201
|
Atakan HB, Hof KS, Cornaglia M, Auwerx J, Gijs MAM. The Detection of Early Epigenetic Inheritance of Mitochondrial Stress in C. Elegans with a Microfluidic Phenotyping Platform. Sci Rep 2019; 9:19315. [PMID: 31848454 PMCID: PMC6917781 DOI: 10.1038/s41598-019-55979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Fluctuations and deterioration in environmental conditions potentially have a phenotypic impact that extends over generations. Transgenerational epigenetics is the defined term for such intergenerational transient inheritance without an alteration in the DNA sequence. The model organism Caenorhabditis elegans is exceptionally valuable to address transgenerational epigenetics due to its short lifespan, well-mapped genome and hermaphrodite behavior. While the majority of the transgenerational epigenetics on the nematodes focuses on generations-wide heritage, short-term and in-depth analysis of this phenomenon in a well-controlled manner has been lacking. Here, we present a novel microfluidic platform to observe mother-to-progeny heritable transmission in C. elegans at high imaging resolution, under significant automation, and enabling parallelized studies. After approximately 24 hours of culture of L4 larvae under various concentrations and application periods of doxycycline, we investigated if mitochondrial stress was transferred from the mother nematodes to the early progenies. Automated and custom phenotyping algorithms revealed that a minimum doxycycline concentration of 30 µg/mL and a drug exposure time of 15 hours applied to the mothers could induce mitochondrial stress in first embryo progenies indeed, while this inheritance was not clearly observed later in L1 progenies. We believe that our new device could find further usage in transgenerational epigenetic studies modeled on C. elegans.
Collapse
Affiliation(s)
- H B Atakan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - K S Hof
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - J Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
202
|
Drosophila RpS12 controls translation, growth, and cell competition through Xrp1. PLoS Genet 2019; 15:e1008513. [PMID: 31841522 PMCID: PMC6936874 DOI: 10.1371/journal.pgen.1008513] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/30/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Whereas complete loss of Rp function is generally lethal, most heterozygous Rp mutants grow more slowly and are subject to competitive loss from mosaics tissues that also contain wild type cells. The rpS12 gene has a special role in the cell competition of other Ribosomal Protein (Rp) mutant cells in Drosophila. Elimination by cell competition is promoted by higher RpS12 levels and prevented by a specific rpS12 mis-sense mutation, identifying RpS12 as a key effector of cell competition due to mutations in other Rp genes. Here we show that RpS12 is also required for other aspects of Rp mutant phenotypes, including hundreds of gene expression changes that occur in 'Minute' Rp heterozygous wing imaginal discs, overall translation rate, and the overall rate of organismal development, all through the bZip protein Xrp1 that is one of the RpS12-regulated genes. Our findings outline the regulatory response to mutations affecting essential Rp genes that controls overall translation, growth, and cell competition, and which may contribute to cancer and other diseases.
Collapse
|
203
|
Bauer I, Misslinger M, Shadkchan Y, Dietl AM, Petzer V, Orasch T, Abt B, Graessle S, Osherov N, Haas H. The Lysine Deacetylase RpdA Is Essential for Virulence in Aspergillus fumigatus. Front Microbiol 2019; 10:2773. [PMID: 31866965 PMCID: PMC6905131 DOI: 10.3389/fmicb.2019.02773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Current suboptimal treatment options of invasive fungal infections and emerging resistance of the corresponding pathogens urge the need for alternative therapy strategies and require the identification of novel antifungal targets. Aspergillus fumigatus is the most common airborne opportunistic mold pathogen causing invasive and often fatal disease. Establishing a novel in vivo conditional gene expression system, we demonstrate that downregulation of the class 1 lysine deacetylase (KDAC) RpdA leads to avirulence of A. fumigatus in a murine model for pulmonary aspergillosis. The xylP promoter used has previously been shown to allow xylose-induced gene expression in different molds. Here, we demonstrate for the first time that this promoter also allows in vivo tuning of A. fumigatus gene activity by supplying xylose in the drinking water of mice. In the absence of xylose, an A. fumigatus strain expressing rpdA under control of the xylP promoter, rpdA xylP , was avirulent and lung histology showed significantly less fungal growth. With xylose, however, rpdA xylP displayed full virulence demonstrating that xylose was taken up by the mouse, transported to the site of fungal infection and caused rpdA induction in vivo. These results demonstrate that (i) RpdA is a promising target for novel antifungal therapies and (ii) the xylP expression system is a powerful new tool for in vivo gene silencing in A. fumigatus.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna-Maria Dietl
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Beate Abt
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
204
|
Yan D, Franzini A, Pomicter AD, Halverson BJ, Antelope O, Mason CC, Ahmann JM, Senina AV, Vellore NA, Jones CL, Zabriskie MS, Than H, Xiao MJ, van Scoyk A, Patel AB, Clair PM, Heaton WL, Owen SC, Andersen JL, Egbert CM, Reisz JA, D'Alessandro A, Cox JE, Gantz KC, Redwine HM, Iyer SM, Khorashad JS, Rajabi N, Olsen CA, O'Hare T, Deininger MW. SIRT5 IS A DRUGGABLE METABOLIC VULNERABILITY IN ACUTE MYELOID LEUKEMIA. Blood Cancer Discov 2019; 2:266-287. [PMID: 34027418 DOI: 10.1158/2643-3230.bcd-20-0168] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.
Collapse
Affiliation(s)
- Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anca Franzini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jonathan M Ahmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna V Senina
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nadeem A Vellore
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Courtney L Jones
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hein Than
- Department of Haematology, Singapore General Hospital, Singapore
| | - Michael J Xiao
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Phillip M Clair
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - William L Heaton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christina M Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Kevin C Gantz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hannah M Redwine
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Siddharth M Iyer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
205
|
Conditionally immortalized brown preadipocytes can switch between proliferative and differentiated states. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158511. [DOI: 10.1016/j.bbalip.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
|
206
|
Ozkurede U, Miller RA. Improved mitochondrial stress response in long-lived Snell dwarf mice. Aging Cell 2019; 18:e13030. [PMID: 31423721 PMCID: PMC6826134 DOI: 10.1111/acel.13030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by mitochondrial defects. However, it is not known whether mtUPR is elevated in long‐lived mouse models. Here, we report that Snell dwarf mice, which show 30%–40% lifespan extension and prolonged healthspan, exhibit augmented mitochondrial stress responses. Cultured cells from Snell mice show elevated levels of the mitochondrial chaperone HSP60 and mitochondrial protease LONP1, two components of the mtUPR. In response to mitochondrial stress, the increase in Tfam (mitochondrial transcription factor A), a regulator of mitochondrial transcription, is higher in Snell cells, while Pgc‐1α, the main regulator of mitochondrial biogenesis, is upregulated only in Snell cells. Consistent with these differences, Snell cells maintain oxidative respiration rate, ATP content, and expression of mitochondrial‐DNA‐encoded genes after exposure to doxycycline stress. In vivo, compared to normal mice, Snell mice show stronger hepatic mtUPR induction and maintain mitochondrial protein stoichiometry after mitochondrial stress exposure. Overall, our work demonstrates that a long‐lived mouse model exhibits improved mitochondrial stress response, and provides a rationale for future mouse lifespan studies involving compounds that induce mtUPR. Further research on mitochondrial homeostasis in long‐lived mice may facilitate development of interventions that blunt mitochondrial deterioration in neurodegenerative diseases such as Alzheimer's and Parkinson's and postpone diseases of aging in humans.
Collapse
Affiliation(s)
- Ulas Ozkurede
- Department of Molecular and Cellular Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
| | - Richard A. Miller
- Department of Molecular and Cellular Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
- Department of Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
| |
Collapse
|
207
|
Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N. Responses of seeds of typical Brassica crops to tetracycline stress: Sensitivity difference and source analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109597. [PMID: 31465956 DOI: 10.1016/j.ecoenv.2019.109597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics can induce adverse effects on plants. Brassica crop seeds, for their advantages, are used widely in seed germination test to investigate phytotoxicity of substances. However, their performances on evaluating antibiotics remain to be studied to select sensitive species for control of potential risks. In this work, common species of Chinese cabbage (Brassica rapa L.), edible rape (Brassica napus L.), and cabbage (Brassica oleracea L.) with three cultivars each were selected to compare and analyze the sensitivity difference of their seeds to tetracycline (TC) stress. Results showed that the ratio of axis to cotyledon (RAC) by fresh weight was an alternative endpoint besides radicle length (RL) in the test. The species sensitivity distribution (SSD) based on the effective concentrations causing x% inhibition (ECx) in RL of seeds exposed to TC was applied to compare the sensitivity of seeds and estimate the hazardous concentration for x% species (HCx). From the species-dependent sensitivity and the sensitivity difference of cultivars in the same species of seeds to TC, the performance of Chinese cabbage was the best in the study. The sensitivity of seeds to TC could be evaluated by EC20 related to seed physical traits and germination indices, while the extent of seeds affected by TC could be evaluated by EC50 related to the composition of seed storage reserves. We recommended that it was a new idea to analyze responses of different seeds to TC at large scale according to seed innate characteristics.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
208
|
Yan Y, Williamson ME, Davis RJ, Andere AA, Picard CJ, Scott MJ. Improved transgenic sexing strains for genetic control of the Australian sheep blow fly Lucilia cuprina using embryo-specific gene promoters. Mol Genet Genomics 2019; 295:287-298. [PMID: 31720776 DOI: 10.1007/s00438-019-01622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
For genetic approaches for controlling insect pests such as the sterile insect technique (SIT), it is advantageous to release only males as females are ineffective as control agents and they consume about 50% of the diet. Here we developed tetracycline-repressible Lucilia cuprina transgenic strains in which adult females were fully fertile and viable on a diet that lacked tetracycline and all of their female offspring died at the embryo stage. The transgenic strains are an improvement over the strains we developed previously, which had the disadvantage that adult females on diet without tetracycline were sterile and died prematurely. This was possibly due to the low level expression of the effector gene in ovaries. In the strains developed in this study, the early promoters from L. cuprina nullo or Cochliomyia macellaria CG14427 genes were used to drive the tetracycline transactivator (tTA) expression in the early embryo. In the absence of tetracycline, tTA activates expression of the proapoptotic gene Lshid which contains a female-specific intron. Consequently, only females produce active HID protein and die at the embryo stage. Crossing the tTA-expressing driver lines with an RFPex reporter line confirmed that there was no expression of the effector gene in the ovary. These new embryonic L. cuprina transgenic sexing strains hold great promise for genetic control programs and the system reported here might also be transferable to other major calliphorid livestock pests such as the New World screwworm, Cochliomyia hominivorax.
Collapse
Affiliation(s)
- Ying Yan
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.,Fraunhofer IME-BR, Winchesterstr. 2, 35394, Giessen, Germany
| | - Megan E Williamson
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Rebecca J Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Anne A Andere
- Fraunhofer IME-BR, Winchesterstr. 2, 35394, Giessen, Germany
| | - Christine J Picard
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.
| |
Collapse
|
209
|
Geltinger F, Tevini J, Briza P, Geiser A, Bischof J, Richter K, Felder T, Rinnerthaler M. The transfer of specific mitochondrial lipids and proteins to lipid droplets contributes to proteostasis upon stress and aging in the eukaryotic model system Saccharomyces cerevisiae. GeroScience 2019; 42:19-38. [PMID: 31676965 PMCID: PMC7031196 DOI: 10.1007/s11357-019-00103-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
Originally Lipid droplets (LDs) were considered as being droplets for lipid storage only. Increasing evidence, however, demonstrates that LDs fulfill a pleiotropy of additional functions. Among them is the modulation of protein as well as lipid homeostasis. Under unfavorable pro-oxidative conditions, proteins can form aggregates which may exceed the overall proteolytic capacity of the proteasome. After stress termination LDs can adjust and support the removal of these aggregates. Additionally, LDs interact with mitochondria, specifically take over certain proteins and thus prevent apoptosis. LDs, which are loaded with these harmful proteins, are subsequently eliminated via lipophagy. Recently it was demonstrated that this autophagic process is a modulator of longevity. LDs do not only eliminate potentially dangerous proteins, but they are also able to prevent lipotoxicity by storing specific lipids. In the present study we used the model organism Saccharomyces cerevisiae to compare the proteome as well as lipidome of mitochondria and LDs under different conditions: replicative aging, stress and apoptosis. In this context we found an accumulation of proteins at LDs, supporting the role of LDs in proteostasis. Additionally, the composition of main lipid classes such as phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, triacylglycerols, ceramides, phosphatidic acids and ergosterol of LDs and mitochondria changed during stress conditions and aging.
Collapse
Affiliation(s)
- Florian Geltinger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Amrito Geiser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria.
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria.
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
210
|
Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol 2019; 135:110916. [PMID: 31669601 DOI: 10.1016/j.fct.2019.110916] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes for 13 proteins involved in the oxidative phosphorylation (OXPHOS) process. In liver, genetic or acquired impairment of mtDNA homeostasis can reduce ATP output but also decrease fatty acid oxidation, thus leading to different hepatic lesions including massive necrosis and microvesicular steatosis. Hence, a severe impairment of mtDNA homeostasis can lead to liver failure and death. An increasing number of investigations report that some drugs can induce mitochondrial dysfunction and drug-induced liver injury (DILI) by altering mtDNA homeostasis. Some drugs such as ciprofloxacin, antiretroviral nucleoside reverse-transcriptase inhibitors and tacrine can inhibit hepatic mtDNA replication, thus inducing mtDNA depletion. Drug-induced reduced mtDNA levels can also be the consequence of reactive oxygen species-mediated oxidative damage to mtDNA, which triggers its degradation by mitochondrial nucleases. Such mechanism is suspected for acetaminophen and troglitazone. Other pharmaceuticals such as linezolid and tetracyclines can impair mtDNA translation, thus selectively reducing the synthesis of the 13 mtDNA-encoded proteins. Lastly, some drugs might alter the mtDNA methylation status but the pathophysiological consequences of such alteration are still unclear. Drug-induced impairment of mtDNA homeostasis is probably under-recognized since preclinical and post-marketing safety studies do not classically investigate mtDNA levels, mitochondrial protein synthesis and mtDNA oxidative damage.
Collapse
|
211
|
Ren M, Miller PC, Schlame M, Phoon CKL. A critical appraisal of the tafazzin knockdown mouse model of Barth syndrome: what have we learned about pathogenesis and potential treatments? Am J Physiol Heart Circ Physiol 2019; 317:H1183-H1193. [PMID: 31603701 DOI: 10.1152/ajpheart.00504.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric heart failure remains poorly understood, distinct in many aspects from adult heart failure. Limited data point to roles of altered mitochondrial functioning and, in particular, changes in mitochondrial lipids, especially cardiolipin. Barth syndrome is a mitochondrial disorder caused by tafazzin mutations that lead to abnormal cardiolipin profiles. Patients are afflicted by cardiomyopathy, skeletal myopathy, neutropenia, and growth delay. A mouse model of Barth syndrome was developed a decade ago, which relies on a doxycycline-inducible short hairpin RNA to knock down expression of tafazzin mRNA (TAZKD). Our objective was to review published data from the TAZKD mouse to determine its contributions to our pathogenetic understanding of, and potential treatment strategies for, Barth syndrome. In regard to the clinical syndrome, the reported physiological, biochemical, and ultrastructural abnormalities of the mouse model mirror those in Barth patients. Using this model, the peroxisome proliferator-activated receptor pan-agonist bezafibrate has been suggested as potential therapy because it ameliorated the cardiomyopathy in TAZKD mice, while increasing mitochondrial biogenesis. A clinical trial is now underway to test bezafibrate in Barth syndrome patients. Thus the TAZKD mouse model of Barth syndrome has led to important insights into disease pathogenesis and therapeutic targets, which can potentially translate to pediatric heart failure.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Paighton C Miller
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Colin K L Phoon
- Department of Pediatrics, Division of Pediatric Cardiology, New York University School of Medicine, New York, New York
| |
Collapse
|
212
|
Dylag AM, Brookes PS, O'Reilly MA. Swapping mitochondria: a key to understanding susceptibility to neonatal chronic lung disease. Am J Physiol Lung Cell Mol Physiol 2019; 317:L737-L739. [PMID: 31596117 DOI: 10.1152/ajplung.00395.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
213
|
Litskas VD, Karamanlis XN, Prousali SP, Koveos DS. The xenobiotic doxycycline affects nitrogen transformations in soil and impacts earthworms and cultivated plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1441-1447. [PMID: 31446836 DOI: 10.1080/10934529.2019.1655368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The effects of doxycycline (DOX) on microbial biomass C and nitrates production in soil, on earthworms and cultivated plants were examined. The concentrations for the various tests were selected after preliminary experiments, to present impact and be close to the environmentally relevant. The results revealed impacts of the antibiotic on microbial biomass C and NO3- production at the concentration level of 7.2 mg/kg soil dry weight (d.w.), but these parameters recovered to normal values since the antibiotic was applied once as a pulse. Moreover, the drug had negative effects on earthworm juveniles' total number at the concentration level of 30 mg/kg soil d.w. In addition, the toxicity tests on plant seedling growth revealed negative effects of the antibiotic for tomato at the concentration level of 45.44 mg/kg soil d.w. However, DOX showed positive effects for corn seedling growth, showing that the results of such experiments are valuable for sustainable animal wastes management. Non-significant effects were observed for seedling growth of pea, pumpkin and bean plants. The results of the study are valuable for the impact assessment of the antibiotic in the terrestrial environment and the management of contaminated animal waste.
Collapse
Affiliation(s)
- Vassilis D Litskas
- Laboratory of Ecology and Environmental Protection, Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | - Xanthippos N Karamanlis
- Laboratory of Ecology and Environmental Protection, Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | - Sophia P Prousali
- Laboratory of Ecology and Environmental Protection, Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | - Dimitris S Koveos
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
214
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
215
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
216
|
Endothelin A and B Receptors: Potential Targets for Microcirculatory-Mitochondrial Therapy in Experimental Sepsis. Shock 2019; 54:87-95. [DOI: 10.1097/shk.0000000000001414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
217
|
Cao D, Cheung HH, Chan WY. Doxycycline Masks the Genuine Effect of the Doxycycline-Inducible Transgene by Promoting Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells. Stem Cells Dev 2019; 28:833-845. [PMID: 31020917 DOI: 10.1089/scd.2018.0209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Doxycycline (DOX), an antibacterial drug, has been widely used in the inducible gene expression system. However, its effect was largely ignored when studying functions of the inducible transgene. By using a DOX-inducible Tet-ON system, we identified that DOX alone dramatically promoted dopaminergic (DA) neuron differentiation from human pluripotent stem cells (hPSCs), whereas the studied gene had no significant effects after considering the confounding factor DOX. These findings suggest that the effect of DOX should be taken into consideration when it is used in the inducible system especially during DA neuron differentiation from hPSCs. Meanwhile, it also suggests that DOX can be used as an efficient and inexpensive molecule to increase DA neuron differentiation efficacy from hPSCs for cell therapy.
Collapse
Affiliation(s)
- Dandan Cao
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi-Hung Cheung
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wai-Yee Chan
- 1 Ministry of Education Key Laboratory for Regenerative Medicine (CUHK-Jinan University), School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,2 CUHK-CAS Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
218
|
Gomez ML, Shah N, Kenny TC, Jenkins EC, Germain D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 2019; 38:5751-5765. [PMID: 31222103 PMCID: PMC6639133 DOI: 10.1038/s41388-019-0839-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/19/2018] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
Abstract
We previously reported that the dismutase SOD1 is overexpressed in breast cancer. However, whether SOD1 plays an active role in tumor formation in vivo has never been demonstrated. Further, as luminal cells of normal breast epithelial cells are enriched in SOD1, whether SOD1 is essential for normal mammary gland development has never been determined. We initiated this study to investigate the role of SOD1 in mammary gland tumorigenesis as well as in normal mammary gland development. We crossed the inducible erbB2 (MMTV-iErbB2) and Wnt (MMTV-Wnt) transgenic mice to the SOD1 heterozygote or knockout mice. Our results show that SOD1 is essential for oncogene-driven proliferation, but not normal proliferation of the mammary gland associated with pregnancy or other normal proliferative tissues such as skin and intestines. We show that activation of the oncogene ErbB2 is associated with increased ROS and that high ROS sub-population of ErbB2 cancer cells show elevated SOD1. In the same cells, decrease in SOD1 is associated with an elevation in both apoptosis as well as oncogene-induced senescence. Based on these results, we suggest that SOD1 carries a housekeeping function that maintains ROS levels below a threshold that supports oncogene-dependent proliferation, while allowing escape from oncogene-induced senescence, independently of the oncogene driving tumor formation. These results identify SOD1 as an ideal target for cancer therapy as SOD1 inhibitors hold the potential to prevent the growth of cancers cells of diverse genotypes, activate multiple modes of cell death therefore making acquired resistance more difficult, while sparing normal tissues.
Collapse
Affiliation(s)
- Maria L Gomez
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Nagma Shah
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Timothy C Kenny
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Edmund C Jenkins
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA.
| |
Collapse
|
219
|
Koh C, Audsley MD, Di Giallonardo F, Kerton EJ, Young PR, Holmes EC, McGraw EA. Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture. Virus Evol 2019; 5:vez012. [PMID: 31191980 PMCID: PMC6555872 DOI: 10.1093/ve/vez012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont of insects that inhibits the replication of a range of pathogens in its arthropod hosts. The release of Wolbachia into wild populations of mosquitoes is an innovative biocontrol effort to suppress the transmission of arthropod-borne viruses (arboviruses) to humans, most notably dengue virus. The success of the Wolbachia-based approach hinges upon the stable persistence of the ‘pathogen blocking’ effect, whose mechanistic basis is poorly understood. Evidence suggests that Wolbachia may affect viral replication via a combination of competition for host resources and activation of host immunity. The evolution of resistance against Wolbachia and pathogen blocking in the mosquito or the virus could reduce the public health impact of the symbiont releases. Here, we investigate if dengue 3 virus (DENV-3) is capable of accumulating adaptive mutations that improve its replicative capacity during serial passage in Wolbachia wMel-infected cells. During the passaging regime, viral isolates in Wolbachia-infected cells exhibited greater variation in viral loads compared to controls. The viral loads of these isolates declined rapidly during passaging due to the blocking effects of Wolbachia carriage, with several being lost all together and the remainder recovering to low but stable levels. We attempted to sequence the genomes of the surviving passaged isolates but, given their low abundance, were unable to obtain sufficient depth of coverage for evolutionary analysis. In contrast, viral loads in Wolbachia-free control cells were consistently high during passaging. The surviving isolates passaged in the presence of Wolbachia exhibited a reduced ability to replicate even in Wolbachia-free cells. These experiments demonstrate the challenge for dengue in evolving resistance to Wolbachia-mediated blocking.
Collapse
Affiliation(s)
- Cassandra Koh
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle D Audsley
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Emily J Kerton
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Department of Entomology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
220
|
Hsu AY, Liu S, Syahirah R, Brasseale KA, Wan J, Deng Q. Inducible overexpression of zebrafish microRNA-722 suppresses chemotaxis of human neutrophil like cells. Mol Immunol 2019; 112:206-214. [PMID: 31176200 DOI: 10.1016/j.molimm.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
Neutrophil migration is essential for battling against infections but also drives chronic inflammation. Since primary neutrophils are terminally differentiated and not genetically tractable, leukemia cells such as HL-60 are differentiated into neutrophil-like cells to study mechanisms underlying neutrophil migration. However, constitutive overexpression or inhibition in this cell line does not allow the characterization of the genes that affect the differentiation process. Here we apply the tet-on system to induce the expression of a zebrafish microRNA, dre-miR-722, in differentiated HL-60. Overexpression of miR-722 reduced the mRNA level of genes in the chemotaxis and inflammation pathways, including Ras-Related C3 Botulinum Toxin Substrate 2 (RAC2). Consistently, polarization of the actin cytoskeleton, cell migration and generation of the reactive oxygen species are significantly inhibited upon induced miR-722 overexpression. Together, zebrafish miR-722 is a suppressor for migration and signaling in human neutrophil like cells.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kent A Brasseale
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
221
|
Titrating Gene Function in the Human Fungal Pathogen Candida albicans through Poly-Adenosine Tract Insertion. mSphere 2019; 4:4/3/e00192-19. [PMID: 31118301 PMCID: PMC6531883 DOI: 10.1128/msphere.00192-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Investigating a protein’s functional importance at the whole-organism level usually involves altering its expression level or its specific activity and observing the consequences with respect to physiology or phenotype. Several approaches designed to partially or completely abolish the function of a gene, including its deletion from the genome and the use of systems that facilitate conditional expression, have been widely applied. However, each has significant limitations that are especially problematic in pathogenic microbes when it is desirable to determine if a particular gene is required for infection in an animal model. In this study, we sought to determine if an alternative approach—the insertion of poly-A repeats within the coding sequence of the gene—is sufficient to modulate its function in the prevalent human fungal pathogen C. albicans. Our results confirm that this approach enables us to predictably and gradually titrate the expression level of a protein and thus to investigate the phenotypic consequences of various levels of gene/protein function. A recent study demonstrated that the insertion of poly-adenosine (poly-A) tracts into an open reading frame can suppress expression of the encoded protein in both prokaryotic and eukaryotic species. Furthermore, the degree of suppression is proportional to the length of the poly-A insertion, which can therefore provide a reliable and predictable means to titrate a specific protein’s expression. The goal of this study was to determine if this methodology can be applied to modulate the expression of proteins in the prevalent human fungal pathogen, Candida albicans. Insertion of increasing numbers of AAA codons encoding lysine at the N terminus of the C. albicans lanosterol demethylase (Erg11p) progressively diminished expression without significantly reducing the levels of mRNA. This suggests that Erg11p expression was attenuated at the posttranscriptional level. A direct correlation between the number of AAA codons inserted and C. albicans susceptibility to the Erg11p inhibitor fluconazole was also noted, indicating a progressive loss of Erg11p activity. Finally, we constructed a series of C. albicans strains with 3 to 12 AAA codons inserted at the 5′ end of the ARO1 gene, which encodes a pentafunctional enzyme catalyzing five sequential steps of the aromatic amino acid biosynthetic pathway. Increasing numbers of AAA codons progressively reduced the growth rate of C. albicans in standard laboratory medium, indicating a progressive loss of ARO biosynthetic activity. These data unequivocally demonstrate the potential utility of the poly-A insertion method to examine the phenotypic consequences of titrating target protein function in C. albicans. IMPORTANCE Investigating a protein’s functional importance at the whole-organism level usually involves altering its expression level or its specific activity and observing the consequences with respect to physiology or phenotype. Several approaches designed to partially or completely abolish the function of a gene, including its deletion from the genome and the use of systems that facilitate conditional expression, have been widely applied. However, each has significant limitations that are especially problematic in pathogenic microbes when it is desirable to determine if a particular gene is required for infection in an animal model. In this study, we sought to determine if an alternative approach—the insertion of poly-A repeats within the coding sequence of the gene—is sufficient to modulate its function in the prevalent human fungal pathogen C. albicans. Our results confirm that this approach enables us to predictably and gradually titrate the expression level of a protein and thus to investigate the phenotypic consequences of various levels of gene/protein function.
Collapse
|
222
|
Huang X, Yan Z, Zhu K, Ding S. Ca 2+ protect zebrafish embryos from water acidification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:65-71. [PMID: 30682635 DOI: 10.1016/j.ecoenv.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Ionizable strategies are routinely used to enhance the solubility and dissolution rates of various pharmaceuticals. These chemicals may directly affect aquatic environment once discharged from factories, hospitals or livestock farms. Here, we assessed the potential side effect of tetracyclines (TCs) on the development of zebrafish embryos. Tetracycline hydrochloride decreased water pH from 6.4 to 4.4 at 30 mg/L. Acidified water exceeded the tolerance of zebrafish embryos in pure water during the early ten hours post fertilization (hpf). Interestingly, we found that Ca2+ in the embryo medium could increase the tolerance of embryos to acidified water. Furthermore, we found that the protection of Ca2+ was not due to the formation of TCs-Ca2+ complexes under acidic condition, based on spectral analysis. Meanwhile we showed that exogenous addition of Ca2+ could inhibit the accumulation of Ca2+ from the cytoplasm to the surface of embryos. These results may shed light on the strategies for protecting aquatic animals from acidic environments.
Collapse
Affiliation(s)
- Xiaoyong Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
223
|
Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. CHEMOSPHERE 2019; 222:722-731. [PMID: 30738315 DOI: 10.1016/j.chemosphere.2019.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17β-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that environmental antibiotics are needed additional research to classify as ECDs.
Collapse
Affiliation(s)
- Xiang Hou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lei Zhu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianwei Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Minmin Tang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Ruicheng Wei
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China.
| |
Collapse
|
224
|
Rurali E, Perrucci GL, Gaetano R, Pini A, Moschetta D, Gentilini D, Nigro P, Pompilio G. Soluble EMMPRIN levels discriminate aortic ectasia in Marfan syndrome patients. Am J Cancer Res 2019; 9:2224-2234. [PMID: 31149040 PMCID: PMC6531292 DOI: 10.7150/thno.30714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022] Open
Abstract
Marfan syndrome (MFS) is a rare genetic disease characterized by a matrix metalloproteases (MMPs) dysregulation that leads to extracellular matrix degradation. Consequently, MFS patients are prone to develop progressive thoracic aortic enlargement and detrimental aneurysm. Since MMPs are activated by the extracellular MMP inducer (EMMPRIN) protein, we determined whether its plasmatic soluble form (sEMMPRIN) may be considered a marker of thoracic aortic ectasia (AE). Methods: We compared plasma sEMMPRIN levels of 42 adult Caucasian MFS patients not previously subjected to aortic surgery with those of matched healthy controls (HC) by ELISA. In the MFS cohort we prospectively evaluated the relationship between plasma sEMMPRIN levels and the main MFS-related manifestations. Results: MFS patients had lower plasma sEMMPRIN levels (mean±SD: 2071±637 pg/ml) than HC (2441±642 pg/ml, p=0.009). Amongst all considered MFS-related clinical features, we found that only aortic root dilatation associated with circulating sEMMPRIN levels. Specifically, plasma sEMMPRIN levels negatively correlated with aortic Z-score (r=-0.431, p=0.004), and were significantly lower in patients with AE (Z-score≥2, 1788±510 pg/ml) compared to those without AE (Z-score<2, 2355±634 pg/ml; p=0.003). ROC curve analysis revealed that plasma sEMMPRIN levels discriminated patients with AE (AUC [95%CI]: 0.763 [0.610-0.916], p=0.003) with 85.7% sensitivity, 76.2% specificity, and 81% accuracy. We defined plasma sEMMPRIN levels ≤2246 pg/ml as the best threshold discriminating the presence of AE in MFS patients with an odds ratio [95%CI] of 19.2 [3.947-93.389] (p<0.001). Conclusions: MFS patients are characterized by lower sEMMPRIN levels than HC. Notably, plasma sEMMPRIN levels are strongly associated with thoracic AE.
Collapse
|
225
|
Frosina G, Marubbi D, Marcello D, Daga A. Radiosensitization of orthotopic GIC-driven glioblastoma by doxycycline causes skin damage. Radiat Oncol 2019; 14:58. [PMID: 30961616 PMCID: PMC6454723 DOI: 10.1186/s13014-019-1266-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
Doxycycline (DXC) is a tetracycline antibiotic which has been proposed as a breast cancer radiosensitizer by specifically reducing the expression of the DNA repair enzyme DNA PK in breast cancer initiating cells. Since DXC presents favorable pharmacokinetics properties including the capacity to cross the blood-brain barrier, it has been hypothesized that it could radiosensitize brain tumors as well. We have investigated the radiosensitizing capacity of DXC towards human glioma initiating cells (GIC)-driven orthotopic glioblastomas (GB) in NOD/SCID mice that faithfully mimic the growth properties of the clinical tumors of origin. DXC at 10 mg/Kg body weight was subcutaneously delivered daily, 5 days/week for 4 weeks. At the same time, radiotherapeutic fractions of 0.25 Gy to the head were delivered every 3–4 days (twice/week) for 15 weeks. No survival advantage was observed in DXC-treated mice as compared to vehicle-treated mice by this radiosensitizing protocol. On the contrary, skin damage with hair loss and deep ulcers were observed after 4 weeks in DXC-treated mice leading to discontinuation of drug treatment. These results do not support the use of DXC as a radiosensitizer for brain tumors and indicate skin damage as an important side effect of DXC.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Daniela Marubbi
- Cell Oncology, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genova, 16132, Genoa, Italy
| | - Diana Marcello
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Antonio Daga
- Cell Oncology, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| |
Collapse
|
226
|
Le PT, Bornstein SA, Motyl KJ, Tian L, Stubblefield JJ, Hong HK, Takahashi JS, Green CB, Rosen CJ, Guntur AR. A novel mouse model overexpressing Nocturnin results in decreased fat mass in male mice. J Cell Physiol 2019; 234:20228-20239. [PMID: 30953371 DOI: 10.1002/jcp.28623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Nocturnin (NOCT) belongs to the Mg2+ dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ. In this study, we characterized the skeletal and adipose tissue phenotype when we globally overexpressed Noct in vivo. After 12 weeks of Noct overexpression, transgenic male mice had lower fat mass compared to controls, with no significant differences in the skeleton. Based on the presence of a mitochondrial target sequence in NOCT, we determined that mouse NOCT protein localizes to the mitochondria; subsequently, we found that NOCT overexpression led to a significant increase in the preadipocytes ability to utilize oxidative phosphorylation for ATP (adenosine triphosphate) generation. In summary, the effects of NOCT on adipocytes are likely through its novel role as a mediator of mitochondrial function.
Collapse
Affiliation(s)
- Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Sheila A Bornstein
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Li Tian
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Jeremy J Stubblefield
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hee-Kyung Hong
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
227
|
Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 2019; 146:dev172098. [PMID: 30948523 PMCID: PMC6467474 DOI: 10.1242/dev.172098] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue is composed of anatomically distinct depots that mediate several important aspects of energy homeostasis. The past two decades have witnessed increased research effort to elucidate the ontogenetic basis of adipose form and function. In this Review, we discuss advances in our understanding of adipose tissue development with particular emphasis on the embryonic patterning of depot-specific adipocyte lineages and adipocyte differentiation in vivo Micro-environmental cues and other factors that influence cell identity and cell behavior at various junctures in the adipocyte lineage hierarchy are also considered.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520-8016, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520-8073, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
228
|
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
229
|
Dimova EY, Jakupovic M, Kubaichuk K, Mennerich D, Chi TF, Tamanini F, Oklejewicz M, Hänig J, Byts N, Mäkelä KA, Herzig KH, Koivunen P, Chaves I, van der Horst G, Kietzmann T. The Circadian Clock Protein CRY1 Is a Negative Regulator of HIF-1α. iScience 2019; 13:284-304. [PMID: 30875610 PMCID: PMC6416729 DOI: 10.1016/j.isci.2019.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | - Mirza Jakupovic
- Department of Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Filippo Tamanini
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Małgorzata Oklejewicz
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Jens Hänig
- Novartis Pharma GmbH, 97082 Würzburg, Germany
| | - Nadiya Byts
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, 90014 Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Ines Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Gijsbertus van der Horst
- Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015CN Rotterdam, the Netherlands
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
230
|
Targeting FER Kinase Inhibits Melanoma Growth and Metastasis. Cancers (Basel) 2019; 11:cancers11030419. [PMID: 30909648 PMCID: PMC6468679 DOI: 10.3390/cancers11030419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Melanoma is one of the most aggressive types of tumors and exhibits high metastatic potential. Fes-related (FER) kinase is a non-receptor tyrosine kinase that has been implicated in growth and metastasis of various epithelial tumors. In this study, we have examined the role that FER kinase plays in melanoma at the molecular level. FER-depleted melanoma cells exhibit impaired Wnt/β-catenin pathway activity, as well as multiple proteomic changes, which include decreased abundance of L1-cell adhesion molecule (L1-CAM). Consistent with the pro-metastatic functions of these pathways, we demonstrate that depletion of FER kinase decreases melanoma growth and formation of distant metastases in a xenograft model. These findings indicate that FER is an important positive regulator of melanoma metastasis and a potential target for innovative therapies.
Collapse
|
231
|
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients⁻Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20:E1122. [PMID: 30841577 PMCID: PMC6429290 DOI: 10.3390/ijms20051122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Radiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
232
|
Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Rep 2019; 26:2720-2737.e5. [DOI: 10.1016/j.celrep.2019.02.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/09/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023] Open
|
233
|
Woods Acevedo MA, Erickson AK, Pfeiffer JK. The Antibiotic Neomycin Enhances Coxsackievirus Plaque Formation. mSphere 2019; 4:e00632-18. [PMID: 30787120 PMCID: PMC6382971 DOI: 10.1128/msphere.00632-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Coxsackievirus typically infects humans via the gastrointestinal tract, which has a large number of microorganisms collectively referred to as the microbiota. To study how the intestinal microbiota influences enteric virus infection, several groups have used an antibiotic regimen in mice to deplete bacteria. These studies have shown that bacteria promote infection with several enteric viruses. However, very little is known about whether antibiotics influence viruses in a microbiota-independent manner. In this study, we sought to determine the effects of antibiotics on coxsackievirus B3 (CVB3) using an in vitro cell culture model in the absence of bacteria. We determined that an aminoglycoside antibiotic, neomycin, enhanced the plaque size of CVB3 strain Nancy. Neomycin treatment did not alter viral attachment, translation, or replication. However, we found that the positive charge of neomycin and other positively charged compounds enhanced viral diffusion by overcoming the negative inhibitory effect of sulfated polysaccharides present in agar overlays. Neomycin and the positively charged compound protamine also enhanced plaque formation of reovirus. Overall, these data provide further evidence that antibiotics can play noncanonical roles in viral infections and that this should be considered when studying enteric virus-microbiota interactions.IMPORTANCE Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown the bacteria promote infection with a variety of enteric viruses. However, it is possible that antibiotics have microbiota-independent effects on viruses. Here we show that an aminoglycoside antibiotic, neomycin, can influence quantification of coxsackievirus in cultured cells in the absence of bacteria.
Collapse
Affiliation(s)
- Mikal A Woods Acevedo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea K Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
234
|
Abad E, García-Mayea Y, Mir C, Sebastian D, Zorzano A, Potesil D, Zdrahal Z, Lyakhovich A, Lleonart ME. Common Metabolic Pathways Implicated in Resistance to Chemotherapy Point to a Key Mitochondrial Role in Breast Cancer. Mol Cell Proteomics 2019; 18:231-244. [PMID: 30373788 PMCID: PMC6356073 DOI: 10.1074/mcp.ra118.001102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are known to reprogram their metabolism to adapt to adverse conditions dictated by tumor growth and microenvironment. A subtype of cancer cells with stem-like properties, known as cancer stem cells (CSC), is thought to be responsible for tumor recurrence. In this study, we demonstrated that CSC and chemoresistant cells derived from triple negative breast cancer cells display an enrichment of up- and downregulated proteins from metabolic pathways that suggests their dependence on mitochondria for survival. Here, we selected antibiotics, in particular - linezolid, inhibiting translation of mitoribosomes and inducing mitochondrial dysfunction. We provided the first in vivo evidence demonstrating that linezolid suppressed tumor growth rate, accompanied by increased autophagy. In addition, our results revealed that bactericidal antibiotics used in combination with autophagy blocker decrease tumor growth. This study puts mitochondria in a spotlight for cancer therapy and places antibiotics as effective agents for eliminating CSC and resistant cells.
Collapse
Affiliation(s)
- Etna Abad
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Passeig Vall d'Hebron 119-129, 08035 Barcelona. Barcelona, Spain
| | - Yoelsis García-Mayea
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Passeig Vall d'Hebron 119-129, 08035 Barcelona. Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Passeig Vall d'Hebron 119-129, 08035 Barcelona. Barcelona, Spain
| | - David Sebastian
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain 08028;; Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, c/ Baldiri Reixac, 10-12, Barcelona 08028, Spain;; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain 08028;; Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, c/ Baldiri Reixac, 10-12, Barcelona 08028, Spain;; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic;; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Passeig Vall d'Hebron 119-129, 08035 Barcelona. Barcelona, Spain;.
| | - Matilde E Lleonart
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Passeig Vall d'Hebron 119-129, 08035 Barcelona. Barcelona, Spain;; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Barcelona, Spain.
| |
Collapse
|
235
|
|
236
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front Microbiol 2019; 10:12. [PMID: 30723460 PMCID: PMC6349743 DOI: 10.3389/fmicb.2019.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The growing human population is currently facing an unprecedented challenge regarding global food sustainability. Thus, it is of paramount to maintain food production and quality while avoiding a negative impact on climate change and the environment at large. Along the food chain, several practices could compromise future food safety and human health. One example is the widespread use of antibiotics and disinfectants in dairy production, which has contributed to the current antibiotic resistance crisis. Moreover, the uncontrolled release of antimicrobials to the environment poses a significant threat to natural ecosystems. For these reasons, research has recently focused on exploiting natural antimicrobials with the goal of achieving a safer and more sustainable dairy production chain. In this context, bacteriophages, viruses that infect bacteria, may become good allies to prevent and treat diseases in cattle, or be used as disinfectants in dairy facilities and as preservatives in dairy products. This review provides an overview of the current research regarding the use of phages as a global approach to reduce economic losses and food waste, while increasing food safety and reducing the environmental impact of food production. Our current understanding of progress, solutions, and future challenges in dairy production, processing, safety, waste processing, and quality assurance is also discussed.
Collapse
Affiliation(s)
| | | | | | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
237
|
Abstract
The majority of apoptotic stimuli trigger cell death through the mitochondrial pathway of apoptosis. Invariably, mitochondrial apoptosis requires engagement of mitochondrial outer membrane permeabilization or MOMP to initiate cell death. We have developed a new method, called mito-priming, that allows for rapid and synchronous induction of mitochondrial apoptosis in an on-target manner. Mito-priming uses coexpression of pro- and antiapoptotic Bcl-2 proteins to render cells sensitive to the addition of Bcl-2 targeting BH3-mimetic drugs. This chapter describes how to design mito-priming constructs and apply them to generate mito-primed lines. Second, we describe how to validate cell death sensitivity of mito-primed lines using different methods. Finally, we describe how to generate MOMP-resistant cell lines, using CRISPR-Cas9 mediated deletion of BAX and BAK. Facilitating the investigation of mitochondrial apoptosis, mito-priming provides a clean, robust way to induce mitochondrial apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan Lopez
- University of Lyon, Cancer Research Centre of Lyon (CRCL), UMR INSERM 1052 CNRS 5286, Léon Bérard Centre, Lyon, France.
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud University Hospital, Pierre-Bénite, France.
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
238
|
Snijders KE, Cooper JD, Vallier L, Bertero A. Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. Methods Mol Biol 2019; 1961:185-209. [PMID: 30912047 DOI: 10.1007/978-1-4939-9170-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The advent of the easily programmable and efficient CRISPR/Cas9 nuclease system has revolutionized genetic engineering. While conventional gene knockout experiments using CRISPR/Cas9 are very valuable, these are not well suited to study stage-specific gene function in dynamic situations such as development or disease. Here we describe a CRISPR/Cas9-based OPTimized inducible gene KnockOut method (OPTiKO) for conditional loss-of-function studies in human cells. This approach relies on an improved tetracycline-inducible system for conditional expression of single guide RNAs (sgRNAs) that drive Cas9 activity. In order to ensure homogeneous and stable expression, the necessary transgenes are expressed following rapid and efficient single-step genetic engineering of the AAVS1 genomic safe harbor. When implemented in human pluripotent stem cells (hPSCs), the approach can be then efficiently applied to virtually any hPSC-derived human cell type at various stages of development or disease.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - James D Cooper
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, UK.
| | - Alessandro Bertero
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
239
|
Small Molecule-Based Inducible Gene Therapies for Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:65-69. [PMID: 31884590 DOI: 10.1007/978-3-030-27378-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The eye is an excellent target organ for gene therapy. It is physically isolated, easily accessible, immune-privileged, and postmitotic. Furthermore, potential gene therapies introduced into the eye can be evaluated by noninvasive methods such as fundoscopy, electroretinography, and optical coherence tomography. In the last two decades, great advances have been made in understanding the molecular underpinnings of retinal degenerative diseases. Building upon the development of modern techniques for gene delivery, many gene-based therapies have been effectively used to treat loss-of-function retinal diseases in mice and men. Significant effort has been invested into making gene delivery vehicles more efficient, less toxic, and non-immunogenic. However, one challenge for the treatment of more complex gain-of-function diseases, many of which might be benefited by the regulation of cellular stress-responsive signaling pathways, is the ability to control the strategy in a physiological (conditional) manner. This review is focused on promising retinal gene therapy strategies that rely on small molecule-based conditional regulation and the inherent limitations and challenges of these strategies that need to be addressed prior to their extensive use.
Collapse
|
240
|
Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proc Natl Acad Sci U S A 2018; 116:566-574. [PMID: 30587587 DOI: 10.1073/pnas.1818629116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.
Collapse
|
241
|
Hintze J, Ye Z, Narimatsu Y, Madsen TD, Joshi HJ, Goth CK, Linstedt A, Bachert C, Mandel U, Bennett EP, Vakhrushev SY, Schjoldager KT. Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. J Biol Chem 2018; 293:19064-19077. [PMID: 30327431 PMCID: PMC6295722 DOI: 10.1074/jbc.ra118.004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.
Collapse
Affiliation(s)
- John Hintze
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Zilu Ye
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Yoshiki Narimatsu
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Thomas Daugbjerg Madsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Christoffer K Goth
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Adam Linstedt
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Collin Bachert
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| | - Katrine T Schjoldager
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and
| |
Collapse
|
242
|
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018; 7:e39209. [PMID: 30454555 PMCID: PMC6245734 DOI: 10.7554/elife.39209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Mariya Zhukova
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Z Shik
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schiott
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
243
|
Ruetenik A, Barrientos A. Exploiting Post-mitotic Yeast Cultures to Model Neurodegeneration. Front Mol Neurosci 2018; 11:400. [PMID: 30450036 PMCID: PMC6224518 DOI: 10.3389/fnmol.2018.00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Over the last few decades, the budding yeast Saccharomyces cerevisiae has been extensively used as a valuable organism to explore mechanisms of aging and human age-associated neurodegenerative disorders. Yeast models can be used to study loss of function of disease-related conserved genes and to investigate gain of function activities, frequently proteotoxicity, exerted by non-conserved human mutant proteins responsible for neurodegeneration. Most published models of proteotoxicity have used rapidly dividing cells and suffer from a high level of protein expression resulting in acute growth arrest or cell death. This contrasts with the slow development of neurodegenerative proteotoxicity during aging and the characteristic post-mitotic state of the affected cell type, the neuron. Here, we will review the efforts to create and characterize yeast models of neurodegeneration using the chronological life span model of aging, and the specific information they can provide regarding the chronology of physiological events leading to neurotoxic proteotoxicity-induced cell death and the identification of new pathways involved.
Collapse
Affiliation(s)
- Andrea Ruetenik
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Barrientos
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
244
|
Li H, Qin Y, Mao X, Zheng W, Luo G, Xu X, Zheng J. Silencing of cyt-c4 led to decrease of biofilm formation in Aeromonas hydrophila. Biosci Biotechnol Biochem 2018; 83:221-232. [PMID: 30304991 DOI: 10.1080/09168451.2018.1528543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Aquaculture suffers from a number of diseases caused by Aeromonas hydrophila. Biofilm can protect bacteria from antibiotic therapy. To identify the genes those play crucial roles in A. hydrophila biofilm formation, a library of mini-Tn10 transposon insertion mutants of A. hydrophila B11 has been constructed, and 10 mutants were subjected to biofilm formation assay. The biofilm formation ability of mutant (B188) was significantly decreased compared with B11. The DNA sequence flanking the mini-Tn10 transposon inserted showed that an ORF of approximately 576 bp of the mutant strain B188 was inserted. This ORF putatively displays the highest identity (92%) with the cytochrome c4 gene (cyt-c4) of A. hydrophila subsp. hydrophila ATCC 7966. Silencing cyt-c4 led to deficiencies in biofilm formation, adhesion, drug resistance and pathogenicity of A. hydrophila, which suggests that cyt-c4 plays crucial role in the biofilm formation and virulence mechanisms of A. hydrophila. ABBREVIATIONS: GEN: gentamycin; SDZ: sulfadiazine; AK: amikacin; P: penicillin; CFP: cefoperazone; LEV: levofloxacin; MH: minocycline; FFC: florfenicol; TE: tetracycline; AMP: ampicillin; KAN: kanamycin; STR: streptomycin; SXT: sulfamethoxazole/trimethoprim; DO: doxycycline; OT: Oxytetracycline.
Collapse
Affiliation(s)
- Huiyao Li
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| | - Yingxue Qin
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| | - Xiuxiu Mao
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| | - Wanmei Zheng
- d SiChuan Agricultural University , Ya'an , Sichuan Province , China
| | - Gang Luo
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| | - Xiaojin Xu
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| | - Jiang Zheng
- a Fisheries College , Jimei University , Xiamen , Fujian Province , China.,b Engineering Research Center of the Modern Technology for Eel Industry , Ministry of Education , Xiamen , P.R. China.,c Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment , Xiamen , Fujian Province , China
| |
Collapse
|
245
|
Tetracyclines Modify Translation by Targeting Key Human rRNA Substructures. Cell Chem Biol 2018; 25:1506-1518.e13. [PMID: 30318461 DOI: 10.1016/j.chembiol.2018.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Apart from their antimicrobial properties, tetracyclines demonstrate clinically validated effects in the amelioration of pathological inflammation and human cancer. Delineation of the target(s) and mechanism(s) responsible for these effects, however, has remained elusive. Here, employing quantitative mass spectrometry-based proteomics, we identified human 80S ribosomes as targets of the tetracyclines Col-3 and doxycycline. We then developed in-cell click selective crosslinking with RNA sequence profiling (icCL-seq) to map binding sites for these tetracyclines on key human rRNA substructures at nucleotide resolution. Importantly, we found that structurally and phenotypically variant tetracycline analogs could chemically discriminate these rRNA binding sites. We also found that tetracyclines both subtly modify human ribosomal translation and selectively activate the cellular integrated stress response (ISR). Together, the data reveal that targeting of specific rRNA substructures, activation of the ISR, and inhibition of translation are correlated with the anti-proliferative properties of tetracyclines in human cancer cell lines.
Collapse
|
246
|
Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2086-2098. [PMID: 29986082 DOI: 10.1093/pcp/pcy128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been thoroughly investigated. To evaluate the effect of β-lactam antibiotics (carbenicillin and penicillin) on the growth and development of Arabidopsis thaliana roots, plants were grown in the presence of different amounts and we found a reduction in root size, an increase in the size of root hairs as well as an abnormal position closer to the tip of the roots. Those phenomena were dependent on the accumulation of both antibiotics inside root tissues and also correlated with a decrease in size of the root apical meristem not related to an alteration in cell division but to a decrease in cell expansion. Using an RNA sequencing analysis, we detected an increase in the expression of genes related to the response to oxidative stress, which would explain the increase in the levels of endogenous reactive oxygen species found in the presence of those antibiotics. Moreover, some auxin-responsive genes were misregulated, especially an induction of CYP79B3, possibly explaining the increase in auxin levels in the presence of carbenicillin and the decrease in the amount of indole glucosinolates, involved in the control of fungal infections. Accordingly, penicillin-treated plants were hypersensitive to the endophyte fungus Colletotrichum tofieldiae. These results underscore the risks for plant growth of β-lactam antibiotics in agricultural soils, and suggest a possible function for these compounds as fungus-produced signaling molecules to modify plant behavior.
Collapse
Affiliation(s)
- Marco E Gudiño
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Federico Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
247
|
Datta S, Renwick M, Chau VQ, Zhang F, Nettesheim ER, Lipinski DM, Hulleman JD. A Destabilizing Domain Allows for Fast, Noninvasive, Conditional Control of Protein Abundance in the Mouse Eye - Implications for Ocular Gene Therapy. Invest Ophthalmol Vis Sci 2018; 59:4909-4920. [PMID: 30347085 PMCID: PMC6181441 DOI: 10.1167/iovs.18-24987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Purpose Temporal and reversible control of protein expression in vivo is a central goal for many gene therapies, especially for strategies involving proteins that are detrimental to physiology if constitutively expressed. Accordingly, we explored whether protein abundance in the mouse retina could be effectively controlled using a destabilizing Escherichia coli dihydrofolate reductase (DHFR) domain whose stability is dependent on the small molecule, trimethoprim (TMP). Methods We intravitreally injected wild-type C57BL6/J mice with an adeno-associated vector (rAAV2/2[MAX]) constitutively expressing separate fluorescent reporters: DHFR fused to yellow fluorescent protein (DHFR.YFP) and mCherry. TMP or vehicle was administered to mice via oral gavage, drinking water, or eye drops. Ocular TMP levels post treatment were quantified by LC-MS/MS. Protein abundance was measured by fundus fluorescence imaging and western blotting. Visual acuity, response to light stimulus, retinal structure, and gene expression were evaluated after long-term (3 months) TMP treatment. Results Without TMP, DHFR.YFP was efficiently degraded in the retina. TMP achieved ocular concentrations of ∼13.6 μM (oral gavage), ∼331 nM (drinking water), and ∼636 nM (eye drops). Oral gavage and TMP eye drops stabilized DHFR.YFP as quickly as 6 hours, whereas continuous TMP drinking water could stabilize DHFR.YFP for ≥3 months. Stabilization was completely and repeatedly reversible following removal/addition of TMP in all regimens. Long-term TMP treatment had no impact on retina function/structure and had no effect on >99.9% of tested genes. Conclusions This DHFR-based conditional system is a rapid, efficient, and reversible tool to effectively control protein expression in the retina.
Collapse
Affiliation(s)
- Shyamtanu Datta
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Viet Q. Chau
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Fang Zhang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Emily R. Nettesheim
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel M. Lipinski
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - John D. Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
248
|
Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61:R91-R105. [PMID: 30307158 PMCID: PMC6145237 DOI: 10.1530/jme-18-0005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response and is a retrograde signaling pathway, which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies, which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Correspondence should be addressed to M Shong:
| |
Collapse
|
249
|
Renault D, Yousef H, Mohamed AA. The multilevel antibiotic-induced perturbations to biological systems: Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:821-833. [PMID: 29909308 DOI: 10.1016/j.envpol.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
Collapse
Affiliation(s)
- David Renault
- Université de Rennes 1, UMR CNRS 6553 EcoBio, 263 Avenue du Gal Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Hesham Yousef
- Department of Entomology, Faculty of Science, Cairo University, Giza - PO Box 12613, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza - PO Box 12613, Egypt
| |
Collapse
|
250
|
Hilander T, Konovalova S, Terzioglu M, Tyynismaa H. Analysis of Mitochondrial Protein Synthesis: De Novo Translation, Steady-State Levels, and Assembled OXPHOS Complexes. ACTA ACUST UNITED AC 2018; 77:e56. [PMID: 30063298 DOI: 10.1002/cptx.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria are multifunctional organelles with their own genome and protein synthesis machinery. The 13 proteins encoded by mitochondrial DNA (mtDNA) are core subunits of the oxidative phosphorylation (OXPHOS) system producing the majority of cellular ATP. Yet most mitochondrial proteins are encoded by nuclear genes, synthesized by cytosolic ribosomes, and imported into mitochondria. Therefore, disturbances in cytosolic proteostasis have consequences on the gene expression and synthesis of mtDNA-encoded proteins and overall on mitochondrial function. Internal and environmental factors such as mutations, aging, oxidative stress, and toxic agents can affect the translation and the stability of mitochondrial proteins and lead to OXPHOS dysfunction. Here, methods for analysis of mitochondrial translation rate and protein stability using radioactive and non-radioactive technique as well as the methods for studying steady-state levels and assembly of OXPHOS complexes are described. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Taru Hilander
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|