201
|
Kim GW, Siddiqui A. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses. Exp Mol Med 2021; 53:339-345. [PMID: 33742132 PMCID: PMC8080661 DOI: 10.1038/s12276-021-00581-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification of mammalian cellular RNAs. m6A methylation is linked to epigenetic regulation of several aspects of gene expression, including RNA stability, splicing, nuclear export, RNA folding, and translational activity. m6A modification is reversibly catalyzed by methyltransferases (m6A writers) and demethylases (m6A erasers), and the dynamics of m6A-modified RNA are regulated by m6A-binding proteins (m6A readers). Recently, several studies have shown that m6A methylation sites have been identified in hepatitis B virus (HBV) transcripts and the hepatitis C virus (HCV) RNA genome. Here, we review the role of m6A modification in HBV/HCV replication and its contribution to liver disease pathogenesis. A better understanding of the functions of m6A methylation in the life cycles of HBV and HCV is required to establish the role of these modifications in liver diseases associated with these viral infections.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
202
|
Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021; 12:345. [PMID: 33652758 PMCID: PMC7996938 DOI: 10.3390/genes12030345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
Collapse
Affiliation(s)
- Matthias R Schaefer
- Centre for Anatomy & Cell Biology, Division of Cell-and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Haus C, 1st Floor, 1090 Vienna, Austria
| |
Collapse
|
203
|
Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021; 22:e50128. [PMID: 33605073 PMCID: PMC8025027 DOI: 10.15252/embr.202050128] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
N6‐methyladenosine (m6A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein–Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B‐cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6A modification in human NPC biopsies, patient‐derived xenograft tissues, and cells at different EBV infection stages. m6A‐modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6A‐dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post‐transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV‐associated cancers.
Collapse
Affiliation(s)
- Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Jia Zhu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weisheng Cheng
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China
| | - Mei-Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Ling Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Wen Xiao
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Bo Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gaurab Roy
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinkai Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin E Gewurz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
204
|
Feng Z, Zhou F, Tan M, Wang T, Chen Y, Xu W, Li B, Wang X, Deng X, He ML. Targeting m6A modification inhibits herpes virus 1 infection. Genes Dis 2021; 9:1114-1128. [PMID: 35685469 PMCID: PMC9170584 DOI: 10.1016/j.gendis.2021.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The latent infection by herpes virus type 1 (HSV-1) may be lifelong in trigeminal ganglia and a suspected cause of Alzheimer's Disease (AD) and Amyotrophic lateral sclerosis (ALS). Whether and how N6-methyladenosine (m6A) modification of viral RNAs affects virus infection are poorly understood. Here, we report that HSV-1 infection enhanced the expression of m6A writers (METTL3, METTL14) and readers (YTHDF1/2/3) at the early infection stage and decreased their expression later on, while suppressed the erasers' (FTO, ALBKH5) expression immediately upon infection to facilitate viral replication. Inhibiting m6A modification by 3-deazaadenosine (DAA) significantly decreased viral replication and reduced viral reproduction over 1000 folds. More interestingly, depleting the writers and readers by siRNAs inhibited virus replication and reproduction; whereas depleting the erasers promoted viral replication and reproduction. Silencing YTHDF3 strikingly decreased viral replication by up to 90%, leading to reduction of up to 10-fold viral replication and over 100-fold virus reproduction, respectively. Depletion of m6A initiator METTL3 (by 60%–70%) by siRNA correlatedly decreased viral replication 60%–70%, and reduced virus yield over 30-fold. Consistently, ectopic expression of METTL3 largely increased virus yield. METTL3 knockdown suppressed the HSV-1 intermediate early and early genes (ICP0, ICP8 and UL23) and late genes (VP16, UL44, UL49 and ICP47); while ectopic expression of METTL3 upregulated these gene expression. Results from our study shed the lights on the importance for m6A modification to initiate HSV-1 early replication. The components of m6A modification machinery, particularly m6A initiator METTL3 and reader YTHDF3, would be potential important targets for combating HSV-1 infections.
Collapse
Affiliation(s)
- Zhuoying Feng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Fanghang Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Miaomiao Tan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Wenwen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
- Corresponding author.
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
- Corresponding author.
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, PR China
- CityU Shenzhen Research Institute, Shenzhen, Guangdong 518057, PR China
- Corresponding author. Department of Biomedical Science, City University of Hong Kong, Know loon, Hong Kong, PR China.
| |
Collapse
|
205
|
Kim GW, Imam H, Khan M, Mir SA, Kim SJ, Yoon SK, Hur W, Siddiqui A. HBV-Induced Increased N6 Methyladenosine Modification of PTEN RNA Affects Innate Immunity and Contributes to HCC. Hepatology 2021; 73:533-547. [PMID: 32394474 PMCID: PMC7655655 DOI: 10.1002/hep.31313] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Epitranscriptomic modification of RNA has emerged as the most prevalent form of regulation of gene expression that affects development, differentiation, metabolism, viral infections, and most notably cancer. We have previously shown that hepatitis B virus (HBV) transcripts are modified by N6 methyladenosine (m6 A) addition. HBV also affects m6 A modification of several host RNAs, including phosphatase and tensin homolog (PTEN), a well-known tumor suppressor. PTEN plays a critical role in antiviral innate immunity and the development of hepatocellular carcinoma (HCC). Reports have shown that PTEN controlled interferon regulatory factor 3 (IRF-3) nuclear localization by negative phosphorylation of IRF-3 at Ser97, and PTEN reduced carcinogenesis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. APPROACH AND RESULTS Here, we show that HBV significantly increases the m6 A modification of PTEN RNA, which contributes to its instability with a corresponding decrease in PTEN protein levels. This is reversed in cells in which the expression of m6 A methyltransferases is silenced. PTEN expression directly increases activated IRF-3 nuclear import and subsequent interferon synthesis. In the absence of PTEN, IRF-3 dephosphorylation at the Ser97 site is decreased and interferon synthesis is crippled. In chronic HBV patient biopsy samples, m6 A-modified PTEN mRNA levels were uniformly up-regulated with a concomitant decrease of PTEN mRNA levels. HBV gene expression also activated the PI3K/AKT pathway by regulating PTEN mRNA stability in HCC cell lines. CONCLUSIONS The m6 A epitranscriptomic regulation of PTEN by HBV affects innate immunity by inhibiting IRF-3 nuclear import and the development of HCC by activating the PI3K/AKT pathway. Our studies collectively provide new insights into the mechanisms of HBV-directed immune evasion and HBV-associated hepatocarcinogenesis through m6 A modification of the host PTEN mRNAs.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Hasan Imam
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Mohsin Khan
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Saiful Anam Mir
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonSouth Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research CenterCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea.,Division of HepatologyDepartment of Internal MedicineSeoul St. Mary's HospitalCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Wonhee Hur
- The Catholic University Liver Research CenterCollege of MedicineThe Catholic University of KoreaSeoulSouth Korea
| | - Aleem Siddiqui
- Division of Infectious DiseasesDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| |
Collapse
|
206
|
Ruggieri A, Helm M, Chatel-Chaix L. An epigenetic 'extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biol 2021; 18:696-708. [PMID: 33356825 DOI: 10.1080/15476286.2020.1868150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Beyond their high clinical relevance worldwide, flaviviruses (comprising dengue and Zika viruses) are of particular interest to understand the spatiotemporal control of RNA metabolism. Indeed, their positive single-stranded viral RNA genome (vRNA) undergoes in the cytoplasm replication, translation and encapsidation, three steps of the flavivirus life cycle that are coordinated through a fine-tuned equilibrium. Over the last years, RNA methylation has emerged as a powerful mechanism to regulate messenger RNA metabolism at the posttranscriptional level. Not surprisingly, flaviviruses exploit RNA epigenetic strategies to control crucial steps of their replication cycle as well as to evade sensing by the innate immune system. This review summarizes the current knowledge about vRNA methylation events and their impacts on flavivirus replication and pathogenesis. We also address the important challenges that the field of epitranscriptomics faces in reliably and accurately identifying RNA methylation sites, which should be considered in future studies on viral RNA modifications.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research University of Heidelberg, Heidelberg, Germany
| | - Mark Helm
- Johannes Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
207
|
Zheng X, Wang J, Zhang X, Fu Y, Peng Q, Lu J, Wei L, Li Z, Liu C, Wu Y, Yan Q, Ma J. RNA m 6 A methylation regulates virus-host interaction and EBNA2 expression during Epstein-Barr virus infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:351-362. [PMID: 33434416 PMCID: PMC8127537 DOI: 10.1002/iid3.396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Introduction N6‐methyladenosine (m6A) is the most prevalent modification that occurs in messenger RNA (mRNA), affecting mRNA splicing, translation, and stability. This modification is reversible, and its related biological functions are mediated by “writers,” “erasers,” and “readers.” The field of viral epitranscriptomics and the role of m6A modification in virus–host interaction have attracted much attention recently. When Epstein–Barr virus (EBV) infects a human B lymphocyte, it goes through three phases: the pre‐latent phase, latent phase, and lytic phase. Little is known about the viral and cellular m6A epitranscriptomes in EBV infection, especially in the pre‐latent phase during de novo infection. Methods Methylated RNA immunoprecipitation sequencing (MeRIP‐seq) and MeRIP‐RT‐qPCR were used to determine the m6A‐modified transcripts during de novo EBV infection. RIP assay was used to confirm the binding of EBNA2 and m6A readers. Quantitative reverse‐transcription polymerase chain reaction (RT‐qPCR) and Western blot analysis were performed to test the effect of m6A on the host and viral gene expression. Results Here, we provided mechanistic insights by examining the viral and cellular m6A epitranscriptomes during de novo EBV infection, which is in the pre‐latent phase. EBV EBNA2 and BHRF1 were highly m6A‐modified upon EBV infection. Knockdown of METTL3 (a “writer”) decreased EBNA2 expression levels. The emergent m6A modifications induced by EBV infection preferentially distributed in 3ʹ untranslated regions of cellular transcripts, while the lost m6A modifications induced by EBV infection preferentially distributed in coding sequence regions of mRNAs. EBV infection could influence the host cellular m6A epitranscriptome. Conclusions These results reveal the critical role of m6A modification in the process of de novo EBV infection.
Collapse
Affiliation(s)
- Xiang Zheng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jia Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China.,Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaoyue Zhang
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Yuxin Fu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jianhong Lu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lingyu Wei
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Zhengshuo Li
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Can Liu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Yangge Wu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
208
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
209
|
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, Guo Y, Liu S, Xie T, Sui X. Biological functions of m 6A methyltransferases. Cell Biosci 2021; 11:15. [PMID: 33431045 PMCID: PMC7798219 DOI: 10.1186/s13578-020-00513-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
M6A methyltransferases, acting as a writer in N6-methyladenosine, have attracted wide attention due to their dynamic regulation of life processes. In this review, we first briefly introduce the individual components of m6A methyltransferases and explain their close connections to each other. Then, we concentrate on the extensive biological functions of m6A methyltransferases, which include cell growth, nerve development, osteogenic differentiation, metabolism, cardiovascular system homeostasis, infection and immunity, and tumour progression. We summarize the currently unresolved problems in this research field and propose expectations for m6A methyltransferases as novel targets for preventive and curative strategies for disease treatment in the future.
Collapse
Affiliation(s)
- Jianzhong Gu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Lvjia Zhuo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qin Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qiujie Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shasha Qi
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinyu Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qun Lv
- Department of Respiratory medicine, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shuiping Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
210
|
Sacco MT, Horner SM. Flipping the script: viral capitalization of RNA modifications. Brief Funct Genomics 2021; 20:86-93. [PMID: 33401298 DOI: 10.1093/bfgp/elaa025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
RNA encoded by RNA viruses is highly regulated so that it can function in multiple roles during the viral life cycle. These roles include serving as the mRNA template for translation or the genetic material for replication as well as being packaged into progeny virions. RNA modifications provide an emerging regulatory dimension to the RNA of viruses. Modification of the viral RNA can increase the functional genomic capacity of the RNA viruses without the need to encode and translate additional genes. Further, RNA modifications can facilitate interactions with host or viral RNA-binding proteins that promote replication or can prevent interactions with antiviral RNA-binding proteins. The mechanisms by which RNA viruses facilitate modification of their RNA are diverse. In this review, we discuss some of these mechanisms, including exploring the unknown mechanism by which the RNA of viruses that replicate in the cytoplasm could acquire the RNA modification N6-methyladenosine.
Collapse
|
211
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
212
|
Pan XY, Huang C, Li J. The emerging roles of m 6A modification in liver carcinogenesis. Int J Biol Sci 2021; 17:271-284. [PMID: 33390849 PMCID: PMC7757034 DOI: 10.7150/ijbs.50003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The 'epitranscriptome', a collective term for chemical modifications that influence the structure, metabolism, and functions of RNA, has recently emerged as vitally important for the regulation of gene expression. N6-methyladenosine (m6A), the most prevalent mammalian mRNA internal modification, has been demonstrated to have a pivotal role in almost all vital bioprocesses, such as stem cell self-renewal and differentiation, heat shock or DNA damage response, tissue development, and maternal-to-zygotic transition. Hepatocellular carcinoma (HCC) is prevalent worldwide with high morbidity and mortality because of late diagnosis at an advanced stage and lack of effective treatment strategies. Epigenetic modifications including DNA methylation and histone modification have been demonstrated to be crucial for liver carcinogenesis. However, the role and underlying molecular mechanism of m6A in liver carcinogenesis are mostly unknown. In this review, we summarize recent advances in the m6A region and how these new findings remodel our understanding of m6A regulation of gene expression. We also describe the influence of m6A modification on liver carcinoma and lipid metabolism to instigate further investigations of the role of m6A in liver biological diseases and its potential application in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xue-Yin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
213
|
Thair SA, He YD, Hasin-Brumshtein Y, Sakaram S, Pandya R, Toh J, Rawling D, Remmel M, Coyle S, Dalekos GN, Koutsodimitropoulos I, Vlachogianni G, Gkeka E, Karakike E, Damoraki G, Antonakos N, Khatri P, Giamarellos-Bourboulis EJ, Sweeney TE. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience 2020; 24:101947. [PMID: 33437935 PMCID: PMC7786129 DOI: 10.1016/j.isci.2020.101947] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
The pandemic 2019 novel coronavirus disease (COVID-19) shares certain clinical characteristics with other acute viral infections. We studied the whole-blood transcriptomic host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using RNAseq from 24 healthy controls and 62 prospectively enrolled patients with COVID-19. We then compared these data to non-COVID-19 viral infections, curated from 23 independent studies profiling 1,855 blood samples covering six viruses (influenza, respiratory syncytial virus (RSV), human rhinovirus (HRV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Ebola, dengue). We show gene expression changes in COVID-19 versus non-COVID-19 viral infections are highly correlated (r = 0.74, p < 0.001). However, we also found 416 genes specific to COVID-19. Inspection of top genes revealed dynamic immune evasion and counter host responses specific to COVID-19. Statistical deconvolution of cell proportions maps many cell type proportions concordantly shifting. Discordantly increased in COVID-19 were CD56bright natural killer cells and M2 macrophages. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Simone A Thair
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Yudong D He
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | | | - Suraj Sakaram
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Rushika Pandya
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Jiaying Toh
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Rawling
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Melissa Remmel
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - Sabrina Coyle
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| | - George N Dalekos
- Department of Internal Medicine, University of Thessaly, Larissa General Hospital, Greece
| | | | | | - Eleni Gkeka
- Intensive Care Unit, AHEPA Thessaloniki General Hospital, Greece
| | - Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Georgia Damoraki
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Timothy E Sweeney
- Inflammatix, Inc., 863 Mitten Road, Suite 104, Burlingame, CA 94010, USA
| |
Collapse
|
214
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
215
|
Madugalle SU, Meyer K, Wang DO, Bredy TW. RNA N 6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends Neurosci 2020; 43:1011-1023. [PMID: 33041062 PMCID: PMC7688512 DOI: 10.1016/j.tins.2020.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.
Collapse
Affiliation(s)
- Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Kate Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
216
|
Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m 6A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun 2020; 11:6016. [PMID: 33243990 PMCID: PMC7691994 DOI: 10.1038/s41467-020-19787-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Adenovirus is a nuclear replicating DNA virus reliant on host RNA processing machinery. Processing and metabolism of cellular RNAs can be regulated by METTL3, which catalyzes the addition of N6-methyladenosine (m6A) to mRNAs. While m6A-modified adenoviral RNAs have been previously detected, the location and function of this mark within the infectious cycle is unknown. Since the complex adenovirus transcriptome includes overlapping spliced units that would impede accurate m6A mapping using short-read sequencing, here we profile m6A within the adenovirus transcriptome using a combination of meRIP-seq and direct RNA long-read sequencing to yield both nucleotide and transcript-resolved m6A detection. Although both early and late viral transcripts contain m6A, depletion of m6A writer METTL3 specifically impacts viral late transcripts by reducing their splicing efficiency. These data showcase a new technique for m6A discovery within individual transcripts at nucleotide resolution, and highlight the role of m6A in regulating splicing of a viral pathogen.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, 10065, USA
- Department of Molecular Life Sciences, University of Zurich, 8006, Zurich, Switzerland
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Immunology, University of Washington, Seattle, WA, 98115, USA
| | - Jonathan S Abebe
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA
| | - Ashley N Della Fera
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Biological Sciences Graduate Group, University of Maryland, College Park, MD, 20742, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10017, USA
| | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA.
| | - Matthew D Weitzman
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
217
|
Imam H, Kim GW, Siddiqui A. Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Front Cell Infect Microbiol 2020; 10:584283. [PMID: 33330128 PMCID: PMC7732492 DOI: 10.3389/fcimb.2020.584283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and internal modification of eukaryotic mRNA. Multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses in recent years. m6A modification is involved in all the phases of RNA metabolism, including RNA stability, splicing, nuclear exporting, RNA folding, translational modulation, and RNA degradation. Three protein groups, methyltransferases (m6A-writers), demethylases (m6A-erasers), and m6A-binding proteins (m6A-readers) regulate this dynamic reversible process. Here, we have reviewed the role of m6A modification dictating viral replication, morphogenesis, life cycle, and its contribution to disease progression. A better understanding of the m6A methylation process during viral pathogenesis is required to reveal novel approaches to combat the virus-associated diseases.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
218
|
A Targeted Computational Screen of the SWEETLEAD Database Reveals FDA-Approved Compounds with Anti-Dengue Viral Activity. mBio 2020; 11:mBio.02839-20. [PMID: 33173007 PMCID: PMC7667029 DOI: 10.1128/mbio.02839-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Affordable and effective antiviral therapies are needed worldwide, especially against agents such as dengue virus that are endemic in underserved regions. Many antiviral compounds have been studied in cultured cells but are unsuitable for clinical applications due to pharmacokinetic profiles, side effects, or inconsistent efficacy across dengue serotypes. Such tool compounds can, however, aid in identifying clinically useful treatments. Here, computational screening (Rapid Overlay of Chemical Structures) was used to identify entries in an in silico database of safe-in-human compounds (SWEETLEAD) that display high chemical similarities to known inhibitors of dengue virus. Inhibitors of the dengue proteinase NS2B/3, the dengue capsid, and the host autophagy pathway were used as query compounds. Three FDA-approved compounds that resemble the tool molecules structurally, cause little toxicity, and display strong antiviral activity in cultured cells were selected for further analysis. Pyrimethamine (50% inhibitory concentration [IC50] = 1.2 μM), like the dengue proteinase inhibitor ARDP0006 to which it shows structural similarity, inhibited intramolecular NS2B/3 cleavage. Lack of toxicity early in infection allowed testing in mice, in which pyrimethamine also reduced viral loads. Niclosamide (IC50 = 0.28 μM), like dengue core inhibitor ST-148, affected structural components of the virion and inhibited early processes during infection. Vandetanib (IC50 = 1.6 μM), like cellular autophagy inhibitor spautin-1, blocked viral exit from cells and could be shown to extend survival in vivo Thus, three FDA-approved compounds with promising utility for repurposing to treat dengue virus infections and their potential mechanisms were identified using computational tools and minimal phenotypic screening.IMPORTANCE No antiviral therapeutics are currently available for dengue virus infections. By computationally overlaying the three-dimensional (3D) chemical structures of compounds known to inhibit dengue virus over those of compounds known to be safe in humans, we identified three FDA-approved compounds that are attractive candidates for repurposing as antivirals. We identified targets for two previously identified antiviral compounds and revealed a previously unknown potential anti-dengue compound, vandetanib. This computational approach to analyze a highly curated library of structures has the benefits of speed and cost efficiency. It also leverages mechanistic work with query compounds used in biomedical research to provide strong hypotheses for the antiviral mechanisms of the safer hit compounds. This workflow to identify compounds with known safety profiles can be expanded to any biological activity for which a small-molecule query compound has been identified, potentially expediting the translation of basic research to clinical interventions.
Collapse
|
219
|
Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 2020; 11:792-808. [PMID: 32440736 PMCID: PMC7647981 DOI: 10.1007/s13238-020-00733-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023] Open
Abstract
Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibin Liu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
220
|
Liu PJ, Balfe P, McKeating JA, Schilling M. Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses 2020; 12:E1213. [PMID: 33113858 PMCID: PMC7693908 DOI: 10.3390/v12111213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions.
Collapse
|
221
|
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2020; 16:819-837. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA internal modification, is present in most eukaryotic species and prokaryotes. Studies have highlighted an intricate network architecture by which m6A epitranscriptome impacts on immune response and function. However, it was only until recently that the mechanisms underlying the involvement of m6A modification in immune system were uncovered. Here, we systematically review the m6A involvement in the regulation of innate and adaptive immune cells. Further, the interplay between m6A modification and anti-inflammatory, anti-viral and anti-tumour immunity is also comprehensively summarized. Finally, we focus on the future prospects of m6A modification in immune modulation. A better understanding of the crosstalk between m6A modification and immune system is of great significance to reveal new pathogenic pathways and to develop promising therapeutic targets of diseases.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
222
|
Mo J, Chen Z, Qin S, Li S, Liu C, Zhang L, Ran R, Kong Y, Wang F, Liu S, Zhou Y, Zhang X, Weng X, Zhou X. TRADES: Targeted RNA Demethylation by SunTag System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001402. [PMID: 33042753 PMCID: PMC7539198 DOI: 10.1002/advs.202001402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/15/2020] [Indexed: 05/04/2023]
Abstract
N6-methyladenosine (m6A) is rapidly being studied and uncovered to play a significant role in various biological processes as well as in RNA fate and functions, while the effects of defined m6A sites are rarely characterized for the lack of convenient tools. To provide an applicable method to remove m6A modification at specific loci, an m6A editing system called "targeted RNA demethylation by SunTag system (TRADES)" is engineered. In this system, the targeting element dCas13b is fused to ten copies of GCN4 peptides which can recruit multiple scFv-fusion RNA demethylase to demethylate the target m6A site. Owing to this design, TRADES is more flexible to the indistinct m6A sites for its wide editing window. By site-specific demethylation of messenger RNA (mRNA) SON A2699, the lifetime of SON RNA is successfully prolonged in HeLa cells. Meanwhile, TRADES negligibly influences the lifetime of other non-targeted transcripts. TRADES also can regulate the gene expression of target transcript in an m6A-dependent manner. Moreover, the interference occuring for HBV and HIV replications demonstrates that the TRADES system holds potential in viral life cycle regulation and clinical applications.
Collapse
Affiliation(s)
- Jing Mo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Zonggui Chen
- The Institute for Advanced StudiesCollege of Life SciencesState Key Laboratory of VirologyWuhan UniversityWuhan430072China
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
| | - Shanshan Qin
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Shu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologySchool of MedicineWuhan UniversityWuhan430071China
| | - Chuangang Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologySchool of MedicineWuhan UniversityWuhan430071China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologySchool of MedicineWuhan UniversityWuhan430071China
| | - Ruoxi Ran
- Department of Clinical LaboratoryCenter for Gene Diagnosis and Program of Clinical LaboratoryZhongnan HospitalWuhan UniversityWuhan430071China
| | - Ying Kong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologySchool of MedicineWuhan UniversityWuhan430071China
| | - Fang Wang
- School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Songmei Liu
- Department of Clinical LaboratoryCenter for Gene Diagnosis and Program of Clinical LaboratoryZhongnan HospitalWuhan UniversityWuhan430071China
| | - Yu Zhou
- The Institute for Advanced StudiesCollege of Life SciencesState Key Laboratory of VirologyWuhan UniversityWuhan430072China
| | - Xiaolian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologySchool of MedicineWuhan UniversityWuhan430071China
| | - Xiaocheng Weng
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Xiang Zhou
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
223
|
Carbaugh DL, Zhou S, Sanders W, Moorman NJ, Swanstrom R, Lazear HM. Two Genetic Differences between Closely Related Zika Virus Strains Determine Pathogenic Outcome in Mice. J Virol 2020; 94:e00618-20. [PMID: 32796074 PMCID: PMC7527068 DOI: 10.1128/jvi.00618-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022] Open
Abstract
Recent Zika virus (ZIKV) outbreaks and unexpected clinical manifestations of ZIKV infection have prompted an increase in ZIKV-related research. Here, we identify two strain-specific determinants of ZIKV virulence in mice. We found that strain H/PF/2013 caused 100% lethality in Ifnar1-/- mice, whereas PRVABC59 caused no lethality; both strains caused 100% lethality in Ifnar1-/-Ifngr1-/- double-knockout (DKO) mice. Deep sequencing revealed a high-frequency variant in PRVABC59 not present in H/PF/2013: a G-to-T change at nucleotide 1965 producing a Val-to-Leu substitution at position 330 of the viral envelope (E) protein. We show that the V330 variant is lethal on both virus strain backgrounds, whereas the L330 variant is attenuating only on the PRVABC59 background. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. The consensus sequences of H/PF/2013 and PRVABC59 differ by 3 amino acids, but these were not responsible for the difference in virulence between the two strains. H/PF/2013 and PRVABC59 differ by an additional 31 noncoding or silent nucleotide changes. We made a panel of chimeric viruses with identical amino acid sequences but nucleotide sequences derived from H/PF/2013 or PRVABC59. We found that 6 nucleotide differences in the 3' quarter of the H/PF/2013 genome were sufficient to confer virulence in Ifnar1-/- mice. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis (Ifnar1-/- and Ifnar1-/- Ifngr1-/- DKO mice).IMPORTANCE Contemporary ZIKV strains are closely related and often used interchangeably in laboratory research. Here, we identify two strain-specific determinants of ZIKV virulence that are evident in only Ifnar1-/- mice but not Ifnar1-/-Ifngr1-/- DKO mice. These results identify a balanced polymorphism in the E protein that is sufficient to attenuate the PRVABC59 strain but not H/PF/2013. We further identify a second virulence determinant in the H/PF/2013 strain, which is driven by the viral nucleotide sequence but not the amino acid sequence. Altogether, our work identifies a large and previously unreported difference in virulence between two commonly used ZIKV strains, in two widely used mouse models of ZIKV pathogenesis. Our results highlight that even very closely related virus strains can produce significantly different pathogenic phenotypes in common laboratory models.
Collapse
Affiliation(s)
- Derek L Carbaugh
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuntai Zhou
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
224
|
Abstract
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
225
|
Kim GW, Imam H, Khan M, Siddiqui A. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J Biol Chem 2020; 295:13123-13133. [PMID: 32719095 PMCID: PMC7489896 DOI: 10.1074/jbc.ra120.014260] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
N6-Methyladenosine (m6A), the methylation of the adenosine base at the nitrogen 6 position, is the most common epitranscriptomic modification of mRNA that affects a wide variety of biological functions. We have previously reported that hepatitis B viral RNAs are m6A-modified, displaying a dual functional role in the viral life cycle. Here, we show that cellular m6A machinery regulates host innate immunity against hepatitis B and C viral infections by inducing m6A modification of viral transcripts. The depletion of the m6A writer enzymes (METTL3 and METTL14) leads to an increase in viral RNA recognition by retinoic acid-inducible gene I (RIG-I), thereby stimulating type I interferon production. This is reversed in cells in which m6A METTL3 and METTL14 are overexpressed. The m6A modification of viral RNAs renders RIG-I signaling less effective, whereas single nucleotide mutation of m6A consensus motif of viral RNAs enhances RIG-I sensing activity. Importantly, m6A reader proteins (YTHDF2 and YTHDF3) inhibit RIG-I-transduced signaling activated by viral RNAs by occupying m6A-modified RNAs and inhibiting RIG-I recognition. Collectively, our results provide new insights into the mechanism of immune evasion via m6A modification of viral RNAs.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
226
|
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020; 131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
RNA methylation is a post-transcriptional level of regulation. At present, more than 150 kinds of RNA modifications have been identified. They are widely distributed in messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), noncoding small RNA (sncRNA) and long-chain non-coding RNA (lncRNA). In recent years, with the discovery of RNA methylation related proteins and the development of high-throughput sequencing technology, the mystery of RNA methylation has been gradually revealed, and its biological function and application value have gradually emerged. In this review, a large number of research results of RNA methylation in recent years are collected. Through systematic summary and refinement, this review introduced RNA methylation modification-related proteins and RNA methylation sequencing technologies, as well as the biological functions of RNA methylation, expressions and applications of RNA methylation-related genes in physiological or pathological states such as cancer, immunity and virus infection, and discussed the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yujia Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.
| |
Collapse
|
227
|
Zhao Z, Meng J, Su R, Zhang J, Chen J, Ma X, Xia Q. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J Hepatol 2020; 73:664-679. [PMID: 32330603 DOI: 10.1016/j.jhep.2020.04.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
The development of next-generation sequencing technology and the discovery of specific antibodies targeting chemically modified nucleotides have paved the way for a new era of epitranscriptomics. Cellular RNA is known to dynamically and reversibly undergo different chemical modifications after transcription, such as N6-methyladenosine (m6A), N1-methyladenosine, N6,2'-O-dimethyladenosine, 5-methylcytosine, and 5-hydroxymethylcytidine, whose identity and location comprise the field of epitranscriptomics. Dynamic post-transcriptional modifications determine the fate of target RNAs by regulating various aspects of their processing, including RNA export, transcript processing, splicing, and degradation. The most abundant internal mRNA modification in eukaryotic cells is m6A, which exhibits essential roles in physiological processes, such as embryogenesis, carcinogenesis, and neurogenesis. m6A is deposited by the m6A methyltransferase complex (composed of METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognised by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3). The liver is the largest digestive and metabolic organ, and m6A modifications play unique roles in critical physiological hepatic functions and various liver diseases. This review focuses on the biological roles of m6A RNA methylation in lipid metabolism, viral hepatitis, non-alcoholic fatty liver disease, liver cancer, and tumour metastasis. In addition, we summarise the existing inhibitors targeting m6A regulators and discuss the potential of modulating m6A modifications as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jiaxiang Meng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
228
|
Zhen D, Wu Y, Zhang Y, Chen K, Song B, Xu H, Tang Y, Wei Z, Meng J. m 6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N 6-Methyladenosine (m 6A) Readers. Front Cell Dev Biol 2020; 8:741. [PMID: 32850851 PMCID: PMC7431669 DOI: 10.3389/fcell.2020.00741] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most abundant post-transcriptional modification in mRNA, and regulates critical biological functions via m6A reader proteins that bind to m6A-containing transcripts. There exist multiple m6A reader proteins in the human genome, but their respective binding specificity and functional relevance under different biological contexts are not yet fully understood due to the limitation of experimental approaches. An in silico study was devised to unveil the target specificity and regulatory functions of different m6A readers. We established a support vector machine-based computational framework to predict the epitranscriptome-wide targets of six m6A reader proteins (YTHDF1-3, YTHDC1-2, and EIF3A) based on 58 genomic features as well as the conventional sequence-derived features. Our model achieved an average AUC of 0.981 and 0.893 under the full-transcript and mature mRNA model, respectively, marking a substantial improvement in accuracy compared to the sequence encoding schemes tested. Additionally, the distinct biological characteristics of each individual m6A reader were explored via the distribution, conservation, Gene Ontology enrichment, cellular components and molecular functions of their target m6A sites. A web server was constructed for predicting the putative binding readers of m6A sites to serve the research community, and is freely accessible at: http://m6areader.rnamd.com.
Collapse
Affiliation(s)
- Di Zhen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yuxuan Wu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yuxin Zhang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Kunqi Chen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bowen Song
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Haiqi Xu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
229
|
Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020; 17:233. [PMID: 32778106 PMCID: PMC7418199 DOI: 10.1186/s12974-020-01904-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Patrick Eldin
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Laurence Briant
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Annie Lannuzel
- Neurology Unit, INSERM CIC 1424, Guadeloupe University Hospital, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Sorbonne University Medical School, Paris, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - André Cabié
- INSERM CIC 1424, Infectious Disease and Tropical Medicine Unit, Martinique University Hospital, Université des Antilles EA4537, Martinique, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.
| |
Collapse
|
230
|
Garcias Morales D, Reyes JL. A birds'-eye view of the activity and specificity of the mRNA m 6 A methyltransferase complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1618. [PMID: 32686365 DOI: 10.1002/wrna.1618] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Appropriate control of the transcriptome is essential to regulate different aspects of gene expression during development and in response to environmental stimuli. Fast accumulating reports are recognizing and functionally characterizing several types of modifications across transcripts, which have created a new field of RNA study named epitranscriptomics. The most abundant modification found in messenger RNA (mRNA) is N6-methyladenosine (m6 A). m6 A addition is achieved by a large methyltransferase complex (MTC). The m6 A-MTC is composed of the methyltransferases METTL3 and METTL14 as the catalytic core, and several protein factors necessary for its correct catalysis, which include WTAP, RBM15, VIRMA, HAKAI, and ZC3H13. To fully appreciate the relevance of this modification, it is important to dissect the basis for the MTC function as well as to define its interaction with other cellular partners. Here, we summarize previous and recent knowledge on these issues to provide a guide for future research and put forward ideas on the flexibility and specificity of this process. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- David Garcias Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Chamilpa, Cuernavaca Morelos, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Chamilpa, Cuernavaca Morelos, Mexico
| |
Collapse
|
231
|
Asada K, Bolatkan A, Takasawa K, Komatsu M, Kaneko S, Hamamoto R. Critical Roles of N6-Methyladenosine (m 6A) in Cancer and Virus Infection. Biomolecules 2020; 10:1071. [PMID: 32709063 PMCID: PMC7408378 DOI: 10.3390/biom10071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that epigenetic abnormalities are involved in various diseases, including cancer. In particular, in order to realize precision medicine, the integrated analysis of genetics and epigenetics is considered to be important; detailed epigenetic analysis in the medical field has been becoming increasingly important. In the epigenetics analysis, DNA methylation and histone modification analyses have been actively studied for a long time, and many important findings were accumulated. On the other hand, recently, attention has also been focused on RNA modification in the field of epigenetics; now it is known that RNA modification is associated with various biological functions, such as regulation of gene expression. Among RNA modifications, functional analysis of N6-methyladenosine (m6A), the most abundant RNA modification found from humans to plants is actively progressing, and it has also been known that m6A abnormality is involved in cancer and other diseases. Importantly, recent studies have shown that m6A is related to viral infections. Considering the current world situation under threat of viral infections, it is important to deepen knowledge of RNA modification from the viewpoint of viral diseases. Hence, in this review, we have summarized the recent findings regarding the roles of RNA modifications in biological functions, cancer biology, and virus infection, particularly focusing on m6A in mRNA.
Collapse
Affiliation(s)
- Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Amina Bolatkan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryuji Hamamoto
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (A.B.); (K.T.); (M.K.)
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
232
|
Prognostic Value of an m6A RNA Methylation Regulator-Based Signature in Patients with Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2053902. [PMID: 32733931 PMCID: PMC7378627 DOI: 10.1155/2020/2053902] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Purposes Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Recent researches have demonstrated that m6A methylation regulators play a key role in various cancers, such as gastric cancer and colon adenocarcinoma. Several m6A methylation regulators are reported to predict the prognosis of HCC. Therefore, there is a need to further identify the predictive value of m6A methylation regulators in HCC. Methods We utilized The Cancer Genome Atlas (TCGA) database to obtain the gene expression profile of m6A RNA methylation regulators and clinical information for patients with HCC. Besides, we identified two clusters of HCC with various clinical factors by consensus clustering analysis. Then the least absolute shrinkage and selection operator (LASSO) and the Cox regression analysis were applied to construct a prognostic signature. Results Except for ZC3H13 and METTL14, a majority of the thirteen m6A RNA methylation regulators were significantly overexpressed in HCC specimens. HCC patients were classified into two groups (cluster 1 and cluster 2). The cluster 1 was with a significantly worse prognosis than cluster 2, and most of the 13 known m6A RNA methylation regulators were upregulated in cluster 1. Besides, we developed a prognostic signature consisting of YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13, which could successfully differentiate high-risk patients. More importantly, univariate and multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor for patients with HCC. Conclusions Our study showed these five m6A RNA methylation regulators can be used as practical and reliable prognostic tools of HCC, which might have potential value for therapeutic strategies.
Collapse
|
233
|
Lu J, Qian J, Yin S, Zhou L, Zheng S, Zhang W. Mechanisms of RNA N 6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Front Oncol 2020; 10:1105. [PMID: 32733807 PMCID: PMC7358598 DOI: 10.3389/fonc.2020.01105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
N6-Methyladenosine (m6A) is the most common RNA internal modification in eukaryotic cells. Its regulatory effects at the post-transcriptional level on both messenger RNAs (mRNAs) and noncoding RNAs have been widely studied; these include alternative splicing, stability, translation efficiency, nucleus export, and degradation. m6A modification is implicated in a series of physiological and pathological activities, such as embryonic stem cell differentiation, immunoregulation, adipogenesis, and cancer development. Recently, the significance of m6A methylation has been identified in both viral hepatitis and non-alcohol fatty liver disease (NAFLD), which are major risk factors in the development of hepatocellular carcinoma (HCC). Given the high incidence and mortality rate of HCC worldwide, it is of great importance to elucidate the mechanisms underlying HCC initiation and progression. m6A as an emerging research focus has great potential to facilitate the understanding of HCC, particularly from an etiological perspective. Thus, in this review, we summarize recent progress in understanding m6A modification related to viral hepatitis, NAFLD, and HCC, including their mechanisms and clinical applications.
Collapse
Affiliation(s)
- Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Wu Zhang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,Institution of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
234
|
5-Methylcytosine RNA Modifications Promote Retrovirus Replication in an ALYREF Reader Protein-Dependent Manner. J Virol 2020; 94:JVI.00544-20. [PMID: 32321818 DOI: 10.1128/jvi.00544-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022] Open
Abstract
RNA modifications play diverse roles in regulating RNA function, and viruses co-opt these pathways for their own benefit. While recent studies have highlighted the importance of N 6-methyladenosine (m6A)-the most abundant mRNA modification-in regulating retrovirus replication, the identification and function of other RNA modifications in viral biology have been largely unexplored. Here, we characterized the RNA modifications present in a model retrovirus, murine leukemia virus (MLV), using mass spectrometry and sequencing. We found that 5-methylcytosine (m5C) is highly enriched in viral genomic RNA relative to uninfected cellular mRNAs, and we mapped at single-nucleotide resolution the m5C sites, which are located in multiple clusters throughout the MLV genome. Further, we showed that the m5C reader protein ALYREF plays an important role in regulating MLV replication. Together, our results provide a complete m5C profile in a virus and its function in a eukaryotic mRNA.IMPORTANCE Over 130 modifications have been identified in cellular RNAs, which play critical roles in many cellular processes, from modulating RNA stability to altering translation efficiency. One such modification, 5-methylcytosine, is relatively abundant in mammalian mRNAs, but its precise location and function are not well understood. In this study, we identified unexpectedly high levels of m5C in the murine leukemia virus RNA, precisely mapped its location, and showed that ALYREF, a reader protein that specifically recognizes m5C, regulates viral production. Together, our findings provide a high-resolution atlas of m5C in murine leukemia virus and reveal a functional role of m5C in viral replication.
Collapse
|
235
|
Chen J, Jin L, Wang Z, Wang L, Chen Q, Cui Y, Liu G. N6-methyladenosine regulates PEDV replication and host gene expression. Virology 2020; 548:59-72. [PMID: 32838947 PMCID: PMC7297182 DOI: 10.1016/j.virol.2020.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
Methylation of the N6 position of adenosine (m6A) is a widespread RNA modification that is critical for various physiological and pathological processes. Although this modification was also found in the RNA of several viruses almost 40 years ago, its biological functions during viral infection have been elucidated recently. Here, we investigated the effects of viral and host RNA methylation during porcine epidemic diarrhea virus (PEDV) infection. The results demonstrated that the m6A modification was abundant in the PEDV genome and the host methyltransferases METTL3 and METTL14 and demethylase FTO were involved in the regulation of viral replication. The knockdown of the methyltransferases increased PEDV replication while silencing the demethylase decreased PEDV output. Moreover, the proteins of the YTHDF family regulated the PEDV replication by affecting the stability of m6A-modified viral RNA. In particular, PEDV infection could trigger an increasement of m6A in host RNA and decrease the expression of FTO. The m6A modification sites in mRNAs and target genes were also altered during PEDV infection. Additionally, part of the host responses to PEDV infection was controlled by m6A modification, which could be reversed by the expression of FTO. Taken together, our results identified the role of m6A modification in PEDV replication and interactions with the host.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Li Jin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Zemei Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Liyuan Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Qingbo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Yaru Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
236
|
Abstract
Eukaryotic gene expression is regulated not only by genomic enhancers and promoters, but also by covalent modifications added to both chromatin and RNAs. Whereas cellular gene expression may be either enhanced or inhibited by specific epigenetic modifications deposited on histones (in particular, histone H3), these epigenetic modifications can also repress viral gene expression, potentially functioning as a potent antiviral innate immune response in DNA virus-infected cells. However, viruses have evolved countermeasures that prevent the epigenetic silencing of their genes during lytic replication, and they can also take advantage of epigenetic silencing to establish latent infections. By contrast, the various covalent modifications added to RNAs, termed epitranscriptomic modifications, can positively regulate mRNA translation and/or stability, and both DNA and RNA viruses have evolved to utilize epitranscriptomic modifications as a means to maximize viral gene expression. As a consequence, both chromatin and RNA modifications could serve as novel targets for the development of antivirals. In this Review, we discuss how host epigenetic and epitranscriptomic processes regulate viral gene expression at the levels of chromatin and RNA function, respectively, and explore how viruses modify, avoid or utilize these processes in order to regulate viral gene expression.
Collapse
|
237
|
Recent developments of small molecules targeting RNA m6A modulators. Eur J Med Chem 2020; 196:112325. [DOI: 10.1016/j.ejmech.2020.112325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
|
238
|
Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, Hao SR, Jia HY, Cai H, Zhang XL, Yu GD, Xu KJ, Wang XY, Gu JQ, Zhang SY, Ye CY, Jin CL, Lu YF, Yu X, Yu XP, Huang JR, Xu KL, Ni Q, Yu CB, Zhu B, Li YT, Liu J, Zhao H, Zhang X, Yu L, Guo YZ, Su JW, Tao JJ, Lang GJ, Wu XX, Wu WR, Qv TT, Xiang DR, Yi P, Shi D, Chen Y, Ren Y, Qiu YQ, Li LJ, Sheng J, Yang Y. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69:1002-1009. [PMID: 32213556 PMCID: PMC7133387 DOI: 10.1136/gutjnl-2020-320926] [Citation(s) in RCA: 863] [Impact Index Per Article: 172.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The SARS-CoV-2-infected disease (COVID-19) outbreak is a major threat to human beings. Previous studies mainly focused on Wuhan and typical symptoms. We analysed 74 confirmed COVID-19 cases with GI symptoms in the Zhejiang province to determine epidemiological, clinical and virological characteristics. DESIGN COVID-19 hospital patients were admitted in the Zhejiang province from 17 January 2020 to 8 February 2020. Epidemiological, demographic, clinical, laboratory, management and outcome data of patients with GI symptoms were analysed using multivariate analysis for risk of severe/critical type. Bioinformatics were used to analyse features of SARS-CoV-2 from Zhejiang province. RESULTS Among enrolled 651 patients, 74 (11.4%) presented with at least one GI symptom (nausea, vomiting or diarrhoea), average age of 46.14 years, 4-day incubation period and 10.8% had pre-existing liver disease. Of patients with COVID-19 with GI symptoms, 17 (22.97%) and 23 (31.08%) had severe/critical types and family clustering, respectively, significantly higher than those without GI symptoms, 47 (8.14%) and 118 (20.45%). Of patients with COVID-19 with GI symptoms, 29 (39.19%), 23 (31.08%), 8 (10.81%) and 16 (21.62%) had significantly higher rates of fever >38.5°C, fatigue, shortness of breath and headache, respectively. Low-dose glucocorticoids and antibiotics were administered to 14.86% and 41.89% of patients, respectively. Sputum production and increased lactate dehydrogenase/glucose levels were risk factors for severe/critical type. Bioinformatics showed sequence mutation of SARS-CoV-2 with m6A methylation and changed binding capacity with ACE2. CONCLUSION We report COVID-19 cases with GI symptoms with novel features outside Wuhan. Attention to patients with COVID-19 with non-classic symptoms should increase to protect health providers.
Collapse
Affiliation(s)
- Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang-Shan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian-Hua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianguo Gao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Min Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shao-Rui Hao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Yu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guo-Dong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai-Jin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jue-Qing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan-Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chan-Yuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ci-Liang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Feng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian-Rong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang-Li Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Bo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong-Tao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong-Zheng Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun-Wei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing-Jing Tao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guan-Jing Lang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Rui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting-Ting Qv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dai-Rong Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Yi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yun-Qing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
239
|
Kim B, Arcos S, Rothamel K, Jian J, Rose KL, McDonald WH, Bian Y, Reasoner S, Barrows NJ, Bradrick S, Garcia-Blanco MA, Ascano M. Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP. Mol Cell 2020; 78:624-640.e7. [PMID: 32380061 PMCID: PMC7263428 DOI: 10.1016/j.molcel.2020.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.
Collapse
Affiliation(s)
- Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jeffrey Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yuqi Bian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nicholas J Barrows
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shelton Bradrick
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
240
|
Immune-profiling of ZIKV-infected patients identifies a distinct function of plasmacytoid dendritic cells for immune cross-regulation. Nat Commun 2020; 11:2421. [PMID: 32415086 PMCID: PMC7229207 DOI: 10.1038/s41467-020-16217-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen with increasing public health significance. To characterize immune responses to ZIKV, here we examine transcriptional signatures of CD4 T, CD8 T, B, and NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from three individuals with ZIKV infection. While gene expression patterns from most cell subsets display signs of impaired antiviral immune activity, pDCs from infected host have distinct transcriptional response associated with activation of innate immune recognition and type I interferon signaling pathways, but downregulation of key host factors known to support ZIKV replication steps; meanwhile, pDCs exhibit a unique expression pattern of gene modules that are correlated with alternative cell populations, suggesting collaborative interactions between pDCs and other immune cells, particularly B cells. Together, these results point towards a discrete but integrative function of pDCs in the human immune responses to ZIKV infection.
Collapse
|
241
|
Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell 2020; 181:914-921.e10. [PMID: 32330414 PMCID: PMC7179501 DOI: 10.1016/j.cell.2020.04.011] [Citation(s) in RCA: 1524] [Impact Index Per Article: 304.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic. Although the SARS-CoV-2 genome was reported recently, its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous discontinuous transcription events. In addition to the canonical genomic and 9 subgenomic RNAs, SARS-CoV-2 produces transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif, AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the modification and the 3' tail. Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Dongwan Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo-Yeon Lee
- Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 28159, Republic of Korea
| | - Jeong-Sun Yang
- Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 28159, Republic of Korea
| | - Jun Won Kim
- Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 28159, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
242
|
Yao M, Dong Y, Wang Y, Liu H, Ma H, Zhang H, Zhang L, Cheng L, Lv X, Xu Z, Zhang F, Lei Y, Ye W. N 6-methyladenosine modifications enhance enterovirus 71 ORF translation through METTL3 cytoplasmic distribution. Biochem Biophys Res Commun 2020; 527:297-304. [PMID: 32446384 DOI: 10.1016/j.bbrc.2020.04.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 01/10/2023]
Abstract
During replication, numerous viral RNAs are modified by N6-methyladenosine (m6A), the most abundant internal RNA modification. m6A is believed to regulate elements of RNA metabolism, such as splicing, stability, translation, secondary structure formation, and viral replication. In this study, we assessed the occurrence of m6A modification of the EV71 genome in human cells and revealed a preferred, conserved modification site across diverse viral strains. A single m6A modification at the 5' UTR-VP4 junction was shown to perform a protranslational function. Depletion of the METTL3 methyltransferase or treatment with 3-deazaadenosine significantly reduced EV71 replication. Specifically, METTL3 colocalized with the viral dsRNA replication intermediate in the cytoplasm during EV71 infection. As a nuclear resident protein, METTL3 relies on the binding of the nuclear import protein karyopherin to its nuclear localization signal (NLS) for nuclear translocation. We observed that EV71 2A and METTL3 share nuclear import proteins. The results of this study revealed an inner mechanism by which EV71 2A regulates the subcellular location of METTL3 to amplify its own gene expression, providing an increased understanding of RNA epitranscriptomics during the EV71 replication cycle.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
243
|
Selberg S, Blokhina D, Aatonen M, Koivisto P, Siltanen A, Mervaala E, Kankuri E, Karelson M. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep 2020; 26:3762-3771.e5. [PMID: 30917327 DOI: 10.1016/j.celrep.2019.02.100] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Chemical modifications of RNA provide an additional, epitranscriptomic, level of control over cellular functions. N-6-methylated adenosines (m6As) are found in several types of RNA, and their amounts are regulated by methyltransferases and demethylases. One of the most important enzymes catalyzing generation of m6A on mRNA is the trimer N-6-methyltransferase METTL3-14-WTAP complex. Its activity has been linked to such critical biological processes as cell differentiation, proliferation, and death. We used in silico-based discovery to identify small-molecule ligands that bind to METTL3-14-WTAP and determined experimentally their binding affinity and kinetics, as well as their effect on enzymatic function. We show that these ligands serve as activators of the METTL3-14-WTAP complex.
Collapse
Affiliation(s)
- Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Daria Blokhina
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Maria Aatonen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pertti Koivisto
- Organic Residues Section, Laboratory and Research Division, Chemistry Unit, Finnish Food Authority, Helsinki, Finland
| | - Antti Siltanen
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
244
|
Zheng H, Li S, Zhang X, Sui N. Functional Implications of Active N 6-Methyladenosine in Plants. Front Cell Dev Biol 2020; 8:291. [PMID: 32411708 PMCID: PMC7202093 DOI: 10.3389/fcell.2020.00291] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification and has been found in many organisms, including mammals, and plants. It has important regulatory effects on RNA splicing, export, stability, and translation. The abundance of m6A on RNA depends on the dynamic regulation between methyltransferase ("writer") and demethylase ("eraser"), and m6A binding protein ("reader") exerts more specific regulatory function by binding m6A modification sites on RNA. Progress in research has revealed important functions of m6A modification in plants. In this review, we systematically summarize the latest advances in research on the composition and mechanism of action of the m6A system in plants. We emphasize the function of m6A modification on RNA fate, plant development, and stress resistance. Finally, we discuss the outstanding questions and opportunities exist for future research on m6A modification in plant.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
245
|
Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J 2020; 17:60. [PMID: 32334603 PMCID: PMC7183730 DOI: 10.1186/s12985-020-01329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Global Health, Surveillance & Diagnostics Group, MRIGlobal, Kansas City, MO, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
246
|
McIntyre ABR, Gokhale NS, Cerchietti L, Jaffrey SR, Horner SM, Mason CE. Limits in the detection of m 6A changes using MeRIP/m 6A-seq. Sci Rep 2020; 10:6590. [PMID: 32313079 PMCID: PMC7170965 DOI: 10.1038/s41598-020-63355-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many cellular mRNAs contain the modified base m6A, and recent studies have suggested that various stimuli can lead to changes in m6A. The most common method to map m6A and to predict changes in m6A between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-seq), through which methylated regions are detected as peaks in transcript coverage from immunoprecipitated RNA relative to input RNA. Here, we generated replicate controls and reanalyzed published MeRIP-seq data to estimate reproducibility across experiments. We found that m6A peak overlap in mRNAs varies from ~30 to 60% between studies, even in the same cell type. We then assessed statistical methods to detect changes in m6A peaks as distinct from changes in gene expression. However, from these published data sets, we detected few changes under most conditions and were unable to detect consistent changes across studies of similar stimuli. Overall, our work identifies limits to MeRIP-seq reproducibility in the detection both of peaks and of peak changes and proposes improved approaches for analysis of peak changes.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- Tri-Institutional Program in Computational Biology and Medicine, New York City, NY, 10065, USA.
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
247
|
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 2020; 16:1929-1940. [PMID: 32398960 PMCID: PMC7211178 DOI: 10.7150/ijbs.45231] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is identified as the most prevalent and abundant internal RNA modification, especially within eukaryotic mRNAs, which has attracted much attention in recent years since its importance for regulating gene expression and deciding cell fate. m6A modification is installed by RNA methyltransferases METTL3, METTL14 and WTAP (Writers), removed by the demethylases FTO and ALKBH5 (Erasers) and recognized by m6A binding proteins, such as YT521-B homology YTH domain-containing proteins (Readers). Accumulating evidence shows that m6A RNA methylation participates in almost all aspects of RNA processing, implying an association with important bioprocesses. In this review, we mainly summarize and discuss the functional relevance and importance of m6A modification in cellular processes.
Collapse
Affiliation(s)
- Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
248
|
The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21:501-512. [DOI: 10.1038/s41590-020-0650-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
|
249
|
Zhao Y, Shi Y, Shen H, Xie W. m 6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020; 13:35. [PMID: 32276589 PMCID: PMC7146974 DOI: 10.1186/s13045-020-00872-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
250
|
|