201
|
Kukalev A, Ng YM, Ju L, Saidi A, Lane S, Mondragon A, Dormann D, Walker SE, Grey W, Ho PWL, Stephens DN, Carr AM, Lamsa K, Tse E, Yu VPCC. Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates. Cereb Cortex 2017; 27:11-23. [PMID: 28365778 PMCID: PMC5939225 DOI: 10.1093/cercor/bhw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.
Collapse
Affiliation(s)
- Alexander Kukalev
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Current address:
Epigenetic Regulation and Chromatin Architecture Group
,
Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine
,
Robert-Rössle Strasse
,
Berlin-Buch 13125
,
Germany
| | - Yiu-Ming Ng
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Limei Ju
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Amal Saidi
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Sophie Lane
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Angeles Mondragon
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Dirk Dormann
- Microscopy Facility
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Sophie E. Walker
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - William Grey
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| | - Philip Wing-Lok Ho
- Division of Neurology
,
Department of Medicine
,
University of Hong Kong
,
Hong Kong
| | - David N. Stephens
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - Antony M. Carr
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Karri Lamsa
- Department of Pharmacology
,
Oxford University
,
Oxford OX1 3QT
,
UK
- Current address:
Department of Physiology, Anatomy and Neuroscience
,
University of Szeged
,
Közép fasor 52
,
Szeged H-6726,Hungary
| | - Eric Tse
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Veronica P. C. C. Yu
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| |
Collapse
|
202
|
Honma M, Shibuya T, Fujii M, Iinuma S, Ishida-Yamamoto A. Aberrant LIM-kinase 1 expression in hyperproliferative psoriatic epidermis. J Dermatol 2017; 44:91-92. [PMID: 27178114 DOI: 10.1111/1346-8138.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Masaru Honma
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Shibuya
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Mizue Fujii
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Shin Iinuma
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | | |
Collapse
|
203
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
204
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
205
|
Vergara D, Ferraro MM, Cascione M, del Mercato LL, Leporatti S, Ferretta A, Tanzarella P, Pacelli C, Santino A, Maffia M, Cocco T, Rinaldi R, Gaballo A. Cytoskeletal Alterations and Biomechanical Properties of parkin-Mutant Human Primary Fibroblasts. Cell Biochem Biophys 2016; 71:1395-404. [PMID: 25399302 DOI: 10.1007/s12013-014-0362-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Genes which have been implicated in autosomal-recessive PD include PARK2 which codes for parkin, an E3 ubiquitin ligase that participates in a variety of cellular activities. In this study, we compared parkin-mutant primary fibroblasts, from a patient with parkin compound heterozygous mutations, to healthy control cells. Western blot analysis of proteins obtained from patient's fibroblasts showed quantitative differences of many proteins involved in the cytoskeleton organization with respect to control cells. These molecular alterations are accompanied by changes in the organization of actin stress fibers and biomechanical properties, as revealed by confocal laser scanning microscopy and atomic force microscopy. In particular, parkin deficiency is associated with a significant increase of Young's modulus of null-cells in comparison to normal fibroblasts. The current study proposes that parkin influences the spatial organization of actin filaments, the shape of human fibroblasts, and their elastic response to an external applied force.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, ''Giovanni Paolo II'' Hospital, ASL-Lecce, Italy
| | - Marzia M Ferraro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Institute of Nanoscience-NNL, CNR, Via Arnesano, 16, Lecce, 73100, Italy
| | - Mariafrancesca Cascione
- Institute of Nanoscience-NNL, CNR, Via Arnesano, 16, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy
| | | | - Stefano Leporatti
- Institute of Nanoscience-NNL, CNR, Via Arnesano, 16, Lecce, 73100, Italy
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Paola Tanzarella
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Consiglia Pacelli
- Department of Pharmacology, Faculty of Medicine, Universitè de Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC, H3T1J4, Canada
| | - Angelo Santino
- Institute of Science of Food Production, CNR, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, ''Giovanni Paolo II'' Hospital, ASL-Lecce, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari 'A. Moro', Bari, Italy
| | - Ross Rinaldi
- Institute of Nanoscience-NNL, CNR, Via Arnesano, 16, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy
| | - Antonio Gaballo
- Institute of Nanoscience-NNL, CNR, Via Arnesano, 16, Lecce, 73100, Italy.
| |
Collapse
|
206
|
Short JD, Downs K, Tavakoli S, Asmis R. Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxid Redox Signal 2016; 25:816-835. [PMID: 27288099 PMCID: PMC5107717 DOI: 10.1089/ars.2016.6697] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. CRITICAL ISSUES Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. FUTURE DIRECTIONS The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
Collapse
Affiliation(s)
- John D Short
- 1 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 2 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 3 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,5 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
207
|
Takahashi K, Okabe H, Kanno SI, Nagai T, Mizuno K. A pleckstrin homology-like domain is critical for F-actin binding and cofilin-phosphatase activity of Slingshot-1. Biochem Biophys Res Commun 2016; 482:686-692. [PMID: 27865840 DOI: 10.1016/j.bbrc.2016.11.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Slingshot-1 (SSH1) is a protein phosphatase that specifically dephosphorylates and activates cofilin, an F-actin-severing protein. SSH1 binds to and co-localizes with F-actin, and the cofilin-phosphatase activity of SSH1 is markedly increased by binding to F-actin. In this study, we performed a secondary structure analysis of SSH1, which predicted the existence of a pleckstrin homology (PH)-like domain in the N-terminal region of SSH1. SSH1 also contains a DEK-C domain in the N-terminal region. The N-terminal fragment of SSH1 bound to and co-localized with F-actin, but mutation at Arg-96 or a Leu-His-Lys (LHK) motif in the PH-like domain reduced this activity. Furthermore, mutation at Arg-96 abrogated the cofilin-phosphatase activity of SSH1 in the presence of F-actin. These results suggest that the N-terminal PH-like domain plays a critical role in F-actin binding and F-actin-mediated activation of the cofilin-phosphatase activity of SSH1.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Haruka Okabe
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
208
|
Kauskot A, Poirault-Chassac S, Adam F, Muczynski V, Aymé G, Casari C, Bordet JC, Soukaseum C, Rothschild C, Proulle V, Pietrzyk-Nivau A, Berrou E, Christophe OD, Rosa JP, Lenting PJ, Bryckaert M, Denis CV, Baruch D. LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B. JCI Insight 2016; 1:e88643. [PMID: 27734030 DOI: 10.1172/jci.insight.88643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
von Willebrand disease type 2B (VWD-type 2B) is characterized by gain-of-function mutations of von Willebrand factor (vWF) that enhance its binding to platelet glycoprotein Ibα and alter the protein's multimeric structure. Patients with VWD-type 2B display variable extents of bleeding associated with macrothrombocytopenia and sometimes with thrombopathy. Here, we addressed the molecular mechanism underlying the severe macrothrombocytopenia both in a knockin murine model for VWD-type 2B by introducing the p.V1316M mutation in the murine Vwf gene and in a patient bearing this mutation. We provide evidence of a profound defect in megakaryocyte (MK) function since: (a) the extent of proplatelet formation was drastically decreased in 2B MKs, with thick proplatelet extensions and large swellings; and (b) 2B MKs presented actin disorganization that was controlled by upregulation of the RhoA/LIM kinase (LIMK)/cofilin pathway. In vitro and in vivo inhibition of the LIMK/cofilin signaling pathway rescued actin turnover and restored normal proplatelet formation, platelet count, and platelet size. These data indicate, to our knowledge for the first time, that the severe macrothrombocytopenia in VWD-type 2B p.V1316M is due to an MK dysfunction that originates from a constitutive activation of the RhoA/LIMK/cofilin pathway and actin disorganization. This suggests a potentially new function of vWF during platelet formation that involves regulation of actin dynamics.
Collapse
Affiliation(s)
- Alexandre Kauskot
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Frédéric Adam
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Hôpital Edouard Herriot, Lyon, France.,Laboratoire de Recherche sur l'Hémophilie, UCBL1, Faculté de Médecine Lyon-Est, Lyon, France
| | - Christelle Soukaseum
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | | | - Valérie Proulle
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Department of Biological Hematology, CHU Bicêtre, Hôpitaux Universitaires Paris Sud, AP-HP, Paris, France
| | | | - Eliane Berrou
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Philippe Rosa
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Marijke Bryckaert
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Dominique Baruch
- INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
209
|
Rom S, Zuluaga-Ramirez V, Reichenbach NL, Dykstra H, Gajghate S, Pacher P, Persidsky Y. PARP inhibition in leukocytes diminishes inflammation via effects on integrins/cytoskeleton and protects the blood-brain barrier. J Neuroinflammation 2016; 13:254. [PMID: 27677851 PMCID: PMC5039899 DOI: 10.1186/s12974-016-0729-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction/disruption followed by leukocyte infiltration into the brain causes neuroinflammation and contributes to morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. The identification of pathways that decreases the inflammatory potential of leukocytes would prevent such injury. Poly(ADP-ribose) polymerase 1 (PARP) controls various genes via its interaction with myriad transcription factors. Selective PARP inhibitors have appeared lately as potent anti-inflammatory tools. Their effects are outside the recognized PARP functions in DNA repair and transcriptional regulation. In this study, we explored the idea that selective inhibition of PARP in leukocytes would diminish their engagement of the brain endothelium. METHODS Cerebral vascular changes and leukocyte-endothelium interactions were surveyed by intravital videomicroscopy utilizing a novel in vivo model of localized aseptic meningitis when TNFα was introduced intracerebrally in wild-type (PARP+/+) and PARP-deficient (PARP-/-) mice. The effects of selective PARP inhibition on primary human monocytes ability to adhere to or migrate across the BBB were also tested in vitro, employing primary human brain microvascular endothelial cells (BMVEC) as an in vitro model of the BBB. RESULTS PARP suppression in monocytes diminished their adhesion to and migration across BBB in vitro models and prevented barrier injury. In monocytes, PARP inactivation decreased conformational activation of integrins that plays a key role in their tissue infiltration. Such changes were mediated by suppression of activation of small Rho GTPases and cytoskeletal rearrangements in monocytes. In vitro observations were confirmed in vivo showing diminished leukocyte-endothelial interaction after selective PARP suppression in leukocytes accompanied by BBB protection. PARP knockout animals demonstrated a substantial diminution of inflammatory responses in brain microvasculature and a decrease in BBB permeability. CONCLUSIONS These results suggest PARP inhibition in leukocytes as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation-induced leukocyte engagement.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Nancy L. Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20852 USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA 19140 USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140 USA
| |
Collapse
|
210
|
Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, Boutros M, Mizuno K, Krämer A, Raab MS. Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Res 2016; 76:6690-6700. [PMID: 27634760 DOI: 10.1158/0008-5472.can-16-1144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
Abstract
Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.
Collapse
Affiliation(s)
- Gleb Konotop
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Elena Bausch
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Marc Steffen Raab
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
211
|
EphB2 in the Medial Prefrontal Cortex Regulates Vulnerability to Stress. Neuropsychopharmacology 2016; 41:2541-56. [PMID: 27103064 PMCID: PMC4987853 DOI: 10.1038/npp.2016.58] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 01/23/2023]
Abstract
The ephrin B2 (EphB2) receptor is a tyrosine kinase receptor that is associated with synaptic development and maturation. It has recently been implicated in cognitive deficits and anxiety. However, still unknown is the involvement of EphB2 in the vulnerability to stress. In the present study, we observed decreases in EphB2 levels and their downstream molecules in the medial prefrontal cortex (mPFC) but not in the orbitofrontal cortex (OFC) in mice that were susceptible to chronic social defeat stress. The activation of EphB2 receptors with EphrinB1-Fc in the mPFC produced stress-resistant and antidepressant-like behavioral effects in susceptible mice that lasted for at least 10 days. EphB2 receptor knockdown by short-hairpin RNA in the mPFC increased the susceptibility to stress and induced depressive-like behaviors in a subthreshold chronic social defeat stress paradigm. These behavioral effects were associated with changes in the phosphorylation of cofilin and membrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking and the expression of some synaptic proteins in the mPFC. We also found that EphB2 regulated stress-induced spine remodeling in the mPFC. Altogether, these results indicate that EphB2 is a critical regulator of stress vulnerability and might be a potential target for the treatment of depression.
Collapse
|
212
|
Al-Ghabkari A, Deng JT, McDonald PC, Dedhar S, Alshehri M, Walsh MP, MacDonald JA. A novel inhibitory effect of oxazol-5-one compounds on ROCKII signaling in human coronary artery vascular smooth muscle cells. Sci Rep 2016; 6:32118. [PMID: 27573465 PMCID: PMC5004178 DOI: 10.1038/srep32118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022] Open
Abstract
The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry &Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Jing-Ti Deng
- Department of Biochemistry &Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Mana Alshehri
- Department of Biochemistry &Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Michael P Walsh
- Department of Biochemistry &Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry &Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
213
|
Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells. Immunity 2016; 45:685-700. [PMID: 27566939 PMCID: PMC5040828 DOI: 10.1016/j.immuni.2016.07.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
Interleukin-2 (IL-2) is a fundamental cytokine that controls proliferation and differentiation of T cells. Here, we used high-resolution mass spectrometry to generate a comprehensive and detailed map of IL-2 protein phosphorylations in cytotoxic T cells (CTL). The data revealed that Janus kinases (JAKs) couple IL-2 receptors to the coordinated phosphorylation of transcription factors, regulators of chromatin, mRNA translation, GTPases, vesicle trafficking, and the actin and microtubule cytoskeleton. We identified an IL-2-JAK-independent SRC family Tyr-kinase-controlled signaling network that regulates ∼10% of the CTL phosphoproteome, the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and the activity of the serine/threonine kinase AKT. These data reveal a signaling framework wherein IL-2-JAK-controlled pathways coordinate with IL-2-independent networks of kinase activity and provide a resource toward the further understanding of the networks of protein phosphorylation that program CTL fate.
Collapse
|
214
|
Tabur S, Oztuzcu S, Oguz E, Demiryürek S, Dagli H, Alasehirli B, Ozkaya M, Demiryürek AT. Evidence for elevated (LIMK2 and CFL1) and suppressed (ICAM1, EZR, MAP2K2, and NOS3) gene expressions in metabolic syndrome. Endocrine 2016; 53:465-70. [PMID: 26956845 DOI: 10.1007/s12020-016-0910-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
The metabolic syndrome (MetS) is a common multicomponent condition including abdominal obesity, dyslipidemia, hypertension, and hyperglycaemia. The aim of this study was to investigate the associations of the expression of a panel of signalling genes with the MetS in a Turkish population. A total of 54 MetS patients and 42 healthy controls with similar age and sex were included to this study. mRNA from blood samples was extracted, and real-time polymerase chain reaction was performed for gene expressions using a BioMark 96.96 dynamic array system. We observed marked increases in LIM kinase 2 (LIMK2) and cofilin 1 (CFL1) gene expressions in MetS patients. However, there were significant decreases in intercellular adhesion molecules 1 (ICAM1), ezrin (EZR), mitogen-activated protein kinase kinase 2 (MAP2K2), and nitric oxide synthase 3 (NOS3) gene expressions in MetS patients. Additionally, no marked changes were noted in other 15 genes studied. This is the first study to provide evidence that activation of LIMK2/CFL1 pathway may play an important role in MetS.
Collapse
Affiliation(s)
- Suzan Tabur
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey.
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| | - Elif Oguz
- Department of Medical Pharmacology, Faculty of Medicine, Harran University, 63300, Sanliurfa, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| | - Hasan Dagli
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| | - Belgin Alasehirli
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| | - Mesut Ozkaya
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, 27310, Gaziantep, Turkey
| |
Collapse
|
215
|
Abstract
Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.
Collapse
|
216
|
Chen SM, Chen XM, Lu YL, Liu B, Jiang M, Ma YX. Cofilin is correlated with sperm quality and influences sperm fertilizing capacity in humans. Andrology 2016; 4:1064-1072. [PMID: 27369112 DOI: 10.1111/andr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023]
Affiliation(s)
- S. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - X. M. Chen
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
- Department of Laboratory Medicine; Sichuan Provincial Hospital for Women and Children; Chengdu Sichuan China
| | - Y. L. Lu
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| | - B. Liu
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - M. Jiang
- Human Sperm Bank; West China Second University Hospital; Sichuan University; Chengdu Sichuan China
| | - Y. X. Ma
- Department of Medical Genetics; West China Hospital; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
217
|
Lee WH, Choong LY, Mon NN, Lu S, Lin Q, Pang B, Yan B, Krishna VSR, Singh H, Tan TZ, Thiery JP, Lim CT, Tan PBO, Johansson M, Harteneck C, Lim YP. TRPV4 Regulates Breast Cancer Cell Extravasation, Stiffness and Actin Cortex. Sci Rep 2016; 6:27903. [PMID: 27291497 PMCID: PMC4904279 DOI: 10.1038/srep27903] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
Metastasis is a significant health issue. The standard mode of care is combination of chemotherapy and targeted therapeutics but the 5-year survival rate remains low. New/better drug targets that can improve outcomes of patients with metastatic disease are needed. Metastasis is a complex process, with each step conferred by a set of genetic aberrations. Mapping the molecular changes associated with metastasis improves our understanding of the etiology of this disease and contributes to the pipeline of targeted therapeutics. Here, phosphoproteomics of a xenograft-derived in vitro model comprising 4 isogenic cell lines with increasing metastatic potential implicated Transient Receptor Potential Vanilloid subtype 4 in breast cancer metastasis. TRPV4 mRNA levels in breast, gastric and ovarian cancers correlated with poor clinical outcomes, suggesting a wide role of TRPV4 in human epithelial cancers. TRPV4 was shown to be required for breast cancer cell invasion and transendothelial migration but not growth/proliferation. Knockdown of Trpv4 significantly reduced the number of metastatic nodules in mouse xenografts leaving the size unaffected. Overexpression of TRPV4 promoted breast cancer cell softness, blebbing, and actin reorganization. The findings provide new insights into the role of TRPV4 in cancer extravasation putatively by reducing cell rigidity through controlling the cytoskeleton at the cell cortex.
Collapse
Affiliation(s)
- Wen Hsin Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lee Yee Choong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naing Naing Mon
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - SsuYi Lu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Brendan Pang
- Cancer Science Institute of Singapore, Singapore
| | - Benedict Yan
- National University Hospital, Department of Laboratory Medicine, Singapore
| | | | - Himanshu Singh
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | | - Christian Harteneck
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| |
Collapse
|
218
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
219
|
Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies. Neurotoxicology 2016; 59:197-209. [PMID: 27241350 DOI: 10.1016/j.neuro.2016.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
Environmental exposure to methylmercury (MeHg) during development is of concern because it is easily incorporated in children's body both pre- and post-natal, it acts at several levels of neural pathways (mitochondria, cytoskeleton, neurotransmission) and it causes behavioral impairment in child. We evaluated the effects of prolonged exposure to 10-600nM MeHg on primary cultures of mouse cortical (CCN) and of cerebellar granule cells (CGC) during their differentiation period. In addition, it was studied if prenatal MeHg exposure correlated with altered antioxidant defenses and cofilin phosphorylation in human placentas (n=12) from the INMA cohort (Spain). Exposure to MeHg for 9days in vitro (DIV) resulted in protein carbonylation and in cell death at concentrations ≥200nM and ≥300nM, respectively. Exposure of CCN and CGC to non-cytotoxic MeHg concentrations for 5 DIV induced an early concentration-dependent decrease in cofilin phosphorylation. Furthermore, in both cell types actin was translocated from the cytosol to the mitochondria whereas cofilin translocation was found only in CGC. Translocation of cofilin and actin to mitochondria in CGC occurred from 30nM MeHg onwards. We also found an increased expression of cortactin and LIMK1 mRNA in CGC but not in CCN. All these effects were prevented by the antioxidant probucol. Cofilin phosphorylation was significantly decreased and a trend for decreased activity of glutathione reductase and glutathione peroxidase was found in the fetal side of human placental samples from the highest (20-40μg/L) MeHg-exposed group when compared with the low (<7μg/L) MeHg-exposed group. In summary, cofilin dephosphorylation and oxidative stress are hallmarks of MeHg exposure in both experimental and human systems.
Collapse
|
220
|
Hamill S, Lou HJ, Turk BE, Boggon TJ. Structural Basis for Noncanonical Substrate Recognition of Cofilin/ADF Proteins by LIM Kinases. Mol Cell 2016; 62:397-408. [PMID: 27153537 PMCID: PMC4860616 DOI: 10.1016/j.molcel.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/07/2023]
Abstract
Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high-fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and postphosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Stephanie Hamill
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520,Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520,Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520,To who correspondence should be addressed:
| |
Collapse
|
221
|
Sanderson TM, Hogg EL, Collingridge GL, Corrêa SAL. Hippocampal metabotropic glutamate receptor long-term depression in health and disease: focus on mitogen-activated protein kinase pathways. J Neurochem 2016; 139 Suppl 2:200-214. [PMID: 26923875 DOI: 10.1111/jnc.13592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD) is a major form of synaptic plasticity underlying learning and memory. The molecular mechanisms involved in mGluR-LTD have been investigated intensively for the last two decades. In this 60th anniversary special issue article, we review the recent advances in determining the mechanisms that regulate the induction, transduction and expression of mGluR-LTD in the hippocampus, with a focus on the mitogen-activated protein kinase (MAPK) pathways. In particular we discuss the requirement of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. The recent advances in understanding the signaling cascades regulating mGluR-LTD are then related to the cognitive impairments observed in neurological disorders, such as fragile X syndrome and Alzheimer's disease. mGluR-LTD is a form of synaptic plasticity that impacts on memory formation. In the hippocampus mitogen-activated protein kinases (MAPKs) have been found to be important in mGluR-LTD. In this 60th anniversary special issue article, we review the independent and complementary roles of two classes of MAPK, p38 and ERK1/2 and link this to the aberrant mGluR-LTD that has an important role in diseases. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Thomas M Sanderson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Ellen L Hogg
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Sonia A L Corrêa
- Bradford School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
222
|
Inada N, Higaki T, Hasezawa S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. PLANT PHYSIOLOGY 2016; 170:1420-34. [PMID: 26747284 PMCID: PMC4775110 DOI: 10.1104/pp.15.01265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/05/2016] [Indexed: 05/19/2023]
Abstract
Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.
Collapse
Affiliation(s)
- Noriko Inada
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Takumi Higaki
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Seiichiro Hasezawa
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| |
Collapse
|
223
|
Ramirez-Munoz R, Castro-Sánchez P, Roda-Navarro P. Ultrasensitivity in the Cofilin Signaling Module: A Mechanism for Tuning T Cell Responses. Front Immunol 2016; 7:59. [PMID: 26925064 PMCID: PMC4759566 DOI: 10.3389/fimmu.2016.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/05/2016] [Indexed: 02/02/2023] Open
Abstract
Ultrasensitivity allows filtering weak activating signals and responding emphatically to small changes in stronger stimuli. In the presence of positive feedback loops, ultrasensitivity enables the existence of bistability, which convert graded stimuli into switch-like, sometimes irreversible, responses. In this perspective, we discuss mechanisms that can potentially generate a bistable response in the phosphorylation/dephosphorylation monocycle that regulates the activity of cofilin in dynamic actin networks. We pay particular attention to the phosphatase Slingshot-1 (SSH-1), which is involved in a reciprocal regulation and a positive feedback loop for cofilin activation. Based on these signaling properties and experimental evidences, we propose that bistability in the cofilin signaling module might be instrumental in T cell responses to antigenic stimulation. Initially, a switch-like response in the amount of active cofilin as a function of SSH-1 activation might assist in controlling the naïve T cell specificity and sensitivity. Second, high concentrations of active cofilin might endow antigen-experienced T cells with faster and more efficient responses. We discuss the cofilin function in the context of T cell receptor triggering and spatial regulation of plasma membrane signaling molecules.
Collapse
Affiliation(s)
- Rocio Ramirez-Munoz
- Department of Microbiology I (Immunology), School of Medicine, Complutense University and '12 de Octubre' Health Research Institute , Madrid , Spain
| | - Patricia Castro-Sánchez
- Department of Microbiology I (Immunology), School of Medicine, Complutense University and '12 de Octubre' Health Research Institute , Madrid , Spain
| | - Pedro Roda-Navarro
- Department of Microbiology I (Immunology), School of Medicine, Complutense University and '12 de Octubre' Health Research Institute , Madrid , Spain
| |
Collapse
|
224
|
Hou M, Liu X, Cao J, Chen B. SEPT7 overexpression inhibits glioma cell migration by targeting the actin cytoskeleton pathway. Oncol Rep 2016; 35:2003-10. [PMID: 26846171 DOI: 10.3892/or.2016.4609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Glioma cell metastasis is a serious obstacle for surgical treatment and prognosis, of which locomotion of the cytoskeleton is a key contributor of cancer cell spreading. SEPT7 is documented as a cytoskeletal protein with GTPase activity and involved in glioma progression. However, the underlying mechanism of SEPT7 in glioma invasion remains unresolved. Our study investigated whether SEPT7 influences glioma cell migration involved in cytoskeleton modulation. The SEPT7 expression in various glioma cell lines was markedly decreased compared to in normal human brain cells. It was demonstrated that SEPT7 overexpression significantly inhibits LN18 cell migration and chemotaxis induced by IGF‑1 (P<0.01 and P<0.01). Moreover, MMP‑2 and MMP‑9 were dramatically depressed after SEPT7 upregulation. To understand the mechanisms by which SEPT7 modulates homeostasis of the actin cytoskeleton, the F‑actin/G‑actin ratio and cofilin expression were determined. The data revealed that the F‑actin/G‑actin ratio and cofilin were reduced, and p‑cofilin increased conversely in cells with SEPT7 overexpression, indicating that SEPT7 reduced glioma cell migration by promoting cofilin phosphorylation and depolymerizing actin. Then, to understand the role of cofilin in SEPT7‑mediated actin dynamic equilibrium and cell migration, cofilin siRNA was transfected into cells. Surprisingly, cell migration and actin polymerization which had been improved by SEPT7 siRNA were significantly reversed, and the accompanying cofilin phosphorylation increased, indicating that cofilin phospho‑regulation played an important role in SEPT7‑mediated cytoskeleton locomotion and glioma cell migration. In conclusion, SEPT7 is involved in glioma cell migration with the assistance of cofilin phospho‑mediated cytoskeleton locomotion.
Collapse
Affiliation(s)
- Mingshan Hou
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaobing Liu
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Cao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Bo Chen
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
225
|
Müller CB, De Bastiani MA, Becker M, França FS, Branco MA, Castro MAA, Klamt F. Potential crosstalk between cofilin-1 and EGFR pathways in cisplatin resistance of non-small-cell lung cancer. Oncotarget 2016; 6:3531-9. [PMID: 25784483 PMCID: PMC4414134 DOI: 10.18632/oncotarget.3471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Current challenge in oncology is to establish the concept of personalized medicine in clinical practice. In this context, non-small-cell lung cancer (NSCLC) presents clinical, histological and molecular heterogeneity, being one of the most genomically diverse of all cancers. Recent advances added Epidermal Growth Factor Receptor (EGFR) as a predictive biomarker for patients with advanced NSCLC. In tumors with activating EGFR mutations, tyrosine kinase inhibitors (TKI) are indicated as first-line treatment, although restricted to a very small target population. In this context, cofilin-1 (a cytosolic protein involved with actin dynamics) has been widely studied as a biomarker of an aggressive phenotype in tumors, and overexpression of cofilin-1 is associated with cisplatin resistance and poor prognosis in NSCLC. Here, we gather information about the predictive potential of cofilin-1 and reviewed the crosstalk between cofilin-1/EGFR pathways. We aimed to highlight new perspectives of how these interactions might affect cisplatin resistance in NSCLC. We propose that cofilin-1 quantification in clinical samples in combination with presence/absence of EGFR mutation could be used to select patients that would benefit from TKI's treatment. This information is of paramount importance and could result in a possibility of guiding more effective treatments to NSCLC patients.
Collapse
Affiliation(s)
- Carolina Beatriz Müller
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Matheus Becker
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Fernanda Stapenhorst França
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Mariane Araujo Branco
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | | | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| |
Collapse
|
226
|
Kanellos G, Zhou J, Patel H, Ridgway RA, Huels D, Gurniak CB, Sandilands E, Carragher NO, Sansom OJ, Witke W, Brunton VG, Frame MC. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival. Cell Rep 2015; 13:1949-64. [PMID: 26655907 PMCID: PMC4678118 DOI: 10.1016/j.celrep.2015.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic co-depletion of the actin-severing proteins ADF and CFL1 triggers catastrophic loss of adult homeostasis in multiple tissues. There is impaired cell-cell adhesion in skin keratinocytes with dysregulation of E-cadherin, hyperproliferation of differentiated cells, and ultimately apoptosis. Mechanistically, the primary consequence of depleting both ADF and CFL1 is uncontrolled accumulation of contractile actin stress fibers associated with enlarged focal adhesions at the plasma membrane, as well as reduced rates of membrane protrusions. This generates increased intracellular acto-myosin tension that promotes nuclear deformation and physical disruption of the nuclear lamina via the LINC complex that normally connects regulated actin filaments to the nuclear envelope. We therefore describe a pathway involving the actin-severing proteins ADF and CFL1 in regulating the dynamic turnover of contractile actin stress fibers, and this is vital to prevent the nucleus from being damaged by actin contractility, in turn preserving cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jing Zhou
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Christine B Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
227
|
Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS One 2015; 10:e0142943. [PMID: 26600389 PMCID: PMC4658088 DOI: 10.1371/journal.pone.0142943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
NatB is an N-terminal acetyltransferase consisting of a catalytic Nat5 subunit and an auxiliary Mdm20 subunit. In yeast, NatB acetylates N-terminal methionines of proteins during de novo protein synthesis and also regulates actin remodeling through N-terminal acetylation of tropomyosin (Trpm), which stabilizes the actin cytoskeleton by interacting with actin. However, in mammalian cells, the biological functions of the Mdm20 and Nat5 subunits are not well understood. In the present study, we show for the first time that Mdm20-knockdown (KD), but not Nat5-KD, in HEK293 and HeLa cells suppresses not only cell growth, but also cellular motility. Although stress fibers were formed in Mdm20-KD cells, and not in control or Nat5-KD cells, the localization of Trpm did not coincide with the formation of stress fibers in Mdm20-KD cells. Notably, knockdown of Mdm20 reduced the expression of Rictor, an mTORC2 complex component, through post-translational regulation. Additionally, PKCαS657 phosphorylation, which regulates the organization of the actin cytoskeleton, was also reduced in Mdm20-KD cells. Our data also suggest that FoxO1 phosphorylation is regulated by the Mdm20-mTORC2-Akt pathway in response to serum starvation and insulin stimulation. Taken together, the present findings suggest that Mdm20 acts as a novel regulator of Rictor, thereby controlling mTORC2 activity, and leading to the activation of PKCαS657 and FoxO1.
Collapse
Affiliation(s)
- Kunihiko Yasuda
- The Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
- * E-mail: (KY); (NM)
| | - Mayumi Takahashi
- The Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Nozomu Mori
- The Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
- * E-mail: (KY); (NM)
| |
Collapse
|
228
|
Li KS, Xiao P, Zhang DL, Hou XB, Ge L, Yang DX, Liu HD, He DF, Chen X, Han KR, Song XY, Yu X, Fang H, Sun JP. Identification of para-Substituted Benzoic Acid Derivatives as Potent Inhibitors of the Protein Phosphatase Slingshot. ChemMedChem 2015; 10:1980-7. [PMID: 26553423 DOI: 10.1002/cmdc.201500454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/31/2022]
Abstract
Slingshot proteins form a small group of dual-specific phosphatases that modulate cytoskeleton dynamics through dephosphorylation of cofilin and Lim kinases (LIMK). Small chemical compounds with Slingshot-inhibiting activities have therapeutic potential against cancers or infectious diseases. However, only a few Slingshot inhibitors have been investigated and reported, and their cellular activities have not been examined. In this study, we identified two rhodanine-scaffold-based para-substituted benzoic acid derivatives as competitive Slingshot inhibitors. The top compound, (Z)-4-((4-((4-oxo-2-thioxo-3-(o-tolyl)thiazolidin-5-ylidene)methyl)phenoxy)methyl)benzoic acid (D3) had an inhibition constant (Ki) of around 4 μm and displayed selectivity over a panel of other phosphatases. Moreover, compound D3 inhibited cell migration and cofilin dephosphorylation after nerve growth factor (NGF) or angiotensin II stimulation. Therefore, our newly identified Slingshot inhibitors provide a starting point for developing Slingshot-targeted therapies.
Collapse
Affiliation(s)
- Kang-shuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Dao-lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xu-Ben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dong-fang He
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xu Chen
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ke-rui Han
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Xiao-yuan Song
- Key Laboratory of Brain Function and Disease, Chinese Academy of Sciences (CAS) and, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hao Fang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
229
|
Chronophin is a glial tumor modifier involved in the regulation of glioblastoma growth and invasiveness. Oncogene 2015; 35:3163-77. [DOI: 10.1038/onc.2015.376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
|
230
|
The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils. J Immunol Res 2015; 2015:817604. [PMID: 26605346 PMCID: PMC4641950 DOI: 10.1155/2015/817604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Chemotaxis, a directional cell migration guided by extracellular chemoattractant gradients, plays an essential role in the recruitment of neutrophils to sites of inflammation. Chemotaxis is mediated by the G protein-coupled receptor (GPCR) signaling pathway. Extracellular stimuli trigger activation of the PLC/PKC/PKD signaling axis, which controls several signaling pathways. Here, we concentrate on the novel functions of PLC/PKC/PKD signaling in GPCR-mediated chemotaxis of neutrophils.
Collapse
|
231
|
Yamashiro Y, Papke CL, Kim J, Ringuette LJ, Zhang QJ, Liu ZP, Mirzaei H, Wagenseil JE, Davis EC, Yanagisawa H. Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice. Sci Signal 2015; 8:ra105. [PMID: 26486174 DOI: 10.1126/scisignal.aab3141] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Smooth muscle cells (SMCs) and the extracellular matrix (ECM) are intimately associated in the aortic wall. Fbln4(SMKO) mice with an SMC-specific deletion of the Fbln4 gene, which encodes the vascular ECM component fibulin-4, develop ascending aortic aneurysms that have increased abundance of angiotensin-converting enzyme (ACE); inhibiting angiotensin II signaling within the first month of life prevents aneurysm development. We used comparative proteomics analysis of Fbln4(SMKO) aortas from postnatal day (P) 1 to P30 mice to identify key molecules involved in aneurysm initiation and expansion. At P14, the actin depolymerizing factor cofilin was dephosphorylated and thus activated, and at P7, the abundance of slingshot-1 (SSH1) phosphatase, an activator of cofilin, was increased, leading to actin cytoskeletal remodeling. Also, by P7, biomechanical changes and underdeveloped elastic lamina-SMC connections were evident, and the abundance of early growth response 1 (Egr1), a mechanosensitive transcription factor that stimulates ACE expression, was increased, which was before the increases in ACE abundance and cofilin activation. Postnatal deletion of Fbln4 in SMCs at P7 prevented cofilin activation and aneurysm formation, suggesting that these processes required disruption of elastic lamina-SMC connections. Phosphoinositide 3-kinase (PI3K) is involved in the angiotensin II-mediated activation of SSH1, and administration of PI3K inhibitors from P7 to P30 decreased SSH1 abundance and prevented aneurysms. These results suggest that aneurysm formation arises from abnormal mechanosensing of SMCs resulting from the loss of elastic lamina-SMC connections and from increased SSH1 and cofilin activity, which may be potential therapeutic targets for treating ascending aortic aneurysms.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina L Papke
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Lea-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Qing-Jun Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhi-Ping Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry and Proteomics Core Unit, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
232
|
Wang QZ, Gao HQ, Liang Y, Zhang J, Wang J, Qiu J. Cofilin1 is involved in hypertension-induced renal damage via the regulation of NF-κB in renal tubular epithelial cells. J Transl Med 2015; 13:323. [PMID: 26450610 PMCID: PMC4599745 DOI: 10.1186/s12967-015-0685-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/02/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Inflammation mediated by nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of hypertensive nephropathy (HN). Cytoskeletal remodelling is necessary for the activation of NF-κB. An actin-binding protein, cofilin-1 promotes dynamic alterations to the cytoskeleton by severing actin filaments. However, whether cofilin1 modulates NF-κB activity via cytoskeletal remodelling in the setting of hypertensive renal damage and what mechanisms underlie this phenomenon, remain unknown. METHODS Twenty-one-week old spontaneously hypertensive rats (SHRs) were treated with an antioxidant (100 or 250 mg kg(-1) day(-1)), grape seed proanthocyanidins extract (GSPE), for 22 weeks. Twenty-four-hour urinary protein, serum creatinine and urea nitrogen levels were measured. Haematoxylin and eosin (HE) staining was performed, and the expression levels of renal cortex cofilin1, monocyte chemotactic protein 1 (MCP1), interleukin-1β (IL1β) and NF-κB were evaluated via either Western blotting or immunohistochemistry. In vitro, human proximal renal tubular epithelial cells (HK-2 cells) were pre-incubated either with or without GSPE and subsequently treated with angiotensinII (AngII). Furthermore, a lentiviral shRNA-vector was utilized to knockdown cofilin1 expression in the HK-2 cells, which were stimulated with AngII. Actin filaments, NF-κB activity and several downstream inflammatory factors, including MCP1 and IL-1β, were investigated. RESULTS In addition to elevated blood pressure and 24 h urinary protein levels, NF-κB activity and the expression levels of MCP1 and IL-1β were significantly increased, resulting in tubulointerstitial inflammatory infiltration in SHRs. The phosphorylation (inactivation) of cofilin1 was increased in the kidneys of the SHRs. In vitro, AngII stimulation resulted in the phosphorylation of cofilin1, the formation of actin stress fibres and nuclear translocation of NF-κB p65 in the HK2 cells. Both GSPE pretreatment and the shRNA knockdown of cofilin1 inhibited Rel/p65 nuclear translocation, as well as the expression of both MCP-1 and IL-1β in the AngII-induced HK2 cells. CONCLUSION These results demonstrate that cofilin1 is involved in hypertensive nephropathy by modulating the nuclear translocation of NF-κB and the expression of its downstream inflammatory factors in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Quan-Zhen Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Rd, 250012, Jinan, People's Republic of China.
| | - Hai-Qing Gao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Rd, 250012, Jinan, People's Republic of China.
| | - Ying Liang
- Department of Geriatric Cardiology, Qianfuoshan Hospital of Shandong Province, 16766 Jingshi Rd, 250000, Jinan, People's Republic of China.
| | - Jun Zhang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Rd, 250012, Jinan, People's Republic of China.
| | - Jian Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Rd, 250012, Jinan, People's Republic of China.
| | - Jie Qiu
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Rd, 250012, Jinan, People's Republic of China.
| |
Collapse
|
233
|
Du ZP, Wu BL, Xie YM, Zhang YL, Liao LD, Zhou F, Xie JJ, Zeng FM, Xu XE, Fang WK, Li EM, Xu LY. Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2240-50. [PMID: 26190820 DOI: 10.1016/j.bbamcr.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/30/2015] [Accepted: 07/15/2015] [Indexed: 02/05/2023]
Abstract
Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.
Collapse
Affiliation(s)
- Ze-Peng Du
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong Province 515041, China
| | - Bing-Li Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yang-Min Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Experimental Animal Center, Shantou University Medical College, Shantou 515041, China
| | - Ying-Li Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Fei Zhou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Experimental Animal Center, Shantou University Medical College, Shantou 515041, China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
234
|
Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase. Genetics 2015; 201:1117-31. [PMID: 26384358 DOI: 10.1534/genetics.115.181289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.
Collapse
|
235
|
Bencsik N, Szíber Z, Liliom H, Tárnok K, Borbély S, Gulyás M, Rátkai A, Szűcs A, Hazai-Novák D, Ellwanger K, Rácz B, Pfizenmaier K, Hausser A, Schlett K. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation. J Cell Biol 2015; 210:771-83. [PMID: 26304723 PMCID: PMC4555815 DOI: 10.1083/jcb.201501114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
PKD regulates the stabilization of the F-actin network within dendritic spines upon chemically induced plasticity changes and is needed for proper hippocampal LTP and spatial memory formation. Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.
Collapse
Affiliation(s)
- Norbert Bencsik
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Krisztián Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Márton Gulyás
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Anikó Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Diána Hazai-Novák
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, H-1400 Budapest, Hungary
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
236
|
Guo H, Li Y, Tian T, Han L, Ruan Z, Liang X, Wang W, Nan K. The role of cytoplasmic p57 in invasion of hepatocellular carcinoma. BMC Gastroenterol 2015; 15:104. [PMID: 26271467 PMCID: PMC4542127 DOI: 10.1186/s12876-015-0319-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Our previous research suggested that p57 downregulation could accelerate the growth and invasion of hepatocellular carcinoma in vitro and in vivo. Aim To evaluate the role of cytoplasmic p57 and its regulatory mechanism during hepatocellular carcinoma invasion. Methods We examined the subcellular localization of p57 by immunohistochemistry in 45 pairs of cancerous tissues and adjacent non-cancerous tissues. Moreover, we generated stable p57 knockdown hepatoma cell lines to investigate the mechanism of cytoplasmic p57-mediated regulation of invasion by immunoprecipitation, confocal immunofluorescence microscopy and western blot of nuclear and cytoplasmic extracts. Results Our results showed that cytoplasmic expression of p57 was reduced in specimens from patients with capsular invasion and metastasis (P < 0.05). Moreover, the level of p-cofilin was decreased in the group lacking cytoplasmic p57 expression (P < 0.05). Co-expression of p57 and p-cofilin was reduced in specimens from patients with tumors at later stages (III + IV), tumors showing capsular invasion and metastatic tumors. We further observed that p57 downregulation decreased the assembly of p57 and LIM domain kinase 1 and its kinase activity, subsequently reducing the level of p-cofilin in the cytoplasm. Conclusions Cytoplasmic p57 might be a key regulator in hepatocellular carcinoma invasion via the LIM domain kinase 1/p-cofilin pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12876-015-0319-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Guo
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Yi Li
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Tao Tian
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Lili Han
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Zhiping Ruan
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Xuan Liang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Wenjuan Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, Shaanxi Province, 710061, P.R. China.
| |
Collapse
|
237
|
Bao Z, Han X, Chen F, Jia X, Zhao J, Zhang C, Yong C, Tian S, Zhou X, Han L. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells. BMC Microbiol 2015; 15:161. [PMID: 26268695 PMCID: PMC4542120 DOI: 10.1186/s12866-015-0500-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The internalization of Aspergillus fumigatus into alveolar epithelial cells (AECs) is tightly controlled by host cellular actin dynamics, which require close modulation of the ADF (actin depolymerizing factor)/cofilin family. However, the role of cofilin in A. fumigatus internalization into AECs remains unclear. Results Here, we demonstrated that germinated A. fumigatus conidia were able to induce phosphorylation of cofilin in A549 cells during the early stage of internalization. The modulation of cofilin activity by overexpression, knockdown, or mutation of the cofilin gene in A549 cells decreased the efficacy of A. fumigatus internalization. Reducing the phosphorylation status of cofilin with BMS-5 (LIM kinase inhibitor) or overexpression of the slingshot phosphatases also impeded A. fumigatus internalization. Both the C. botulimun C3 transferase (a specific RhoA inhibitor) and Y27632 (a specific ROCK inhibitor) reduced the internalization of A. fumigatus and the level of phosphorylated cofilin. β-1,3-glucan (the major component of the conidial cell wall) and its host cell receptor dectin-1 did not seem to be associated with cofilin phosphorylation during A. fumigatus infection. Conclusion These results indicated that cofilin might be involved in the modulation of A. fumigatus internalization into type II alveolar epithelial cells through the RhoA-ROCK-LIM kinase pathway.
Collapse
Affiliation(s)
- Zhiyao Bao
- Department of Respiratory Medicine, Shanghai first people's hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China. .,Department of Respiratory Medicine, Ruijin hospital, School of Medicine, Shanghai Jiaotong University, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Changjian Zhang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Chen Yong
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai first people's hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| |
Collapse
|
238
|
Durand N, Borges S, Storz P. Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cell Mol Life Sci 2015; 72:4369-82. [PMID: 26253275 DOI: 10.1007/s00018-015-2011-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
The protein kinase D (PKD) family members, PKD1, PKD2 and PKD3 constitute a family of serine/threonine kinases that are essential regulators of cell migration, proliferation and protein transport. Multiple types of cancers are characterized by aberrant expression of PKD isoforms. In breast cancer PKD isoforms exhibit distinct expression patterns and regulate various oncogenic processes. In highly invasive breast cancer, the leading cause of cancer-associated deaths in females, the loss of PKD1 is thought to promote invasion and metastasis, while PKD2 and upregulated PKD3 have been shown to be positive regulators of proliferation, chemoresistance and metastasis. In this review, we examine the differential expression pattern, mechanisms of regulation and contributions made by each PKD isoform to the development and maintenance of invasive breast cancer. In addition, we discuss the potential therapeutic approaches for targeting PKD in this disease.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
239
|
14-3-3 λ protein interacts with ADF1 to regulate actin cytoskeleton dynamics in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1142-50. [DOI: 10.1007/s11427-015-4897-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
|
240
|
Haase S, Zimmermann D, Olshina MA, Wilkinson M, Fisher F, Tan YH, Stewart RJ, Tonkin CJ, Wong W, Kovar DR, Baum J. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites. Mol Biol Cell 2015; 26:3001-12. [PMID: 26157165 PMCID: PMC4551315 DOI: 10.1091/mbc.e14-10-1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Complementation of a conditional KO of actin-depolymerizing factor (ADF) in Toxoplasma gondii demonstrates that ADF-dependent actin filament disassembly is essential for parasite development but not for cell motility. Furthermore, trans-genera complementation highlights genus-specific coevolution between ADF proteins and their native actins. Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin.
Collapse
Affiliation(s)
- Silvia Haase
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis Zimmermann
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Maya A Olshina
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Wilkinson
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Fabio Fisher
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Yan Hong Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca J Stewart
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wilson Wong
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jake Baum
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
241
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
242
|
Kelloniemi A, Szabo Z, Serpi R, Näpänkangas J, Ohukainen P, Tenhunen O, Kaikkonen L, Koivisto E, Bagyura Z, Kerkelä R, Leosdottir M, Hedner T, Melander O, Ruskoaho H, Rysä J. The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS One 2015; 10:e0130502. [PMID: 26098115 PMCID: PMC4476650 DOI: 10.1371/journal.pone.0130502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.
Collapse
Affiliation(s)
- Annina Kelloniemi
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pauli Ohukainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Elina Koivisto
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zsolt Bagyura
- Heart Center, Semmelweis University, Budapest, Hungary
| | - Risto Kerkelä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | - Thomas Hedner
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Melander
- Lund University, Department of Clinical Sciences, Malmö, Sweden
| | - Heikki Ruskoaho
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (JR); (HR)
| | - Jaana Rysä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (JR); (HR)
| |
Collapse
|
243
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
244
|
Llano O, Smirnov S, Soni S, Golubtsov A, Guillemin I, Hotulainen P, Medina I, Nothwang HG, Rivera C, Ludwig A. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. J Cell Biol 2015; 209:671-86. [PMID: 26056138 PMCID: PMC4460141 DOI: 10.1083/jcb.201411008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses.
Collapse
Affiliation(s)
- Olaya Llano
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sergey Smirnov
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Shetal Soni
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Andrey Golubtsov
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Isabelle Guillemin
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pirta Hotulainen
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Igor Medina
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences and Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Anastasia Ludwig
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
245
|
Cao X, Xia H, Li N, Xiong K, Wang Z, Wu S. A mechanical refractory period of chondrocytes after dynamic hydrostatic pressure. Connect Tissue Res 2015; 56:212-218. [PMID: 25531199 DOI: 10.3109/03008207.2014.1001383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Mechanical stimulation, a crucial factor for maintaining the cartilaginous phenotype and promoting the chondrogenesis, has been widely used in autologous chondrocyte transplantation. This study was designed to investigate a novel concept of mechanical refractory period of chondrocytes after dynamic hydrostatic pressure (dHP). MATERIALS AND METHODS dHP protocols (0.1 Hz, 2 MPa) were applied. The variation in type II collagen (Col II) expression induced by each dHP unit was measured. The dynamic remodeling of F-actin during the mechanical protocols was observed morphologically and mechanically by laser confocal microscopy and optical magnetic twisting cytometry (OMTC), respectively. About 20 ng/ml VEGF was used to stabilize the F-actin and restrain the mechanical refractory period. RESULTS Compared with the remarkable increase of Col II (16-fold) induced by the initial dHP unit, the chondrocytes entered a mechanical refractory period and the second unit hardly elevated Col II expression (only 2.9-fold). This refractory period recovered partially within 2 h. The uniform, parallel, and coarse fibers of F-actin before dHP became thin, sparse, and disordered, and the cell stiffness decreased concomitantly. The variations in both the morphology and the mechanical property of F-actin were highly synchronous to the mechanical refractory period and recovered in a time-dependent manner. VEGF postponed the appearance of this refractory period and maintained the high expression of Col II by VEGF/p38/MAPKAPK-2/LIMK/cofilin pathway. CONCLUSION A mechanical refractory period of chondrocytes has been discovered and defined in this study. The F-actin depolymerization is the putative mechanism, and this refractory period can be postponed by VEGF-induced F-actin stabilization.
Collapse
Affiliation(s)
- Xu Cao
- Department of Orthopedics and
| | | | | | | | | | | |
Collapse
|
246
|
Dopie J, Rajakylä EK, Joensuu MS, Huet G, Ferrantelli E, Xie T, Jäälinoja H, Jokitalo E, Vartiainen MK. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators. J Cell Sci 2015; 128:2388-400. [PMID: 26021350 PMCID: PMC4510847 DOI: 10.1242/jcs.169441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/19/2015] [Indexed: 01/15/2023] Open
Abstract
Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.
Collapse
Affiliation(s)
- Joseph Dopie
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Eeva K Rajakylä
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Merja S Joensuu
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Guillaume Huet
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Evelina Ferrantelli
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Tiao Xie
- Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115, USA
| | - Harri Jäälinoja
- Light Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
247
|
Podgorniak T, Milan M, Pujolar JM, Maes GE, Bargelloni L, De Oliveira E, Pierron F, Daverat F. Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel. BMC Genomics 2015; 16:378. [PMID: 25962588 PMCID: PMC4427925 DOI: 10.1186/s12864-015-1589-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among human-induced environmental factors of decline, the impact of water dams during species migration is questioned. The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes. RESULTS Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive forebays separated by water obstacles indicated different gene transcription profiles in brain between the two upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins, cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish upstream migration. CONCLUSION Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when fish is out of the water.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| | - Massimo Milan
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Jose Marti Pujolar
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy. .,Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C, DK-8000, Denmark.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia. .,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), Leuven, B-3000, Belgium.
| | - Luca Bargelloni
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Eric De Oliveira
- EDF R&D LNHE, HYNES (Irstea-EDF R&D), 6, quai Watier, Bat Q, Chatou, 78400, France.
| | - Fabien Pierron
- Univ. Bordeaux, EPOC, UMR 5805, Talence, F-33400, France. .,CNRS, EPOC, UMR 5805, Talence, F-33400, France.
| | - Francoise Daverat
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| |
Collapse
|
248
|
Barone E, Mosser S, Fraering PC. Inactivation of brain Cofilin-1 by age, Alzheimer's disease and γ-secretase. Biochim Biophys Acta Mol Basis Dis 2015; 1842:2500-9. [PMID: 25315299 DOI: 10.1016/j.bbadis.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022]
Abstract
Rapid remodeling of the actin cytoskeleton in the pre- and/or post-synaptic compartments is responsible for the regulation of neuronal plasticity,which is an important process for learning and memory. Cofilin1 plays an essential role in these processes and a dysregulation of its activity was associated with the cognitive decline observed during normal aging and Alzheimer's disease (AD). To understand the mechanism(s) regulating Cofilin1 activity we evaluated changes occurring with regard to Cofilin1 and its up-stream regulators Lim kinase-1 (LIMK1) and Slingshot phosphatase-1 (SSH1) in (i) human AD brain, (ii) 1-, 4-, and 10-months old APP/PS1 mice, (iii) wildtype 3-, 8-, 12-, 18- and 26-months old mice, as well as in cellular models including (iv) mouse primary cortical neurons (PCNs, cultured for 5, 10, 15 and 20 days in vitro) and (v) mouse embryonic fibroblasts (MEF). Interestingly,we found an increased Cofilin1 phosphorylation/inactivation with age and AD pathology, both in vivo and in vitro. These changes were associated with a major inactivation of SSH1. Interestingly, inhibition of ã-secretase activity with Compound-E (10 ìM) prevented Cofilin1 phosphorylation/inactivation through an increase of SSH1 activity in PCNs. Similarly, MEF cells double knock-out for ã-secretase catalytic subunits presenilin-1 and -2(MEFDKO) showed a strong decrease of both Cofilin1 and SSH1 phosphorylation,which were rescued by the over expression of human ã-secretase. Together, these results shed new light in understanding the molecular mechanisms promoting Cofilin1 dysregulation, both during aging and AD. They further have the potential to impact the development of therapies to safely treat AD.
Collapse
|
249
|
George J, Soares C, Montersino A, Beique JC, Thomas GM. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity. eLife 2015; 4:e06327. [PMID: 25884247 PMCID: PMC4429338 DOI: 10.7554/elife.06327] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/16/2015] [Indexed: 12/04/2022] Open
Abstract
Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI:http://dx.doi.org/10.7554/eLife.06327.001 Neurons transmit information from one cell to the next by passing signals across junctions called synapses. For the neurons that receive these signals, these junctions are found on fine branch-like structures called dendrites that stick out of the cell. Dendrites themselves are decorated with smaller structures called dendritic spines, which typically receive information from one other neuron via a single synapse. Dendritic spines form in response to the signaling activity of the neuron, and problems with forming these spines have been linked to conditions such as autism and schizophrenia. Dendritic spines are created by the cell's cytoskeleton—a network of proteins that creates a constantly changing internal scaffold that shapes cells. One cytoskeleton protein called actin exists as thin filaments that can be extended or broken up by other proteins. It is not fully understood how actin is regulated in the dendritic spines. However, some researchers thought that the proteins that control the formation of the actin filaments would need to be localized to the dendritic spines to ensure that the spines form correctly. Some proteins can be made to localize to cell membranes by attaching a molecule called palmitic acid to them. Previous research has suggested that this ‘palmitoylation’ process is particularly important in neurons. Through a combination of experimental techniques, George et al. now show that palmitoylation is required to localize a protein called LIMK1, which regulates the construction of actin filaments, to the tips of dendritic spines. Further experiments showed that blocking the palmitoylation of LIMK1 alters how actin filaments form, makes spines unstable and causes synapses to be lost. George et al. also discovered that palmitoylation is necessary for LIMK1 to be activated by another protein that is found at dendritic spine membranes. This ‘dual-control’ mechanism makes it possible to precisely control where actin filaments form within dendritic spines. In addition to LIMK1, several other enzymes are also modified by palmitoylation. It will therefore be interesting to determine whether this dual control mechanism is broadly used by neurons to precisely regulate the structure and function of individual spines and synapses. DOI:http://dx.doi.org/10.7554/eLife.06327.002
Collapse
Affiliation(s)
- Joju George
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| | - Cary Soares
- Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| | - Jean-Claude Beique
- Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
| |
Collapse
|
250
|
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 2015; 57:275-90. [DOI: 10.1111/dgd.12213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| |
Collapse
|