventional cancer therapeutics. Such findings patently suggest that the novel specific targeting of microRNAs by herbal extracts could complete the restriction of tumors by killing the cancerous cells so as to recover survival results in patients diagnosed with malignancies. In this review, we summarized the current research about microRNA biogenesis, microRNAs in cancer, herbal compounds with anti-cancer effects and novel strategies for employing herbal extracts in order to target microRNAs for a better treatment of patients diagnosed with cancer.
Collapse
|
212
|
Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget 2016; 7:2985-3001. [PMID: 26672764 PMCID: PMC4823085 DOI: 10.18632/oncotarget.6407] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 02/01/2023] Open
Abstract
Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment.
Collapse
|
213
|
Berberine and inflammatory bowel disease: A concise review. Pharmacol Res 2016; 113:592-599. [PMID: 27697643 DOI: 10.1016/j.phrs.2016.09.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/27/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
|
214
|
Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 2016; 22:558-574. [PMID: 27431236 PMCID: PMC5056566 DOI: 10.5056/jnm16001] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/26/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common disorder referred to gastroenterologists and is characterized by altered bowel habits, abdominal pain, and bloating. Visceral hypersensitivity (VH) is a multifactorial process that may occur within the peripheral or central nervous systems and plays a principal role in the etiology of IBS symptoms. The pharmacological studies on selective drugs based on targeting specific ligands can provide novel therapies for modulation of persistent visceral hyperalgesia. The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients. There are a wide range of mediators and receptors participating in visceral pain perception amongst which substances targeting afferent receptors are attractive sources of novel drugs. Novel therapeutic targets for the management of VH include compounds which alter gut-brain pathways and local neuroimmune pathways. Molecular mediators and receptors participating in pain perception and visceroperception include histamine-1 receptors, serotonin (5-hydrodytryptamine) receptors, transient receptor potential vanilloid type I, tachykinins ligands, opioid receptors, voltage-gated channels, tyrosine receptor kinase receptors, protease-activated receptors, adrenergic system ligands, cannabinoid receptors, sex hormones, and glutamate receptors which are discussed in the current review. Moreover, several plant-derived natural compounds with potential to alleviate VH in IBS have been highlighted. VH has an important role in the pathology and severity of complications in IBS. Therefore, managing VH can remarkably modulate the symptoms of IBS. More preclinical and clinical investigations are needed to provide efficacious and targeted medicines for the management of VH.
Collapse
Affiliation(s)
- Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah,
Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah,
Iran
| | - Roodabeh Bahramsoltani
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran,
Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran,
Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
215
|
The Potential Mechanisms of Berberine in the Treatment of Nonalcoholic Fatty Liver Disease. Molecules 2016; 21:molecules21101336. [PMID: 27754444 PMCID: PMC6273247 DOI: 10.3390/molecules21101336] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a globally observed metabolic disease with high prevalence both in adults and children. However, there is no efficient medication available yet. Increased evidence indicates that berberine (BBR), a natural plant product, has beneficial effects on NAFLD, though the mechanisms are not completely known. In this review, we briefly summarize the pathogenesis of NAFLD and factors that influence the progression of NAFLD, and focus on the potential mechanisms of BBR in the treatment of NAFLD. Increase of insulin sensitivity, regulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, improvement of mitochondrial function, alleviation of oxidative stress, LDLR mRNA stabilization, and regulation of gut microenvironment are the major targets of BBR in the treatment of NAFLD. Additionally, reduction of proprotein convertase subtilisin/kexin 9 (PCSK9) expression and DNA methylation are also involved in pharmacological mechanisms of berberine in the treatment of NAFLD. The immunologic mechanism of BBR in the treatment of NAFLD, development of berberine derivative, drug combinations, delivery routes, and drug dose can be considered in the future research.
Collapse
|
216
|
Kim HJ, Kim H, Jung MH, Kwon YK, Kim BJ. Berberine induces pacemaker potential inhibition via cGMP-dependent ATP-sensitive K+ channels by stimulating mu/delta opioid receptors in cultured interstitial cells of Cajal from mouse small intestine. Mol Med Rep 2016; 14:3985-3991. [PMID: 27601272 DOI: 10.3892/mmr.2016.5698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Berberine is traditionally used to treat gastrointestinal (GI) motility disorders. The interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal tract, which are responsible for the production of gut movements. The present study aimed to investigate the effects of berberine on pacemaker potentials (PPs) in cultured ICC clusters from the mouse small intestine, and sought to identify the receptors involved and the underlying mechanisms of action. All experiments were performed on cultured ICCs, and a whole‑cell patch‑clamp configuration was used to record PPs from ICC clusters (current clamp mode). Under current clamp mode, berberine was shown to decrease the amplitude and frequency of PPs. However, these effects were suppressed by treatment with glibenclamide, a specific ATP‑sensitive K+ channel blocker. Nor‑binaltorphimine dihydrochloride (a kappa opioid receptor antagonist) did not suppress berberine‑induced PP inhibition, whereas ICI 174,864 (a delta opioid receptor antagonist) and CTOP (a mu opioid receptor antagonist) did suppress the inhibitory effects of berberine. Pretreatment with SQ‑22536 (an adenylate cyclase inhibitor) or with KT‑5720 (a protein kinase A inhibitor) did not suppress the effects of berberine; however, pretreatment with 1H‑[1,2,4] oxadiazolo [4,3‑a] quinoxalin‑1‑one (a guanylate cyclase inhibitor) or KT‑5823 [a protein kinase G (PKG) inhibitor] did. In addition, berberine stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. These observations indicate that berberine may inhibit the pacemaker activity of ICC clusters via ATP‑sensitive K+ channels and the cGMP‑PKG‑dependent pathway by stimulating mu and delta opioid receptors. Therefore, berberine may provide a basis for the development of novel agents for the treatment of GI motility dysfunction.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
217
|
Shao J, Shi G, Wang T, Wu D, Wang C. Antiproliferation of Berberine in Combination with Fluconazole from the Perspectives of Reactive Oxygen Species, Ergosterol and Drug Efflux in a Fluconazole-Resistant Candida tropicalis Isolate. Front Microbiol 2016; 7:1516. [PMID: 27721812 PMCID: PMC5034683 DOI: 10.3389/fmicb.2016.01516] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/09/2016] [Indexed: 01/23/2023] Open
Abstract
Candida tropicalis has emerged as an important pathogenic fungus in nosocomial infections due to its recalcitrant resistance to conventional antifungal agents, especially to fluconazole (FLC). Berberine (BBR) is a bioactive herbal-originated alkaloids and has been reported to possess antifungal functions against C. albicans. In this paper, we tried to figure out the antifungal mechanisms of BBR and/or FLC in a clinical C. tropicalis isolate 2006. In the microdilution test, the minimum inhibitory concentration (MIC) of BBR was found 16 μg/mL with fractional inhibitory concentration index (FICI) 0.13 in C. tropicalis 2006. The synergism of BBR and FLC was also confirmed microscopically. After the treatments of BBR and/or FLC, the studies revealed that (i) FLC facilitated BBR to increase reactive oxygen species (ROS), (ii) FLC enhanced the intranuclear accumulation of BBR, (iii) BBR decreased the extracellular rhodamine 123 (Rh123) via inhibiting efflux transporters, (iv) FLC assisted BBR to reduce ergosterol content, and (v) BBR in combined with FLC largely downregulated the expressions of Candida drug resistance 1 (CDR1) and CDR2 but impact slightly multidrug resistance 1 (MDR1), and upregulate the expression of ergosterol 11 (ERG11). These results suggested that BBR could become a potent antifungal drug to strengthen FLC efficacy in FLC-resistant C. tropicalis via ROS increase, intracellular BBR accumulation, ergosterol decrease and efflux inhibition.
Collapse
Affiliation(s)
- Jing Shao
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - GaoXiang Shi
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - TianMing Wang
- Laboratory of Biochemistry and Molecular Biology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - DaQiang Wu
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| | - ChangZhong Wang
- Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative Medicine, Anhui University of Chinese Medicine Hefei, China
| |
Collapse
|
218
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
219
|
Wang Z, Yuan L, Wang Y, Yang B, Dong X, Gao Z. Efficacy and safety of Chinese herbal medicine for chronic prostatitis associated with damp-heat and blood-stasis syndromes: a meta-analysis and literature review. Patient Prefer Adherence 2016; 10:1889-1902. [PMID: 27698555 PMCID: PMC5034918 DOI: 10.2147/ppa.s108699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The aim of this meta-analysis and systematic review is to evaluate the safety and efficacy of Chinese herbal medicine (CHM) for chronic prostatitis (CP) associated with damp-heat and blood-stasis syndromes. METHODS An electronic search of 13 databases up to May 2016 was screened to identify randomized controlled trials comparing the safety and efficacy of CHM for the treatment of CP associated with damp-heat and blood-stasis syndromes. Studies reporting on effective rates, adverse events, National Institutes of Health chronic prostatitis symptom index (NIH-CPSI) scores, and symptom index of Chinese medicine for chronic prostatitis (SI-CM) scores as outcomes were included in the analysis. Data were analyzed by fixed- or random-effect models using the Review Manager software. RESULTS Thirteen articles with the modified Jadad score ≥4 were identified. It was found that CHM was superior to placebo in increasing the efficacy (odds ratio: 6.72, 95% confidence interval [CI]: 2.78-9.48, P<0.00001) and reducing the SI-CM scores (standardized mean difference: -1.08, 95% CI: -1.35 to -0.81, P<0.00001). Oral CHMs were significantly more effective than placebo at reducing NIH-CPSI scores, with a mean difference of -1.39 (95% CI: -1.87 to -0.92, P<0.00001). Nevertheless, no significant differences were found between Prostant and placebo (standardized mean difference: -0.23, 95% CI: -0.46 to 0.01, P=0.06). The frequency of adverse events associated with oral CHM was similar to that associated with placebo (risk ratio: 1.36, 95% CI: 0.72-2.55, P=0.34) and less than that associated with Prostant (risk ratio: 1.63, 95% CI: 1.14-2.34, P=0.008). CONCLUSION Our novel analysis demonstrates that CHM ranks highest in terms of improvement of CP associated with damp-heat and blood-stasis syndromes. While Prostant showed some efficacy in this disorder, it was associated with a smaller reduction in NIH-CPSI scores. In conclusion, CHM monotherapy is safe and effective for the treatment of CP associated with damp-heat and blood-stasis syndromes.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang
| | - Lei Yuan
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang
| | - Yongchuan Wang
- Department of Urology, Weifang Traditional Chinese Hospital, Weifang
| | - Baizhi Yang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang
| | - Xiaohong Dong
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang
| | - Zhaowang Gao
- Department of Urology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, People’s Republic of China
| |
Collapse
|
220
|
Synthesis of berberine-piperazine conjugates as potential antioxidant and cytotoxic agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1662-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
221
|
Aghaie AB, Hadjmohammadi MR. Fe3O4@p-Naphtholbenzein as a novel nano-sorbent for highly effective removal and recovery of Berberine: Response surface methodology for optimization of ultrasound assisted dispersive magnetic solid phase extraction. Talanta 2016; 156-157:18-28. [DOI: 10.1016/j.talanta.2016.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 02/08/2023]
|
222
|
Luiza Andreazza N, Vevert-Bizet C, Bourg-Heckly G, Sureau F, José Salvador M, Bonneau S. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins. Int J Pharm 2016; 510:240-9. [DOI: 10.1016/j.ijpharm.2016.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 01/30/2023]
|
223
|
Lin CS, Liu PY, Lian CH, Lin CH, Lai JH, Ho LJ, Yang SP, Cheng SM. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages. ACTA CARDIOLOGICA SINICA 2016; 32:460-6. [PMID: 27471359 DOI: 10.6515/acs20150416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Macrophages can imbibe low-density lipoprotein (LDL) through scavenger receptors to become foam cells, which is critical in the initiation and progression of atherosclerosis. Mounting evidence suggests that the anti-inflammatory nature of Chinese herbs have the capacity to halt the complex mechanisms underlying atherosclerosis. This study examined the effects of Chinese herbs on foam cell formation. METHODS Chinese herbs were obtained from the Sun Ten pharmaceutic company. Using oxidized LDL (OxLDL) uptake and a cell toxicity assay, we screened more than 30 types of Chinese herbs. Western blotting was used to determine expressions of scavenger receptors (SRs) and extracellular-signal-regulated kinase (ERK) activities. RESULTS We found that Gentiana scabra reduced oxidized LDL uptake effectively in THP-1 macrophages (p < 0.05 vs. OxLDL treated control). Moreover, treatment with Gentiana scabra in THP-1 macrophages resulted in decreased expression of scavenger receptor- A (SR-A) (p < 0.05 vs. control). Molecular investigation revealed that Gentiana scabra inhibited SR-A protein expression, possibly by regulating ERK signaling pathways (p < 0.05 vs. control). CONCLUSIONS By regulating SR-A expression, Gentiana scabra reduced oxidized LDL uptake in human macrophages. These results support the potential use of Gentiana scabra in treating atherosclerosis.
Collapse
Affiliation(s)
- Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pang-Yen Liu
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Hao Lian
- Division of General Laboratory, Ministry of Health and Welfare, KinMen Hospital, Kinmen
| | | | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
224
|
Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6983956. [PMID: 27478481 PMCID: PMC4961818 DOI: 10.1155/2016/6983956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases.
Collapse
|
225
|
Effects of Sohamhyoong-Tang on Ovalbumin-Induced Allergic Reaction in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6286020. [PMID: 27403198 PMCID: PMC4923589 DOI: 10.1155/2016/6286020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
IgE-mediated mast cell degranulation and excessive Th2 cells activation are major features of various allergic diseases. Sohamhyoong-tang has been reported to have anti-inflammatory and antibacterial effects. In this study, we investigated the inhibitory effect of Sohamhyoong-tang extract (SHHTE) on allergic symptoms and inflammatory responses in ovalbumin- (OVA-) sensitized BALB/c mice. The mice were sensitized with OVA and alum at 2-week intervals and then orally given SHHTE for 13 days followed by intradermal OVA injection. Administration of SHHTE significantly reduced edema formation and inflammatory-cell infiltration in ear tissues. Total and OVA-specific IgEs as well as proinflammatory cytokine TNF-α and Th2-associated cytokine IL-4 levels were lower in the SHHTE-treated group than in the vehicle. SHHTE treatment significantly suppressed both mRNA and protein levels of IL-4 and IL-5 in OVA-stimulated splenocytes. SHHTE decreased Th1 (IFN-γ) and Th17 (IL-17a) cytokine mRNA expression but increased Treg cytokines (IL-10 and TGF-β1). Moreover, SHHTE significantly inhibited degranulation of RBL-2H3 cell line in a dose-dependent manner. Thus, SHHTE efficiently inhibited the allergic symptoms in an OVA-sensitized mouse model and its action may correlate with the suppression of IgE production by increasing IL-10 and TGF-β1, which can limit the function of other T helper cells and prevent the release of inflammatory mediators from mast cells. These results suggest that SHHTE could be a therapeutic agent for treating various allergic diseases.
Collapse
|
226
|
Shin JS, Choi HE, Seo S, Choi JH, Baek NI, Lee KT. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages. J Pharmacol Exp Ther 2016; 358:3-13. [PMID: 27189969 DOI: 10.1124/jpet.115.231043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022] Open
Abstract
Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR.
Collapse
Affiliation(s)
- Ji-Sun Shin
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Hye-Eun Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - SeungHwan Seo
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Jung-Hye Choi
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Nam-In Baek
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry (J.-S.S., H.-E.C., SH.S., K.-T.L.), Department of Life and Nanopharmaceutical Science (H.-E.C., SH.S., J.-H.C.,K.-T. L), and Department of Oriental Pharmaceutical Science, College of Pharmacy (J.-H.C.), Kyung Hee University, Seoul, Republic of Korea; and Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon, Republic of Korea (N.-I.B.)
| |
Collapse
|
227
|
Javad-Mousavi SA, Hemmati AA, Mehrzadi S, Hosseinzadeh A, Houshmand G, Rashidi Nooshabadi MR, Mehrabani M, Goudarzi M. Protective effect of Berberis vulgaris fruit extract against Paraquat-induced pulmonary fibrosis in rats. Biomed Pharmacother 2016; 81:329-336. [DOI: 10.1016/j.biopha.2016.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
|
228
|
Bae YA, Cheon HG. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:415-24. [PMID: 27382358 PMCID: PMC4930910 DOI: 10.4196/kjpp.2016.20.4.415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
Abstract
Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines (TNF-α, IL-6, and IL-1β). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Microbiology, Gachon University School of Medicine, Incheon 21936, Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21936, Korea.; Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Korea
| |
Collapse
|
229
|
ZHAO YUWAN, JING ZUOLEI, LI YAN, MAO WEIFENG. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis. Oncol Rep 2016; 36:567-72. [DOI: 10.3892/or.2016.4785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
|
230
|
Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, Meng X. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol 2016; 780:106-14. [PMID: 27018392 DOI: 10.1016/j.ejphar.2016.03.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Coptis chinensis has been used for the treatment of inflammatory diseases in China and other Asian countries for centuries. However, the chemical constituents and mechanism underlying the anti-inflammatory activity of this medicinal plant are poorly understood. Here, coptisine, the main constituent of C. chinensis, was shown to potently inhibit the production of nitric oxide (NO) by suppressing the protein and mRNA expressions of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Coptisine also inhibited the production of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) by suppressing expression of cytokine mRNA. Coptisine suppressed the degradation of inhibitor of nuclear factor κBα (IκBα) and phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt). Coptisine had no effect on the expression of toll-like receptor 4 (TLR-4) and myeloid differentiation factor 88 (MyD88) as well as LPS binding to TLR-4. Coptisine also inhibited carrageenan-elicited rat paw edema and reduced the release of TNF-α and NO in rat inflamed tissue. These results suggest that coptisine inhibits LPS-stimulated inflammation by blocking nuclear factor-kappa B, MAPK, and PI3K/Akt activation in macrophages, and can be used as an agent for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jiasi Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hai Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Boyang Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lijuan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Ping Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
231
|
Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters. Life Sci 2016; 151:50-60. [PMID: 26876917 DOI: 10.1016/j.lfs.2016.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 01/23/2023]
Abstract
AIMS Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. MAIN METHODS The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. KEY FINDING As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. SIGNIFICANCE Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia.
Collapse
|
232
|
Yu SM, Cho H, Kim GH, Chung KW, Seo SY, Kim SJ. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. Exp Biol Med (Maywood) 2016; 241:800-7. [PMID: 26851252 DOI: 10.1177/1535370216631028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Seon-Mi Yu
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38119, USA Veterans Affairs Medical Center, Memphis, TN 38117, USA
| | - Gwang-Hoon Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Ki-Wha Chung
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| | - Song-Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea
| |
Collapse
|
233
|
Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Cent Eur J Immunol 2016; 40:400-10. [PMID: 26862303 PMCID: PMC4737735 DOI: 10.5114/ceji.2015.54607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to evaluate analgesic activity ("hot plate" test), anti-inflammatory activity (carrageenan-induced paw edema) and locomotor activity in rats under the influence of three fractions of Chelidonium majus herb extract: full water extract (FWE), protein enriched fraction (PEF), and non-protein fraction (NPF). Effects of the fractions on the level of chosen cytokines and their mRNA levels were also assessed using lipopolysaccharide (LPS) administration as a proinflammatory cue. All fractions and diclofenac did not affect the locomotor activity of rats in comparison with the control group. FWE and PEF three hours after administration showed statistically significant analgesic activities comparable to morphine (p < 0.05). A slight reduction in rat paw edema was observed after three (comparable with diclofenac) and six hours in the NPF group. FWE revealed a statistically significant pro-inflammatory effect after three hours in comparison with the control group. Peripheral IL-1 and IL-4 cytokine concentrations were reduced under FWE and NPF, PEF fractions. The combination of FWE, PEF and NPF together with LPS showed only the effects of LPS. We suggest that protein enriched fraction (PEF) produced centrally mediated (morphine-like) analgesic action, whereas the anti-inflammatory potential was shown only after LPS-induced inflammation. The precise mechanisms involved in the production of anti-nociceptive and anti-inflammatory responses of studied fractions are not completely understood, but they may be caused rather by the presence of protein more than alkaloids-enriched fraction. This fraction of the extract could be used as an alternative therapy for the prevention of inflammatory-related diseases in the future, but further studies are needed.
Collapse
|
234
|
Li Y, Yuan X, Rong X, Gao Y, Qiu Z, Zhang Z, Zhou D, Li W. Design, synthesis and biological evaluation of a hybrid compound of berberine and magnolol for improvement of glucose and lipid metabolism. RSC Adv 2016. [DOI: 10.1039/c6ra15100k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The discovery and structural optimization of lead compounds is the main task in the research and development of new drugs.
Collapse
Affiliation(s)
- Yan Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine
- Guangzhou 510006
- People's Republic of China
| | - Xiao Yuan
- Guangzhou Pi & Pi Technology Inc
- Guangzhou 510006
- People's Republic of China
| | - Xianglu Rong
- Center Laboratory
- Guangdong Pharmaceutical University
- Guangzhou 510006
- People's Republic of China
| | - Ying Gao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine
- Guangzhou 510006
- People's Republic of China
| | - Zhibin Qiu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine
- Guangzhou 510006
- People's Republic of China
| | - Zhipeng Zhang
- Center Laboratory
- Guangdong Pharmaceutical University
- Guangzhou 510006
- People's Republic of China
| | - Dongbin Zhou
- Guangzhou Pi & Pi Technology Inc
- Guangzhou 510006
- People's Republic of China
| | - Weimin Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
235
|
Cicero AFG, Baggioni A. Berberine and Its Role in Chronic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:27-45. [PMID: 27671811 DOI: 10.1007/978-3-319-41334-1_2] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. It is found in such plants as Berberis [e.g. Berberis aquifolium (Oregon grape), Berberis vulgaris (barberry), Berberis aristata (tree turmeric)], Hydrastis canadensis (goldenseal), Xanthorhiza simplicissima (yellowroot), Phellodendron amurense [2] (Amur corktree), Coptis chinensis (Chinese goldthread), Tinospora cordifolia, Argemone mexicana (prickly poppy) and Eschscholzia californica (Californian poppy). In vitro it exerts significant anti-inflammatory and antioxidant activities. In animal models berberine has neuroprotective and cardiovascular protective effects. In humans, its lipid-lowering and insulin-resistance improving actions have clearly been demonstrated in numerous randomized clinical trials. Moreover, preliminary clinical evidence suggest the ability of berberine to reduce endothelial inflammation improving vascular health, even in patients already affected by cardiovascular diseases. Altogether the available evidences suggest a possible application of berberine use in the management of chronic cardiometabolic disorders.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Cardiovascular Disease Prevention Research Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy.
| | - Alessandra Baggioni
- Cardiovascular Disease Prevention Research Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy
| |
Collapse
|
236
|
Wang N, Tan HY, Li L, Yuen MF, Feng Y. Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:35-48. [PMID: 26494507 DOI: 10.1016/j.jep.2015.10.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antineoplastic property of Coptidis Rhizoma and berberine was correlated with its traditional use of clearing internal fire, removing damp-heat and counteracting toxic pathogens. AIM OF THE STUDY The anti-tumor effect of Coptidis Rhizoma and berberine was extensively studied since our last comprehensive review in 2009. This study aims to summarize the recent updates and give rise to perspectives of Coptidis Rhizoma and berberine as potential novel antineoplastic agents. METHODS Quality studies in recent 5 years were retrieved from PubMed, Medline and CNKI with keywords including Coptis, Coptidis Rhizoma, huanglian, berberine, tumor and cancer. Studies were focused on the pharmacological actions of Coptidis Rhizoma and berberine in cancer progression. RESULTS It was shown that Coptidis Rhizoma extract and berberine may repress tumor progression by regressing abnormal cell proliferation, arresting cell cycle and inducing cell death. Studies also highlighted the actions of Coptidis Rhizoma extract and berberine in inhibiting tumor cell invasion and angiogenesis, which in turn abolish cancer metastasis. Some studies have also been conducted to reveal the potential effect of Coptidis Rhizoma extract and berberine in regulating tumor stromal microenvironment, as well as in preventing carcinogenesis. Most of the results have been demonstrated with in vivo models, but results of high-quality clinical trials are not yet available. Unspecified cancer type and staging, fluctuated dose information and variants of targets across studies of berberine/ Coptidis Rhizoma impede their clinical use for cancer treatment. CONCLUSION Recent advances highlighted by this review may shed light on future direction of studies featuring Coptidis Rhizoma and berberine as novel antineoplastic agents, which should be repeatedly proven in future animal and clinical studies. Although more evidences on its specificity and clinical efficacy are necessary to support its clinical use, Coptidis Rhizoma and berberine are highly expected to be effective, safe and affordable treatments for cancer patients.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
237
|
An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch. J Pharm Biomed Anal 2015; 120:235-40. [PMID: 26760241 DOI: 10.1016/j.jpba.2015.12.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/21/2022]
Abstract
In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract.
Collapse
|
238
|
Olivier DK, Van Vuuren SF, Moteetee AN. Annickia affinis and A. chlorantha (Enantia chlorantha)--A review of two closely related medicinal plants from tropical Africa. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:438-462. [PMID: 26481608 DOI: 10.1016/j.jep.2015.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Annickia affinis (Exell) Versteegh & Sosef, closely related to A. chlorantha Setten & P.J.Maas (both species also referred to as Enantia chlorantha Oliv.), from the Annonaceae family, are multi-purpose medicinal plants used widely across tropical Africa. The two Annickia species are morphologically distinct from each other and have different distribution patterns, but are frequently confused. Furthermore, the name Enantia chlorantha is an illegitimate name, but is still used today. MATERIALS AND METHODS A review of the literature was undertaken and an in-depth analysis of previous research and future prospectives are considered. While a myriad of publications cite the species "Enantia chlorantha", this is not the case for A. affinis and A. chlorantha, and no reviews are available for any of the species to date. Consequently, a summary of their ethnobotany, phytochemistry and biological properties is presented here (for the period 1933 - November 2014) in order to substantiate their traditional importance as medicines for rural people in Africa. RESULTS To this effect, these species seem to be the preferred traditional treatments for malaria in tropical Africa, an area suffering heavily under the malaria pandemic. Their chemical composition is dominated particularly by various isoquinoline alkaloids, as well as by acetogenins and sesquiterpenes, which have been isolated from the bark and leaves. All three of these classes of compounds have been reported to exhibit noteworthy biological activity. CONCLUSIONS Due to their widespread use, especially of the bark, these species have already been categorized as threatened with extinction. Consequently this study further aims to identify areas where more research needs to be conducted involving these important species, and also to suggest possible means of increasing the biological activities of their extracts as a way to conserve the species.
Collapse
Affiliation(s)
- D K Olivier
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - S F Van Vuuren
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| | - A N Moteetee
- Department of Botany and Plant Biotechnology, University of Johannesburg, Cnr Kingsway and University Road, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
239
|
Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1689602. [PMID: 26788242 PMCID: PMC4691633 DOI: 10.1155/2016/1689602] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022]
Abstract
Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.
Collapse
|
240
|
Li YH, Zhang M, Xiao HT, Fu HB, Ho A, Lin CY, Huang Y, Lin G, Bian ZX. Addition of Berberine to 5-Aminosalicylic Acid for Treatment of Dextran Sulfate Sodium-Induced Chronic Colitis in C57BL/6 Mice. PLoS One 2015; 10:e0144101. [PMID: 26642326 PMCID: PMC4671595 DOI: 10.1371/journal.pone.0144101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy.
Collapse
Affiliation(s)
- Yan-hong Li
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Man Zhang
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hai-tao Xiao
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hai-bo Fu
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Alan Ho
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng-yuan Lin
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ge Lin
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhao-xiang Bian
- Lab of Brain and Gut Research, Hong Kong Chinese Medicine Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- * E-mail:
| |
Collapse
|
241
|
Wu Y, Liu R, Gu P, Cheng M, Zheng L, Liu Y, Ma P, Ding L. Highly sensitive method for simultaneous determination of nine alkaloids of Shuanghua Baihe tablets in human plasma by LC-MS/MS and its application. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1007:81-92. [PMID: 26590879 DOI: 10.1016/j.jchromb.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023]
Abstract
Shuanghua Baihe tablets (SBT) is a traditional Chinese medicinal formula which has been used to treat recurrent aphthous stomatitis for many years. To study the pharmacokinetic profiles of berberine, epiberberine, coptisine, palmatine, jatrorrhizine, magnoflorine, berberrubine, corynoline and acetylcorynoline in human after administration of SBT, a sensitive liquid chromatography-tandem mass spectrometry method was developed and fully validated for the simultaneous quantification of these nine alkaloids in human plasma. After protein precipitation, the nine alkaloids in human plasma sample was separated on a Hanbon C18 (150mm×2.1mm, 5μm) column with gradient elution using methanol and 0.5% formic acid water solution, and detected by a triple quadrupole mass spectrometer with an electrospray ionization source. It is a challenge to design different calibration ranges for different analytes in a bioanalytical method for simultaneous determination of multi-analytes in bio-samples. To ensure that each alkaloid in the plasma was determined accurately by the simultaneous quantitation method, the upper limits of quantification for the nine alkaloids were designed at 100, 300, 800, 1800 and 5000pg/mL, respectively, according to the maximum plasma concentration value of each alkaloid obtained from the pilot pharmacokinetic study. The lower limit of quantification was 15pg/mL for berberine, epiberberine, coptisine, magnoflorine, berberrubine, corynoline and acetylcorynoline, while for palmatine and jatrorrhizine it was 1.5pg/mL. This method was successfully applied to investigate the pharmacokinetic profiles of the nine alkaloids in healthy Chinese volunteers after a single oral administration of SBT.
Collapse
Affiliation(s)
- Yao Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211000, PR China
| | - Ruijuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211000, PR China
| | - Pan Gu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211000, PR China
| | - Minlu Cheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211000, PR China
| | - Lu Zheng
- Yangtze River Pharmaceutical Group, Taizhou 225321, PR China
| | - Yujie Liu
- Yangtze River Pharmaceutical Group, Taizhou 225321, PR China
| | - Pengcheng Ma
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, PR China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Nanjing Clinical Tech Laboratories Inc., 18 Zhilan Road, Jiangning District, Nanjing 211000, PR China.
| |
Collapse
|
242
|
Song D, Song J, Wang C, Li Y, Dunaief JL. Berberine protects against light-induced photoreceptor degeneration in the mouse retina. Exp Eye Res 2015; 145:1-9. [PMID: 26475979 DOI: 10.1016/j.exer.2015.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
Oxidative stress and inflammation play key roles in the light damage (LD) model of photoreceptor degeneration, as well as in age-related macular degeneration (AMD). We sought to investigate whether Berberine (BBR), an antioxidant herb extract, would protect the retina against light-induced degeneration. To accomplish this, Balb/c mice were treated with BBR or PBS via gavage for 7 days, and then were placed in constant cool white light-emitting diode (LED) light (10,000 lux) for 4 h. Retinal function and degeneration were evaluated by histology, electroretinography (ERG) and optical coherence tomography (OCT) at 7d after LD. Additionally, mRNA levels of cell-type specific, antioxidant, and inflammatory genes were compared 7d after LD. Photoreceptor DNA fragmentation was assessed via the terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay. LD resulted in substantial photoreceptor-specific cell death. Histological analysis using plastic sections showed dosing with BBR preserved photoreceptors. The ERG analysis demonstrated functional protection by BBR in rod-b, -a, and cone-b waves. In OCT images, mice receiving PBS showed severe thinning and disorganization of the photoreceptor layer 7 days after LD, whereas mice treated with BBR had significantly less thinning and disorganization. Consistent with OCT results, the mRNA levels of Rho in the NSR, and Rpe65 and Mct3 in the RPE, were significantly higher in mice treated with BBR. The numbers of TUNEL-positive photoreceptors were significantly decreased in BBR-treated mice. The retinal mRNA levels of oxidative stress genes, the number of microglia/macrophages, and the malondialdehyde (MDA) immunolabeling were significantly lower in BBR-treated mice compared to controls 48 h after LD, which indicates oxidative stress was reduced by BBR in light-damaged eyes. In conclusion, systemic BBR is protective against light-induced retinal degeneration associated with diminished oxidative stress in the retina. These results suggest that BBR may be protective against retinal diseases involving oxidative stress.
Collapse
Affiliation(s)
- Delu Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, United States
| | - Jiantao Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, United States; Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenguang Wang
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, United States; Department of Ophthalmology, The Second Hospital of Jilin University, Jilin, China
| | - Yafeng Li
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, United States
| | - Joshua L Dunaief
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
243
|
Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 2015; 71:17-26. [DOI: 10.1093/jac/dkv316] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
244
|
Berberine and neurodegeneration: A review of literature. Pharmacol Rep 2015; 67:970-9. [DOI: 10.1016/j.pharep.2015.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
|
245
|
Tian T, Jin Y, Ma Y, Xie W, Xu H, Du Y. Simultaneous Quantification of 11 Constituents in Wuji Pill Using Ultra Performance Liquid Chromatography Coupled With a Triple Quadrupole Electrospray Tandem Mass Spectrometry. J Chromatogr Sci 2015; 54:237-45. [DOI: 10.1093/chromsci/bmv140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 11/13/2022]
|
246
|
Mistry B, Patel RV, Keum YS, Kim DH. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J Biol Sci 2015; 24:36-44. [PMID: 28053569 PMCID: PMC5198934 DOI: 10.1016/j.sjbs.2015.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 02/03/2023] Open
Abstract
A new Mannich base series of piperazine linked berberine analogues was furnished in this study to screen the antioxidant and anticancer potential of the resultant analogues. Alkoxy group at a C-9 position of berberine was converted to hydroxyl functionality to enhance the ability of final scaffolds binding to the target of drug action mainly through hydrophobic effect, conjugation effect, whereas Mannich base functionality was introduced on the C-12 position of berberine. Scaffolds were investigated for their free radical scavenging antioxidant potential in FRAP and DPPH assay, whereas tested to check their Fe+3 reducing power in ABTS assay. The radical scavenging potential of the final derivatives 4a-j was found excellent with IC50s, <13 μg/mL and < 8 μg/mL in DPPH and ABTS assay, respectively, whereas some analogues showed significant Fe+3 reducing power with absorption at around 2 nm in the FRAP assay. Anticancer effects of titled compounds were inspected against cervical cancer cell line Hela and Caski adapting SRB assay, in which analogues 4a-j presented <6 μg/mL of IC50s, and >30 of therapeutic indices, thus exerting low cytotoxic values against Malin-Darby canine kidney (MDCK) cell lines at CC50s >125 μg/mL. Hence, from the bioassay outcomes it can be stated that these analogues are dual active agents as the scavengers of reactive oxygen species and inhibitors of the cancerous cells as compounds with halogen functional group have overall good pharmacological potential in assays studied in this research. Correct structure of the final compounds was adequately confirmed on the basis of FT-IR and 1H NMR as well as elemental analyses.
Collapse
Affiliation(s)
- Bhupendra Mistry
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyenggi-do, Republic of Korea
| | - Young-Soo Keum
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | - Doo Hwan Kim
- Organic Research Laboratory, Department of Bioresources and Food Sciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
247
|
Simultaneous determination of four phenolic acids and seven alkaloids in rat plasma after oral administration of traditional Chinese medicinal preparation Jinqi Jiangtang Tablet by LC-ESI-MS/MS. J Pharm Biomed Anal 2015; 117:1-10. [PMID: 26340557 DOI: 10.1016/j.jpba.2015.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022]
Abstract
A rapid, sensitive and selective high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of four phenolic acids (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and ferulic acid) and seven alkaloids (berberine, epiberberine, coptisine, magnoflorine, berberubine, palmatine and jatrorrhizine) in rat plasma. After mixing with the internal standards tetrahydropalmatine (IS1) and rosmarinic acid (IS2), plasma samples were pretreated by protein precipitation using acetonitrile. The HPLC analysis was performed on an Agilent Eclipse plus C18 (4.6 mm×100 mm, 1.8 μm) column with mobile phase consisting of 0.1% formic acid aqueous solution and acetonitrile at a flow rate of 0.3 mL min(-1). The detection was accomplished for the analytes and internal standards using positive electrospray ionization for the alkaloids and negative electrospray ionization for the phenolic acids in multiple-reaction monitoring mode. The method showed a good linearity over a wide concentration range (r(2)>0.99). The lower limit of quantification of seven alkaloids was lower than 2 ng mL(-1) and that of four phenolic acids was less than 20 ng mL(-1). The developed method was applied to the pharmacokinetic study of 11 components after oral administration of traditional Chinese medicinal preparation Jinqi Jiangtang Tablet in rats.
Collapse
|
248
|
Zhang YJ, Yang SH, Li MH, Iqbal J, Bourantas CV, Mi QY, Yu YH, Li JJ, Zhao SL, Tian NL, Chen SL. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy. Clin Exp Pharmacol Physiol 2015; 41:995-1002. [PMID: 25224725 DOI: 10.1111/1440-1681.12309] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 08/14/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022]
Abstract
The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.
Collapse
Affiliation(s)
- Yao-Jun Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Lanzerstorfer P, Stadlbauer V, Chtcheglova LA, Haselgrübler R, Borgmann D, Wruss J, Hinterdorfer P, Schröder K, Winkler SM, Höglinger O, Weghuber J. Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy. Br J Pharmacol 2015; 171:5237-51. [PMID: 25039620 PMCID: PMC4262000 DOI: 10.1111/bph.12845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocation process in the absence of insulin. Experimental Approach Total internal reflection fluorescence (TIRF) microscopy was applied to quantify GLUT4 translocation in highly insulin-sensitive CHO-K1 cells expressing a GLUT4-myc-GFP fusion protein. Key Results Using our approach, we demonstrated GLUT4 translocation modulatory properties of selected substances and identified novel potential insulin mimetics. An increase in the TIRF signal was found to correlate with an elevated glucose uptake. Variations in the expression level of the human insulin receptor (hInsR) showed that the insulin mimetics identified stimulate GLUT4 translocation by a mechanism that is independent of the presence of the hInsR. Conclusions and Implications Taken together, the results indicate that TIRF microscopy is an excellent tool for the quantification of GLUT4 translocation and for identifying insulin mimetic drugs.
Collapse
Affiliation(s)
- Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Wels, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. JOURNAL OF ETHNOPHARMACOLOGY 2015; 171:28-36. [PMID: 26027757 DOI: 10.1016/j.jep.2015.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. MATERIALS AND METHODS In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. RESULTS The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 μM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. CONCLUSION Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold promise as therapeutic agents for the treatment of diabetes and related disease.
Collapse
Affiliation(s)
- Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea.
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Sang Ho Oh
- Korean BioInformation Center (KOBIC), Daejeon 305-806, Republic of Korea
| | - Ran Joo Choi
- Angiogenesis & Chinese Medicine Laboratory, Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Eon Ji Kim
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|