201
|
Díaz VM, de Herreros AG. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 2016; 36:71-9. [DOI: 10.1016/j.semcancer.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
|
202
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
203
|
Knudsen KJ, Rehn M, Hasemann MS, Rapin N, Bagger FO, Ohlsson E, Willer A, Frank AK, Søndergaard E, Jendholm J, Thorén L, Lee J, Rak J, Theilgaard-Mönch K, Porse BT. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes Dev 2015; 29:1915-29. [PMID: 26385962 PMCID: PMC4579349 DOI: 10.1101/gad.268409.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors that serve to restrict HSC differentiation. In the present work, we identify ETS (E-twenty-six)-related gene (ERG) as a critical factor protecting HSCs from differentiation. Specifically, loss of Erg accelerates HSC differentiation by >20-fold, thus leading to rapid depletion of immunophenotypic and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs.
Collapse
Affiliation(s)
- Kasper Jermiin Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Matilda Rehn
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ewa Ohlsson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anton Willer
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Elisabeth Søndergaard
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lina Thorén
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Julie Lee
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Justyna Rak
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Department of Hematology, Skånes University Hospital, University of Lund, SE-22185 Lund, Sweden
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
204
|
Lupini L, Bassi C, Mlcochova J, Musa G, Russo M, Vychytilova-Faltejskova P, Svoboda M, Sabbioni S, Nemecek R, Slaby O, Negrini M. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer 2015; 15:808. [PMID: 26508446 PMCID: PMC4624582 DOI: 10.1186/s12885-015-1752-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. METHODS In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. RESULTS We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). CONCLUSIONS The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
Collapse
Affiliation(s)
- Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Jitka Mlcochova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Gentian Musa
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Marta Russo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Petra Vychytilova-Faltejskova
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Marek Svoboda
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Radim Nemecek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Molecular Oncology II, University Campus Bohunice Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
205
|
Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol 2015; 36:62-70. [PMID: 26459133 DOI: 10.1016/j.semcancer.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.
Collapse
Affiliation(s)
- Wenshan Xu
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany.
| |
Collapse
|
206
|
Fang X, Huang Z, Zhou W, Wu Q, Sloan AE, Ouyang G, McLendon RE, Yu JS, Rich JN, Bao S. The zinc finger transcription factor ZFX is required for maintaining the tumorigenic potential of glioblastoma stem cells. Stem Cells 2015; 32:2033-47. [PMID: 24831540 DOI: 10.1002/stem.1730] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 12/11/2022]
Abstract
Glioblastomas are highly lethal brain tumors containing tumor-propagating glioma stem cells (GSCs). The molecular mechanisms underlying the maintenance of the GSC phenotype are not fully defined. Here we demonstrate that the zinc finger and X-linked transcription factor (ZFX) maintains GSC self-renewal and tumorigenic potential by upregulating c-Myc expression. ZFX is differentially expressed in GSCs relative to non-stem glioma cells and neural progenitor cells. Disrupting ZFX by shRNA reduced c-Myc expression and potently inhibited GSC self-renewal and tumor growth. Ectopic expression of c-Myc to its endogenous level rescued the effects caused by ZFX disruption, supporting that ZFX controls GSC properties through c-Myc. Furthermore, ZFX binds to a specific sequence (GGGCCCCG) on the human c-Myc promoter to upregulate c-Myc expression. These data demonstrate that ZFX functions as a critical upstream regulator of c-Myc and plays essential roles in the maintenance of the GSC phenotype. This study also supports that c-Myc is a dominant driver linking self-renewal to malignancy.
Collapse
Affiliation(s)
- Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
208
|
Kourtis N, Strikoudis A, Aifantis I. Emerging roles for the FBXW7 ubiquitin ligase in leukemia and beyond. Curr Opin Cell Biol 2015; 37:28-34. [PMID: 26426760 DOI: 10.1016/j.ceb.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023]
Abstract
Protein degradation plays key roles in diverse pathways in cell division, growth and differentiation. Aberrant stabilization of crucial proteins participating in oncogenic pathways is often observed in cancer. The importance of proper protein turnover is exemplified by the SCF(Fbxw7) ubiquitin ligase, which is frequently mutated in human cancer, including T cell acute lymphoblastic leukemia. Recent studies have revealed novel substrates of Fbxw7 and shed light on its role on differentiation of stem cells and expansion of stem-cell-like cells driving tumorigenesis. Detailed understanding of the contribution of the Fbxw7-regulated network of proteins in initiation and progression of cancer will facilitate the identification of candidate intervention targets in human cancer.
Collapse
Affiliation(s)
- Nikos Kourtis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alexandros Strikoudis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
209
|
Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Semin Cancer Biol 2015; 36:52-61. [PMID: 26410034 DOI: 10.1016/j.semcancer.2015.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Fbw7 is well characterised as a stem cell regulator and tumour suppressor, powerfully positioned to control proliferation, differentiation and apoptosis by targeting key transcription factors for ubiquitination and destruction. Evidence in support of these roles continues to accumulate from in vitro studies, mouse models and human patient data. Here we summarise the latest of these findings, highlighting the tumour-suppressive role of Fbw7 in multiple tissues, and the rare circumstances where Fbw7 activity can be oncogenic. We discuss mechanisms that regulate ubiquitination by Fbw7, including ubiquitin-specific proteases such as USP28 that counteract Fbw7 activity and thereby stabilise oncoproteins. Deubiquitination of key Fbw7 substrates to prevent their destruction is beginning to be appreciated as an important pro-tumourigenic mechanism. As the ubiquitin-proteasome system represents a largely untapped field for drug development, the interplay between Fbw7 and its counterpart deubiquitinating enzymes in tumours is likely to attract increasing interest and influence future treatment strategies.
Collapse
|
210
|
Dependence of Human Colorectal Cells Lacking the FBW7 Tumor Suppressor on the Spindle Assembly Checkpoint. Genetics 2015; 201:885-95. [PMID: 26354767 PMCID: PMC4649658 DOI: 10.1534/genetics.115.180653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
FBW7 (F-box and WD repeat domain containing 7), also known as FBXW7 or hCDC4, is a tumor suppressor gene mutated in a broad spectrum of cancer cell types. As a component of the SCF E3 ubiquitin ligase, FBW7 is responsible for specifically recognizing phosphorylated substrates, many important for tumor progression, and targeting them for ubiquitin-mediated degradation. Although the role of FBW7 as a tumor suppressor is well established, less well studied is how FBW7-mutated cancer cells might be targeted for selective killing. To explore this further, we undertook a genome-wide RNAi screen using WT and FBW7 knockout colorectal cell lines and identified the spindle assembly checkpoint (SAC) protein BUBR1, as a candidate synthetic lethal target. We show here that asynchronous FBW7 knockout cells have increased levels of mitotic APC/C substrates and are sensitive to knockdown of not just BUBR1 but BUB1 and MPS1, other known SAC components, suggesting a dependence of these cells on the mitotic checkpoint. Consistent with this dependence, knockdown of BUBR1 in cells lacking FBW7 results in significant cell aneuploidy and increases in p53 levels. The FBW7 substrate cyclin E was necessary for the genetic interaction with BUBR1. In contrast, the establishment of this dependence on the SAC requires the deregulation of multiple substrates of FBW7. Our work suggests that FBW7 knockout cells are vulnerable in their dependence on the mitotic checkpoint and that this may be a good potential target to exploit in FBW7-mutated cancer cells.
Collapse
|
211
|
Georgy SR, Cangkrama M, Srivastava S, Partridge D, Auden A, Dworkin S, McLean CA, Jane SM, Darido C. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma. J Natl Cancer Inst 2015; 107:djv152. [PMID: 26063791 PMCID: PMC4836819 DOI: 10.1093/jnci/djv152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). METHODS We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. RESULTS Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. CONCLUSIONS We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network.
Collapse
Affiliation(s)
- Smitha R Georgy
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Michael Cangkrama
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Seema Srivastava
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Catriona A McLean
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ).
| | - Charbel Darido
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| |
Collapse
|
212
|
Abstract
Human lymphoid malignancies inherit gene expression networks from their normal B-cell counterpart and co-opt them for their own oncogenic purpose, which is usually governed by transcription factors and signaling pathways. These transcription factors and signaling pathways are precisely regulated at multiple steps, including ubiquitin modification. Protein ubiqutination plays a role in almost all cellular events and in many human diseases. In the past few years, multiple studies have expanded the role of ubiquitination in the genesis of diverse lymphoid malignancies. Here, we discuss our current understanding of both proteolytic and non-proteolytic functions of the protein ubiquitination system and describe how it is involved in the pathogenesis of human lymphoid cancers. Lymphoid-restricted ubiquitination mechanisms, including ubiquitin E3 ligases and deubiquitinating enzymes, provide great opportunities for the development of targeted therapies for lymphoid cancers.
Collapse
Affiliation(s)
- Yibin Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
213
|
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, Van Vlierberghe P. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev 2015; 263:50-67. [PMID: 25510271 DOI: 10.1111/imr.12237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL.
Collapse
Affiliation(s)
- Sofie Peirs
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
PURPOSE OF REVIEW Recent genome sequencing studies have identified a broad spectrum of gene mutations in T-cell acute lymphoblastic leukemia (T-ALL). The purpose of this review is to outline the latest advances in our understanding of how these mutations contribute to the formation of T-ALL. RECENT FINDINGS Aberrant expression of transcription factors that control hematopoiesis can induce an aberrant stem cell-like program in T-cell progenitors, allowing the emergence of an ancestral or preleukemic stem cell (pre-LSC). In contrast, gain-of-function mutations of genes involved in signaling pathways regulating T-cell development, such as NOTCH1, interleukin-7, KIT and FLT3, are insufficient per se to initiate T-ALL but promote pre-LSC growth independent of the thymic niche. Loss-of-function mutations of epigenetic regulators, such as DNMT3A, have been identified in T-ALL, but their role in leukemogenesis remains to be defined. SUMMARY Relapse is associated with clonal evolution from a population of pre-LSCs that acquire the whole set of malignant mutations leading to a full-blown T-ALL. Understanding the genetic events that underpin the pre-LSC will be crucial for reducing the risk of relapse.
Collapse
|
215
|
McIntyre RE, Buczacki SJ, Arends MJ, Adams DJ. Mouse models of colorectal cancer as preclinical models. Bioessays 2015; 37:909-20. [PMID: 26115037 PMCID: PMC4755199 DOI: 10.1002/bies.201500032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
In this review, we discuss the application of mouse models to the identification and pre-clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large-scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross-species comparative 'omics-based approaches to this problem. We highlight recent progress in modelling late-stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection.
Collapse
Affiliation(s)
- Rebecca E. McIntyre
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| | | | - Mark J. Arends
- Edinburgh Cancer Research UK CentreUniversity of EdinburghEdinburghUK
| | - David J. Adams
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| |
Collapse
|
216
|
Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis 2015; 55:336-46. [PMID: 26460257 DOI: 10.1016/j.bcmd.2015.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Studies of xenotransplantation of bone marrow and blood cells of AML patients have supported the existence of rare leukemic stem cells, able to initiate and maintain the leukemic process and bearing the typical leukemic abnormalities. LSCs possess self-renewal capacity and are responsible for the growth of the more differentiated leukemic progeny in the bone marrow and in the blood. These cells are more resistant than bulk leukemic cells to anti-leukemic drugs, thus survive to treatment and are, at a large extent, responsible for leukemia relapse. During the last two decades, considerable progresses have been made in the understanding of the peculiar cellular and molecular properties of LSCs. In this context, particularly relevant was the discovery of several membrane markers, selectively or preferentially expressed on LSCs. These membrane markers offer now unique opportunities to identify LSCs and to distinguish them from normal HSCs, to monitor the response of the various anti-leukemic treatments at the level of the LSC compartment, to identify relevant therapeutic targets. Concerning this last point, the most promising therapeutic targets are CD33 and CD123.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Suepriore di Sanità, Rome, Italy
| |
Collapse
|
217
|
Wang WZ, Pu QH, Lin XH, Liu MY, Wu LR, Wu QQ, Chen YH, Liao FF, Zhu JY, Jin XB. Silencing of miR-21 sensitizes CML CD34+ stem/progenitor cells to imatinib-induced apoptosis by blocking PI3K/AKT pathway. Leuk Res 2015; 39:1117-24. [PMID: 26248946 DOI: 10.1016/j.leukres.2015.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
BCR-ABL tyrosine kinase inhibitor imatinib fails to eradicate leukemia stem cells (LSCs), the underlying mechanisms maintaining CML LSCs remain poorly understood. Here, we showed that transient inhibition of miR-21 by antagomiR-21 markedly increased imatinib-induced apoptosis in CML, but not normal CD34+ stem/progenitor cells. Furthermore, PI3K inhibitors also significantly sensitized CML CD34+ cells to imatinib-induced apoptosis. MiR-21 or PI3K inhibitor in combination with imatinib treatment significantly decreased AKT phosphorylation and c-Myc expression than either agent did alone, but did not affect Bim and Bcl-6 expresssion. These findings indicate that miR-21 is required for maintaining the imatinib-resistant phenotype of CML CD34+ cells through PI3K/AKT signaling pathway, thus providing the basis for a promising therapeutic approach to eliminate CML LSCs.
Collapse
Affiliation(s)
- Wei-Zhang Wang
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qiao-Hong Pu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiang-Hua Lin
- Department of clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Man-Yu Liu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Li-Rong Wu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Qing-Qing Wu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yong-Heng Chen
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Fen-Fang Liao
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China; Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jia-Yong Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Xiao-Bao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China.
| |
Collapse
|
218
|
Chaidos A, Caputo V, Karadimitris A. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Ther Adv Hematol 2015; 6:128-41. [PMID: 26137204 DOI: 10.1177/2040620715576662] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Post-translational modifications of the nucleosomal histone proteins orchestrate chromatin organization and gene expression in normal and cancer cells. Among them, the acetylation of N-terminal histone tails represents the fundamental epigenetic mark of open structure chromatin and active gene transcription. The bromodomain and extra-terminal (BET) proteins are epigenetic readers which utilize tandem bromodomains (BRD) modules to recognize and dock themselves on the acetylated lysine tails. The BET proteins act as scaffolds for the recruitment of transcription factors and chromatin organizers required in transcription initiation and elongation. The recent discovery of small molecules capable of blocking their lysine-binding pocket is the first paradigm of successful pharmacological inhibition of epigenetic readers. JQ1 is a prototype benzodiazepine molecule and a specific BET inhibitor with antineoplastic activity both in solid tumours and haematological malignancies. The quinolone I-BET151 and the suitable for clinical development I-BET762 benzodiazepine were introduced in parallel with JQ1 and have also shown potent antitumour activity in preclinical studies. I-BET762 is currently being tested in early phase clinical trials, along with a rapidly growing list of other BET inhibitors. Unlike older epigenetic therapies, the study of BET inhibitors has offered substantial, context-specific, mechanistic insights of their antitumour activity, which will facilitate optimal therapeutic targeting in future. Here, we review the development of this novel class of epigenetic drugs, the biology of BET protein inhibition, the emerging evidence from preclinical work and early phase clinical studies and we discuss their potential role in the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Aristeidis Chaidos
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Valentina Caputo
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Imperial College London, 4th Floor Commonwealth Building, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
219
|
Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, Gusscott S, Gracias D, Weng AP. Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling. Blood 2015; 125:3917-27. [PMID: 25934477 PMCID: PMC4548498 DOI: 10.1182/blood-2014-10-609370] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling pathway has been shown to play important roles in normal hematopoietic stem cell biology and in the development of both acute and chronic myelogenous leukemia. Its role in maintaining established leukemia stem cells, which are more directly relevant to patients with disease, however, is less clear. To address what role Wnt signaling may play in T-cell acute lymphoblastic leukemia (T-ALL), we used a stably integrated fluorescent Wnt reporter construct to interrogate endogenous Wnt signaling activity in vivo. In this study, we report that active Wnt signaling is restricted to minor subpopulations within bulk tumors, that these Wnt-active subsets are highly enriched for leukemia-initiating cells (LICs), and that genetic inactivation of β-catenin severely reduces LIC frequency. We show further that β-catenin transcription is upregulated by hypoxia through hypoxia-inducible factor 1α (Hif1α) stabilization, and that deletion of Hif1α also severely reduces LIC frequency. Of note, the deletion of β-catenin or Hif1α did not impair the growth or viability of bulk tumor cells, suggesting that elements of the Wnt and Hif pathways specifically support leukemia stem cells. We also confirm the relevance of these findings to human disease using cell lines and patient-derived xenografts, suggesting that targeting these pathways could benefit patients with T-ALL.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Sonya H Lam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Catherine Hoofd
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Miriam Belmonte
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Xuehai Wang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sam Gusscott
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Deanne Gracias
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
220
|
Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA, Morrison SJ, Fooksman DR, Aifantis I, Schwab SR. CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. Cancer Cell 2015; 27:755-68. [PMID: 26058075 PMCID: PMC4461838 DOI: 10.1016/j.ccell.2015.05.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of Cxcr4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL.
Collapse
Affiliation(s)
- Lauren A Pitt
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Anastasia N Tikhonova
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Hai Hu
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Thomas Trimarchi
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Bryan King
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Yixiao Gong
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Marta Sanchez-Martin
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, 1130 Saint Nicholas Avenue, New York, NY 10032, USA
| | - Aris Tsirigos
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Dan R Littman
- Howard Hughes Medical Institute and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, 1130 Saint Nicholas Avenue, New York, NY 10032, USA
| | - Sean J Morrison
- Howard Hughes Medical Institute and Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 131, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | - Susan R Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
221
|
Witkowski MT, Cimmino L, Hu Y, Trimarchi T, Tagoh H, McKenzie MD, Best SA, Tuohey L, Willson TA, Nutt SL, Busslinger M, Aifantis I, Smyth GK, Dickins RA. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia 2015; 29:1301-11. [PMID: 25655195 PMCID: PMC4845663 DOI: 10.1038/leu.2015.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Activating NOTCH1 mutations occur in ~60% of human T-cell acute lymphoblastic leukemias (T-ALLs), and mutations disrupting the transcription factor IKZF1 (IKAROS) occur in ~5% of cases. To investigate the regulatory interplay between these driver genes, we have used a novel transgenic RNA interference mouse model to produce primary T-ALLs driven by reversible Ikaros knockdown. Restoring endogenous Ikaros expression in established T-ALL in vivo acutely represses Notch1 and its oncogenic target genes including Myc, and in multiple primary leukemias causes disease regression. In contrast, leukemias expressing high levels of endogenous or engineered forms of activated intracellular Notch1 (ICN1) resembling those found in human T-ALL rapidly relapse following Ikaros restoration, indicating that ICN1 functionally antagonizes Ikaros in established disease. Furthermore, we find that IKAROS mRNA expression is significantly reduced in a cohort of primary human T-ALL patient samples with activating NOTCH1/FBXW7 mutations, but is upregulated upon acute inhibition of aberrant NOTCH signaling across a panel of human T-ALL cell lines. These results demonstrate for the first time that aberrant NOTCH activity compromises IKAROS function in mouse and human T-ALL, and provide a potential explanation for the relative infrequency of IKAROS gene mutations in human T-ALL.
Collapse
Affiliation(s)
- MT Witkowski
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - L Cimmino
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Y Hu
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - T Trimarchi
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - H Tagoh
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - MD McKenzie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - SA Best
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - L Tuohey
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - TA Willson
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - SL Nutt
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - M Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - I Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - GK Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - RA Dickins
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
222
|
Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A, Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015; 6:5102-17. [PMID: 25671302 PMCID: PMC4467136 DOI: 10.18632/oncotarget.3244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion, the alternative splicing of FIR, which generates FIRΔexon2, may contribute to both colorectal carcinogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Nobuko Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Chiba, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Takeshi Mori
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Minoru Kito
- Oriental Yeast Co., Ltd. Azusawa, Itabashi-ku, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo Prefecture, Japan
| | - Chiaki Nakaseko
- Department of Haematology, Chiba University Hospital, Inohana, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Masafumi Matsuo
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Arise, Ikawadani, Nishi, Kobe, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| |
Collapse
|
223
|
Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K, Chen EI, Celebi JT, Lazaris C, Tsirigos A, Osman I, Hernando E, Aifantis I. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol 2015; 17:322-332. [PMID: 25720964 PMCID: PMC4401662 DOI: 10.1038/ncb3121] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022]
Abstract
Heat-shock factor 1 (HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase FBXW7α interacts with HSF1 through a conserved motif phosphorylated by GSK3β and ERK1. FBXW7α ubiquitylates HSF1 and loss of FBXW7α results in impaired degradation of nuclear HSF1 and defective heat-shock response attenuation. FBXW7α is either mutated or transcriptionally downregulated in melanoma and HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. FBXW7α deficiency and subsequent HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the HSF1 transcriptional program both in the presence of exogenous stress and in cancer.
Collapse
Affiliation(s)
- Nikos Kourtis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Rana S. Moubarak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Beatriz Aranda-Orgilles
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Kevin Lui
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Iraz T. Aydin
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Trimarchi
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Christine Salvaggio
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Judy Zhong
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Kamala Bhatt
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Emily I. Chen
- The Herbert Irving Comprehensive Cancer Center, Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julide T. Celebi
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charalampos Lazaris
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
- Center for Health Informatics and Bioinformatics, NYU School of Medicine, NY 10016, USA
| | - Aristotelis Tsirigos
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Center for Health Informatics and Bioinformatics, NYU School of Medicine, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
224
|
Sato M, Rodriguez-Barrueco R, Yu J, Do C, Silva JM, Gautier J. MYC is a critical target of FBXW7. Oncotarget 2015; 6:3292-305. [PMID: 25669969 PMCID: PMC4413654 DOI: 10.18632/oncotarget.3203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022] Open
Abstract
MYC deregulation is a driver of many human cancers. Altering the balance of MYC protein levels at the level of transcription, protein stability, or turnover is sufficient to transform cells to a tumorigenic phenotype. While direct targeting of MYC is difficult, specific genetic vulnerabilities of MYC-deregulated cells could be exploited to selectively inhibit their growth. Using a genome-wide shRNA screen, we identified 78 candidate genes, which are required for survival of human mammary epithelial cells with elevated MYC levels. Among the candidates, we validated and characterized FBXW7, a component of the SCF-like ubiquitin ligase complex that targets MYC for proteasomal degradation. Down-regulation of FBXW7 leads to synergistic accumulation of cellular and active chromatin-bound MYC, while protein levels of other FBXW7 targets appear unaffected. Over a four-week time course, continuous FBXW7 down-regulation and MYC activation together cause an accumulation of cells in S-phase and G2/M-phase of the cell cycle. Under these conditions, we also observe elevated chromatin-bound levels of CDC45, suggesting increased DNA replication stress. Consistent with these results, FBXW7 down-regulation alone decreases the survival of T47D breast cancer cells. These results establish that FBXW7 down-regulation is synthetic lethal with MYC, and that MYC is a critical target of FBXW7 in breast epithelial cells.
Collapse
Affiliation(s)
- Mai Sato
- Department of Pathology and Cell Biology, Columbia University, New York, USA
- Institute for Cancer Genetics, Columbia University, New York, USA
| | - Ruth Rodriguez-Barrueco
- Institute for Cancer Genetics, Columbia University, New York, USA
- Department of Pathology, Mount Sinai School of Medicine, New York, USA
| | - Jiyang Yu
- Department of Biomedical Informatics, Columbia University, New York, USA
| | - Catherine Do
- Institute for Cancer Genetics, Columbia University, New York, USA
| | - Jose M. Silva
- Department of Pathology and Cell Biology, Columbia University, New York, USA
- Institute for Cancer Genetics, Columbia University, New York, USA
- Department of Pathology, Mount Sinai School of Medicine, New York, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, USA
- Department of Genetics and Development, Columbia University, New York, USA
| |
Collapse
|
225
|
Park SM, Gönen M, Vu L, Minuesa G, Tivnan P, Barlowe TS, Taggart J, Lu Y, Deering RP, Hacohen N, Figueroa ME, Paietta E, Fernandez HF, Tallman MS, Melnick A, Levine R, Leslie C, Lengner CJ, Kharas MG. Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest 2015; 125:1286-98. [PMID: 25664853 DOI: 10.1172/jci78440] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/05/2015] [Indexed: 01/15/2023] Open
Abstract
Leukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Leukemia cells exhibit a dysregulated developmental program as the result of genetic and epigenetic alterations. Overexpression of the RNA-binding protein Musashi2 (MSI2) has been previously shown to predict poor survival in leukemia. Here, we demonstrated that conditional deletion of Msi2 in the hematopoietic compartment results in delayed leukemogenesis, reduced disease burden, and a loss of LSC function in a murine leukemia model. Gene expression profiling of these Msi2-deficient animals revealed a loss of the hematopoietic/leukemic stem cell self-renewal program and an increase in the differentiation program. In acute myeloid leukemia patients, the presence of a gene signature that was similar to that observed in Msi2-deficent murine LSCs correlated with improved survival. We determined that MSI2 directly maintains the mixed-lineage leukemia (MLL) self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc, and Ikzf2 mRNAs. Moreover, depletion of MLL target Ikzf2 in LSCs reduced colony formation, decreased proliferation, and increased apoptosis. Our data provide evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and suggest MSI2 as a potential therapeutic target for myeloid leukemia.
Collapse
|
226
|
Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, Aifantis I. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 2015; 158:593-606. [PMID: 25083870 DOI: 10.1016/j.cell.2014.05.049] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/23/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022]
Abstract
Notch signaling is a key developmental pathway that is subject to frequent genetic and epigenetic perturbations in many different human tumors. Here we investigate whether long noncoding RNA (lncRNA) genes, in addition to mRNAs, are key downstream targets of oncogenic Notch1 in human T cell acute lymphoblastic leukemia (T-ALL). By integrating transcriptome profiles with chromatin state maps, we have uncovered many previously unreported T-ALL-specific lncRNA genes, a fraction of which are directly controlled by the Notch1/Rpbjκ activator complex. Finally we have shown that one specific Notch-regulated lncRNA, LUNAR1, is required for efficient T-ALL growth in vitro and in vivo due to its ability to enhance IGF1R mRNA expression and sustain IGF1 signaling. These results confirm that lncRNAs are important downstream targets of the Notch signaling pathway, and additionally they are key regulators of the oncogenic state in T-ALL.
Collapse
Affiliation(s)
- Thomas Trimarchi
- Howard Hughes Medical Institute, Laura and Isaac Perlmutter Cancer Center, and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Erhan Bilal
- Computational Biology Center, IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Panagiotis Ntziachristos
- Howard Hughes Medical Institute, Laura and Isaac Perlmutter Cancer Center, and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Giulia Fabbri
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA; Center for Health Informatics and Bioinformatics, NYU School of Medicine, 227 East 30(th) Street, New York, NY 10016, USA.
| | - Iannis Aifantis
- Howard Hughes Medical Institute, Laura and Isaac Perlmutter Cancer Center, and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
227
|
Loosveld M, Castellano R, Gon S, Goubard A, Crouzet T, Pouyet L, Prebet T, Vey N, Nadel B, Collette Y, Payet-Bornet D. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL. Oncotarget 2015; 5:3168-72. [PMID: 24930440 PMCID: PMC4102800 DOI: 10.18632/oncotarget.1873] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
T-ALL patients treated with intensive chemotherapy achieve high rates of remission. However, frequent long-term toxicities and relapses into chemotherapy-refractory tumors constitute major clinical challenges which could be met by targeted therapies. c-MYC is a central oncogene in T-ALL, prompting the exploration of the efficacy of MYC inhibitors such as JQ1 (BET-bromodomain inhibitor), and SAHA (HDAC inhibitor). Using a standardized ex vivo drug screening assay, we show here that JQ1 and SAHA show competitive efficiency compared to inhibitors of proteasome, PI3K/AKT/mTOR and NOTCH pathways, and synergize in combination with Vincristine. We also compared for the first time the in vivo relevance of such associations in mice xenografted with human primary T-ALLs. Our data indicate that although treatments combining JQ1 or SAHA with chemotherapeutic regimens might represent promising developments in T-ALL, combinations will need to be tailored to specific subgroups of responsive patients, the profiles of which still remain to be precisely defined.
Collapse
Affiliation(s)
- Marie Loosveld
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci 2015; 16:2294-306. [PMID: 25622249 PMCID: PMC4346837 DOI: 10.3390/ijms16022294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7) is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS) cases were significantly lower than those in normal bone tissues. Clinical analysis indicated that FBXW7 was expressed at lower levels in OS patients with advanced clinical stage, high T classification and poor histological differentiation. Furthermore, we demonstrated that high expression of FBXW7 was correlated with a better 5-year survival of OS patients. Multivariate Cox regression analysis indicated that FBXW7 was an independent prognostic marker in OS. Our in vitro studies showed that FBXW7 overexpression inhibited cell cycle transition and cell proliferation, and promoted apoptosis in both U2OS and MG-63 cells. In a nude mouse xenograft model, FBXW7 overexpression slowed down tumor growth by inducing apoptosis and growth arrest. Mechanistically, FBXW7 inversely regulated oncoprotein c-Myc and cyclin E levels in both U2OS and MG-63 cells. Together these findings suggest that FBXW7 may serve as a prognostic biomarker and inhibit tumor progression by inducing apoptosis and growth arrest in OS.
Collapse
|
229
|
NOTCH1 and FBXW7 mutations favor better outcome in pediatric South Indian T-cell acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2015; 37:e23-30. [PMID: 25493453 DOI: 10.1097/mph.0000000000000290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The NOTCH1 signaling pathway is essential for hematopoiesis and a critical regulatory step for T-cell proliferation and maturation. The E3 ubiquitin ligase FBXW7 controls NOTCH1 protein stability. Mutations in NOTCH1/FBXW7 activate NOTCH signaling and are of prognostic significance in patients with T-cell acute lymphoblastic leukemia (T-ALL). In this study we analyzed NOTCH1 and FBXW7 mutations in 50 South Indian T-ALL patients treated by a modified ALL BFM 95 regimen. The hot spot exons (HD-N, HD-C, TAD, and PEST) of NOTCH1 and exons 9 of the 10 of FBXW7 were polymerase chain reaction amplified and sequenced. In total, 20 of the 50 (40%) T-ALL patients revealed heterozygous mutations in the NOTCH1 domains, and a predominance of missense mutations in HD-N (70%) and PEST (15%) domains. FBXW7 mutations were detected in 5 of the 50 (10%) T-ALL patients. T-ALL patients with NOTCH1/FBXW7 mutations expressed higher protein level of NOTCH1 compared with patients without NOTCH1/FBXW7 mutations. Six of the mutations detected in NOTCH1 were not reported previously. When tested in a Dual Luciferase Renilla reporter assay some of these conferred increased NOTCH activity, suggesting that these are activating mutations. Importantly, 13 of the 20 (65%) NOTCH1/FBXW7-mutated T-ALL patients showed a good prednisone response (P=0.01) and a better clinical outcome compared with NOTCH1/FBXW7 nonmutated patients (P=0.03). These data suggest that NOTCH1/FBXW7 mutations are present in T-ALL patients from Southern India and may be useful biomarkers to predict prognosis in T-ALL.
Collapse
|
230
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
231
|
Li Z, Sun Y, Chen X, Squires J, Nowroozizadeh B, Liang C, Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol Cancer Res 2014; 13:584-91. [PMID: 25512615 DOI: 10.1158/1541-7786.mcr-14-0277-t] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Prostatic small cell neuroendocrine carcinoma (SCNC) is a rare but aggressive form of prostate cancer that is negative for androgen receptor (AR) and not responsive to hormonal therapy. The molecular etiology of this prostate cancer variant is not well understood; however, mutation of the p53 (TP53) tumor suppressor in prostate neuroendocrine cells inactivates the IL8-CXCR2-p53 pathway that normally inhibits cellular proliferation, leading to the development of SCNC. SCNC also overexpresses Aurora kinase A (AURKA) which is considered to be a viable therapeutic target. Therefore, the relationship of these two molecular events was studied, and we show that p53 mutation leads to increased expression of miR-25 and downregulation of the E3 ubiquitin ligase FBXW7, resulting in elevated levels of Aurora kinase A. This study demonstrates an intracellular pathway by which p53 mutation leads to Aurora kinase A expression, which is critically important for the rapid proliferation and aggressive behavior of prostatic SCNC. IMPLICATIONS The pathogenesis of prostatic SCNC involves a p53 and Aurora Kinase A signaling mechanism, both potentially targetable pathways.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Yin Sun
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California.
| | - Xufeng Chen
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Jill Squires
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Behdokht Nowroozizadeh
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaoti Huang
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
232
|
SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol Cancer 2014; 13:260. [PMID: 25471937 PMCID: PMC4265428 DOI: 10.1186/1476-4598-13-260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/24/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signaling is thought to play key roles in regulating the survival and maintenance of cancer stem cells (CSCs), which contribute to disease recurrences and treatment failures in many malignances, including head and neck squamous cell carcinoma (HNSCC). Intracellular BMP signaling is regulated by SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) during cellular development. However, little is known about the role or regulation of BMP signaling in HNSCC CSCs. METHODS Two CSC-like populations, CD44(high)/BMI1(high) and CD44(high)/ALDH(high), were enriched from HNSCC cell lines and evaluated for the expression of SMURF1 by qRT-PCR, flow cytometry, and immunoblotting. The activation status of BMP signaling in these populations was determined by using immunoblotting to detect phosphorylated SMAD1/5/8 (pSMAD1/5/8) levels. Knockdown of SMURF1 transcripts by RNA interference was used to assess the role of SMURF1 in BMP signaling and CSC maintenance. Loss of CSC-like phenotypes following SMURF1 knockdown was determined by changes in CD44(high) levels, cellular differentiation, and reduction in colony formation. RESULTS Populations of enriched CSC-like cells displayed decreased levels of pSMAD1/5/8 and BMP signaling target gene ID1 while SMURF1, CD44, and BMI1 were highly expressed when compared to non-CSC populations. Stable knockdown of SMURF1 expression in CSC-like cells increased pSMAD1/5/8 protein levels, indicating the reactivation of BMP signaling pathways. Decreased expression of SMURF1 also promoted adipogenic differentiation and reduced colony formation in a three-dimensional culture assay, indicating loss of tumorigenic capacity. The role of SMURF1 and inhibition of BMP signaling in maintaining a CSC-like population was confirmed by the loss of a CD44(high) expressing subpopulation in SMURF1 knockdown cells. CONCLUSIONS Our findings suggest that inhibition of BMP signaling potentiates the long-term survival of HNSCC CSCs, and that this inhibition is mediated by SMURF1. Targeting SMURF1 and restoring BMP signaling may offer a new therapeutic approach to promote differentiation and reduction of CSC populations leading to reduced drug resistance and disease recurrence.
Collapse
|
233
|
Ott CJ. Promising new strategies to target gene regulatory factors in T-cell acute lymphoblastic leukemia. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
234
|
Abstract
The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Julia K Pagan
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Michele Pagano
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2] Howard Hughes Medical Institute
| |
Collapse
|
235
|
Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1594-606. [PMID: 25450485 DOI: 10.1016/j.bbagen.2014.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Embryogenesis and stem cell differentiation are complex and orchestrated signaling processes. Reactive oxygen species (ROS) act as essential signal transducers in cellular differentiation, as has been shown through recent discoveries. On the other hand, the ubiquitin-proteasome system (UPS) has long been known to play an important role in all cellular regulated processes, including differentiation. SCOPE OF REVIEW In the present review, we focus on findings that highlight the interplay between redox signaling and the UPS regarding cell differentiation. Through systems biology analyses, we highlight major routes during cardiomyocyte differentiation based on redox signaling and UPS modulation. MAJOR CONCLUSION Oxygen availability and redox signaling are fundamental regulators of cell fate upon differentiation. The UPS plays an important role in the maintenance of pluripotency and the triggering of differentiation. GENERAL SIGNIFICANCE Cellular differentiation has been a matter of intense investigation mainly because of its potential therapeutic applications. Understanding regulatory mechanisms underlying cell differentiation is an important issue. Correspondingly, the role of UPS and regulation of redox processes have been emerged as essential factors to control the fate of cells upon differentiation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil.
| | - Vanessa Simões
- Department of Genetics and Evolutive Biology, IB, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Porto Alegre, RS, Brazil.
| |
Collapse
|
236
|
Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR, Liu L, Wang H, King B, Shaik S, Gutierrez A, Ordureau A, Otto T, Kreslavsky T, Baitsch L, Bury L, Meyer CA, Ke N, Mulry KA, Kluk MJ, Roy M, Kim S, Zhang X, Geng Y, Zagozdzon A, Jenkinson S, Gale RE, Linch DC, Zhao JJ, Mullighan CG, Harper JW, Aster JC, Aifantis I, von Boehmer H, Gygi SP, Wei W, Look AT, Sicinski P. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol 2014; 16:1080-91. [PMID: 25344755 PMCID: PMC4235773 DOI: 10.1038/ncb3046] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Cyclin C was cloned as a growth-promoting G1 cyclin, and was also shown to regulate gene transcription. Here we report that in vivo cyclin C acts as a haploinsufficient tumour suppressor, by controlling Notch1 oncogene levels. Cyclin C activates an 'orphan' CDK19 kinase, as well as CDK8 and CDK3. These cyclin-C-CDK complexes phosphorylate the Notch1 intracellular domain (ICN1) and promote ICN1 degradation. Genetic ablation of cyclin C blocks ICN1 phosphorylation in vivo, thereby elevating ICN1 levels in cyclin-C-knockout mice. Cyclin C ablation or heterozygosity collaborates with other oncogenic lesions and accelerates development of T-cell acute lymphoblastic leukaemia (T-ALL). Furthermore, the cyclin C encoding gene CCNC is heterozygously deleted in a significant fraction of human T-ALLs, and these tumours express reduced cyclin C levels. We also describe point mutations in human T-ALL that render cyclin-C-CDK unable to phosphorylate ICN1. Hence, tumour cells may develop different strategies to evade inhibition by cyclin C.
Collapse
Affiliation(s)
- Na Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joel Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Marc R. Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/ Oncology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Lijun Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Haizhen Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Bryan King
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/ Oncology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Taras Kreslavsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Lukas Baitsch
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Leah Bury
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Clifford A. Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA
| | - Nan Ke
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kristin A. Mulry
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Michael J. Kluk
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Moni Roy
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Sunkyu Kim
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Xiaowu Zhang
- Cell Signaling Technology, Inc., Danvers MA 01923, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Agnieszka Zagozdzon
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Sarah Jenkinson
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Rosemary E. Gale
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - David C. Linch
- Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Research Hospital, Memphis, Tennessee 38105, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Harald von Boehmer
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/ Oncology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
237
|
Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H, Aguiar RCT. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 2014; 29:968-76. [PMID: 25311243 PMCID: PMC4391979 DOI: 10.1038/leu.2014.302] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/26/2014] [Accepted: 10/07/2014] [Indexed: 12/28/2022]
Abstract
Growing evidence suggests that microRNAs facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a microRNA intermediary, modulates NOTCH. MicroRNA-30a, a member of family of microRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that microRNA-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed microRNA-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression, and ultimately de-repressedmicroRNA-30a. Examination of genetic models of gain and loss of microRNA-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor suppressive role for this microRNA. Finally, the activity of the microRNA-30a-NOTCH-MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a microRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.
Collapse
Affiliation(s)
- M Ortega
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H Bhatnagar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A-P Lin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L Wang
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - R C T Aguiar
- 1] Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Greehey Children's Cancer Research Institute, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA [4] South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX, USA
| |
Collapse
|
238
|
Davis RJ, Welcker M, Clurman BE. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 2014; 26:455-64. [PMID: 25314076 PMCID: PMC4227608 DOI: 10.1016/j.ccell.2014.09.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Tumor suppressors with widespread impact on carcinogenesis control broad spectra of oncogenic pathways. Protein degradation is an emerging mechanism by which tumor suppressors regulate a diversity of pathways and is exemplified by the SCF(Fbw7) ubiquitin ligase. Rapidly accumulating data indicate that SCF(Fbw7) regulates a network of crucial oncoproteins. Importantly, the FBXW7 gene, which encodes Fbw7, is one of the most frequently mutated genes in human cancers. These studies are yielding important new insights into tumorigenesis and may soon enable therapies targeting the Fbw7 pathway. Here, we focus on the mechanisms and consequences of Fbw7 deregulation in cancers and discuss possible therapeutic approaches.
Collapse
Affiliation(s)
- Ryan J Davis
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Markus Welcker
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce E Clurman
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
239
|
The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors. Cell Death Dis 2014; 5:e1450. [PMID: 25299775 PMCID: PMC4237236 DOI: 10.1038/cddis.2014.396] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022]
Abstract
Endogenous c-MYC (MYC) has been reported to be a potential pharmacological target to trigger ubiquitous tumor regression of pancreatic neuroendocrine tumors (PanNETs) and lung tumors. Recently inhibitors of bromodomain and extra-terminal (BET) family proteins have shown antitumor effects through the suppression of MYC in leukemia and lymphoma. In this paper, we investigated the antitumor activity of a BET protein bromodomain inhibitor (BETi) CPI203 as a single agent and in combination with rapamycin in human PanNETs. We found that exposure of human PanNET cell lines to CPI203 led to downregulation of MYC expression, G1 cell cycle arrest and nearly complete inhibition of cell proliferation. In addition, overexpression of MYC suppressed the growth inhibition caused by CPI203 and knockdown of MYC phenocopied the effects of CPI203 treatment. These findings indicate that suppression of MYC contributed to the antiproliferative effects of BETi inhibition in human PanNET cells. Importantly, CPI203 treatment enhanced the antitumor effects of rapamycin in PanNET cells grown in monolayer and in three-dimensional cell cultures, as well as in a human PanNET xenograft model in vivo. Furthermore, the combination treatment attenuated rapamycin-induced AKT activation, a major limitation of rapamycin therapy. Collectively, our data suggest that targeting MYC with a BETi may increase the therapeutic benefits of rapalogs in human PanNET patients. This provides a novel clinical strategy for PanNETs, and possibly for other tumors as well.
Collapse
|
240
|
Schubbert S, Cardenas A, Chen H, Garcia C, Guo W, Bradner J, Wu H. Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Cancer Res 2014; 74:7048-59. [PMID: 25287161 DOI: 10.1158/0008-5472.can-14-1470] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disease relapse remains the major clinical challenge in treating T-cell acute lymphoblastic leukemia (T-ALL), particularly those with PTEN loss. We hypothesized that leukemia-initiating cells (LIC) are responsible for T-ALL development and treatment relapse. In this study, we used a genetically engineered mouse model of Pten(-/-) T-ALL with defined blast and LIC-enriched cell populations to demonstrate that LICs are responsible for therapeutic resistance. Unlike acute and chronic myelogenous leukemia, LICs in T-ALL were actively cycling, were distinct biologically, and responded differently to targeted therapies in comparison with their differentiated blast cell progeny. Notably, we found that T-ALL LICs could be eliminated by cotargeting the deregulated pathways driven by PI3K and Myc, which are altered commonly in human T-ALL and are associated with LIC formation. Our findings define critical events that may be targeted to eliminate LICs in T-ALL as a new strategy to treat the most aggressive relapsed forms of this disease.
Collapse
Affiliation(s)
- Suzanne Schubbert
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Anjelica Cardenas
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. Department of Biology, California State University Northridge, Northridge, California
| | - Harrison Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Consuelo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Wei Guo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
241
|
Abstract
MYC translocations represent a genetic subtype of T-lineage acute lymphoblastic leukemia (T-ALL), which occurs at an incidence of ∼6%, assessed within a cohort of 196 T-ALL patients (64 adults and 132 children). The translocations were of 2 types; those rearranged with the T-cell receptor loci and those with other partners. MYC translocations were significantly associated with the TAL/LMO subtype of T-ALL (P = .018) and trisomies 6 (P < .001) and 7 (P < .001). Within the TAL/LMO subtype, gene expression profiling identified 148 differentially expressed genes between patients with and without MYC translocations; specifically, 77 were upregulated and 71 downregulated in those with MYC translocations. The poor prognostic marker, CD44, was among the upregulated genes. MYC translocations occurred as secondary abnormalities, present in subclones in one-half of the cases. Longitudinal studies indicated an association with induction failure and relapse.
Collapse
|
242
|
PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124:1777-89. [DOI: 10.1182/blood-2014-01-551234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Key Points
CD25 is a predictive biomarker for sensitivity to PIM inhibitors in AML cells. PIM inhibitors may prolong overall/relapse-free survival through attenuating STAT5 activation and destabilizing MYC in CD25+ AML cells.
Collapse
|
243
|
Martelli AM, Lonetti A, Buontempo F, Ricci F, Tazzari PL, Evangelisti C, Bressanin D, Cappellini A, Orsini E, Chiarini F. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul 2014; 56:6-21. [PMID: 24819383 DOI: 10.1016/j.jbior.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, 03043 Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
244
|
Sarmento LM, Póvoa V, Nascimento R, Real G, Antunes I, Martins LR, Moita C, Alves PM, Abecasis M, Moita LF, Parkhouse RME, Meijerink JPP, Barata JT. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 2014; 34:2978-90. [PMID: 25132270 DOI: 10.1038/onc.2014.248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.
Collapse
Affiliation(s)
- L M Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - V Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R Nascimento
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - G Real
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - I Antunes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - L R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - P M Alves
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - M Abecasis
- Cardiologia Pediátrica Medico-Cirúrgica, Hospital Sta. Cruz, Carnaxide, Lisbon, Portugal
| | - L F Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R M E Parkhouse
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
245
|
Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 2014; 514:513-7. [PMID: 25132549 PMCID: PMC4209203 DOI: 10.1038/nature13605] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 06/18/2014] [Indexed: 01/20/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy with dismal overall prognosis, exhibiting up to a 25% relapse rate, mainly due to the absence of non-cytotoxic targeted therapy options. Despite the fact that drugs targeting the function of key epigenetic factors have been approved in the context of hematopoietic disorders1 and the recent identification of mutations affecting chromatin modulators in a variety of leukemias2,3, “epigenetic” drugs are not currently used for TALL treatment. Recently, we described a tumor suppressor role of the polycomb repressive complex 2 (PRC2) in this tumor4. Here we sought out to delineate the role of histone 3 lysine 27 (H3K27) demethylases, JMJD3 and UTX. We show that JMJD3 is essential for initiation and maintenance of disease, as it controls important oncogenic gene targets through the modulation of H3K27 methylation. In contrast, UTX acts a tumor suppressor and frequently genetically inactivated in T-ALL. Moreover, we demonstrate that the small molecule inhibitor GSKJ45 affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with similar enzymatic function can play opposing roles in the context of the same disease and pave the way for the use of a new category of epigenetic inhibitors in hematopoietic malignancies.
Collapse
|
246
|
Ceribelli M, Kelly PN, Shaffer AL, Wright GW, Xiao W, Yang Y, Mathews Griner LA, Guha R, Shinn P, Keller JM, Liu D, Patel PR, Ferrer M, Joshi S, Nerle S, Sandy P, Normant E, Thomas CJ, Staudt LM. Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors. Proc Natl Acad Sci U S A 2014; 111:11365-70. [PMID: 25049379 PMCID: PMC4128109 DOI: 10.1073/pnas.1411701111] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB-driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug-drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.
Collapse
Affiliation(s)
| | | | | | - George W Wright
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | - Lesley A Mathews Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan M Keller
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Dongbo Liu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Paresma R Patel
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | - Shivangi Joshi
- Constellation Pharmaceuticals, Inc., Cambridge, MA 02142
| | - Sujata Nerle
- Constellation Pharmaceuticals, Inc., Cambridge, MA 02142
| | - Peter Sandy
- Constellation Pharmaceuticals, Inc., Cambridge, MA 02142
| | | | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892; and
| | | |
Collapse
|
247
|
Abstract
Acute lymphoblastic leukemia is the most common malignancy in children. Although it is now curable in 80-90% of cases, patients with T-cell acute lymphoblastic leukemia (T-ALL) experience a higher frequency of induction failure and early relapse. Despite aggressive treatment approaches, including transplantation and new salvage regimens, most children with relapsed T-ALL will not be cured. As such, we are in need of new targeted therapies for the disease. Recent advances in the molecular characterization of T-ALL have uncovered a number of new therapeutic targets. This review will summarize recent advancements in the study of inhibiting the NOTCH1, PI3K-AKT, and Cyclin D3:CDK4/6 pathways as therapeutic strategies for T-ALL. We will focus on pre-clinical studies supporting the testing of small-molecule inhibitors targeting these proteins and the rationale of combination therapies. Moreover, epigenetic approaches to modulate T-ALL are rapidly emerging. Here, we will discuss the data supporting the role of bromodomain and extra-terminal bromodomain inhibitors in human T-ALL.
Collapse
Affiliation(s)
- Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Division of Hematology/Oncology, Boston Children's Hospital , Boston, MA , USA ; Hematology and Bone Marrow Transplantation Unit, University of Perugia , Perugia , Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Division of Hematology/Oncology, Boston Children's Hospital , Boston, MA , USA ; Broad Institute of Harvard and Massachusetts Institute of Technology , Cambridge, MA , USA
| |
Collapse
|
248
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|
249
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
250
|
Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer 2014; 111:1054-9. [PMID: 24853181 PMCID: PMC4453837 DOI: 10.1038/bjc.2014.259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/12/2014] [Accepted: 04/15/2014] [Indexed: 01/15/2023] Open
Abstract
In addition to the properties of self-renewal and multipotency, stem cells are characterised by their distinct cell cycle status. Somatic stem cells are maintained in a quiescent state but switch reversibly from quiescence to proliferation as needed. On the other hand, embryonic stem cells and induced pluripotent stem cells proliferate rapidly until the induction of differentiation results in inhibition of cell cycle progression. Uncovering the mechanisms underlying cell cycle control in stem cells should thus provide insight into regulation of the balance between self-renewal and differentiation, a key goal of stem cell biology. Recent research has shown that cancer-initiating cells (CICs), a cell population with stem cell-like properties in cancer, are also quiescent, with this characteristic conferring resistance to anticancer therapies that target dividing cells. Elucidation of the mechanisms of CIC quiescence might therefore be expected to provide a basis for the eradication of cancer. This review summarises our current understanding of the role of F-box and WD40 repeat domain-containing 7 (Fbxw7), a key regulator of the cell cycle, in the maintenance of normal stem cells and CICs, as well as attempts to define future challenges in this field.
Collapse
|