201
|
Bizjak DA, Ammerpohl O, Schulz SV, Wendt J, Steinacker JM, Flechtner-Mors M. Pro-inflammatory and (Epi-)genetic markers in saliva for disease risk in childhood obesity. Nutr Metab Cardiovasc Dis 2022; 32:1502-1510. [PMID: 35450790 DOI: 10.1016/j.numecd.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Childhood obesity is an emerging problem often leading to earlier onset of non-communicable diseases in later life. Biomarkers to identify individual risk scores are insufficient in routine clinical practice, which is related to the need for easily sampled, non-invasive survey methods in children. We aimed to investigate and strengthen possible pro-inflammatory markers and epigenetic risk factors in saliva of obese children compared to lean controls. METHODS AND RESULTS 19 overweight/obese (OC, 10.1 ± 1.9 years, BMI 27.7 ± 3.2 kg/m2) and 19 lean control children (CC, 9.7 ± 2.5 years, BMI 16.4 ± 1.8 kg/m2) participated in this explorative pilot study. Anthropometric measures, saliva and cheek swab samples were taken. Saliva profiles were examined for acute phase proteins (CRP and neopterin) and pro-inflammatory cytokines (IL-17a/IL-1β/IL-6). Cheek swabs were analyzed to investigate DNA methylation differences with subsequent hierarchical cluster and principal component analyses (PCA). Saliva analysis showed significant increased CRP concentrations in OC compared to CC (p < 0.001). There were no significant differences, but high intra-individual values in neopterin, IL-17a, IL-1β and IL-6. An unsupervised PCA of CpG loci with high variance (σ/σmax > 0.2) clearly separated OC and CC according to their methylation pattern. Furthermore, a supervised approach revealed 7125 significantly differentially methylated loci, whose corresponding genes were significantly enriched for genes playing roles in e.g., cellular signalling, cytoskeleton organization and cell motility. CONCLUSIONS CRP and methylation status determinations in saliva are suitable as non-invasive methods for early detection of risks for non-communicable diseases in children/adolescents and might be a useful supplementary approach in the routine clinical practice/monitoring.
Collapse
Affiliation(s)
- Daniel A Bizjak
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany.
| | - Ole Ammerpohl
- Institute for Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sebastian Vw Schulz
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Janine Wendt
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Jürgen M Steinacker
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| | - Marion Flechtner-Mors
- Ulm University Hospital, Division of Sports and Rehabilitation Medicine, 89075 Ulm, Germany
| |
Collapse
|
202
|
Tseng HW, Samuel SG, Schroder K, Lévesque JP, Alexander KA. Inflammasomes and the IL-1 Family in Bone Homeostasis and Disease. Curr Osteoporos Rep 2022; 20:170-185. [PMID: 35567665 PMCID: PMC9209354 DOI: 10.1007/s11914-022-00729-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Inflammasomes are multimeric protein structures with crucial roles in host responses against infections and injuries. The importance of inflammasome activation goes beyond host defense as a dysregulated inflammasome and subsequent secretion of IL-1 family members is believed to be involved in the pathogenesis of various diseases, some of which also produce skeletal manifestations. The purpose of this review is to summarize recent developments in the understanding of inflammasome regulation and IL-1 family members in bone physiology and pathology and current therapeutics will be discussed. RECENT FINDINGS Small animal models have been vital to help understand how the inflammasome regulates bone dynamics. Animal models with gain or loss of function in various inflammasome components or IL-1 family signaling have illustrated how these systems can impact numerous bone pathologies and have been utilized to test new inflammasome therapeutics. It is increasingly clear that a tightly regulated inflammasome is required not only for host defense but for skeletal homeostasis, as a dysregulated inflammasome is linked to diseases of pathological bone accrual and loss. Given the complexities of inflammasome activation and redundancies in IL-1 activation and secretion, targeting these pathways is at times challenging. Ongoing research into inflammasome-mediated mechanisms will allow the development of new therapeutics for inflammasome/IL-1 diseases.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Selwin Gabriel Samuel
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
203
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
204
|
Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int J Mol Sci 2022; 23:5142. [PMID: 35563531 PMCID: PMC9103139 DOI: 10.3390/ijms23095142] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The skin, oral cavity, digestive and reproductive tracts of the human body harbor symbiotic and commensal microorganisms living harmoniously with the host. The oral cavity houses one of the most heterogeneous microbial communities found in the human organism, ranking second in terms of species diversity and complexity only to the gastrointestinal microbiota and including bacteria, archaea, fungi, and viruses. The accumulation of microbial plaque in the oral cavity may lead, in susceptible individuals, to a complex host-mediated inflammatory and immune response representing the primary etiological factor of periodontal damage that occurs in periodontitis. Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people worldwide and manifesting clinically through the detection of gingival inflammation, clinical attachment loss (CAL), radiographic assessed resorption of alveolar bone, periodontal pockets, gingival bleeding upon probing, teeth mobility and their potential loss in advanced stages. This review will evaluate the changes characterizing the oral microbiota in healthy periodontal tissues and those affected by periodontal disease through the evidence present in the literature. An important focus will be placed on the immediate and future impact of these changes on the modulation of the dysbiotic oral microbiome and clinical management of periodontal disease.
Collapse
Affiliation(s)
- Mattia Di Stefano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Alessandra Romano
- Department of General Surgery and Surgical-Medical Specialties, Unit of Hematology, University of Catania, 95124 Catania, Italy;
| | - Teresa Lombardi
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| |
Collapse
|
205
|
Folliero V, Dell’Annunziata F, Roscetto E, Amato A, Gasparro R, Zannella C, Casolaro V, De Filippis A, Catania MR, Franci G, Galdiero M. Rhein: A Novel Antibacterial Compound Against Streptococcus mutans Infection. Microbiol Res 2022; 261:127062. [DOI: 10.1016/j.micres.2022.127062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
|
206
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
207
|
Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3150. [PMID: 35591484 PMCID: PMC9104688 DOI: 10.3390/ma15093150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste-Cetene, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife CEP 50740-545, PE, Brazil; (R.C.S.S.); (A.A.); (A.N.A.); (C.L.M.-M.); (I.R.S.A.); (L.R.L.S.); (N.F.V.)
| |
Collapse
|
208
|
Yan J, Zhang H, Hu Z, Zhang X, Niu J, Luo B, Wang H, Li X. Association among Helicobacter pylori Infection, Tooth Loss, and Heavy Medal Exposure in a Chinese Rural Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084569. [PMID: 35457441 PMCID: PMC9025748 DOI: 10.3390/ijerph19084569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
Abstract
Previous research suggests that heavy metals may be associated with increased susceptibility to Helicobacter pylori infection. This study investigated the effect of heavy metal exposure (Pb and Cd) on tooth loss and H. pylori infection in a Chinese rural population, who live near a mining and smelting area. Blood samples were collected from the study participants to estimate the lead (Pb) and cadmium (Cd) exposure levels. H. pylori infection was analyzed using the 14C-urea breath test, and the number of missing teeth (MT), filled teeth (FT), and missing or filled teeth (MFT) were counted by conducting a physical examination. Regression analysis was used to assess the difference between H. pylori-positive and -negative individuals in the MT, FT, and MFT groups, adjusting for confounders. The H. pylori infection prevalence was higher in individuals in the high Cd or high Pb groups than that in the low Cd or low Pb groups (p < 0.05). In addition, greater numbers of FT and MFT were observed in individuals in the high Pb group than those in the low Pb group (p < 0.05). We further found 8.7% (95% CI, 2.8−23.8%, p = 0.017) of the effect of the high BPb level on H. pylori infection risk could be statistically explained by FT using amediation analyses in adjusted models, and 6.8% (95% CI, 1.6−24.8%, p = 0.066) by MFT. Furthermore, FT and MFT were significantly associated with increased risk for H. pylori infection (odds ratio (OR) = 4.938, 95% confidence interval (CI): 1.125−21.671; OR = 3.602, 95% CI: 1.218−10.648, respectively). Pb and Cd exposure may be associated with tooth loss and increased susceptibility to H. pylori infection, and tooth loss may be an independent risk factor for H. pylori infection.
Collapse
Affiliation(s)
- Jun Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China;
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China;
- The First School of Clinical Medine, Lanzhou University, Lanzhou 730000, China;
| | - Honglong Zhang
- The First School of Clinical Medine, Lanzhou University, Lanzhou 730000, China;
| | - Zenan Hu
- Department of Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China;
| | - Xuan Zhang
- School of Stomatology, Northwest Minzu University, Lanzhou 730000, China;
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.N.); (B.L.)
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.N.); (B.L.)
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China;
- The First School of Clinical Medine, Lanzhou University, Lanzhou 730000, China;
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China;
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China;
- The First School of Clinical Medine, Lanzhou University, Lanzhou 730000, China;
- Correspondence: ; Tel.: +86-139-9313-8612
| |
Collapse
|
209
|
Issrani R, Reddy J, Dabah THEM, Prabhu N. Role of Oral Microbiota in Carcinogenesis: A Short Review. J Cancer Prev 2022; 27:16-21. [PMID: 35419305 PMCID: PMC8984651 DOI: 10.15430/jcp.2022.27.1.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
A strong and healthy microbiome is responsible for homeostasis between the host and microbiota which is necessary to achieve the normal functioning of the body. Dysbiosis provokes prevalence of pathogenic microbes, leading to alterations in gene expression profiles and metabolic processes. This in turn results in anomalous immune responses of the host. Dysbiosis may be associated with a wide variety of diseases like irritable bowel syndrome, coeliac disease, allergic conditions, bronchitis, asthma, heart diseases and oncogenesis. Presently, the links between oral microbial consortia and their functions, not only in the preservation of homeostasis but also pathogenesis of several malignancies have gained much awareness from the scientific community. The primary intent of this review is to highlight the dynamic role of oral microbiome in oncogenesis and its progression through various mechanisms. A literature search was conducted using multiple databases comprising of PubMed, Scopus, Google Scholar, and Cochrane electronic databases with keywords including microbiome, microbiota, carcinogenesis, tumorigenesis, and immunosuppression. Current and the past literature has pointed out the role of microorganisms in oncogenesis. It may be put forth that both the commensal and pathogenic strains of oral microbiome play an undeniably conspicuous role in carcinogenesis at different body sites.
Collapse
Affiliation(s)
- Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Jagat Reddy
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Tarek H. El-Metwally Dabah
- Medical Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
210
|
Esberg A, Eriksson L, Johansson I. Site- and Time-Dependent Compositional Shifts in Oral Microbiota Communities. FRONTIERS IN ORAL HEALTH 2022; 3:826996. [PMID: 35300180 PMCID: PMC8921071 DOI: 10.3389/froh.2022.826996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
ObjectivesThe oral microbiota plays a significant role in oral health. The present study aims to characterize variations in the oral microbiota relative to the collection site, the dynamics of biofilm accumulation, and inherent inter-individual differences.MethodsWhole stimulated saliva and tooth biofilm samples from the 16 defined tooth regions were collected after 1, 2, or 3 days without oral hygiene (accumulation time) in six healthy adults with no signs of active caries or periodontal disease. The routines and conditions before and between sample collections were carefully standardized. Genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were amplified by PCR and sequenced on an Illumina MiSeq platform. Sequences were quality controlled, amplicon sequence variants (ASVs) were clustered, and taxonomic allocation was performed against the expanded Human Oral Microbiome Database (eHOMD). Microbial community profiles were analyzed by multivariate modeling and a linear discriminant analysis (LDA) effect size (LEfSe) method.ResultsThe overall species profile in saliva and tooth biofilm differed between participants, as well as sample type, with a significantly higher diversity in tooth biofilm samples than saliva. On average, 45% of the detected species were shared between the two sample types. The microbiota profile changed from the most anterior to the most posterior tooth regions regardless of whether sampling was done after 1, 2, or 3 days without oral hygiene. Increasing accumulation time led to higher numbers of detected species in both the saliva and region-specific tooth biofilm niches.ConclusionThe present study confirms that the differences between individuals dominate over sample type and the time abstaining from oral hygiene for oral microbiota shaping. Therefore, a standardized accumulation time may be less important for some research questions aiming at separating individuals. Furthermore, the amount of DNA is sufficient if at least two teeth are sampled for microbiota characterization, which allows a site-specific characterization of, for example, caries or periodontitis.
Collapse
|
211
|
Desai S, Dharavath B, Manavalan S, Rane A, Redhu A, Sunder R, Butle A, Mishra R, Joshi A, Togar T, Apte S, Bala P, Chandrani P, Chopra S, Bashyam M, Banerjee A, Prabhash K, Nair S, Dutt A. Fusobacterium nucleatum is associated with inflammation and poor survival in early-stage HPV-negative tongue cancer. NAR Cancer 2022; 4:zcac006. [PMID: 35252868 PMCID: PMC8894079 DOI: 10.1093/narcan/zcac006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Persistent pathogen infection is a known cause of malignancy, although with sparse systematic evaluation across tumor types. We present a comprehensive landscape of 1060 infectious pathogens across 239 whole exomes and 1168 transcriptomes of breast, lung, gallbladder, cervical, colorectal, and head and neck tumors. We identify known cancer-associated pathogens consistent with the literature. In addition, we identify a significant prevalence of Fusobacterium in head and neck tumors, comparable to colorectal tumors. The Fusobacterium-high subgroup of head and neck tumors occurs mutually exclusive to human papillomavirus, and is characterized by overexpression of miRNAs associated with inflammation, elevated innate immune cell fraction and nodal metastases. We validate the association of Fusobacterium with the inflammatory markers IL1B, IL6 and IL8, miRNAs hsa-mir-451a, hsa-mir-675 and hsa-mir-486-1, and MMP10 in the tongue tumor samples. A higher burden of Fusobacterium is also associated with poor survival, nodal metastases and extracapsular spread in tongue tumors defining a distinct subgroup of head and neck cancer.
Collapse
Affiliation(s)
- Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sujith Manavalan
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Aishwarya Rane
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Archana Kumari Redhu
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Roma Sunder
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Asim Joshi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Trupti Togar
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Pratyusha Bala
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Pratik Chandrani
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Supriya Chopra
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad500039, Telangana, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Ernest Borges Marg, Parel, Mumbai 400012, Maharashtra, India
| | - Sudhir Nair
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, Maharashtra, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
212
|
Simon-Soro A, Ren Z, Krom BP, Hoogenkamp MA, Cabello-Yeves PJ, Daniel SG, Bittinger K, Tomas I, Koo H, Mira A. Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm. mBio 2022; 13:e0013122. [PMID: 35189700 PMCID: PMC8903893 DOI: 10.1128/mbio.00131-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biofilm community development has been established as a sequential process starting from the attachment of single cells on a surface. However, microorganisms are often found as aggregates in the environment and in biological fluids. Here, we conduct a comprehensive analysis of the native structure and composition of aggregated microbial assemblages in human saliva and investigate their spatiotemporal attachment and biofilm community development. Using multiscale imaging, cell sorting, and computational approaches combined with sequencing analysis, a diverse mixture of aggregates varying in size, structure, and microbial composition, including bacteria associated with host epithelial cells, can be found in saliva in addition to a few single-cell forms. Phylogenetic analysis reveals a mixture of complex consortia of aerobes and anaerobes in which bacteria traditionally considered early and late colonizers are found mixed together. When individually tracked during colonization and biofilm initiation, aggregates rapidly proliferate and expand tridimensionally, modulating population growth, spatial organization, and community scaffolding. In contrast, most single cells remain static or are incorporated by actively growing aggregates. These results suggest an alternative biofilm development process whereby aggregates containing different species or associated with human cells collectively adhere to the surface as "growth nuclei" to build the biofilm and shape polymicrobial communities at various spatial and taxonomic scales. IMPORTANCE Microbes in biological fluids can be found as aggregates. How these multicellular structures bind to surfaces and initiate the biofilm life cycle remains understudied. Here, we investigate the structural organization of microbial aggregates in human saliva and their role in biofilm formation. We found diverse mixtures of aggregates with different sizes, structures, and compositions in addition to free-living cells. When individually tracked during binding and growth on tooth-like surfaces, most aggregates developed into structured biofilm communities, whereas most single cells remained static or were engulfed by the growing aggregates. Our results reveal that preformed microbial consortia adhere as "buds of growth," governing biofilm initiation without specific taxonomic order or cell-by-cell succession, which provide new insights into spatial and population heterogeneity development in complex ecosystems.
Collapse
Affiliation(s)
- Aurea Simon-Soro
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michel A. Hoogenkamp
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Inmaculada Tomas
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex Mira
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
213
|
Al-Marzooq F, Al Kawas S, Rahman B, Shearston JA, Saad H, Benzina D, Weitzman M. Supragingival microbiome alternations as a consequence of smoking different tobacco types and its relation to dental caries. Sci Rep 2022; 12:2861. [PMID: 35190583 PMCID: PMC8861055 DOI: 10.1038/s41598-022-06907-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the effect of smoking different tobacco types on the supragingival microbiome and its relation to dental caries. Forty supragingival plaque samples were collected from smokers of a single tobacco type and non-smokers seeking treatment at the University Dental Hospital Sharjah, UAE. DMFT (decayed, missing and filled teeth) was determined for all participants who were divided into two groups: no-low caries (NC-LC: DMFT = 0-4; n = 18) and moderate-high caries (MC-HC: DMFT = 5-20; n = 22). 16S rRNA gene was sequenced using third-generation sequencing with Nanopore technology. Microbiome composition and diversity were compared. Caries was most common among cigarette smokers. Supragingival microbiota were significantly altered among smokers of different tobacco types. In cigarette smokers, cariogenic bacteria from genus Streptococcus (including S. mutans) were significantly more among subjects with NC-LC, while Lactobacilli (including L. fermentum) were more among subjects with MC-HC. In medwakh smokers, several periodontopathogens were significantly elevated in subjects with NC-LC, while other pathogenic bacteria (as Klebsiella pneumoniae) were more in those with MC-HC. Cigarette and alternative tobacco smoking had a significant impact on the supragingival microbiome. Indeed, further studies are required to unravel the consequences of oral dysbiosis triggered by smoking. This could pave the way for microbiota-based interventional measures for restoring a healthy oral microbiome which could be a promising strategy to prevent dental caries.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, P.O.Box: 27272, Sharjah, United Arab Emirates.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Betul Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jenni A Shearston
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
- Department of Pediatrics, School of Medicine, New York University, New York, USA
| | - Hiba Saad
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, P.O.Box: 27272, Sharjah, United Arab Emirates
| | - Dalenda Benzina
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, P.O.Box: 27272, Sharjah, United Arab Emirates
| | - Michael Weitzman
- Department of Pediatrics, School of Medicine, New York University, New York, USA
- Department of Environmental Medicine, School of Medicine, New York University, New York, USA
- College of Global Public Health, New York University, New York, USA
| |
Collapse
|
214
|
The Effects of e-Cigarette Aerosol on Oral Cavity Cells and Tissues: A Narrative Review. TOXICS 2022; 10:toxics10020074. [PMID: 35202260 PMCID: PMC8878056 DOI: 10.3390/toxics10020074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
A wealth of research has comprehensively documented the harmful effects of traditional cigarette smoking and nicotine on human health. The lower rate of exposure to harmful chemicals and toxic substances offered by alternative electronic smoking devices (e-cigarettes, vaping, etc.) has made these methods of smoking popular, especially among adolescents and young adults, and they are regarded frequently as safer than regular cigarettes. During vaporization of these so-called e-liquids, toxins, carcinogens and various other chemical substances may be released and inhaled by the user. Data on the potential human health effect attendant on exposure to e-vapor are based mainly on animal and in vitro studies. The oral tissues are the first locus of direct interaction with the components of the inhaled vapor. However, the short-term as well as long-term effects of the exposure are not known. The aim of the review is to briefly present data on the effects of the chemical components and toxins of e-cigarette vapor on oral cavity cells and tissues of oral health.
Collapse
|
215
|
Varoni EM, Rimondini L. Oral Microbiome, Oral Health and Systemic Health: A Multidirectional Link. Biomedicines 2022; 10:biomedicines10010186. [PMID: 35052865 PMCID: PMC8774214 DOI: 10.3390/biomedicines10010186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
- Correspondence:
| | - Lia Rimondini
- Department of Health Sciences, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
| |
Collapse
|
216
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
217
|
Mitruţ I, Scorei IR, Manolea HO, Biţă A, Mogoantă L, Neamţu J, Bejenaru LE, Ciocîlteu MV, Bejenaru C, Rău G, Mogoşanu GD. Boron-containing compounds in Dentistry: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:477-483. [PMID: 36588485 PMCID: PMC9926150 DOI: 10.47162/rjme.63.3.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Research on the use of boron (B) in the field of oral health has gained momentum in recent years, with various studies on the possibilities of using various B-containing compounds (BCCs). A multitude of applications have been discovered, from cariostatic activity to anti-inflammatory and antifungal activity, paving the way for other new research directions. B is a microelement that is commonly found in the human diet, and present throughout the body, with the highest concentration in the structure of bones, teeth, and gastrointestinal mucus gel layer. Multiple studies have demonstrated that B plays some important roles, especially in bone development and recently has been proposed to have an essential role in the healthy symbiosis. In addition, B has also attracted the interest of researchers, as various studies used BCCs in conventional or modern biomaterials. In this review, we have brought together the information we have found about B updates in the dental field and analyzing its future perspectives and potential for further studies.
Collapse
Affiliation(s)
- Ioana Mitruţ
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
| | - Horia Octavian Manolea
- Department of Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - George Dan Mogoşanu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
218
|
Krasnokutskyy O, Goncharuk-Khomyn M, Rusyn V, Tukalo I, Myhal O, Pal Y. Gingival Recession Treatment with the Use of Xenogeneic Matrix: Optimization of Patient-Centered Outcomes by the Digital Soft Tissue Design. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
| | | | | | | | - Ostap Myhal
- Danylo Halytsky Lviv National Medical University, Ukraine
| | | |
Collapse
|
219
|
Nittayananta W, Tangsuksan P, Srichana T, Kettratad M. Antimicrobial and anti-inflammatory effects of α-mangostin soluble film. J Int Soc Prev Community Dent 2022; 12:189-198. [PMID: 35462748 PMCID: PMC9022392 DOI: 10.4103/jispcd.jispcd_222_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022] Open
|
220
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
221
|
Bechir F, Pacurar M, Tohati A, Bataga SM. Comparative Study of Salivary pH, Buffer Capacity, and Flow in Patients with and without Gastroesophageal Reflux Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:201. [PMID: 35010461 PMCID: PMC8750732 DOI: 10.3390/ijerph19010201] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
The oral cavity has specific and individualized characteristics, with pH, saliva flow, buffer capacity, temperature, and microorganisms content influencing oral health. Currently, the prevalence of gastroesophageal reflux disease (GERD) is constantly increasing. The objective of this study was to evaluate and compare the saliva quantity at 5 min, salivary pH, and salivary buffer capacity in patients with and without GERD, necessary for establishing the correct dental treatment plan. A Saliva-Check Buffer (GC) kit was used for the determination of salivary variables. The total number of 80 patients included in the study were divided into a study group and a control group, each containing 40 patients. Saliva quantity at 5 min was lower in patients suffering from GERD. The salivary pH of these patients turned to acid values compared to the salivary pH of controls, where the values were within the normal range. In patients with GERD, the determined salivary buffer capacity was low or very low. The use of the Saliva-Check Buffer (GC) kit is a simple, easy, non-invasive and patient-accepted method, which can also be used in the dentist's office to assess the saliva buffer capacity and pH, variables that are important for establishing a correct dental treatment plan.
Collapse
Affiliation(s)
- Farah Bechir
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh, Marinescu Str., 540142 Targu Mures, Romania;
| | - Mariana Pacurar
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh, Marinescu Str., 540142 Targu Mures, Romania;
| | - Adrian Tohati
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh, Marinescu Str., 540142 Targu Mures, Romania;
| | - Simona Maria Bataga
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh, Marinescu Str., 540142 Targu Mures, Romania;
| |
Collapse
|
222
|
Zagury-Orly I, Khaouam N, Noujaim J, Desrosiers MY, Maniakas A. The Effect of Radiation and Chemoradiation Therapy on the Head and Neck Mucosal Microbiome: A Review. Front Oncol 2021; 11:784457. [PMID: 34926301 PMCID: PMC8674486 DOI: 10.3389/fonc.2021.784457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation (RT) and chemoradiation therapy (CRT) play an essential role in head and neck cancer treatment. However, both cause numerous side effects in the oral cavity, paranasal sinuses, and pharynx, having deleterious consequences on patients’ quality of life. Concomitant with significant advances in radiation oncology, much attention has turned to understanding the role of the microbiome in the pathogenesis of treatment-induced tissue toxicity, to ultimately explore microbiome manipulation as a therapeutic intervention. This review sought to discuss current publications investigating the impact of RT and CRT-induced changes on the head and neck microbiome, using culture-independent molecular methods, and propose opportunities for future directions. Based on 13 studies derived from a MEDLINE, EMBASE, and Web of Science search on November 7, 2021, use of molecular methods has uncovered various phyla and genera in the head and neck microbiome, particularly the oral microbiome, not previously known using culture-based methods. However, limited research has investigated the impact of RT/CRT on subsites other than the oral cavity and none of the studies aimed to examine the relationship between the head and neck microbiome and treatment effectiveness. Findings from this review provide helpful insights on our current understanding of treatment-induced oral mucositis, dental plaque, and caries formation and highlight the need for future research to examine the effect of RT/CRT on the sinonasal and oropharyngeal microbiome. In addition, future research should use larger cohorts, examine the impact of the microbiome on treatment response, and study the effect of manipulating the microbiome to overcome therapy resistance.
Collapse
Affiliation(s)
- Ivry Zagury-Orly
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nader Khaouam
- Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Jonathan Noujaim
- Department of Oncology, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Division of Otolaryngology-Head and Neck Surgery, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Anastasios Maniakas
- Division of Otolaryngology-Head and Neck Surgery, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Experimental Surgery, McGill University, Montreal, QC, Canada.,Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
223
|
Abdelhafiz Y, Fernandes JMO, Stefani E, Albanese D, Donati C, Kiron V. Power Play of Commensal Bacteria in the Buccal Cavity of Female Nile Tilapia. Front Microbiol 2021; 12:773351. [PMID: 34867911 PMCID: PMC8636895 DOI: 10.3389/fmicb.2021.773351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 01/29/2023] Open
Abstract
Fish are widely exposed to higher microbial loads compared to land and air animals. It is known that the microbiome plays an essential role in the health and development of the host. The oral microbiome is vital in females of different organisms, including the maternal mouthbrooding species such as Nile tilapia (Oreochromis niloticus). The present study reports for the first time the microbial composition in the buccal cavity of female and male Nile tilapia reared in a recirculating aquaculture system. Mucus samples were collected from the buccal cavity of 58 adult fish (∼1 kg), and 16S rRNA gene amplicon sequencing was used to profile the microbial communities in females and males. The analysis revealed that opportunistic pathogens such as Streptococcus sp. were less abundant in the female buccal cavity. The power play of certain bacteria such as Acinetobacter, Acidobacteria (GP4 and GP6), and Saccharibacteria that have known metabolic advantages was evident in females compared to males. Association networks inferred from relative abundances showed few microbe–microbe interactions of opportunistic pathogens in female fish. The findings of opportunistic bacteria and their interactions with other microbes will be valuable for improving Nile tilapia rearing practices. The presence of bacteria with specific functions in the buccal cavity of female fish points to their ability to create a protective microbial ecosystem for the offspring.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Erika Stefani
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
224
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
225
|
Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some patients, it could progress into a severe and even fatal disease. Recent studies have shown that COVID-19 infection and severity could be associated with the presence of periodontitis, one of the most prevalent chronic diseases. This association could be explained by the fact that periodontitis and COVID-19 share some common risk factors that included chronic diseases, such as diabetes and hypertension as well as conditions such as age, sex, and genetic variants. Another possible explanation could be the systemic inflammation and the aspiration of periodontopathogens seen in patients with periodontitis, which could have a synergism with the virus or compromise the reaction of the body against COVID-19. This narrative review explores the nature of these associations, the evidence behind them, and their implications.
Collapse
|
226
|
Davis EM, Weese JS. Oral Microbiome in Dogs and Cats: Dysbiosis and the Utility of Antimicrobial Therapy in the Treatment of Periodontal Disease. Vet Clin North Am Small Anim Pract 2021; 52:107-119. [PMID: 34838246 DOI: 10.1016/j.cvsm.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in gene sequence technology and data analysis have enabled the detection and taxonomic identification of microorganisms in vivo based on their unique RNA or DNA sequences. Standard culture techniques can only detect those organisms that readily grow on artificial media in vitro. Culture-independent technology has been used to provide a more accurate assessment of the richness (total number of species) and diversity (relative abundance of each species) of microorganisms present in a prescribed location. The microbiome has been defined as the genes and genomes of all microbial inhabitants within a defined environment. Microorganisms within a microbiome interact with each other as well as with the host. A microbiome is dynamic and may change over time as conditions within the defined environment become altered. In oral health, neither gingivitis nor periodontitis is present, and the host and microbiome coexist symbiotically without evoking an inflammatory response. The circumstances that cause a shift from immune tolerance to a proinflammatory response remain unknown, and a unified, all-encompassing hypothesis to explain how and why periodontal disease develops has yet to be described. The purpose of this review is to clarify the current understanding of the role played by the oral microbiome in dogs and cats, describe how the microbiome changes in periodontal disease, and offer guidance on the utility of systemic antimicrobial agents in the treatment of periodontitis in companion animals.
Collapse
Affiliation(s)
- Eric M Davis
- Animal Dental Specialists of Upstate New York, 6867 East Genesee Street, Fayetteville, NY 13066, USA.
| | - J Scott Weese
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
227
|
Influence of Gestational Hormones on the Bacteria-Induced Cytokine Response in Periodontitis. Mediators Inflamm 2021; 2021:5834608. [PMID: 34707462 PMCID: PMC8545568 DOI: 10.1155/2021/5834608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is an inflammatory disease that affects the supporting structures of teeth. The presence of a bacterial biofilm initiates a destructive inflammatory process orchestrated by various inflammatory mediators, most notably proinflammatory cytokines, which are upregulated in the gingival crevicular fluid, leading to the formation of periodontal pockets. This represents a well-characterized microbial change during the transition from periodontal health to periodontitis; interestingly, the gestational condition increases the risk and severity of periodontal disease. Although the influence of periodontitis on pregnancy has been extensively reviewed, the relationship between pregnancy and the development/evolution of periodontitis has been little studied compared to the effect of periodontitis on adverse pregnancy outcomes. This review is aimed at summarizing the findings on the pregnancy-proinflammatory cytokine relationship and discussing its possible involvement in the development of periodontitis. We address (1) an overview of periodontal disease, (2) the immune response and possible involvement of proinflammatory cytokines in the development of periodontitis, (3) how bone tissue remodelling takes place with an emphasis on the involvement of the inflammatory response and metalloproteinases during periodontitis, and (4) the influence of hormonal profile during pregnancy on the development of periodontitis. Finally, we believe this review may be helpful for designing immunotherapies based on the stage of pregnancy to control the severity and pathology of periodontal disease.
Collapse
|
228
|
Álvarez-Arraño V, Martín-Peláez S. Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients 2021; 13:nu13103627. [PMID: 34684633 PMCID: PMC8540110 DOI: 10.3390/nu13103627] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal microbiota has been shown to be a potential determining factor in the development of obesity. The objective of this systematic review is to collect and learn, based on the latest available evidence, the effect of the use of probiotics and synbiotics in randomized clinical trials on weight loss in people with overweight and obesity. A search for articles was carried out in PubMed, Web of science and Scopus until September 2021, using search strategies that included the terms “obesity”, “overweight”, “probiotic”, “synbiotic”, “Lactobacillus”, “Bifidobacterium” and “weight loss”. Of the 185 articles found, only 27 complied with the selection criteria and were analyzed in the review, of which 23 observed positive effects on weight loss. The intake of probiotics or synbiotics could lead to significant weight reductions, either maintaining habitual lifestyle habits or in combination with energy restriction and/or increased physical activity for an average of 12 weeks. Specific strains belonging to the genus Lactobacillus and Bifidobacterium were the most used and those that showed the best results in reducing body weight. Both probiotics and synbiotics have the potential to help in weight loss in overweight and obese populations.
Collapse
Affiliation(s)
- Valentina Álvarez-Arraño
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain;
| | - Sandra Martín-Peláez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain
- Correspondence:
| |
Collapse
|
229
|
Clinical study showing a lower abundance of Neisseria in the oral microbiome aligns with low birth weight pregnancy outcomes. Clin Oral Investig 2021; 26:2465-2478. [PMID: 34622310 PMCID: PMC8898250 DOI: 10.1007/s00784-021-04214-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objective of this study was to examine the association between the oral microbiome and pregnancy outcomes, specifically healthy or preterm low birth weight (PLBW) in individuals with and without periodontal disease (PD). MATERIAL AND METHODS In this prospective clinical trial, we recruited 186 pregnant women, 17 of whom exhibited PD and delivered PLBW infants (PD-PLBW group). Of the remaining women, 155 presented PD and delivered healthy infants; 18 of these subjects with similar periodontal condition and age matched to the PD-PLBW group, and they became the PD-HD group. From the total group, 11 women exhibited healthy gingiva and had a healthy delivery (HD) and healthy infants (H-HD group), and 3 exhibited healthy gingiva and delivered PLBW infants (H-PLBW group). Periodontal parameters were recorded, and subgingival plaque and serum were collected during 26-28 gestational weeks. For the plaque samples, microbial abundance and diversity were accessed by 16S rRNA sequencing. RESULTS Women with PD showed an enrichment in the genus Porphyromonas, Treponema, and Filifactor, whereas women with healthy gingiva showed an enrichment in Streptococcus, Actinomyces, and Corynebacterium, independently of the birth status. Although no significant difference was found in the beta diversity between the 4 groups, women that had PLBW infants presented a significantly lower abundance of the genus Neisseria, independently of PD status. CONCLUSION Lower levels of Neisseria align with preterm low birth weight in pregnant women, whereas a higher abundance of Treponema, Porphyromonas, Fretibacterium, and Filifactor and a lower abundance of Streptococcus may contribute to periodontal disease during pregnancy. CLINICAL RELEVANCE The oral commensal Neisseria have potential in the prediction of PLBW.
Collapse
|
230
|
Effects of Colocasia antiquorum var. Esculenta Extract In Vitro and In Vivo against Periodontal Disease. ACTA ACUST UNITED AC 2021; 57:medicina57101054. [PMID: 34684091 PMCID: PMC8537912 DOI: 10.3390/medicina57101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Periodontal disease is a chronic inflammatory disease in which gradual destruction of tissues around teeth is caused by plaque formed by pathogenic bacteria. The purpose of this study was to evaluate the potential of 75% ethanol extract of Colocasia antiquorum var. esculenta (CA) as a prophylactic and improvement agent for periodontal disease in vitro and in vivo. Materials and Methods: The antimicrobial efficacy of CA against Porphyromonas gingivalis (P. gingivalis, ATCC 33277) was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) test, and cytotoxicity was confirmed by CCK-8 assay. For the in vivo study, P. gingivalis was applied by oral gavage to BALB/c mice. Forty-two days after the first inoculation of P. gingivalis, intraoral swabs were taken for microbiome analysis, and the mice were sacrificed to evaluate the alveolar bone loss. Results: The MIC of CA against P. gingivalis was 31.3 μg/mL, the MBC was 62.5 μg/mL, with no cytotoxicity. The diversity of the oral microbiome decreased in the positive control group, while those of the VA (varnish) and VCA (varnish added with CA) groups increased as much as in the negative control group, although the alveolar bone loss was not induced in the mouse model. Conclusions: CA showed antibacterial effects in vitro, and the VA and VCA groups exhibited increased diversity in the oral microbiome, suggesting that CA has potential for improving periodontal disease.
Collapse
|
231
|
Garbacz K, Wierzbowska M, Kwapisz E, Kosecka-Strojek M, Bronk M, Saki M, Międzobrodzki J. Distribution and antibiotic-resistance of different Staphylococcus species identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) isolated from the oral cavity. J Oral Microbiol 2021; 13:1983322. [PMID: 34594480 PMCID: PMC8477921 DOI: 10.1080/20002297.2021.1983322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The use of antibiotics in dentistry is associated with the emergence and spread of antibiotic-resistant microorganisms, including commensal staphylococci. METHODS A total of 367 oral samples were collected, from which staphylococci were isolated and identified by using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF). The antibiotic susceptibility of the isolates was determined and molecular characteristics for methicillin-resistant staphylococci was performed. RESULTS A total of 103 coagulase-negative staphylococci (CoNS), among them S. warneri, S. haemolyticus, S. saprophyticus, S. pasteuri, S. epidermidis, S. hominis, S. xylosus, S. equorum, S. kloosii, S. succinus, S. cohnii, and S. simulans, were confirmed by MALDI-TOF. Resistance to most tested antibiotics was statistically higher in CoNS than in S. aureus isolates (P-value < 0.05). CoNS isolates showed high resistance to penicillin (S. saprophyticus 88.9%), erythromycin (S. haemolyticus 84.6%), fusidic acid (S. saprophyticus 77.8%), co-trimoxazole (S. epidermidis 71.4%), gentamicin (S. warneri 63.8%), and tetracycline (S. saprophyticus 55.6%). Multidrug resistance was largely observed, especially among S. haemolyticus and S. saprophyticus species. Methicillin-resistance in S. haemolyticus (38.5%), S. saprophyticus (22.2%) and S. aureus (13.5%) was associated with the presence of the mecA gene and SCCmec type IV or V. CONCLUSION Coagulase-negative staphylococci, especially S. haemolyticus and S. saprophyticus, seem to be a reservoir of methicillin resistance and multidrug resistance in the oral cavity.
Collapse
Affiliation(s)
- Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Maria Wierzbowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Kwapisz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marek Bronk
- Laboratory of Clinical Microbiology, University Clinical Center, Gdansk, Poland
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
232
|
Sabella FM, de Feiria SNB, Ribeiro ADA, Theodoro LH, Höfling JF, Parisotto TM, Duque C. Exploring the Interplay Between Oral Diseases, Microbiome, and Chronic Diseases Driven by Metabolic Dysfunction in Childhood. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.718441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral childhood diseases, such as caries and gingivitis, have much more than a local impact on the dentition and tooth surrounding tissues, which can affect systemic conditions. While the mouth is frequently exposed to microbial stressors that can contribute to an inflammatory state in the entire body, chronic disorders can also interfere with oral health. Sharing common risk factors, a dynamic interplay can be driven between 1. dental caries, gingivitis, and type I diabetes mellitus, 2. early childhood caries and obesity, and 3. caries and cardiovascular diseases. Considering that there are ~2.2 billion children worldwide and that childhood provides unique opportunities for intervention targeting future health promotion, this review is of prime importance and aimed to explore the relationship between the oral microbiome and oral chronic diseases driven by metabolic dysfunction in childhood.
Collapse
|
233
|
Kanoute A, Gare J, Meda N, Viennot S, Tramini P, Fraticelli L, Carrouel F, Bourgeois D. Effect of Oral Prophylactic Measures on the Occurrence of Pre-Eclampsia (OP-PE) in High-Risk Pregnant Women: A Cluster Randomized Controlled Trial. Methods Protoc 2021; 4:mps4030061. [PMID: 34564307 PMCID: PMC8482225 DOI: 10.3390/mps4030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Pre-eclampsia (PE), a pregnancy-specific hypertensive disorder, characterized by the development of placental endothelial dysfunction, remains a major source of maternal and perinatal morbidity and mortality, especially in low- and middle-income settings. Periodontal disorders during pregnancy, and particularly periodontal pathogens, may be related to the risk of PE. Standard oral hygiene methods, based mainly on the joint use of toothbrushes and interdental brushes, reduce periodontal inflammatory risk and modulate the dysbiosis of the oral microbiome. The aim of this trial is to compare the PE outcomes in high-risk pregnant women receiving oral prophylactic measures to a control group. This trial is designed as a two-arm, parallel, cluster randomized controlled trial with the antenatal obstetric clinic as the unit of randomization and an allocation ratio of 1:1. The pregnant women will be included at 3 months of pregnancy and will be followed throughout the pregnancy. The primary outcome measure will be the incidence of PE from a baseline during the pregnancy. Secondary outcomes measures will include changes from the baseline in quantification of the pathogenic bacterial load of the interdental microbiota, the severity scores of periodontal indicators, and the incidence of adverse perinatal outcomes. This trial should demonstrate that the implementation of daily oral hygiene reduces oral dysbiosis, the incidence of periodontal disease, and the risk of PE.
Collapse
Affiliation(s)
- Aida Kanoute
- Public Health Service, Department of Dentistry, Cheikh Anta Diop University, Dakar 10700, Senegal;
| | - Jocelyne Gare
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France; (J.G.); (S.V.); (L.F.); (F.C.)
- Public Health Laboratory (LASAP), ED2S Doctoral School of Sciences and Health, University Joseph Ki Zerbo, Ouagadougou 7021, Burkina Faso;
| | - Nicolas Meda
- Public Health Laboratory (LASAP), ED2S Doctoral School of Sciences and Health, University Joseph Ki Zerbo, Ouagadougou 7021, Burkina Faso;
| | - Stephane Viennot
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France; (J.G.); (S.V.); (L.F.); (F.C.)
| | - Paul Tramini
- Department of Public Health, Faculty of Dental Medicine, University of Montpellier, 34090 Montpellier, France;
| | - Laurie Fraticelli
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France; (J.G.); (S.V.); (L.F.); (F.C.)
| | - Florence Carrouel
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France; (J.G.); (S.V.); (L.F.); (F.C.)
| | - Denis Bourgeois
- Health, Systemic, Process, UR 4129 Research Unit, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France; (J.G.); (S.V.); (L.F.); (F.C.)
- Correspondence: ; Tel.: +33-4-78-78-57-44
| |
Collapse
|
234
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
235
|
Nezametdinova VZ, Yunes RA, Dukhinova MS, Alekseeva MG, Danilenko VN. The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host's Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19. Int J Mol Sci 2021; 22:ijms22179219. [PMID: 34502130 PMCID: PMC8430577 DOI: 10.3390/ijms22179219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Venera Z. Nezametdinova
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Roman A. Yunes
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Marina S. Dukhinova
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Maria G. Alekseeva
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
- Correspondence:
| |
Collapse
|
236
|
Gare J, Kanoute A, Meda N, Viennot S, Bourgeois D, Carrouel F. Periodontal Conditions and Pathogens Associated with Pre-Eclampsia: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7194. [PMID: 34281133 PMCID: PMC8297070 DOI: 10.3390/ijerph18137194] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pre-eclampsia, the second most frequent direct source of maternal mortality, is a multisystem gestational disorder characterized by proteinuria and maternal hypertension after the 20th gestational week. Although the causes of pre-eclampsia are still discussed, research has suggested that the placenta has a central place in the pathogenesis of this disease. Moreover, current surveys indicated that periodontal disorders observed during the pregnancy and more particularly, periodontal pathogens could be link to the risk of pre-eclampsia. OBJECTIVES This article aims to review recent studies focusing on periodontal conditions and pathogens associated with pre-eclampsia. METHODS The process followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS Metabolic conditions, immunological changes, fluctuating progesterone and estrogen levels of the pregnant woman induce a dysbiosis of the oral microbiota and contribute to increase inflammation of periodontal tissues. Periodontal pathogens could diffuse through the bloodstream inducing a placenta inflammatory response as well as inflammatory molecules produced in response to periodontopathogens could migrate through the bloodstream leading to a placenta inflammatory response. Also, periodontopathogens can colonize the vaginal microbiota through the gastrointestinal tract or during oro-genital contacts. CONCLUSION A cumulative bi-directional relationship between periodontal conditions, pathogens and the pre-eclampsia exists.
Collapse
Affiliation(s)
- Jocelyne Gare
- Laboratory P2S (Health Systemic Process), UR4129, University Claude Bernard of Lyon 1, University of Lyon, Lyon, France; (J.G.); (S.V.); (D.B.)
- Public Health Laboratory (LASAP), ED2S Doctoral School of Sciences and Health, University Joseph Ki Zerbo, Ouagadougou 7021, Burkina Faso;
| | - Aida Kanoute
- Public Health Service, Department of Dentistry, Faculty of Medicine, Pharmacy and Dentistry, University Cheikh Anta Diop, Dakar 10700, Senegal;
| | - Nicolas Meda
- Public Health Laboratory (LASAP), ED2S Doctoral School of Sciences and Health, University Joseph Ki Zerbo, Ouagadougou 7021, Burkina Faso;
| | - Stephane Viennot
- Laboratory P2S (Health Systemic Process), UR4129, University Claude Bernard of Lyon 1, University of Lyon, Lyon, France; (J.G.); (S.V.); (D.B.)
| | - Denis Bourgeois
- Laboratory P2S (Health Systemic Process), UR4129, University Claude Bernard of Lyon 1, University of Lyon, Lyon, France; (J.G.); (S.V.); (D.B.)
| | - Florence Carrouel
- Laboratory P2S (Health Systemic Process), UR4129, University Claude Bernard of Lyon 1, University of Lyon, Lyon, France; (J.G.); (S.V.); (D.B.)
| |
Collapse
|
237
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|