201
|
Yeung AK, Patil CS, Jackson MF. Pannexin‐1 in the CNS: Emerging concepts in health and disease. J Neurochem 2020; 154:468-485. [DOI: 10.1111/jnc.15004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Albert K. Yeung
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Chetan S. Patil
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Michael F. Jackson
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
202
|
Kim JH, Afridi R, Lee WH, Suk K. Proteomic examination of the neuroglial secretome: lessons for the clinic. Expert Rev Proteomics 2020; 17:207-220. [PMID: 32187501 DOI: 10.1080/14789450.2020.1745069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Glial cells are closely associated with neurons located throughout the nervous system and regulate neuronal activity and function through various mechanisms including the secretion of proteins and other signaling molecules. Glia-secreted proteins play crucial roles in modulating neuronal function in physiological and pathological conditions. Aberrant activation of glial cells leading to neuroinflammation is a common phenomenon observed in various neurological disorders. Aberrantly activated glial cells secrete proteins in disease-specific manner and can be exploited as a repository for novel biomarker discovery.Areas covered: In this review, we describe the recent advances in proteomic techniques, highlighting the need for their application to the secretomic field. Studies regarding the secretome profile of glial cells published within the last 5 years are discussed in detail. The use of glia-based biomarkers in various neuroinflammatory and neurodegenerative diseases is also discussed.Expert opinion: Precise diagnosis and timely treatment of neurological disorders remains a challenge and glia-focused research to identify specific biomarkers appears to be a promising approach to combat these disorders. Recent technological advancement in proteomic research would open new frontiers for more rigorous analysis of glial secretome variations over time and the discovery/development of novel biomarkers for neurological disorders.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea.,Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
203
|
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11:1559. [PMID: 32214088 PMCID: PMC7096448 DOI: 10.1038/s41467-020-15267-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Collapse
|
204
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
205
|
Chagas LDS, Sandre PC, Ribeiro e Ribeiro NCA, Marcondes H, Oliveira Silva P, Savino W, Serfaty CA. Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease. Int J Mol Sci 2020; 21:ijms21062111. [PMID: 32204421 PMCID: PMC7139373 DOI: 10.3390/ijms21062111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recent discoveries on the neurobiology of the immunocompetent cells of the central nervous system (CNS), microglia, have been recognized as a growing field of investigation on the interactions between the brain and the immune system. Several environmental contexts such as stress, lesions, infectious diseases, and nutritional and hormonal disorders can interfere with CNS homeostasis, directly impacting microglial physiology. Despite many encouraging discoveries in this field, there are still some controversies that raise issues to be discussed, especially regarding the relationship between the microglial phenotype assumed in distinct contexts and respective consequences in different neurobiological processes, such as disorders of brain development and neuroplasticity. Also, there is an increasing interest in discussing microglial–immune system cross-talk in health and in pathological conditions. In this review, we discuss recent literature concerning microglial function during development and homeostasis. In addition, we explore the contribution of microglia to synaptic disorders mediated by different neuroinflammatory outcomes during pre- and postnatal development, with long-term consequences impacting on the risk and vulnerability to the emergence of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Poliana Capucho Sandre
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Natalia Cristina Aparecida Ribeiro e Ribeiro
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Henrique Marcondes
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Priscilla Oliveira Silva
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Correspondence: (W.S.); (C.A.S.)
| | - Claudio A. Serfaty
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Correspondence: (W.S.); (C.A.S.)
| |
Collapse
|
206
|
Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN. Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. eLife 2020; 9:e50531. [PMID: 32150529 PMCID: PMC7062469 DOI: 10.7554/elife.50531] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia play key roles in regulating synapse development and refinement in the developing brain, but it is unknown whether they are similarly involved during adult neurogenesis. By transiently depleting microglia from the healthy adult mouse brain, we show that microglia are necessary for the normal functional development of adult-born granule cells (abGCs) in the olfactory bulb. Microglial depletion reduces the odor responses of developing, but not preexisting GCs in vivo in both awake and anesthetized mice. Microglia preferentially target their motile processes to interact with mushroom spines on abGCs, and when microglia are absent, abGCs develop smaller spines and receive weaker excitatory synaptic inputs. These results suggest that microglia promote the development of excitatory synapses onto developing abGCs, which may impact the function of these cells in the olfactory circuit.
Collapse
Affiliation(s)
- Jenelle Wallace
- Molecules, Cells, and Organisms Training Program, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
| | - Julia Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Lasse Dissing-Olesen
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Beth Stevens
- FM Kirby Neurobiology Center, Boston Children’s HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
- Howard Hughes Medical Institute, Boston Children’s HospitalBostonUnited States
| | - Venkatesh N Murthy
- Molecules, Cells, and Organisms Training Program, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
207
|
Ronzano R, Thetiot M, Lubetzki C, Desmazieres A. Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Front Cell Neurosci 2020; 14:42. [PMID: 32180708 PMCID: PMC7059744 DOI: 10.3389/fncel.2020.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.
Collapse
Affiliation(s)
- Remi Ronzano
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| | - Melina Thetiot
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Catherine Lubetzki
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Desmazieres
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| |
Collapse
|
208
|
Abstract
In vivo two-photon imaging of microglia in the intact brain has revealed that microglia constantly survey neuronal soma. Research over the past decade and a recent paper by Cserép et al. published in Science are now uncovering the nature, mechanisms, and consequences of these interactions in health and injury.
Collapse
|
209
|
Vainchtein ID, Molofsky AV. Astrocytes and Microglia: In Sickness and in Health. Trends Neurosci 2020; 43:144-154. [PMID: 32044129 DOI: 10.1016/j.tins.2020.01.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/28/2019] [Accepted: 01/11/2020] [Indexed: 01/05/2023]
Abstract
Healthy central nervous system (CNS) development and function require an intricate and balanced bidirectional communication between neurons and glia cells. In this review, we discuss the complementary roles of astrocytes and microglia in building the brain, including in the formation and refinement of synapses. We discuss recent evidence demonstrating how these interactions are coordinated in the transition from healthy physiology towards disease and discuss known and potential molecular mechanisms that mediate this cellular crosstalk.
Collapse
Affiliation(s)
- Ilia D Vainchtein
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
210
|
De Luca SN, Soch A, Sominsky L, Nguyen TX, Bosakhar A, Spencer SJ. Glial remodeling enhances short-term memory performance in Wistar rats. J Neuroinflammation 2020; 17:52. [PMID: 32028971 PMCID: PMC7006153 DOI: 10.1186/s12974-020-1729-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Microglia play a key role in neuronal circuit and synaptic maturation in the developing brain. In the healthy adult, however, their role is less clear: microglial hyperactivation in adults can be detrimental to memory due to excessive synaptic pruning, yet learning and memory can also be impaired in the absence of these cells. In this study, we therefore aimed to determine how microglia contribute to short-term memory in healthy adults. Methods To this end, we developed a Cx3cr1-Dtr transgenic Wistar rat with a diphtheria toxin receptor (Dtr) gene inserted into the fractalkine receptor (Cx3cr1) promoter, expressed on microglia and monocytes. This model allows acute microglial and monocyte ablation upon application of diphtheria toxin, enabling us to directly assess microglia’s role in memory. Results Here, we show that short-term memory in the novel object and place recognition tasks is entirely unaffected by acute microglial ablation. However, when microglia repopulate the brain after depletion, learning and memory performance in these tasks is improved. This transitory memory enhancement is associated with an ameboid morphology in the newly repopulated microglial cells and increased astrocyte density that are linked with a higher density of mature hippocampal synaptic spines and differences in pre- and post-synaptic markers. Conclusions These data indicate that glia play a complex role in the healthy adult animal in supporting appropriate learning and memory and that subtle changes to the function of these cells may strategically enhance memory.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Thai-Xinh Nguyen
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia. .,ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
211
|
Lazdon E, Stolero N, Frenkel D. Microglia and Parkinson's disease: footprints to pathology. J Neural Transm (Vienna) 2020; 127:149-158. [DOI: 10.1007/s00702-020-02154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
|
212
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, Zagury J, Sieger D. Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 2020; 68:298-315. [PMID: 31508850 PMCID: PMC6916425 DOI: 10.1002/glia.23717] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages of the brain. Over the past decade, our understanding of the function of these cells has significantly improved. Microglia do not only play important roles in the healthy brain but are involved in almost every brain pathology. Gene expression profiling allowed to distinguish microglia from other macrophages and revealed that the full microglia signature can only be observed in vivo. Thus, animal models are irreplaceable to understand the function of these cells. One of the popular models to study microglia is the zebrafish larva. Due to their optical transparency and genetic accessibility, zebrafish larvae have been employed to understand a variety of microglia functions in the living brain. Here, we performed RNA sequencing of larval zebrafish microglia at different developmental time points: 3, 5, and 7 days post fertilization (dpf). Our analysis reveals that larval zebrafish microglia rapidly acquire the core microglia signature and many typical microglia genes are expressed from 3 dpf onwards. The majority of changes in gene expression happened between 3 and 5 dpf, suggesting that differentiation mainly takes place during these days. Furthermore, we compared the larval microglia transcriptome to published data sets of adult zebrafish microglia, mouse microglia, and human microglia. Larval microglia shared a significant number of expressed genes with their adult counterparts in zebrafish as well as with mouse and human microglia. In conclusion, our results show that larval zebrafish microglia mature rapidly and express the core microglia gene signature that seems to be conserved across species.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Laura E. Kuil
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
213
|
Adaikkan C, Tsai LH. Gamma Entrainment: Impact on Neurocircuits, Glia, and Therapeutic Opportunities. Trends Neurosci 2020; 43:24-41. [DOI: 10.1016/j.tins.2019.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
214
|
Bourgognon JM, Cavanagh J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci Adv 2020; 4:2398212820979802. [PMID: 33415308 PMCID: PMC7750764 DOI: 10.1177/2398212820979802] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
Cytokines are proteins secreted in the central nervous system by neurons, microglia, astrocytes and infiltrating peripheral immune cells under physiological and pathological conditions. Over the last 20 years, a growing number of reports have investigated the effects of these molecules on brain plasticity. In this review, we describe how the key cytokines interleukin 1β, interleukin 6 and tumour necrosis factor α were found to support long-term plasticity and learning and memory processes in physiological conditions. In contrast, during inflammation where cytokines levels are elevated such as in models of brain injury or infection, depression or neurodegeneration, the effects of cytokines are mostly detrimental to memory mechanisms, associated behaviours and homeostatic plasticity.
Collapse
Affiliation(s)
| | - Jonathan Cavanagh
- Institute of Infection, Immunity &
Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
215
|
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2019; 367:528-537. [PMID: 31831638 DOI: 10.1126/science.aax6752] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.
Collapse
Affiliation(s)
- Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Zsófia I László
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary.,Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katinka Ujvári
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Csiba
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Róbert Szipőcs
- Institute for Solid State Physics and Optics of Wigner RCP, Budapest, Hungary
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
216
|
Ferrero G, Mahony CB, Dupuis E, Yvernogeau L, Di Ruggiero E, Miserocchi M, Caron M, Robin C, Traver D, Bertrand JY, Wittamer V. Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. Cell Rep 2019; 24:130-141. [PMID: 29972775 DOI: 10.1016/j.celrep.2018.05.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Microglia, the tissue-resident macrophages of the CNS, represent major targets for therapeutic intervention in a wide variety of neurological disorders. Efficient reprogramming protocols to generate microglia-like cells in vitro using patient-derived induced pluripotent stem cells will, however, require a precise understanding of the cellular and molecular events that instruct microglial cell fates. This remains a challenge since the developmental origin of microglia during embryogenesis is controversial. Here, using genetic tracing in zebrafish, we uncover primitive macrophages as the unique source of embryonic microglia. We also demonstrate that this initial population is transient, with primitive microglia later replaced by definitive microglia that persist throughout adulthood. The adult wave originates from cmyb-dependent hematopoietic stem cells. Collectively, our work challenges the prevailing model establishing erythro-myeloid progenitors as the sole and direct microglial precursor and provides further support for the existence of multiple waves of microglia, which originate from distinct hematopoietic precursors.
Collapse
Affiliation(s)
- Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium
| | - Christopher B Mahony
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Eléonore Dupuis
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, the Netherlands
| | - Elodie Di Ruggiero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium
| | - Magali Miserocchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marianne Caron
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center, Utrecht, the Netherlands
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA; Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland.
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium.
| |
Collapse
|
217
|
Synaptic Pruning by Microglia in Epilepsy. J Clin Med 2019; 8:jcm8122170. [PMID: 31818018 PMCID: PMC6947403 DOI: 10.3390/jcm8122170] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Structural and functional collapse of the balance between excitatory (E) and inhibitory (I) synapses, i.e., synaptic E/I balance, underlies the pathogeneses of various central nervous system (CNS) disorders. In epilepsy, the synaptic E/I balance tips toward excitation; thus, most of the existing epileptic remedies have focused on how to directly suppress the activity of neurons. However, because as many as 30% of patients with epilepsy are drug resistant, the discovery of new therapeutic targets is strongly desired. Recently, the roles of glial cells in epilepsy have gained attention because glial cells manipulate synaptic structures and functions in addition to supporting neuronal survival and growth. Among glial cells, microglia, which are brain-resident immune cells, have been shown to mediate inflammation, neuronal death and aberrant neurogenesis after epileptic seizures. However, few studies have investigated the involvement of synaptic pruning—one of the most important roles of microglia—in the epileptic brain. In this review, we propose and discuss the hypothesis that synaptic pruning by microglia is enhanced in the epileptic brain, drawing upon the findings of previous studies. We further discuss the possibility that aberrant synaptic pruning by microglia induces synaptic E/I imbalance, promoting the development and aggravation of epilepsy.
Collapse
|
218
|
Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss. Sci Rep 2019; 9:16161. [PMID: 31695063 PMCID: PMC6834618 DOI: 10.1038/s41598-019-52257-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.
Collapse
|
219
|
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia 2019; 68:1100-1113. [PMID: 31691400 DOI: 10.1002/glia.23740] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsay A Pickett
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
220
|
Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 2019; 22:1771-1781. [PMID: 31636449 PMCID: PMC6858573 DOI: 10.1038/s41593-019-0511-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023]
Abstract
Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia-neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.
Collapse
|
221
|
Kalitzin S, Petkov G, Suffczynski P, Grigorovsky V, Bardakjian BL, Lopes da Silva F, Carlen PL. Epilepsy as a manifestation of a multistate network of oscillatory systems. Neurobiol Dis 2019; 130:104488. [DOI: 10.1016/j.nbd.2019.104488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
|
222
|
Noda M, Hatano M, Hattori T, Takarada-Iemata M, Shinozaki T, Sugimoto H, Ito M, Yoshizaki T, Hori O. Microglial activation in the cochlear nucleus after early hearing loss in rats. Auris Nasus Larynx 2019; 46:716-723. [DOI: 10.1016/j.anl.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 01/22/2023]
|
223
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019; 67:1821-1841. [PMID: 31033014 DOI: 10.1002/glia.23634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2025]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They are a heterogenous, exquisitely responsive, and highly plastic cell population, which enables them to perform diverse roles. They sense and respond to the local production of many different signals, including an assorted range of cytokines. Microglia respond strongly to interleukin-6 (IL-6) and members of the type I interferon (IFN-I) family, IFN-alpha (IFN-α), and IFN-beta (IFN-β). Although these cytokines are essential in maintaining homeostasis and for activating and regulating immune responses, their chronic production has been linked to the development of distinct human neurological diseases, termed "cerebral cytokinopathies." IL-6 and IFN-α have been identified as key mediators in the pathogenesis of neuroinflammatory disorders including neuromyelitis optica and Aicardi-Goutières syndrome, respectively, whereas IFN-β has an emerging role as a causal factor in age-associated cognitive decline. One of the key features that unites these diseases is the presence of highly reactive microglia. The current understanding is that microglia contribute to the development of cerebral cytokinopathies and represent an important therapeutic target. However, it remains to be resolved whether microglia have beneficial or detrimental effects. Here we review and discuss what is currently known about the microglial response to IL-6 and IFN-I, based on both animal models and clinical studies. Foundational knowledge regarding the microglial response to IL-6 and IFN-I is now being used to devise therapeutic strategies to ameliorate neuroinflammation and promote repair: either through targeting microglia, or by targeting the reduction of CNS levels or downstream biological pathways of IL-6 or IFN-I.
Collapse
Affiliation(s)
- Phillip K West
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
224
|
Eyo UB, Mo M, Yi MH, Murugan M, Liu J, Yarlagadda R, Margolis DJ, Xu P, Wu LJ. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape. Cell Rep 2019; 23:959-966. [PMID: 29694903 PMCID: PMC5965271 DOI: 10.1016/j.celrep.2018.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/21/2018] [Accepted: 03/30/2018] [Indexed: 01/01/2023] Open
Abstract
Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Mingshu Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhuvika Murugan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Junting Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohan Yarlagadda
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
225
|
Bohlen CJ, Friedman BA, Dejanovic B, Sheng M. Microglia in Brain Development, Homeostasis, and Neurodegeneration. Annu Rev Genet 2019; 53:263-288. [PMID: 31518519 DOI: 10.1146/annurev-genet-112618-043515] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.
Collapse
Affiliation(s)
- Christopher J Bohlen
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| | - Brad A Friedman
- Department of Bioinformatics, Genentech, South San Francisco, California 94080, USA
| | - Borislav Dejanovic
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| | - Morgan Sheng
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| |
Collapse
|
226
|
Jian Z, Liu R, Zhu X, Smerin D, Zhong Y, Gu L, Fang W, Xiong X. The Involvement and Therapy Target of Immune Cells After Ischemic Stroke. Front Immunol 2019; 10:2167. [PMID: 31572378 PMCID: PMC6749156 DOI: 10.3389/fimmu.2019.02167] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
After ischemic stroke, the integrity of the blood-brain barrier is compromised. Peripheral immune cells, including neutrophils, T cells, B cells, dendritic cells, and macrophages, infiltrate into the ischemic brain tissue and play an important role in regulating the progression of ischemic brain injury. In this review, we will discuss the role of different immune cells after stroke in the secondary inflammatory reaction and focus on the phenotypes and functions of macrophages in ischemic stroke, as well as briefly introduce the anti-ischemic stroke therapy targeting macrophages.
Collapse
Affiliation(s)
- Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xiqun Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
227
|
Activation of microglia in acute hippocampal slices affects activity-dependent long-term potentiation and synaptic tagging and capture in area CA1. Neurobiol Learn Mem 2019; 163:107039. [DOI: 10.1016/j.nlm.2019.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
|
228
|
Abstract
Tissue-resident macrophages (TRMs), generally found in tissues under normal physiological conditions, play crucial roles not only in immunity but also in tissue development and homeostasis. Because of their diverse functions, dysregulation of their development and function has been implicated in many human disorders. In the past decade, a great deal of extensive studies have been conducted in various model organisms with cutting-edge technologies to explore the origin and function of TRMs. In this review, we summarize the recent findings on TRMs in mouse and zebrafish and compare the similarity/differences between these two species.
Collapse
|
229
|
Eyo UB, Wu LJ. Microglia: Lifelong patrolling immune cells of the brain. Prog Neurobiol 2019; 179:101614. [PMID: 31075285 PMCID: PMC6599472 DOI: 10.1016/j.pneurobio.2019.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 02/02/2023]
Abstract
Microglial cells are the predominant parenchymal immune cell of the brain. Recent evidence suggests that like peripheral immune cells, microglia patrol the brain in health and disease. Reviewing these data, we first examine the evidence that microglia invade the brain mesenchyme early in embryonic development, establish residence therein, proliferate and subsequently maintain their numbers throughout life. We, then, summarize established and novel evidence for microglial process surveillance in the healthy and injured brain. Finally, we discuss emerging evidence for microglial cell body dynamics that challenge existing assumptions of their sessile nature. We conclude that microglia are long-lived immune cells that patrol the brain through both cell body and process movements. This recognition has significant implications for neuroimmune interactions throughout the animal lifespan.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
230
|
Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Jennifer K Melbourne
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - K Ryan Thompson
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY, United States
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States.
| |
Collapse
|
231
|
Chia K, Keatinge M, Mazzolini J, Sieger D. Brain tumours repurpose endogenous neuron to microglia signalling mechanisms to promote their own proliferation. eLife 2019; 8:e46912. [PMID: 31313988 PMCID: PMC6685703 DOI: 10.7554/elife.46912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
Previously we described direct cellular interactions between microglia and AKT1+ brain tumour cells in zebrafish (Chia et al., 2018). However, it was unclear how these interactions were initiated: it was also not clear if they had an impact on the growth of tumour cells. Here, we show that neoplastic cells hijack mechanisms that are usually employed to direct microglial processes towards highly active neurons and injuries in the brain. We show that AKT1+ cells possess dynamically regulated high intracellular Ca2+ levels. Using a combination of live imaging, genetic and pharmacological tools, we show that these Ca2+ transients stimulate ATP-mediated interactions with microglia. Interfering with Ca2+ levels, inhibiting ATP release and CRISPR-mediated mutation of the p2ry12 locus abolishes these interactions. Finally, we show that reducing the number of microglial interactions significantly impairs the proliferation of neoplastic AKT1 cells. In conclusion, neoplastic cells repurpose the endogenous neuron to microglia signalling mechanism via P2ry12 activation to promote their own proliferation.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Marcus Keatinge
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
232
|
Abstract
Maturation of neuronal circuits requires selective elimination of synaptic connections. Although neuron-intrinsic mechanisms are important in this process, it is increasingly recognized that glial cells also play a critical role. Without proper functioning of these cells, the number, morphology, and function of synaptic contacts are profoundly altered, resulting in abnormal connectivity and behavioral abnormalities. In addition to their role in synaptic refinement, glial cells have also been implicated in pathological synapse loss and dysfunction following injury or nervous system degeneration in adults. Although mechanisms regulating glia-mediated synaptic elimination are still being uncovered, it is clear this complex process involves many cues that promote and inhibit the removal of specific synaptic connections. Gaining a greater understanding of these signals and the contribution of different cell types will not only provide insight into this critical biological event but also be instrumental in advancing knowledge of brain development and neural disease.
Collapse
Affiliation(s)
- Daniel K. Wilton
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lasse Dissing-Olesen
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Stevens
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Stanley Center, Broad Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
233
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
234
|
Wang T, Yan B, Lou L, Lin X, Yu T, Wu S, Lu Q, Liu W, Huang Z, Zhang M, Zhang W, Wen Z. Nlrc3-like is required for microglia maintenance in zebrafish. J Genet Genomics 2019; 46:291-299. [PMID: 31278008 DOI: 10.1016/j.jgg.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
Abstract
Microglia are tissue-resident macrophages residing in the central nervous system (CNS) and play critical roles in removing cellular debris and infectious agents as well as regulating neurogenesis and neuronal activities. Yet, the molecular basis underlying the establishment of microglia pool and the maintenance of their homeostasis in the CNS remain largely undefined. Here we report the identification and characterization of a mutant zebrafish, which harbors a point mutation in the nucleotide-binding oligomerization domain (NOD) like receptor gene nlrc3-like, resulting in the loss of microglia in a temperature sensitive manner. Temperature shift assay reveals that the late onset of nlrc3-like deficiency leads to excessive microglia cell death. Further analysis shows that the excessive microglia death in nlrc3-like deficient mutants is attributed, at least in part, to aberrant activation of canonical inflammasome pathway. Our study indicates that proper regulation of inflammasome cascade is critical for the maintenance of microglia homeostasis.
Collapse
Affiliation(s)
- Tienan Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Liang Lou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Xi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Tao Yu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shuting Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China
| | - Zhibin Huang
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China
| | - Mingjie Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wenqing Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China.
| | - Zilong Wen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
235
|
Prionisti I, Bühler LH, Walker PR, Jolivet RB. Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Front Pharmacol 2019; 10:506. [PMID: 31231208 PMCID: PMC6560150 DOI: 10.3389/fphar.2019.00506] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of brain tumors, with a dismal prognosis. During the course of the disease, microglia and macrophages both infiltrate the tumor microenvironment and contribute considerably in glioma development. Thus, tumor-associated microglia and macrophages have recently emerged as potentially key therapeutic targets. Here, we review the physiology of microglia and their responses in brain cancer. We further discuss current treatment options for GBM using radiotherapy, and novel advances in our knowledge of microglia physiology, with emphasis on the recently discovered pathway that controls the baseline motility of microglia processes. We argue that the latter pathway is an interesting therapeutic avenue to pursue for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ioanna Prionisti
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, Geneva, Switzerland
| | - Léo H. Bühler
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R. Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals – University of Geneva, Geneva, Switzerland
| | - Renaud B. Jolivet
- Département de Physique Nucléaire et Corpusculaire (DPNC), University of Geneva, Geneva, Switzerland
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| |
Collapse
|
236
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
237
|
Ikegami A, Haruwaka K, Wake H. Microglia: Lifelong modulator of neural circuits. Neuropathology 2019; 39:173-180. [DOI: 10.1111/neup.12560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ako Ikegami
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
| | - Koichiro Haruwaka
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hiroaki Wake
- Division of System Neuroscience; Kobe University Graduate School of Medicine; Kobe Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Saitama Japan
| |
Collapse
|
238
|
Ferro A, Sheeler C, Rosa JG, Cvetanovic M. Role of Microglia in Ataxias. J Mol Biol 2019; 431:1792-1804. [PMID: 30660620 PMCID: PMC7164490 DOI: 10.1016/j.jmb.2019.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, critically influence neural function during development and in adulthood. Microglia are also profoundly sensitive to insults to the brain to which they respond with process of activation that includes spectrum of changes in morphology, function, and gene expression. Ataxias are a class of neurodegenerative diseases characterized by motor discoordination and predominant cerebellar involvement. In case of inherited forms of ataxia, mutant proteins are expressed throughout the brain and it is unclear why cerebellum is particularly vulnerable. Recent studies demonstrated that cerebellar microglia have a uniquely hyper-vigilant immune phenotype compared to microglia from other brain regions. These findings may indicate that microglia actively contribute to cerebellar vulnerability in ataxias. Here we review current knowledge about cerebellar microglia, their activation, and their role in the pathogenesis of ataxias. In addition, we briefly review advantages and disadvantages of several experimental approaches available to study microglia.
Collapse
Affiliation(s)
- Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
239
|
Uweru JO, Eyo UB. A decade of diverse microglial-neuronal physical interactions in the brain (2008-2018). Neurosci Lett 2019; 698:33-38. [PMID: 30625349 PMCID: PMC6435396 DOI: 10.1016/j.neulet.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 12/17/2022]
Abstract
Microglia are unique cells of the central nervous system (CNS) with a distinct ontogeny and molecular profile. They are the predominant immune resident cell in the CNS. Recent studies have revealed a diversity of transient and terminal physical interactions between microglia and neurons in the vertebrate brain. In this review, we follow the historical trail of the discovery of these interactions, summarize their notable features, provide implications of these discoveries to CNS function, emphasize emerging themes along the way and peak into the future of what outstanding questions remain to move the field forward.
Collapse
Affiliation(s)
- Joseph O Uweru
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
240
|
Galloway DA, Phillips AEM, Owen DRJ, Moore CS. Phagocytosis in the Brain: Homeostasis and Disease. Front Immunol 2019; 10:790. [PMID: 31040847 PMCID: PMC6477030 DOI: 10.3389/fimmu.2019.00790] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
Microglia are resident macrophages of the central nervous system and significantly contribute to overall brain function by participating in phagocytosis during development, homeostasis, and diseased states. Phagocytosis is a highly complex process that is specialized for the uptake and removal of opsonized and non-opsonized targets, such as pathogens, apoptotic cells, and cellular debris. While the role of phagocytosis in mediating classical innate and adaptive immune responses has been known for decades, it is now appreciated that phagocytosis is also critical throughout early neural development, homeostasis, and initiating repair mechanisms. As such, modulating phagocytic processes has provided unexplored avenues with the intent of developing novel therapeutics that promote repair and regeneration in the CNS. Here, we review the functional consequences that phagocytosis plays in both the healthy and diseased CNS, and summarize how phagocytosis contributes to overall pathophysiological mechanisms involved in brain injury and repair.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alexandra E M Phillips
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - David R J Owen
- Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
241
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
242
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M. Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 2019; 16:61. [PMID: 30866963 PMCID: PMC6417251 DOI: 10.1186/s12974-019-1442-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. Methods We created a novel Cx3cr1-Mfp2−/− mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2−/− microglia were assessed in vitro and in vivo after stimulation with IL-1β/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2−/− and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. Results We found that Mfp2−/− microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2−/− microglia in Cx3cr1-Mfp2−/− mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2−/− mice exhibited normal neuronal transmission, clinical performance, and cognition. Conclusion Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life. Electronic supplementary material The online version of this article (10.1186/s12974-019-1442-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.,Present Address: Center for Translational and Computational Neuro-immunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium
| | - Stijn Stroobants
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Sander Beel
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
243
|
Rod microglia and their role in neurological diseases. Semin Cell Dev Biol 2019; 94:96-103. [PMID: 30826549 DOI: 10.1016/j.semcdb.2019.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
The striking morphology of microglia is one of their most prominent characteristics, with many studies categorising microglial function based on morphology e.g. ramified, hyper-ramified, activated, or amoeboid. Communications regarding rod microglia in neurological disease are scant, and where reported, these cells are rarely the focus of discussion. These factors make it difficult to determine how widespread these cells are not only through the brain but also across diseases. Studies in experimental diffuse brain injury are the first reports of not only significant numbers of rod microglia, but distinct arrangements of these cells, reminiscent of carriages of a train. This review summarises the available reports of rod microglia in vivo and rod-like microglia in vitro and eludes to possible functions and signalling cascades that may evoke this distinct morphology. More investigations are required to fully elucidate the function that rod microglia play in neurological diseases.
Collapse
|
244
|
Jin W, Dai Y, Li F, Zhu L, Huang Z, Liu W, Li J, Zhang M, Du J, Zhang W, Wen Z. Dysregulation of Microglial Function Contributes to Neuronal Impairment in Mcoln1a-Deficient Zebrafish. iScience 2019; 13:391-401. [PMID: 30897512 PMCID: PMC6426713 DOI: 10.1016/j.isci.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/28/2018] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
Type IV mucolipidosis (ML-IV) is a neurodegenerative lysosome storage disorder caused by mutations in the MCOLN1 gene. However, the cellular and molecular bases underlying the neuronal phenotypes of ML-IV disease remain elusive. Using a forward genetic screening, we identified a zebrafish mutant, biluo, that harbors a hypomorphic mutation in mcoln1a, one of the two zebrafish homologs of mammalian MCOLN1. The mcoln1a-deficient mutants display phenotypes partially recapitulating the key features of ML-IV disorder, including the accumulation of enlarged late endosomes in microglia and aberrant neuronal activities in both spontaneous and visual-evoking conditions in optic tectal neurons. We further show that the accumulation of enlarged late endosomes in microglia is caused by the impairment of late endosome and lysosome fusion and the aberrant neuronal activities can be partially rescued by the reconstitution of Mcoln1a function in microglia. Our findings suggest that dysregulation of microglial function may contribute to the development and progression of ML-IV disease. mcoln1a-deficient fish display microglia impairment and aberrant neuronal activity The aberrant neuronal activity can be rescued by expressing WT mcoln1a in microglia Impairment of microglia-neuron contact contributes to the aberrant neuronal activity
Collapse
Affiliation(s)
- Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Funing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Lu Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Zhibin Huang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Wei Liu
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Wenqing Zhang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China.
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, PR. China.
| |
Collapse
|
245
|
Henstridge CM, Tzioras M, Paolicelli RC. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Front Cell Neurosci 2019; 13:63. [PMID: 30863284 PMCID: PMC6399113 DOI: 10.3389/fncel.2019.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Synapse loss is an early feature shared by many neurodegenerative diseases, and it represents the major correlate of cognitive impairment. Recent studies reveal that microglia and astrocytes play a major role in synapse elimination, contributing to network dysfunction associated with neurodegeneration. Excitatory and inhibitory activity can be affected by glia-mediated synapse loss, resulting in imbalanced synaptic transmission and subsequent synaptic dysfunction. Here, we review the recent literature on the contribution of glia to excitatory/inhibitory imbalance, in the context of the most common neurodegenerative disorders. A better understanding of the mechanisms underlying pathological synapse loss will be instrumental to design targeted therapeutic interventions, taking in account the emerging roles of microglia and astrocytes in synapse remodeling.
Collapse
Affiliation(s)
- Christopher M Henstridge
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
246
|
Green LA, Nebiolo JC, Smith CJ. Microglia exit the CNS in spinal root avulsion. PLoS Biol 2019; 17:e3000159. [PMID: 30794533 PMCID: PMC6402705 DOI: 10.1371/journal.pbio.3000159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/06/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Microglia are central nervous system (CNS)-resident cells. Their ability to migrate outside of the CNS, however, is not understood. Using time-lapse imaging in an obstetrical brachial plexus injury (OBPI) model, we show that microglia squeeze through the spinal boundary and emigrate to peripheral spinal roots. Although both macrophages and microglia respond, microglia are the debris-clearing cell. Once outside the CNS, microglia re-enter the spinal cord in an altered state. These peripheral nervous system (PNS)-experienced microglia can travel to distal CNS areas from the injury site, including the brain, with debris. This emigration is balanced by two mechanisms—induced emigration via N-methyl-D-aspartate receptor (NMDA) dependence and restriction via contact-dependent cellular repulsion with macrophages. These discoveries open the possibility that microglia can migrate outside of their textbook-defined regions in disease states. Microglia are normally assumed to be confined to the central nervous system (CNS), but this study shows show that after spinal root injury, microglia can exit the CNS to clear debris. Upon re-entry, the emigrated microglia are altered and can travel to distal areas such as the brain. Cells are precisely organized in specific anatomical domains to ensure normal functioning of the nervous system. One such cell type, microglia, is usually considered to be confined to the central nervous system (CNS). Using time-lapse imaging to capture microglia as they migrate, we show that their characteristic CNS-residency can be altered after spinal root injury. After such injury, the microglia exit the spinal root to the periphery, where they clear debris at the injury site and then carry that debris back into the CNS. In addition, microglia that leave the CNS after spinal root injury become distinct from those that remain within the CNS. This emigration event of microglia after injury is driven by two mechanisms—dependence on glutamatergic signaling that induces their emigration to the injury and interactions with macrophages that prevent their ectopic exit from the spinal cord. Together, these discoveries raise the possibility that microglia could override their CNS-residency in certain disease contexts.
Collapse
Affiliation(s)
- Lauren A Green
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Julia C Nebiolo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
247
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
248
|
Wake H, Horiuchi H, Kato D, Moorhouse AJ, Nabekura J. Physiological Implications of Microglia-Synapse Interactions. Methods Mol Biol 2019; 2034:69-80. [PMID: 31392678 DOI: 10.1007/978-1-4939-9658-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia are the sole immune responding cells in the central nervous system. Their role as neuroimmune cells in the pathogenesis of various neurodegenerative and infectious diseases of the brain have been extensively studied. Upon brain disease and infection, they adopt an activated phenotype associated with the release of cytokines and neurotrophic factors and resulting in neuroprotective or neurotoxic outcomes. However, microglia are resident also in the healthy or physiological brain, but much less is known about their role(s) in the healthy brain, partly due to technical limitations regarding investigation of these highly reactive cells in the intact brain. Recent developments in molecular probes and in vivo optical imaging techniques has now helped to characterize microglia in the physiological or healthy brain. In vivo two-photon imaging of fluorescently labeled microglia have revealed that they are highly motile cells in the healthy brain, extending and retracting their processes that extend from a largely stationary cell soma. In this chapter, we briefly summarize some of the physiological functions of microglia in the uninjured brain, with a focus on interactions they have with synapses.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan
| | - Daisuke Kato
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan. .,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan.
| |
Collapse
|
249
|
Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front Neuroendocrinol 2019; 52:156-164. [PMID: 30481522 DOI: 10.1016/j.yfrne.2018.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 12/28/2022]
Abstract
Sex plays a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Despite sexual differentiation of the brain has been extensively investigated, the study of sex differences in microglia, the brain's resident immune cells, has been largely neglected until recently. To fulfill this gap, our laboratory developed several tools, including cellular and animal models, which bolstered in-depth studies on sexual differentiation of microglia and its impact on brain physiology, as well as on the onset and progression of neurological disorders. Here, we summarize the current status of knowledge on the sex-dependent function of microglia, and report recent evidence linking these cells to the sexual bias in the susceptibility to neurological brain diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Dept of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, Milan, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases and Dept of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Dept of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, Milan, Italy.
| |
Collapse
|
250
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|