201
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
202
|
Abstract
Polo-like kinase 4 (Plk4) is a master regulator of centriole duplication, and its hyperactivity induces centriole amplification. Homodimeric Plk4 has been shown to be ubiquitinated as a result of autophosphorylation, thus promoting its own degradation and preventing centriole amplification. Unlike other Plks, Plk4 contains three rather than two Polo box domains, and the function of its third Polo box (PB3) is unclear. Here, we performed a functional analysis of Plk4's structural domains. Like other Plks, Plk4 possesses a previously unidentified autoinhibitory mechanism mediated by a linker (L1) near the kinase domain. Thus, autoinhibition is a conserved feature of Plks. In the case of Plk4, autoinhibition is relieved after homodimerization and is accomplished by PB3 and by autophosphorylation of L1. In contrast, autophosphorylation of the second linker promotes separation of the Plk4 homodimer. Therefore, autoinhibition delays the multiple consequences of activation until Plk4 dimerizes. These findings reveal a complex mechanism of Plk4 regulation and activation which govern the process of centriole duplication.
Collapse
|
203
|
Park JE, Kim TS, Kim BY, Lee KS. Selective blockade of cancer cell proliferation and anchorage-independent growth by Plk1 activity-dependent suicidal inhibition of its polo-box domain. Cell Cycle 2015; 14:3624-34. [PMID: 26513691 PMCID: PMC4825759 DOI: 10.1080/15384101.2015.1104435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a "suicidal" PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell-selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition-induced cancer cell-selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Tae-Sung Kim
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Bo Yeon Kim
- Incurable Diseases Therapeutics Research Center; Korea Research Institute of Bioscience and Biotechnology; Ochang, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
204
|
Shan HM, Shi Y, Quan J. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1. ChemMedChem 2015; 10:158-63. [PMID: 25196850 DOI: 10.1002/cmdc.201402284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 12/21/2022]
Abstract
Polo-like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N-terminal kinase domain and C-terminal polo-box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (-)-epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein-labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose-dependent inhibition of the PBD and preliminary structure-activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell-cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.
Collapse
Affiliation(s)
- Hong-Mei Shan
- Key Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055 (China)
| | | | | |
Collapse
|
205
|
Benada J, Burdová K, Lidak T, von Morgen P, Macurek L. Polo-like kinase 1 inhibits DNA damage response during mitosis. Cell Cycle 2015; 14:219-31. [PMID: 25607646 PMCID: PMC4613155 DOI: 10.4161/15384101.2014.977067] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 11/19/2022] Open
Abstract
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.
Collapse
Key Words
- 53BP1
- 53BP1, p53 binding protein 1
- ATM, ataxia telangiectasia mutated kinase
- BRCA1, breast cancer type 1 susceptibility protein
- Cdk, cyclin dependent kinase
- DDR, DNA damage response
- DNA damage response
- H2AX, histone variant H2AX
- IR – ionizing radiation
- MDC1, mediator of DNA damage checkpoint protein 1
- NCS – neocarzinostatin
- NZ – nocodazole
- PTIP, PAX transactivation activation domain-interacting protein
- Plk1, Polo-like kinase 1
- Polo like kinase 1
- RIF1, Rap1-interacting factor 1 homolog
- RNAi, RNA interference
- RNF168, RING finger protein 168
- RNF8, RING finger protein 8
- mitosis
- phosphorylation
Collapse
Affiliation(s)
- Jan Benada
- Department of Cancer Cell Biology; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Tomáš Lidak
- Department of Cancer Cell Biology; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Patrick von Morgen
- Department of Cancer Cell Biology; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| |
Collapse
|
206
|
Thorne CA, Wichaidit C, Coster AD, Posner BA, Wu LF, Altschuler SJ. GSK-3 modulates cellular responses to a broad spectrum of kinase inhibitors. Nat Chem Biol 2015; 11:58-63. [PMID: 25402767 PMCID: PMC4270937 DOI: 10.1038/nchembio.1690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/11/2014] [Indexed: 01/10/2023]
Abstract
A fundamental challenge in treating disease is identifying molecular states that affect cellular responses to drugs. Here, we focus on glycogen synthase kinase 3 (GSK-3), a key regulator for many of the hallmark behaviors of cancer cells. We alter GSK-3 activity in colon epithelial cells to test its role in modulating drug response. We find that GSK-3 activity broadly affects the cellular sensitivities to a panel of oncology drugs and kinase inhibitors. Specifically, inhibition of GSK-3 activity can strongly desensitize or sensitize cells to kinase inhibitors (for example, mTOR or PLK1 inhibitors, respectively). Additionally, colorectal cancer cell lines, in which GSK-3 function is commonly suppressed, are resistant to mTOR inhibitors and yet highly sensitive to PLK1 inhibitors, and this is further exacerbated by additional GSK-3 inhibition. Finally, by conducting a kinome-wide RNAi screen, we find that GSK-3 modulates the cell proliferative phenotype of a large fraction (∼35%) of the kinome, which includes ∼50% of current, clinically relevant kinase-targeted drugs. Our results highlight an underappreciated interplay of GSK-3 with therapeutically important kinases and suggest strategies for identifying disease-specific molecular profiles that can guide optimal selection of drug treatment.
Collapse
Affiliation(s)
- Curtis A. Thorne
- Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chonlarat Wichaidit
- Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam D. Coster
- Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F. Wu
- Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J. Altschuler
- Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
207
|
Abbruzzese G, Cousin H, Salicioni AM, Alfandari D. GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration. Mol Biol Cell 2014; 25:4072-82. [PMID: 25298404 PMCID: PMC4263450 DOI: 10.1091/mbc.e14-05-0970] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/28/2022] Open
Abstract
ADAMs are cell surface metalloproteases that control multiple biological processes by cleaving signaling and adhesion molecules. ADAM13 controls cranial neural crest (CNC) cell migration both by cleaving cadherin-11 to release a promigratory extracellular fragment and by controlling expression of multiple genes via its cytoplasmic domain. The latter activity is regulated by γ-secretase cleavage and the translocation of the cytoplasmic domain into the nucleus. One of the genes regulated by ADAM13, the protease calpain8, is essential for CNC migration. Although the nuclear function of ADAM13 is evolutionarily conserved, it is unclear whether the transcriptional regulation is also performed by other ADAMs and how this process may be regulated. We show that ADAM13 function to promote CNC migration is regulated by two phosphorylation events involving GSK3 and Polo-like kinase (Plk). We further show that inhibition of either kinase blocks CNC migration and that the respective phosphomimetic forms of ADAM13 can rescue these inhibitions. However, these phosphorylations are not required for ADAM13 proteolysis of its substrates, γ-secretase cleavage, or nuclear translocation of its cytoplasmic domain. Of significance, migration of the CNC can be restored in the absence of Plk phosphorylation by expression of calpain-8a, pointing to impaired nuclear activity of ADAM13.
Collapse
Affiliation(s)
- Genevieve Abbruzzese
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Ana Maria Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
208
|
Shan HM, Wang T, Quan JM. Crystal structure of the polo-box domain of polo-like kinase 2. Biochem Biophys Res Commun 2014; 456:780-4. [PMID: 25511705 DOI: 10.1016/j.bbrc.2014.11.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022]
Abstract
Polo-like kinase 2 (PLK2) is a crucial regulator in cell cycle progression, DNA damage response, and neuronal activity. PLK2 is characterized by the conserved N-terminal kinase domain and the unique C-terminal polo-box domain (PBD). The PBD mediates diverse functions of PLK2 by binding phosphorylated Ser-pSer/pThr motifs of its substrates. Here, we report the first crystal structure of the PBD of PLK2. The overall structure of the PLK2 PBD is similar to that of the PLK1 PBD, which is composed by two polo boxes each contain β6α structures that form a 12-stranded β sandwich domain. The edge of the interface between the two polo boxes forms the phosphorylated Ser-pSer/pThr motifs binding cleft. On the hand, the peripheral regions around the core binding cleft of the PLK2 PBD is distinct from that of the PLK1 PBD, which might confer the substrate specificity of the PBDs of the polo-like kinase family.
Collapse
Affiliation(s)
- Hong-Mei Shan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Wang
- Laboratory for Computational Chemistry & Drug Design, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jun-Min Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
209
|
Karlin KL, Mondal G, Hartman JK, Tyagi S, Kurley SJ, Bland CS, Hsu TYT, Renwick A, Fang JE, Migliaccio I, Callaway C, Nair A, Dominguez-Vidana R, Nguyen DX, Osborne CK, Schiff R, Yu-Lee LY, Jung SY, Edwards DP, Hilsenbeck SG, Rosen JM, Zhang XHF, Shaw CA, Couch FJ, Westbrook TF. The oncogenic STP axis promotes triple-negative breast cancer via degradation of the REST tumor suppressor. Cell Rep 2014; 9:1318-32. [PMID: 25453754 PMCID: PMC4427000 DOI: 10.1016/j.celrep.2014.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/28/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 ("STP axis") cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.
Collapse
Affiliation(s)
- Kristen L Karlin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Gourish Mondal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica K Hartman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Siddhartha Tyagi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sarah J Kurley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chris S Bland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany Y T Hsu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander Renwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Justin E Fang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ilenia Migliaccio
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Celetta Callaway
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amritha Nair
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rocio Dominguez-Vidana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, Yale Cancer Center, New Haven, CT 06510, USA
| | - C Kent Osborne
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rachel Schiff
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sung Y Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
210
|
Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Front Microbiol 2014; 5:573. [PMID: 25400627 PMCID: PMC4212687 DOI: 10.3389/fmicb.2014.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Junjie Guo
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xu Li
- Orthopaedic Department of Anhui Medical University Affiliated Provincial Hospital Hefei, China
| | - Yubin Xie
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Mingming Hou
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Xuyang Fu
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Shengkun Dai
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Rucheng Diao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Yanyan Miao
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| | - Jian Ren
- Cancer Center, School of Life Sciences, School of Advanced Computing, Cooperative Innovation Center for High Performance Computing, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
211
|
Schmucker S, Sumara I. Molecular dynamics of PLK1 during mitosis. Mol Cell Oncol 2014; 1:e954507. [PMID: 27308323 PMCID: PMC4905186 DOI: 10.1080/23723548.2014.954507] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator of eukaryotic cell division. During mitosis, dynamic regulation of PLK1 is crucial for its roles in centrosome maturation, spindle assembly, microtubule–kinetochore attachment, and cytokinesis. Similar to other members of the PLK family, the molecular architecture of PLK1 protein is characterized by 2 domains—the kinase domain and the regulatory substrate-binding domain (polo-box domain)—that cooperate and control PLK1 function during mitosis. Mitotic cells employ many layers of regulation to activate and target PLK1 to different cellular structures in a timely manner. During the last decade, numerous studies have shed light on the precise molecular mechanisms orchestrating the mitotic activity of PLK1 in time and space. This review aims to discuss available data and concepts related to regulation of the molecular dynamics of human PLK1 during mitotic progression.
Collapse
Affiliation(s)
- Stephane Schmucker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) ; Illkirch, France
| |
Collapse
|
212
|
Kachaner D, Pinson X, El Kadhi KB, Normandin K, Talje L, Lavoie H, Lépine G, Carréno S, Kwok BH, Hickson GR, Archambault V. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis. ACTA ACUST UNITED AC 2014; 207:201-11. [PMID: 25332165 PMCID: PMC4210448 DOI: 10.1083/jcb.201408081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aurora B phosphorylation of the Polo kinase activation loop disrupts its binding to Map205 and central spindle microtubules, allowing it to be recruited to the site of cytokinesis. Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.
Collapse
Affiliation(s)
- David Kachaner
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xavier Pinson
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Khaled Ben El Kadhi
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Karine Normandin
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Lama Talje
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Hugo Lavoie
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Guillaume Lépine
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Benjamin H Kwok
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gilles R Hickson
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Vincent Archambault
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
213
|
Wu CP, Hsiao SH, Luo SY, Tuo WC, Su CY, Li YQ, Huang YH, Hsieh CH. Overexpression of human ABCB1 in cancer cells leads to reduced activity of GSK461364, a specific inhibitor of polo-like kinase 1. Mol Pharm 2014; 11:3727-36. [PMID: 25192198 DOI: 10.1021/mp500492r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polo-like kinase 1 (Plk1) is a serine/threonine kinase involved in the regulation of mitosis and is overexpressed in many tumor types. Inhibition of Plk1 leads to cell cycle arrest, onset of apoptosis, and cell death, thus Plk1 has emerged as an important target for cancer treatment. GSK461364 is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting G2/M cell cycle arrest at low concentrations. However, as is the case for many therapeutic drugs, the risk of developing drug resistance to GSK461364 can present a therapeutic challenge to clinicians. Since the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 is one of the most common mechanisms of drug resistance, we aimed to investigate the effect of ABCB1 on the cellular efficacy of GSK461364. In this study, we observed a significantly reduced activity of GSK461364 in cells overexpressing human ABCB1. We showed that GSK461364 stimulates the ABCB1 ATPase activity and competitively inhibits ABCB1-mediated efflux of calcein-AM in a concentration-dependent manner. Moreover, as a way to assess the impact of ABCB1 on the efficacy of GSK461364, we evaluated the G2/M cell cycle arrest and apoptosis induced by GSK461364. We discovered that, by inhibiting the function of ABCB1, the reduced G2/M cell cycle arrest, apoptosis, and sensitivity to GSK461364 treatment in ABCB1-overexpressing cells can be significantly restored. In conclusion, in order to achieve a better therapeutic outcome, combination therapy of GSK461364 with a modulator of ABCB1 should be further investigated as a potential treatment approach.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, ‡Graduate Institute of Biomedical Sciences, and §Molecular Medicine Research Center, College of Medicine, Chang Gung University , Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Ma H, He C, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials 2014; 35:8723-34. [PMID: 25017095 DOI: 10.1016/j.biomaterials.2014.06.045] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/22/2014] [Indexed: 02/02/2023]
Abstract
Combination cancer therapy has emerged as crucial approach for achieving superior anti-cancer efficacy. In this study, we developed a strategy by localized co-delivery of PLK1shRNA/polylysine-modified polyethylenimine (PEI-Lys) complexes and doxorubicin (DOX) using biodegradable, thermosensitive PLGA-PEG-PLGA hydrogels for treatment of osteosarcoma. When incubated with osteosarcoma Saos-2 and MG-63 cells, the hydrogel containing PLK1shRNA/PEI-Lys and DOX displayed significant synergistic effects in promoting the apoptosis of osteosarcoma cells in vitro. After subcutaneous injection of the hydrogel containing PLK1shRNA/PEI-Lys and DOX beside the tumors of nude mice bearing osteosarcoma Saos-2 xenografts, the hydrogels exhibited superior antitumor efficacy in vivo compared to the hydrogels loaded with PLK1shRNA/PEI-Lys or DOX alone. It is noteworthy that the combination treatment in vivo led to almost complete suppression of tumor growth up to 16 days, significantly enhanced PLK1 silencing, higher apoptosis of tumor masses, as well as increased cell cycle regulation. Additionally, ex vivo histological analysis of major organs of the mice indicated that the localized treatments showed no obvious damage to the organs, suggesting lower systemic toxicity of the treatments. Therefore, the strategy of localized, sustained co-delivery of PLK1shRNA and DOX by using the biodegradable, injectable hydrogel may have potential for efficient clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hecheng Ma
- Department of Orthopaedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yilong Cheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongsong Li
- Department of Orthopaedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Yubao Gong
- Department of Orthopaedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Jianguo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China.
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
215
|
Chen YJ, Lai KC, Kuo HH, Chow LP, Yih LH, Lee TC. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 2014; 88:1711-23. [PMID: 24623308 DOI: 10.1007/s00204-014-1222-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
Abstract
Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the centrosome in ATO-arrested mitotic cells. HSP70 located at the centrosome was found to be phosphorylated by PLK1 at Ser⁶³¹ and Ser⁶³³. Moreover, unlike wild-type HSP70 (HSP70(wt)) and its phosphomimetic mutant (HSP70(SS631,633DD)), a phosphorylation-resistant mutant of HSP70 (HSP70(SS631,633AA)) failed to localize at the centrosome. ATO-induced spindle elongation was abolished in cells overexpressing HSP70(SS631,633AA). Conversely, mitotic spindles in cells ectopically expressing HSP70(SS631,633DD) were more resistant to nocodazole-induced depolymerization than in those expressing HSP70(wt) or HSP70(SS631,633AA). In addition, inhibition of PLK1 significantly reduced HSP70 phosphorylation and induced early onset of apoptosis in ATO-arrested mitotic cells. Taken together, our results indicate that PLK1-mediated phosphorylation and centrosomal localization of HSP70 may interfere with spindle dynamics and prevent apoptosis of ATO-arrested mitotic cells.
Collapse
Affiliation(s)
- Yu-Ju Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
216
|
Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, Dix CI, Novak ZA, Dobbie IM, Schermelleh L, Raff JW. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 2014; 3:e03399. [PMID: 25149451 PMCID: PMC4175739 DOI: 10.7554/elife.03399] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022] Open
Abstract
Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the mother centriole and recruit most, if not all, other PCM components. In the absence of either DSpd-2 or Cnn, mitotic PCM assembly is diminished; in the absence of both proteins, it appears to be abolished. We show that DSpd-2 helps incorporate Cnn into the PCM and that Cnn then helps maintain DSpd-2 within the PCM, creating a positive feedback loop that promotes robust PCM expansion around the mother centriole during mitosis. These observations suggest a surprisingly simple mechanism of mitotic PCM assembly in flies.
Collapse
Affiliation(s)
- Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Holder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Metta B Pratt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Carly I Dix
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ian M Dobbie
- Oxford Micron advanced imaging unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lothar Schermelleh
- Oxford Micron advanced imaging unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
217
|
Izquierdo D, Wang WJ, Uryu K, Tsou MFB. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep 2014; 8:957-65. [PMID: 25131205 DOI: 10.1016/j.celrep.2014.07.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/22/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022] Open
Abstract
Vertebrate centrioles lose their geometric scaffold, the cartwheel, during mitosis, concurrently with gaining the ability to recruit the pericentriolar material (PCM) and thereby function as the centrosome. Cartwheel removal has recently been implicated in centriole duplication, but whether "cartwheel-less" centrioles are intrinsically stable or must be maintained through other modifications remains unclear. Here, we identify a newborn centriole-enriched protein, KIAA1731/CEP295, specifically mediating centriole-to-centrosome conversion but dispensable for cartwheel removal. In the absence of CEP295, centrioles form in the S/G2 phase and lose their associated cartwheel in mitosis but cannot be converted to centrosomes, uncoupling the two events. Strikingly, centrioles devoid of both the PCM and the cartwheel progressively lose centriolar components, whereas centrioles associating with either the cartwheel or PCM alone can exist stably. Thus, cartwheel removal can have grave repercussions to centriole stability, and centriole-to-centrosome conversion mediated by CEP295 must occur in parallel to maintain cartwheel-less centrioles for duplication.
Collapse
Affiliation(s)
- Denisse Izquierdo
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Won-Jing Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, Rockefeller University, New York, NY 10065, USA
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
218
|
Sakkiah S, Senese S, Yang Q, Lee KW, Torres JZ. Dynamic and multi-pharmacophore modeling for designing polo-box domain inhibitors. PLoS One 2014; 9:e101405. [PMID: 25036740 PMCID: PMC4103762 DOI: 10.1371/journal.pone.0101405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/06/2014] [Indexed: 02/04/2023] Open
Abstract
The polo-like kinase 1 (Plk1) is a critical regulator of cell division that is overexpressed in many types of tumors. Thus, a strategy in the treatment of cancer has been to target the kinase activity (ATPase domain) or substrate-binding domain (Polo-box Domain, PBD) of Plk1. However, only few synthetic small molecules have been identified that target the Plk1-PBD. Here, we have applied an integrative approach that combines pharmacophore modeling, molecular docking, virtual screening, and in vitro testing to discover novel Plk1-PBD inhibitors. Nine Plk1-PBD crystal structures were used to generate structure-based hypotheses. A common pharmacophore model (Hypo1) composed of five chemical features was selected from the 9 structure-based hypotheses and used for virtual screening of a drug-like database consisting of 159,757 compounds to identify novel Plk1-PBD inhibitors. The virtual screening technique revealed 9,327 compounds with a maximum fit value of 3 or greater, which were selected and subjected to molecular docking analyses. This approach yielded 93 compounds that made good interactions with critical residues within the Plk1-PBD active site. The testing of these 93 compounds in vitro for their ability to inhibit the Plk1-PBD, showed that many of these compounds had Plk1-PBD inhibitory activity and that compound Chemistry_28272 was the most potent Plk1-PBD inhibitor. Thus Chemistry_28272 and the other top compounds are novel Plk1-PBD inhibitors and could be used for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Qianfan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
219
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
220
|
Rajanala K, Sarkar A, Jhingan GD, Priyadarshini R, Jalan M, Sengupta S, Nandicoori VK. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. J Cell Sci 2014; 127:3505-20. [PMID: 24938596 DOI: 10.1242/jcs.149112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A major constituent of the nuclear basket region of the nuclear pore complex (NPC), nucleoporin Tpr, plays roles in regulating multiple important processes. We have previously established that Tpr is phosphorylated in both a MAP-kinase-dependent and MAP-kinase-independent manner, and that Tpr acts as both a substrate and as a scaffold for ERK2 (also known as MAPK1). Here, we report the identification of S2059 and S2094 as the major novel ERK-independent phosphorylation sites and T1677, S2020, S2023 and S2034 as additional ERK-independent phosphorylation sites found in the Tpr protein in vivo. Our results suggest that protein kinase A phosphorylates the S2094 residue and that the site is hyperphosphorylated during mitosis. Furthermore, we find that Tpr is phosphorylated at the S2059 residue by CDK1 and the phosphorylated form distinctly localizes with chromatin during telophase. Abrogation of S2059 phosphorylation abolishes the interaction of Tpr with Mad1, thus compromising the localization of both Mad1 and Mad2 proteins, resulting in cell cycle defects. The identification of novel phosphorylation sites on Tpr and the observations presented in this study allow better understanding of Tpr functions.
Collapse
Affiliation(s)
- Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Anshuk Sarkar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Gagan Deep Jhingan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raina Priyadarshini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manisha Jalan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
221
|
Spartà AM, Bressanin D, Chiarini F, Lonetti A, Cappellini A, Evangelisti C, Evangelisti C, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Martelli AM. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:2237-47. [PMID: 24874015 PMCID: PMC4111679 DOI: 10.4161/cc.29267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.
Collapse
Affiliation(s)
- Antonino Maria Spartà
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social, and Health Sciences; University of Cassino; Cassino, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Alice Bertaina
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - Franco Locatelli
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| |
Collapse
|
222
|
Choi BH, Pagano M, Dai W. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle. J Biol Chem 2014; 289:14066-74. [PMID: 24706748 PMCID: PMC4022876 DOI: 10.1074/jbc.m114.558155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Indexed: 01/21/2023] Open
Abstract
PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987
| | - Michele Pagano
- the Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, and the Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016
| | - Wei Dai
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
223
|
Riparbelli MG, Gottardo M, Glover DM, Callaini G. Inhibition of Polo kinase by BI2536 affects centriole separation during Drosophila male meiosis. Cell Cycle 2014; 13:2064-72. [PMID: 24802643 PMCID: PMC4111698 DOI: 10.4161/cc.29083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022] Open
Abstract
Pharmacological inhibition of Drosophila Polo kinase with BI2536 has allowed us to re-examine the requirements for Polo during Drosophila male gametogenesis. BI2536-treated spermatocytes persisted in a pro-metaphase state without dividing and had condensed chromosomes that did not separate. Centrosomes failed to recruit γ-tubulin and centrosomin (Cnn) and were not associated with microtubule arrays that were abnormal and did not form proper bipolar spindles. Centrioles, which usually separate during the anaphase of the first meiosis, remained held together in a V-shaped configuration suggesting that Polo kinase regulates the proteolysis that breaks centriole linkage to ensure their disengagement. Despite these defects spermatid differentiation proceeds, leading to axoneme formation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences; University of Siena; Siena, Italy
| | - David M Glover
- Department of Genetics; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
224
|
Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A, Bakshi SD, Dobbelaere J, Johnson S, Lea SM, Raff JW. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev Cell 2014; 28:659-69. [PMID: 24656740 PMCID: PMC3988887 DOI: 10.1016/j.devcel.2014.02.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 01/27/2014] [Accepted: 02/16/2014] [Indexed: 02/02/2023]
Abstract
Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies.
Collapse
Affiliation(s)
- Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zhe Feng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Suruchi D Bakshi
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
| | | | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
225
|
Fontenille L, Rouquier S, Lutfalla G, Giorgi D. Microtubule-associated protein 9 (Map9/Asap) is required for the early steps of zebrafish development. Cell Cycle 2014; 13:1101-14. [PMID: 24553125 PMCID: PMC4013161 DOI: 10.4161/cc.27944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microtubules are structural components of the cell cytoskeleton and key factors for mitosis and ciliogenesis in eukaryotes. The regulation of MT dynamics requires non-motor MAPs. We previously showed that, in human cells in culture, MAP9 (also named ASAP) is involved in MT dynamics and is essential for mitotic spindle formation and mitosis progression. Indeed, misexpression of MAP9 leads to severe mitotic defects and cell death. Here, we investigated the in vivo role of map9 during zebrafish development. Map9 is expressed mainly as a maternal gene. Within cells, Map9 is associated with the MT network of the mitotic spindle and with centrosomes. Morpholino-mediated depletion of map9 leads to early development arrest before completion of epiboly. Map9 localizes to the MT array of the YSL. This MT network is destroyed in Map9-depleted embryos, and injection of anti-map9 morpholinos directly in the nascent YSL leads to arrest of epiboly/gastrulation. Finally, map9 knockdown deregulates the expression of genes involved in endodermal differentiation, dorso-ventral and left-right patterning, and other MT-based functions. At low morpholino doses, the surviving embryos show dramatic developmental defects, spindle and mitotic defects, and increased apoptosis. Our findings suggest that map9 is a crucial factor in early zebrafish development by regulating different MT-based processes.
Collapse
Affiliation(s)
- Laura Fontenille
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France; Université de Montpellier 1; Montpellier, France
| | - Sylvie Rouquier
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France
| | - Georges Lutfalla
- Dynamique des Interactions Membranaires Normales et Pathologiques; UMR 5235; CNRS; Universités de Montpellier 1&2; Montpellier, France
| | - Dominique Giorgi
- Institute of Human Genetics; UPR 1142; CNRS; Montpellier, France
| |
Collapse
|
226
|
Kakeno M, Matsuzawa K, Matsui T, Akita H, Sugiyama I, Ishidate F, Nakano A, Takashima S, Goto H, Inagaki M, Kaibuchi K, Watanabe T. Plk1 phosphorylates CLIP-170 and regulates its binding to microtubules for chromosome alignment. Cell Struct Funct 2014; 39:45-59. [PMID: 24451569 DOI: 10.1247/csf.14001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is essential for cellular morphogenesis, cell migration, and cell division. MT organization is primarily mediated by a variety of MT-associated proteins. Among these proteins, plus-end-tracking proteins (+TIPs) are evolutionarily conserved factors that selectively accumulate at growing MT plus ends. Cytoplasmic linker protein (CLIP)-170 is a +TIP that associates with diverse proteins to determine the behavior of MT ends and their linkage to intracellular structures, including mitotic chromosomes. However, how CLIP-170 activity is spatially and temporally controlled is largely unknown. Here, we show that phosphorylation at Ser312 in the third serine-rich region of CLIP-170 is increased during mitosis. Polo-like kinase 1 (Plk1) is responsible for this phosphorylation during the mitotic phase of dividing cells. In vitro analysis using a purified CLIP-170 N-terminal fragment showed that phosphorylation by Plk1 diminishes CLIP-170 binding to the MT ends and lattice without affecting binding to EB3. Furthermore, we demonstrate that during mitosis, stable kinetochore/MT attachment and subsequent chromosome alignment require CLIP-170 and a proper phosphorylation/dephosphorylation cycle at Ser312. We propose that CLIP-170 phosphorylation by Plk1 regulates proper chromosome alignment by modulating the interaction between CLIP-170 and MTs in mitotic cells and that CLIP-170 activity is stringently controlled by its phosphorylation state, which depends on the cellular context.
Collapse
Affiliation(s)
- Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Gheghiani L, Gavet O. Deciphering the spatio-temporal regulation of entry and progression through mitosis. Biotechnol J 2014; 9:213-23. [DOI: 10.1002/biot.201300194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/19/2013] [Accepted: 12/03/2013] [Indexed: 11/07/2022]
|
228
|
Wang G, Jiang Q, Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 2014; 127:4111-22. [DOI: 10.1242/jcs.151753] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.
Collapse
|
229
|
Schwarz J, Schmidt S, Will O, Koudelka T, Köhler K, Boss M, Rabe B, Tholey A, Scheller J, Schmidt-Arras D, Schwake M, Rose-John S, Chalaris A. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding. J Biol Chem 2013; 289:3080-93. [PMID: 24338472 DOI: 10.1074/jbc.m113.536847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.
Collapse
Affiliation(s)
- Jeanette Schwarz
- From the Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Ando K, Ozaki T, Hirota T, Nakagawara A. NFBD1/MDC1 is phosphorylated by PLK1 and controls G2/M transition through the regulation of a TOPOIIα-mediated decatenation checkpoint. PLoS One 2013; 8:e82744. [PMID: 24349352 PMCID: PMC3859618 DOI: 10.1371/journal.pone.0082744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022] Open
Abstract
Although it has been established that nuclear factor with BRCT domain 1/ mediator of the DNA damage checkpoint protein 1 (NFBD1/MDC1) is closely involved in DNA damage response, its possible contribution to the regulation of cell- cycle progression is unclear. In the present study, we have found for the first time that NFBD1 is phosphorylated by polo-like kinase 1 (PLK1) and has an important role in G2/M transition. Both NFBD1 and PLK1 are co-expressed in cellular nuclei throughout G2/M transition, and binding assays demonstrated direct interaction between NFBD1 and PLK1. Indeed, in vitro kinase reactions revealed that the PST domain of NFBD1 contains a potential amino acid sequence (845-DVTGEE-850) targeted by PLK1. Furthermore, enforced expression of GFP-PST but not GFP-PST(T847A) where threonine at 847 was substituted by alanine inhibited the phosphorylation levels of histone H3, suggesting a defect of M phase entry. Because PLK1 has been implicated in promoting the G2/M transition, we reasoned that overexpressed PST might serve as a pseudosubstrate for PLK1 and thus interfere with phosphorylation of endogenous PLK1 substrates. Interestingly, siRNA-mediated knockdown of NFBD1 resulted in early M phase entry and accelerated M phase progression, raising the possibility that NFBD1 is a PLK1 substrate for regulating the G2/M transition. Moreover, the constitutive active form of PLK1(T210D) overcame the ICRF-193-induced decatenation checkpoint and inhibited the interaction between NFBD1 and topoisomerase IIα, but kinase-deficient PLK1 did not. Based on these observations, we propose that PLK1-mediated phosphorylation of NFBD1 is involved in the regulation of G2/M transition by recovering a decatenation checkpoint.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
- Division of Clinical Oncology Research, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Toshinori Ozaki
- Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
231
|
Zhou Z, Cao JX, Li SY, An GS, Ni JH, Jia HT. p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp Cell Res 2013; 319:3104-15. [PMID: 24076372 DOI: 10.1016/j.yexcr.2013.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022]
Abstract
E2F1 is implicated in transcriptional activation of polo-like kinase-1 (PLK1), but yet the mechanism is not fully understood. PLK1 suppression plays an important checkpoint role in response to DNA damage. Suppression of the PLK1 gene by binding of p53 to upstream p53RE2 element in the promoter has been recently revealed. Here we report another mechanism, in which p53 interacts with E2F1 to form p53-E2F1-DNA complex repressing E2F1-dependent PLK1 expression. PLK1 was downregulated in cisplatin exposed HCT116p53(+/+) but not HCT116p53(-/-) cells, indicating p53-suppressed PLK1 upon DNA damage. Co-transfection and reporter enzyme assays revealed that p53 suppressed but E2F1 promoted PLK1 gene activation. 5'-Deletion and substitution mutations showed multiple positive cis-elements residing in the PLK1 promoter, of which at least two E2F1 sites at positions -75/-68 and -40/-32 were required for the full activity of the promoter. Combination of 5'-deletion and substitution mutations with over-expression of p53 showed that suppression of the PLK1 gene by p53 was E2F1-dependent: mutation of the E2F1 site at position -75/-68 partially abrogated suppression activity of p53; mutation of E2F1 site at position -40/-32 released from p53 suppression of PLK1 gene completely. Co-immunoprecipitation and electrophoretic mobility shift assay showed that DNA damage promoted p53-E2F1 interaction, thereby creating a p53-E2F1 complex assembly on the PLK1 promoter in vitro. The in vivo formation of p53-E2F1-PLK1 promoter complex upon DNA damage was further evidenced by chromatin immunoprecipitation (ChIP) and re-ChIP. In addition, we showed that suppression of PLK1 by p53 promoted apoptosis. Our data suggest that p53 may interact with E2F1 to form p53-E2F1-DNA complex suppressing E2F1-dependent PLK1 expression. The model of p53 action on E2F1-activated PLK1 gene may explain at least partly how p53 as a suppressor regulates the downstream effects of E2F1 in cellular stresses including DNA damage stress.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
232
|
Abstract
Mutations in the Ras family of small GTPases are among the most frequent oncogenic events in human cancer. Difficulties in targeting Ras itself and the limited efficacy in targeting its effector kinases have spurred the search for Ras synthetic lethal genes that could shed new light on the biology of Ras-driven cancer and lead to new therapeutic strategies. Advances in mammalian RNAi technology have enabled high-throughput functional screens for Ras synthetic lethal interactions. In this chapter, we summarize the strategies and findings from these screens and discuss future improvement for Ras synthetic lethality studies.
Collapse
Affiliation(s)
- Bing Yu
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
233
|
Shen M, Cai Y, Yang Y, Yan X, Liu X, Zhou T. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Plk1 to centrosomes. Cell Res 2013; 23:1284-95. [PMID: 24018379 PMCID: PMC3817547 DOI: 10.1038/cr.2013.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are required for efficient cell cycle progression mainly by orchestrating microtubule dynamics and facilitating G1/S and G2/M transitions. However, the role of centrosomes in S-phase progression is largely unknown. Here, we report that depletion of FOR20 (FOP-related protein of 20 kDa), a conserved centrosomal protein, inhibits S-phase progression and prevents targeting of Plk1 (polo-like kinase 1) to centrosomes, where FOR20 interacts with Plk1. Ablation of Plk1 also significantly induces S-phase defects, which are reversed by ectopic expression of Plk1, even a kinase-dead mutant, but not a mutant that fails to localize to centrosomes. Exogenous expression of centrosome-tethered Plk1, but not wild-type Plk1, overrides FOR20 depletion-induced S-phase defects independently of its kinase activity. Thus, these data indicate that recruitment of Plk1 to centrosomes by FOR20 may act as a signal to license efficient progression of S-phase. This represents a hitherto uncharacterized role of centrosomes in cell cycle regulation.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
234
|
Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 2013; 154:391-402. [PMID: 23870127 DOI: 10.1016/j.cell.2013.06.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/28/2013] [Accepted: 06/10/2013] [Indexed: 02/02/2023]
Abstract
Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
235
|
Wu CP, Hsiao SH, Sim HM, Luo SY, Tuo WC, Cheng HW, Li YQ, Huang YH, Ambudkar SV. Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of Polo-like kinase 1. Biochem Pharmacol 2013; 86:904-13. [PMID: 23962445 PMCID: PMC3791609 DOI: 10.1016/j.bcp.2013.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/03/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
The overexpression of the serine/threonine specific Polo-like kinase 1 (Plk1) has been detected in various types of cancer, and thus has fast become an attractive therapeutic target for cancer therapy. BI 2536 is the first selective inhibitor of Plk1 that inhibits cancer cell proliferation by promoting G2/M cell cycle arrest at nanomolar concentrations. Unfortunately, alike most chemotherapeutic agents, the development of acquired resistance to BI 2536 is prone to present a significant therapeutic challenge. One of the most common mechanisms for acquired resistance in cancer chemotherapy is associated with the overexpression of ATP-binding cassette (ABC) transporters ABCB1, ABCC1 and ABCG2. Here, we discovered that overexpressing of either ABCB1 or ABCG2 is a novel mechanism of acquired resistance to BI 2536 in human cancer cells. Moreover, BI 2536 stimulates the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner, and inhibits the drug substrate transport mediated by these transporters. More significantly, the reduced chemosensitivity and BI 2536-mediated G2/M cell cycle arrest in cancer cells overexpressing either ABCB1 or ABCG2 can be significantly restored in the presence of selective inhibitor or other chemotherapeutic agents that also interact with ABCB1 and ABCG2, such as tyrosine kinase inhibitors nilotinib and lapatinib. Taken together, our findings indicate that in order to circumvent ABCB1 or ABCG2-mediated acquired resistance to BI 2536, a combined regimen of BI 2536 and inhibitors or clinically active drugs that potently inhibit the function of ABC drug transporters, should be considered as a potential treatment strategy in the clinic.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biological Transport/drug effects
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- G2 Phase Cell Cycle Checkpoints/drug effects
- Humans
- Lapatinib
- Mice
- Neoplasm Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/antagonists & inhibitors
- Pteridines/pharmacology
- Pyrimidines/pharmacology
- Quinazolines/pharmacology
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Dai G, Qian Y, Chen J, Meng FL, Pan FY, Shen WG, Zhang SZ, Xue B, Li CJ. Calmodulin activation of polo-like kinase 1 is required during mitotic entry. Biochem Cell Biol 2013; 91:287-94. [PMID: 24032677 DOI: 10.1139/bcb-2013-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is a conserved key regulator of the G2/M transition, but its upstream spatiotemporal regulators remain unknown. With the help of immunofluorescence, co-immunoprecipitation, and glutathione S-transferase (GST) pull-down assay, we found that calmodulin (CaM) is one such regulatory molecule that associates with Plk1 from G2 to metaphase. More importantly, this interaction results in considerable stimulation of Plk1 kinase activity leading to hyperphosphorylation of Cdc25C. Our results provide new insight into the role of CaM as an upstream regulator of Plk1 activation during mitotic entry.
Collapse
Affiliation(s)
- Gu Dai
- a Model Animal Research Center (MARC) and School of Medicine, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Russo MA, Kang KS, Di Cristofano A. The PLK1 inhibitor GSK461364A is effective in poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their driver mutations. Thyroid 2013; 23:1284-93. [PMID: 23509868 PMCID: PMC3783934 DOI: 10.1089/thy.2013.0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are the most aggressive forms of thyroid cancer. Despite their low incidence, they account for a disproportionate number of thyroid cancer-related deaths because of their resistance to most therapeutic approaches. We have generated mouse models that develop ATC ([Pten, p53](thyr-/-) mice) and follicular thyroid cancer with areas of poor differentiation (Pten(thyr-/-),Kras(G12D) mice). Comparative gene expression profiling of human and mouse ATCs reveals a common "mitotic signature" in which mitotic kinases, including Polo-like kinase-1 (PLK1), are found deregulated in both species. Most genes from this signature are also upregulated in poorly differentiated tumors developing in Pten(thyr-/-),Kras(G12D) mice. PLK1 is a crucial driving force for normal mitotic spindle formation, centrosome maturation, and separation, and its overexpression has been demonstrated in a wide range of tumors. METHODS Human and mouse ATC and PDTC cell lines were treated with the PLK1 inhibitor GSK461364A, and proliferation, apoptosis, and mitotic spindle alterations were analyzed. Furthermore, immunocompetent mice were injected in the flank with mouse ATC cells, and treated with placebo or GSK461364A. RESULTS We show that the PLK1 inhibitor GSK461364A inhibits cell proliferation and induces cell death in both mouse ATC- and PDTC-derived cell lines and in several human ATC cell lines carrying different driver mutations. Dose-dependent changes in chromosome alignment and spindle assembly during mitosis are observed after treatment, together with changes in the mitotic index. FACS analysis reveals a G2/M phase arrest, followed by apoptosis, and mitotic slippage in cells with PI3K activation. GSK461364A is also effective in vivo, in an allograft model of ATC. CONCLUSIONS Taken together, these data suggest that PLK1 targeting is a promising and effective therapeutic approach against PDTC cells and undifferentiated thyroid carcinoma cells.
Collapse
Affiliation(s)
- Marika A Russo
- Department of Developmental and Molecular Biology, Price Center for Genetic and Translational Medicine, Albert Einstein College of Medicine , Bronx, New York
| | | | | |
Collapse
|
238
|
Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D. Inhibition of Cdc42 during mitotic exit is required for cytokinesis. ACTA ACUST UNITED AC 2013; 202:231-40. [PMID: 23878274 PMCID: PMC3718968 DOI: 10.1083/jcb.201301090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A decrease in Cdc42 activation during mitotic exit is necessary to allow localization of key cytokinesis regulators and proper septum formation. The role of Cdc42 and its regulation during cytokinesis is not well understood. Using biochemical and imaging approaches in budding yeast, we demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to down-regulate Cdc42 during mitotic exit impairs the normal localization of key cytokinesis regulators—Iqg1 and Inn1—at the division site, and results in an abnormal septum. The effects of Cdc42 hyperactivation are largely mediated by the Cdc42 effector p21-activated kinase Ste20. Inhibition of Cdc42 and related Rho guanosine triphosphatases may be a general feature of cytokinesis in eukaryotes.
Collapse
Affiliation(s)
- Benjamin D Atkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
239
|
Xu J, Shen C, Wang T, Quan J. Structural basis for the inhibition of Polo-like kinase 1. Nat Struct Mol Biol 2013; 20:1047-53. [PMID: 23893132 DOI: 10.1038/nsmb.2623] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/30/2013] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (PLK1) is a master regulator of mitosis and is considered a potential drug target for cancer therapy. PLK1 is characterized by an N-terminal kinase domain (KD) and a C-terminal Polo-box domain (PBD). The KD and PBD are mutually inhibited, but the molecular mechanisms of the autoinhibition remain unclear. Here we report the 2.3-Å crystal structure of the complex of the Danio rerio KD and PBD together with a PBD-binding motif of Drosophila melanogaster microtubule-associated protein 205 (Map205(PBM)). The structure reveals that the PBD binds and rigidifies the hinge region of the KD in a distinct conformation from that of the phosphopeptide-bound PBD. This structure provides a framework for understanding the autoinhibitory mechanisms of PLK1 and also sheds light on the activation mechanisms of PLK1 by phosphorylation or phosphopeptide binding.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | |
Collapse
|
240
|
Hasegawa H, Hyodo T, Asano E, Ito S, Maeda M, Kuribayashi H, Natsume A, Wakabayashi T, Hamaguchi M, Senga T. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J Cell Sci 2013; 126:3627-37. [PMID: 23750008 DOI: 10.1242/jcs.124818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a widely conserved serine/threonine kinase that regulates progression of multiple stages of mitosis. Although extensive studies about PLK1 functions during cell division have been performed, it is still not known how PLK1 regulates myosin II activation at the equatorial cortex and ingression of the cleavage furrow. In this report, we show that an actin/myosin-II-binding protein, supervillin (SVIL), is a substrate of PLK1. PLK1 phosphorylates Ser238 of SVIL, which can promote the localization of SVIL to the central spindle and association with PRC1. Expression of a PLK1 phosphorylation site mutant, S238A-SVIL, inhibited myosin II activation at the equatorial cortex and induced aberrant furrowing. SVIL has both actin- and myosin-II-binding regions in the N-terminus. Expression of ΔMyo-SVIL (deleted of the myosin-II-binding region), but not of ΔAct-SVIL (deleted of actin-binding region), reduced myosin II activation and caused defects in furrowing. Our study indicates a possible role of phosphorylated SVIL as a molecular link between the central spindle and the contractile ring to coordinate the activation of myosin II for the ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Hitoki Hasegawa
- Division of Cancer Biology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Xie CM, Liu XY, Yu S, Cheng CHK. Cardiac glycosides block cancer growth through HIF-1α- and NF-κB-mediated Plk1. Carcinogenesis 2013; 34:1870-80. [PMID: 23615397 DOI: 10.1093/carcin/bgt136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Cardiac glycosides as inhibitors of the sodium/potassium adenosine triphosphatase (sodium pump) have been reported to block cancer growth by inducing G2/M phase arrest in many cancer cells. However, no detailed studies have been performed to distinguish between these two phases of cardiac glycoside-arrested cells. Furthermore, the underlying mechanisms involved in this cell cycle arrest process are still not known. Here, we report that bufalin and other cardiac glycosides potently induce mitotic arrest by the downregulation of polo-like kinase 1 (Plk1) expression. Live-cell imaging results demonstrate that bufalin-treated cells exhibit a marked delay in entering prophase at an early stage and are then arrested at prometaphase or induced entry into apoptosis. This phenotypic change is attributed to the downregulation of Plk1. We also show that bufalin and the knockdown of sodium pump reduce Plk1, at least in part, through downregulation of the nuclear transcription factors, hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB). These findings suggest that cardiac glycosides induce mitotic arrest and apoptosis through HIF-1α- and NF-κB-mediated downregulation of Plk1 expression, demonstrating that HIF-1α and NF-κB are critical targets of cardiac glycosides in exerting their anticancer action.
Collapse
Affiliation(s)
- Chuan-Ming Xie
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
242
|
Zou J, Rezvani K, Wang H, Lee KS, Zhang D. BRCA1 downregulates the kinase activity of Polo-like kinase 1 in response to replication stress. Cell Cycle 2013; 12:2255-65. [PMID: 24067368 PMCID: PMC3755076 DOI: 10.4161/cc.25349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 01/19/2023] Open
Abstract
In response to DNA damage or replication stress, proliferating cells are arrested at different cell cycle stages for DNA repair by downregulating the activity of both the cyclin-dependent kinases (CDKs) and other important cell cycle kinases, including Polo-like kinase 1 (PLK1) . The signaling pathway to inhibit CDKs is relatively well understood, and breast cancer gene 1 (BRCA1) and other DNA damage response (DDR) factors play a key role in this process. However, the DNA damage-induced inhibition of PLK1 is still largely a mystery. Here we show that DNA damage and replication stress stimulate the association between BRCA1 and PLK1. Most importantly, we demonstrate that BRCA1 downregulates the kinase activity of PLK1 by modulating the dynamic interactions of Aurora A, hBora, and PLK1. Together with previous findings, we propose that in response to replication stress and DNA damage, BRCA1 plays a critical role in downregulating the kinase activity of both CDKs and PLK1.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Khosrow Rezvani
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| | - Kyung S Lee
- Laboratory of Metabolism; Center for Cancer Research; National Cancer Institute of Health; Bethesda, MD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; The University of South Dakota; Vermillion, SD USA
| |
Collapse
|
243
|
Baran V, Solc P, Kovarikova V, Rehak P, Sutovsky P. Polo-like kinase 1 is essential for the first mitotic division in the mouse embryo. Mol Reprod Dev 2013; 80:522-34. [PMID: 23649868 DOI: 10.1002/mrd.22188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Abstract
Polo-like kinase 1 (PLK1), a member of the serine/threonine protein kinases family, is involved in multiple steps of mitotic progression. It regulates centrosome maturation, mitotic spindle formation, and cytokinesis. While studied extensively in somatic cells, little is known about PLK1 activities in the mammalian preimplantation embryo. We examined the role of PLK1 in the one-cell mouse embryo. Western blotting showed that the PLK1 protein content increased significantly during the S-phase of the one-cell stage and declined during the first mitotic division. Activation of PLK1 preceded nuclear envelope breakdown (NEBD) in both pronuclei at the entry to first embryo mitosis. Immunofluorescence revealed the presence of phosphorylated, active PLK1 (pThr(210) -PLK1) in both male and female pronuclei, and in the microtubule-organizing centers (MTOCs) shortly before NEBD. During the first mitotic metaphase, pThr(210) -PLK1 accumulated at the spindle poles and was also associated with condensed chromosomes. Inhibition of PLK1 activity with a specific PLK1 inhibitor, BI 2536, at the one-cell stage induced the formation of a bipolar spindle that displayed disordered microtubular arrangements and dislocated, condensed chromosomes. Although such embryos entered mitosis, they did not complete mitosis and arrested at metaphase. Time-lapse recording revealed progressive misalignment of condensed chromosomes during first mitotic metaphase. These data indicate that PLK1 activity is not essential for entry into first mitosis, but is required for the events leading up to metaphase-anaphase transition in the one-cell mouse embryo.
Collapse
Affiliation(s)
- V Baran
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovakia.
| | | | | | | | | |
Collapse
|
244
|
Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4:958-71. [PMID: 23948487 PMCID: PMC3759674 DOI: 10.18632/oncotarget.1096] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023] Open
Abstract
Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
Collapse
Affiliation(s)
- Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
245
|
Zhai R, Yuan YF, Zhao Y, Liu XM, Zhen YH, Yang FF, Wang L, Huang CZ, Cao J, Huo LJ. Bora regulates meiotic spindle assembly and cell cycle during mouse oocyte meiosis. Mol Reprod Dev 2013; 80:474-87. [PMID: 23610072 DOI: 10.1002/mrd.22185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/16/2013] [Indexed: 11/12/2022]
Abstract
Bora is the binding partner of Aurora A, which is required for its activation and phosphorylation of Polo like kinase 1 (Plk1), and is involved in the spindle assembly and progress of the cell cycle during mitosis. In this study, we examined the expression, localization, and function of Bora during mouse oocyte meiosis. The expression level of Bora was increased during oocyte meiotic maturation, with an elevated level at metaphase. Immunofluorescence analysis showed that Bora was concentrated as a dot shortly after germinal vesicle breakdown (GVBD), associating first with the surrounding chromosomes and then with the spindle throughout oocyte meiotic maturation. Further experiments confirmed that Bora co-localized with α-tubulin at prometaphase/metaphase, but dissociated from α-tubulin at anaphase/telophase. In metaphase-II-arrested oocytes, Bora was evenly distributed in the cytoplasm after treatment with a microtubule-depolymerizing agent, or recruited to the spindle after treatment with a microtubule-polymerizing agent, indicating that Bora was physically connected to the meiotic spindle and α-tubulin at metaphase. Furthermore, inhibition or depletion of Bora by either anti-Bora antibody or Bora siRNA microinjection significantly reduced the rates of GVBD and inhibited first polar body extrusion; caused morphologically defective spindles and misaligned chromosomes; arrested maturing oocytes at prometaphase/metaphase-I stage, or left oocytes and their first polar bodies with severely misaligned chromosomes and defective spindles; and/or caused the disappearance of Aurora A and Plk1 at the spindle. These results indicated that Bora acts as a critical regulator of Aurora A and Plk1, and is involved in microtubule organization during oocyte meiosis.
Collapse
Affiliation(s)
- Rui Zhai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation.
Collapse
Affiliation(s)
| | - Young Yang
- Center for Women’s Disease, Department of Biological Science, Sookmyung Women’s University, Seoul 140-742, Korea
| |
Collapse
|
247
|
Conde C, Osswald M, Barbosa J, Moutinho-Santos T, Pinheiro D, Guimarães S, Matos I, Maiato H, Sunkel CE. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO J 2013; 32:1761-77. [PMID: 23685359 DOI: 10.1038/emboj.2013.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/23/2013] [Indexed: 11/09/2022] Open
Abstract
Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.
Collapse
Affiliation(s)
- Carlos Conde
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Chouinard G, Clément I, Lafontaine J, Rodier F, Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 2013; 8:7. [PMID: 23680298 PMCID: PMC3668180 DOI: 10.1186/1747-1028-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
Collapse
Affiliation(s)
- Guillaume Chouinard
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital Notre-Dame et Institut du cancer de Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
249
|
Sanhaji M, Louwen F, Zimmer B, Kreis NN, Roth S, Yuan J. Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle 2013; 12:1340-51. [PMID: 23574746 PMCID: PMC3674062 DOI: 10.4161/cc.24573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53(+/+) cells, whereas HCT116 p53(-/-) cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53(+/+) or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53(-/-) cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Susanne Roth
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| |
Collapse
|
250
|
He R, Wu Q, Zhou H, Huang N, Chen J, Teng J. Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization. J Biol Chem 2013; 288:14384-14390. [PMID: 23569207 DOI: 10.1074/jbc.m112.441501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytokinesis is the final stage of cell division in which the cytoplasm of a cell is divided into two daughter cells after the segregation of genetic material, and the central spindle and midbody are considered to be the essential structures required for the initiation and completion of cytokinesis. Here, we determined that the centrosome protein Cep57, which is localized to the central spindle and midbody, acts as a spindle organizer and is required for cytokinesis. Depletion of Cep57 disrupted microtubule assembly of the central spindle and further led to abnormal midbody localization of MKLP1, Plk1, and Aurora B, which resulted in cytokinesis failure and the formation of binuclear cells. Furthermore, we found that Cep57 directly recruited Tektin 1 to the midbody matrix to regulate microtubule organization. Thus, our data reveal that Cep57 is essential for cytokinesis via regulation of central spindle assembly and formation of the midbody.
Collapse
Affiliation(s)
- Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qixi Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Haining Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|