201
|
Zhu L, Liao R, Huang J, Yan H, Xiao C, Yang Y, Wang H, Yang C. The miR-216/miR-217 Cluster Regulates Lipid Metabolism in Laying Hens With Fatty Liver Syndrome via PPAR/SREBP Signaling Pathway. Front Vet Sci 2022; 9:913841. [PMID: 35711801 PMCID: PMC9195098 DOI: 10.3389/fvets.2022.913841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Fatty liver syndrome (FLS), a common metabolic disease in laying hens, caused by excessive hepatic fat deposition is a bottleneck in the poultry industry. However, no specific therapeutic methods have been developed. Evidence suggests that microRNAs (miRNAs) are essential for liver lipid metabolism and homeostasis, providing strong evidence for targeting miRNAs as a potential treatment option for liver diseases. However, the roles of miRNAs in the pathogenesis of FLS remain unclear. In present study, RNA-sequencing was performed to discern the expression patterns of miRNAs in normal and fatty livers of laying hens. In total, 12 dysregulated miRNAs (2 down-regulated and 10 up-regulated) were detected between the normal and fatty livers. Functional enrichment analysis showed the potential impacts of the dysregulated miRNAs on lipid metabolism. Notably, miR-216a/b and miR-217-5p, which belong to the miR-216/miR-217 cluster, were up-regulated in the sera and livers of FLS chickens, as well as free fatty acid (FFA)-induced LMH cells. Oil-red O staining revealed that up-regulation of the miR-216/miR-217 cluster induced lipid accumulation in FFA-induced LMH cells. Furthermore, the dual luciferase gene reporter assay and RT-qPCR analysis demonstrated that 3-hydroxyacyl-CoA dehydratase 2, F-box protein 8, and transmembrane 9 superfamily member 3 (TM9SF3) were directly targeted by miR-216a/b and miR-217-5p, respectively, and suppressed in the fatty livers of laying hens. Moreover, overexpression of the miR-216/miR-217 cluster or reduction in TM9SF3 levels led to activation of the proliferator-activated receptor/sterol regulatory-element binding protein (PPAR/SREBP) pathway. Overall, these results demonstrate that the miR-216/miR-217 cluster regulates lipid metabolism in laying hens with FLS, which should prove helpful in the development of new interventional strategies.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Research Center for Engineering and Technology, Shanghai, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiwen Huang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Research Center for Engineering and Technology, Shanghai, China
| | - Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Research Center for Engineering and Technology, Shanghai, China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- National Poultry Research Center for Engineering and Technology, Shanghai, China
| |
Collapse
|
202
|
Association of the Pro12Ala gene polymorphism with treatment response to thiazolidinediones in patients with type 2 diabetes: a meta-analysis. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
203
|
Lai MC, Liu WY, Liou SS, Liu IM. Diosmetin Targeted at Peroxisome Proliferator-Activated Receptor Gamma Alleviates Advanced Glycation End Products Induced Neuronal Injury. Nutrients 2022; 14:nu14112248. [PMID: 35684047 PMCID: PMC9183070 DOI: 10.3390/nu14112248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to evaluate the role of diosmetin in alleviating advanced glycation end products (AGEs)-induced Alzheimer’s disease (AD)-like pathology and to clarify the action mechanisms. Before stimulation with AGEs (200 μg/mL), SH-SY5Y cells were treated with diosmetin (10 μmol/L), increasing cell viability. The induction of AGEs on the reactive oxygen species overproduction and downregulation of antioxidant enzyme activities, including superoxide dismutase, glutathione peroxidase, and catalase, were ameliorated by diosmetin. Amyloid precursor protein upregulation, accompanied by increased production of amyloid-β, caused by AGEs, was reversed by diosmetin. In the presence of diosmetin, not only β-site amyloid precursor protein cleaving enzyme1 expression was lowered, but the protein levels of insulin-degrading enzyme and neprilysin were elevated. Diosmetin protects SH-SY5Y cells from endoplasmic reticulum (ER) stress response to AGEs by suppressing ER stress-induced glucose regulated protein 78, thereby downregulating protein kinase R-like endoplasmic reticulum kinase, eukaryotic initiation factor 2 α, activating transcription factor 4, and C/EBP homologous protein. Diosmetin-pretreated cells had a lower degree of apoptotic DNA fragmentation; this effect may be associated with B-cell lymphoma (Bcl) 2 protein upregulation, Bcl-2-associated X protein downregulation, and decreased activities of caspase-12/-9/-3. The reversion of diosmetin on the AGEs-induced harmful effects was similar to that produced by pioglitazone. The peroxisome proliferator-activated receptor (PPAR)γ antagonist T0070907 (5 μmol/L) abolished the beneficial effects of diosmetin on AGEs-treated SH-SY5Y cells, indicating the involvement of PPARγ. We conclude that diosmetin protects neuroblastoma cells against AGEs-induced ER injury via multiple mechanisms and may be a potential option for AD.
Collapse
Affiliation(s)
- Mei Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan;
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
204
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
205
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
206
|
Li L, Ma L, Wen Y, Xie J, Yan L, Ji A, Zeng Y, Tian Y, Sheng J. Crude Polysaccharide Extracted From Moringa oleifera Leaves Prevents Obesity in Association With Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:861588. [PMID: 35548566 PMCID: PMC9083904 DOI: 10.3389/fnut.2022.861588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera is a commonly used plant with high nutritional and medicinal values. M. oleifera leaves are considered a new food resource in China. However, the biological activities of M. oleifera polysaccharides (MOP) in regulating gut microbiota and alleviating obesity remain obscure. In the present study, we prepared the MOP and evaluated its effects on obesity and gut microbiota in high-fat diet (HFD)-induced C57BL/6J mice. The experimental mice were supplemented with a normal chow diet (NCD group), a high-fat diet (HFD group), and HFD along with MOP at a different dose of 100, 200, and 400 mg/kg/d, respectively. Physiological, histological, biochemical parameters, genes related to lipid metabolism, and gut microbiota composition were compared among five experimental groups. The results showed that MOP supplementation effectively prevented weight gain and lipid accumulation induced by HFD, ameliorated blood lipid levels and insulin resistance, alleviated the secretion of pro-inflammatory cytokines, and regulated the expression of genes related to lipid metabolism and bile acid metabolism. In addition, MOP positively reshaped the gut microbiota composition, significantly increasing the abundance of Bacteroides, norank_f_Ruminococcaceae, and Oscillibacter, while decreasing the relative abundance of Blautia, Alistipes, and Tyzzerella, which are closely associated with obesity. These results demonstrated that MOP supplementation has a protective effect against HFD-induced obesity in mice, which was associated with reshaping the gut microbiota. To the best of our knowledge, this is the first report on the potential of MOP to prevent obesity and modulating gut microbiota, which suggests that MOP can be used as a potential prebiotic.
Collapse
Affiliation(s)
- Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Aibing Ji
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yin Zeng
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
207
|
Zhao X, Xuan R, Wang A, Li Q, Zhao Y, Du S, Duan Q, Wang Y, Ji Z, Guo Y, Wang J, Chao T. High-Throughput Sequencing Reveals Transcriptome Signature of Early Liver Development in Goat Kids. Genes (Basel) 2022; 13:833. [PMID: 35627218 PMCID: PMC9141777 DOI: 10.3390/genes13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
As a vital metabolic and immune organ in animals, the liver plays an important role in protein synthesis, detoxification, metabolism, and immune defense. The primary research purpose of this study was to reveal the effect of breast-feeding, weaning transition, and weaning on the gene expression profile in the goat kid liver and to elucidate the transcriptome-level signatures associated with liver metabolic adaptation. Therefore, transcriptome sequencing was performed on liver tissues, which was collected at 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth in Laiwu black goats at five different time-points, with five goats at each time point. From 25 libraries, a total of 37497 mRNAs were found to be expressed in goat kid livers, and 1271 genes were differentially expressed between at least two of the five time points. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these genes were annotated as an extracellular region fraction, exhibiting monooxygenase activity, positive regulation of T cell activation, mitotic spindle mid-region assembly, cytokinesis, cytoskeleton-dependent cytokinesis, regulation of cytokinesis, regulation of lymphocyte proliferation, and so on. In addition, it mainly deals with metabolism, endocrine, cell proliferation and apoptosis, and immune processes. Finally, a gene regulatory network was constructed, and a total of 14 key genes were screened, which were mainly enriched for cell growth and development, endocrine, immune, and signal transduction-related pathways. Our results provide new information on the molecular mechanisms and pathways involved in liver development, metabolism, and immunity of goats.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| |
Collapse
|
208
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
209
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
210
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
211
|
Abdel-Wahab BA, Alkahtani SA, Alqahtani AA, Hassanein EHM. Umbelliferone ameliorates ulcerative colitis induced by acetic acid via modulation of TLR4/NF-κB-p65/iNOS and SIRT1/PPARγ signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37644-37659. [PMID: 35066822 DOI: 10.1007/s11356-021-18252-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a common chronic, idiopathic inflammatory bowel disease associated with inflammatory perturbation and oxidative stress. Umbelliferone (UMB) is a potent anti-inflammatory and antioxidant coumarin derivative. Depending on the possible mechanisms, we aimed to explore and elucidate the therapeutic potential of UMB on UC-inflammatory response and oxidative injury-induced via intrarectal administration of acetic acid (AA) in rats. Animals were assigned into four groups: control group, UMB (30 mg/kg, oral)-treated group, AA-induced colitis model group (2 ml of AA; 3% v/v), and colitis treated with UMB group. The results showed that UMB improved macroscopic and histological tissue injury caused by the AA. Mechanistically, UMB reduced the elevated colonic TNF-α, IL-6, MPO, and VCAM-1 and downregulated the gene and protein expression of TLR4, NF-κB, and iNOS signaling factors, exhibiting potent anti-inflammatory effects. Moreover, UMB upregulated the gene and protein expression of both SIRT1 and PPARγ signaling pathways, thereby inhibiting both oxidative injury and inflammatory response. Conclusively, UMB protected rats against AA-induced UC by suppressing the TLR4/NF-κB-p65/iNOS signaling pathway and promoting the SIRT1/PPARγ signaling. Our results showed the effectiveness of UMB in alleviating the pathogenesis of UC and introduced it as a possible therapeutic applicant for clinical application.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt.
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
212
|
Ahmad SS, Ahmad K, Shaikh S, You HJ, Lee EY, Ali S, Lee EJ, Choi I. Molecular Mechanisms and Current Treatment Options for Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14092107. [PMID: 35565236 PMCID: PMC9105812 DOI: 10.3390/cancers14092107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The primary characteristics of cancer cachexia are weakness, weight loss, atrophy, fat reduction, and systemic inflammation. Cachexia is strongly associated with cancers involving the lungs, pancreas, esophagus, stomach, and liver, which account for half of all cancer deaths. TGF-β, MSTN, activin, IGF-1/PI3K/AKT, and JAK-STAT signaling pathways are known to underlie muscle atrophy and cachexia. Anamorelin (appetite stimulation), megestrol acetate, eicosapentaenoic acid, phytocannabinoids, targeting MSTN/activin, and molecules targeting proinflammatory cytokines, such as TNF-α and IL-6, are being tested as treatment options for cancer cachexia. Abstract Cancer cachexia is a condition marked by functional, metabolic, and immunological dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways are considered potential therapeutic targets. This review discusses the current state of knowledge of the molecular mechanisms underlying cachexia and the available therapeutic options and was undertaken to increase understanding of the various factors/pathways/mediators involved and to identify potential treatment options.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Hye Jin You
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyaan 10408, Gyeonggi-do, Korea
| | - Eun-Young Lee
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
| | - Shahid Ali
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| |
Collapse
|
213
|
The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma. PPAR Res 2022; 2022:1285083. [PMID: 35481240 PMCID: PMC9038426 DOI: 10.1155/2022/1285083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.
Collapse
|
214
|
Al-Beltagi M, Bediwy AS, Saeed NK. Insulin-resistance in paediatric age: Its magnitude and implications. World J Diabetes 2022; 13:282-307. [PMID: 35582667 PMCID: PMC9052009 DOI: 10.4239/wjd.v13.i4.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is insulin failure in normal plasma levels to adequately stimulate glucose uptake by the peripheral tissues. IR is becoming more common in children and adolescents than before. There is a strong association between obesity in children and adolescents, IR, and the metabolic syndrome components. IR shows marked variation among different races, crucial to understanding the possible cardiovascular risk, specifically in high-risk races or ethnic groups. Genetic causes of IR include insulin receptor mutations, mutations that stimulate autoantibody production against insulin receptors, or mutations that induce the formation of abnormal glucose transporter 4 molecules or plasma cell membrane glycoprotein-1 molecules; all induce abnormal energy pathways and end with the development of IR. The parallel increase of IR syndrome with the dramatic increase in the rate of obesity among children in the last few decades indicates the importance of environmental factors in increasing the rate of IR. Most patients with IR do not develop diabetes mellitus (DM) type-II. However, IR is a crucial risk factor to develop DM type-II in children. Diagnostic standards for IR in children are not yet established due to various causes. Direct measures of insulin sensitivity include the hyperinsulinemia euglycemic glucose clamp and the insulin-suppression test. Minimal model analysis of frequently sampled intravenous glucose tolerance test and oral glucose tolerance test provide an indirect estimate of metabolic insulin sensitivity/resistance. The main aim of the treatment of IR in children is to prevent the progression of compensated IR to decompensated IR, enhance insulin sensitivity, and treat possible complications. There are three main lines for treatment: Lifestyle and behavior modification, pharmacotherapy, and surgery. This review will discuss the magnitude, implications, diagnosis, and treatment of IR in children.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| |
Collapse
|
215
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
216
|
Zheng ZY, Jiang T, Huang ZF, Chu B, Gu J, Zhao X, Liu H, Fan J, Yu LP, Jiang SH, Li Q, Hu LP, Kong FQ, Zhang L, Chen Q, Chen J, Zhang HW, Yin GY, Zhao SJ. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol 2022; 53:102326. [PMID: 35525025 PMCID: PMC9093016 DOI: 10.1016/j.redox.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
The nonunion following a fracture is associated with severe patient morbidity and economic consequences. Currently, accumulating studies are focusing on the importance of macrophages during fracture repair. However, details regarding the process by which macrophages facilitate endochondral ossification (EO) are largely unknown. In this study, we present evidence that apoptotic chondrocytes (ACs) are not inert corpses awaiting removal, but positively modulate the osteoinductive ability of macrophages. In vivo experiments revealed that fatty acid (FA) metabolic processes up-regulated following EO. In vitro studies further uncovered that FAs derived from ACs are taken up by macrophages mainly through macrophage scavenger receptor 1 (MSR1). Then, our functional experiments confirmed that these exogenous FAs subsequently activate peroxisome proliferator-activated receptor α (PPARα), which further facilitates lipid droplets generation and fatty acid oxidation (FAO). Mechanistically, elevated FAO is involved in up-regulating the osteoinductive effect by generating BMP7 and NAD+/SIRT1/EZH2 axis epigenetically controls BMP7 expression in macrophages cultured with ACs culture medium. Our findings advanced the concept that ACs could promote bone regeneration by regulating metabolic and function reprogram in macrophages and identified macrophage MSR1 represents a valuable target for fracture treatments.
Collapse
|
217
|
Zhao Y, Yan G, Jin D, Tong X, Wang X. Radix Bupleuri-Radix Paeoniae Alba Couplet Medicine in the Treatment of Type 2 Diabetes Mellitus - a Network Pharmacology and Cellular Experimental Assessment. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
218
|
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci 2022; 14:825086. [PMID: 35401152 PMCID: PMC8990307 DOI: 10.3389/fnagi.2022.825086] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common diseases in the central nervous system (CNS) with high mortality and morbidity. Patients with TBI usually suffer many sequelae in the life time post injury, including neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the pathological mechanisms connecting these two processes have not yet been fully elucidated. It is important to further investigate the pathophysiological mechanisms underlying TBI and TBI-induced neurodegeneration, which will promote the development of precise treatment target for these notorious neurodegenerative consequences after TBI. A growing body of evidence shows that neuroinflammation is a pivotal pathological process underlying chronic neurodegeneration following TBI. Microglia, as the immune cells in the CNS, play crucial roles in neuroinflammation and many other CNS diseases. Of interest, microglial activation and functional alteration has been proposed as key mediators in the evolution of chronic neurodegenerative pathology following TBI. Here, we review the updated studies involving phenotypical and functional alterations of microglia in neurodegeneration after injury, survey key molecules regulating the activities and functional responses of microglia in TBI pathology, and explore their potential implications to chronic neurodegeneration after injury. The work will give us a comprehensive understanding of mechanisms driving TBI-related neurodegeneration and offer novel ideas of developing corresponding prevention and treatment strategies for this disease.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qun Wu,
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
- Jianmin Zhang,
| |
Collapse
|
219
|
Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Levels in Adolescent with Bipolar Disorder and Their Relationship with Metabolic Parameters. J Mol Neurosci 2022; 72:1313-1321. [PMID: 35318563 DOI: 10.1007/s12031-022-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the immune and metabolic regulatory agents. This study examined the serum PPARγ levels and metabolic syndrome (MetS) parameters in pediatric bipolar disorder (PBD) adolescents and compared them with healthy subjects. Serum PPARγ levels, fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and fasting insulin levels of 39 PBD-type I (age range: 14-18) and 36 age- and sex-matched healthy control subjects were compared. The anthropometric measurements were also analyzed, including body weight, height, body mass index (BMI), waist circumference (WC), and blood pressure measurements. The PPARγ levels were significantly lower, and the MetS prevalence was significantly higher in the PBD group than in the control group. The mean BMI, WC, serum TG, and FBG values of the PBD group were statistically higher than the healthy control group. There was no significant relationship between the PPARγ levels and metabolic parameters except fasting glucose. Lower PPARγ activity and higher MetS prevalence in PBD indicate dysregulation of immune and metabolic regulatory parameters. These results may shed light on developing new PBD medications.
Collapse
|
220
|
Wang Z, Chen X, Liu J, Wang Y, Zhang S. Inclisiran inhibits oxidized low-density lipoprotein-induced foam cell formation in Raw264.7 macrophages via activating the PPARγ pathway. Autoimmunity 2022; 55:223-232. [PMID: 35289693 DOI: 10.1080/08916934.2022.2051142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a well-known proprotein convertase that influences foam cell formation and modulates atherosclerosis. Inclisiran is a novel chemosynthetic small interfering RNA that inhibits PCSK9 synthesis. This study aimed to explore the effect of inclisiran on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation in Raw264.7 macrophages and to investigate the underlying mechanisms. Raw264.7 cells were treated with ox-LDL to induce the formation of macrophage-derived foam cells. Oil Red O staining and high-performance liquid chromatography were performed to detect lipid accumulation and cholesterol levels. Dil-ox-LDL uptake assay, CCK-8, RT-qPCR, and Western blotting analysis were performed to examine ox-LDL uptake, cell viability, and expression of scavenger receptor-related factors. Inclisiran reduced lipid accumulation in ox-LDL-treated macrophages in a dose-dependent manner. Inclisiran significantly inhibited the levels of total cholesterol, free cholesterol, and cholesterol ester in the supernatant of Raw264.7 cells. Inclisiran reduced ox-LDL uptake and increased Raw264.7 cell viability. Meanwhile, inclisiran downregulated the expression of SR-A, LOX-1, and CD36 and upregulated SR-BI, ApoE, and ABCA1. Furthermore, inclisiran increased PPARγ activity and decreased NF-κB activity. An inhibitor of PPARγ (T0070907) reversed the beneficial effects of inclisiran on ox-LDL uptake, NF-κB inactivation, and cytokine expression. In conclusion, these data suggested that inclisiran inhibited the formation of macrophage-derived foam cells by activating the PPARγ pathway.HighlightsInclisiran reduces lipid accumulation in Raw264.7 cells;Inclisiran reduces ox-LDL uptake and increases Raw264.7 cell viability;Inclisiran inhibits foam cell formation by activating the PPARγ pathway.
Collapse
Affiliation(s)
- Zhaoping Wang
- Department of Emergency, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, P.R. China
| | - Xiangyu Chen
- Department of Emergency, Weihai Municipal Hospital, Weihai, P.R. China
| | - Jingxing Liu
- Emergency Department, Qingdao Municipal Hospital (Group), Qingdao NO.9 People's Hospital, Qingdao, P.R. China
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, P.R. China
| | - Suhua Zhang
- Department of Geriatrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, P.R. China
| |
Collapse
|
221
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
222
|
Zheng Y, Wang Y, Zheng M, Wang G, Zhao H. Exposed to Sulfamethoxazole induced hepatic lipid metabolism disorder and intestinal microbiota changes on zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109245. [PMID: 34801728 DOI: 10.1016/j.cbpc.2021.109245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics are widely used around the world. Pollution of Sulfamethoxazole (SMX) in water poses a great threat to aquatic life. In this study, the toxic effects of SMX on the liver were assessed through RNA sequencing analysis and 16S rRNA sequencing analysis was conducted to determine the influence of SMX on gut microbiota of zebrafish (Danio rerio). Adult male zebrafish were exposed to 0, 5, 90 and 450 μg/L of environmentally relevant concentrations of SMX for 21 days respectively. The results showed that the liver had severe histopathological damages including pyknotic nuclei, cytoplasmic hyalinization and vacuolization and deformed hepatocytes with loose cell-to-cell contact. Transcriptomic analysis revealed that liver function was seriously affected by SMX exposure. Meanwhile, SMX exposure significantly inhibited the expression of genes associated with fatty acid synthesis, oxidation and transport. Besides, exfoliated and dissolved epithelial cells were observed in the gut after SMX treatment. Although there was no significant change on richness and species diversity of intestinal microbial community, the relative abundance of phylum and genus of SMX treatments were significantly different from that of control group. The present study implied that SMX may cause potential health risks to fish through inducing histopathological damages, genetic expression alterations, disorder of fatty acid metabolism and intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yufei Wang
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Mutang Zheng
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Gang Wang
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
223
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
224
|
Weidle UH, Nopora A. MicroRNAs and Corresponding Targets in Esophageal Cancer as Shown In Vitro and In Vivo in Preclinical Models. Cancer Genomics Proteomics 2022; 19:113-129. [PMID: 35181582 DOI: 10.21873/cgp.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the esophagus is associated with a dismal prognosis. Therefore, identification of new targets and implementation of new treatment modalities are issues of paramount importance. Based on a survey of the literature, we identified microRNAs conferring antitumoral activity in preclinical in vivo experiments. In the category of miRs targeting secreted factors and transmembrane receptors, four miRs were up-regulated and 10 were down-regulated compared with five out of nine in the category transcription factors, and six miRs were down-regulated in the category enzymes, including metabolic enzymes. The down-regulated miRs have targets which can be inhibited by small molecules or antibody-related entities, or re-expressed by reconstitution therapy. Up-regulated miRs have targets which can be reconstituted with small molecules or inhibited with antagomirs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
225
|
Silva JC, Bavestrello M, Gazzola V, Spinella G, Pane B, Grasselli E, Demori I, Canesi L, Emionite L, Cilli M, Buschiazzo A, Sambuceti G, Pitta IR, Pitta MG, Perego P, Palombo D, Abdalla DSP. Ischemia-reperfusion damage is attenuated by GQ-11, a peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, after aorta clamping in rats. Life Sci 2022; 297:120468. [PMID: 35288175 DOI: 10.1016/j.lfs.2022.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
226
|
Han W, Wang N, Kong R, Bao W, Lu J. Ligand-activated PPARδ expression promotes hepatocellular carcinoma progression by regulating the PI3K-AKT signaling pathway. J Transl Med 2022; 20:86. [PMID: 35151320 PMCID: PMC8840031 DOI: 10.1186/s12967-022-03288-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor-beta/delta (PPARδ) was considered as the key regulator involved in the evolution of various tumors. Given that PPARδ potential role in hepatocellular carcinoma (HCC) is still obscure, we comprehensively assessed its expression pattern, prognosis, functions and correlation with tumor microenvironment in HCC using public database data and in vitro studies. Methods Transcriptional data and clinical data in the TCGA and GEO database were analyzed in R software. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry were used to detect the expression level of related RNA and proteins. The malignant biological characteristics were explored by cell counting Kit-8 (CCK8), 5-Ethynyl-2ʹ-deoxyuridine (EdU) assay and wound healing assay. Results Our results illustrated that PPARδ expression was significantly higher in HCC tissues and HCC cell lines. Elevated expression of PPARδ suggested poor clinical staging and prognosis in HCC. Ligand-activated PPARδ expression promoted the proliferation and invasion of HCC cells via PDK1/AKT/GSK3β signaling pathway. The expression of PPARδ was closely related to the HCC tumor microenvironment. Conclusions PPARδ plays an important part in HCC progression, penetrating investigation of the related regulatory mechanism may shed light upon further biological and pharmacological value.
Collapse
|
227
|
Hayashi Y, Nakase H. The Molecular Mechanisms of Intestinal Inflammation and Fibrosis in Crohn’s Disease. Front Physiol 2022; 13:845078. [PMID: 35222098 PMCID: PMC8874128 DOI: 10.3389/fphys.2022.845078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with repeated remissions and relapses. As the disease progresses, fibrosis and narrowing of the intestine occur, leading to severe complications such as intestinal obstruction. Endoscopic balloon dilatation, surgical stricture plasty, and bowel resection have been performed to treat intestinal stenosis. The clinical issue is that some patients with CD have a recurrence of intestinal stenosis even after the medical treatments. On the other hand, there exist no established medical therapies to prevent stenosis. With the progressive intestinal inflammation, cytokines and growth factors, including transforming growth factor (TGF-β), stimulate intestinal myofibroblasts, contributing to fibrosis of the intestine, smooth muscle hypertrophy, and mesenteric fat hypertrophy. Therefore, chronically sustained inflammation has long been considered a cause of intestinal fibrosis and stenosis. Still, even after the advent of biologics and tighter control of inflammation, intestinal fibrosis’s surgical rate has not necessarily decreased. It is essential to elucidate the mechanisms involved in intestinal fibrosis in CD from a molecular biological level to overcome clinical issues. Recently, much attention has been paid to several key molecules of intestinal fibrosis: peroxisome proliferator-activating receptor gamma (PPARγ), toll-like receptor 4 (TLR4), adherent-invasive Escherichia coli (AIEC), Th17 immune response, and plasminogen activator inhibitor 1 (PAI-1). As a major problem in the treatment of CD, the pathophysiology of patients with CD is not the same and varies depending on each patient. It is necessary to integrate these key molecules for a better understanding of the mechanism of intestinal inflammation and fibrosis.
Collapse
|
228
|
Potential Therapeutic Effects of PPAR Ligands in Glioblastoma. Cells 2022; 11:cells11040621. [PMID: 35203272 PMCID: PMC8869892 DOI: 10.3390/cells11040621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GB), also known as grade IV astrocytoma, represents the most aggressive form of brain tumor, characterized by extraordinary heterogeneity and high invasiveness and mortality. Thus, a great deal of interest is currently being directed to investigate a new therapeutic strategy and in recent years, the research has focused its attention on the evaluation of the anticancer effects of some drugs already in use for other diseases. This is the case of peroxisome proliferator-activated receptors (PPARs) ligands, which over the years have been revealed to possess anticancer properties. PPARs belong to the nuclear receptor superfamily and are divided into three main subtypes: PPAR-α, PPAR-β/δ, and PPAR-γ. These receptors, once activated by specific natural or synthetic ligands, translocate to the nucleus and dimerize with the retinoid X receptors (RXR), starting the signal transduction of numerous genes involved in many physiological processes. PPARs receptors are activated by specific ligands and participate principally in the preservation of homeostasis and in lipid and glucose metabolism. In fact, synthetic PPAR-α agonists, such as fibrates, are drugs currently in use for the clinical treatment of hypertriglyceridemia, while PPAR-γ agonists, including thiazolidinediones (TZDs), are known as insulin-sensitizing drugs. In this review, we will analyze the role of PPARs receptors in the progression of tumorigenesis and the action of PPARs agonists in promoting, or not, the induction of cell death in GB cells, highlighting the conflicting opinions present in the literature.
Collapse
|
229
|
Carli F, Ciociaro D, Gastaldelli A. Assessment of Exposure to Di-(2-ethylhexyl) Phthalate (DEHP) Metabolites and Bisphenol A (BPA) and Its Importance for the Prevention of Cardiometabolic Diseases. Metabolites 2022; 12:167. [PMID: 35208241 PMCID: PMC8878475 DOI: 10.3390/metabo12020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Exposomics analyses have highlighted the importance of biomonitoring of human exposure to pollutants, even non-persistent, for the prevention of non-communicable diseases such as obesity, diabetes, non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular diseases. Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals (EDCs) widely used in industry and in a large range of daily life products that increase the risk of endocrine and cardiometabolic diseases especially if the exposure starts during childhood. Thus, biomonitoring of exposure to these compounds is important not only in adulthood but also in childhood. This was the goal of the LIFE-PERSUADED project that measured the exposure to phthalates (DEHP metabolites, MEHP, MEHHP, MEOHP) and BPA in Italian mother-children couples of different ages. In this paper we describe the method that was set up for the LIFE PERSUADED project and validated during the proficiency test (ICI/EQUAS) showing that accurate determination of urinary phthalates and BPA can be achieved starting from small sample size (0.5 mL) using two MS techniques applied in cascade on the same deconjugated matrix.
Collapse
Affiliation(s)
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.)
| |
Collapse
|
230
|
Feng Z, Xiang J, Liu H, Li J, Xu X, Sun G, Zheng R, Zhang S, Liu J, Yang S, Xu Q, Wen X, Yuan H, Sun H, Dai L. Design, Synthesis, and Biological Evaluation of Triazolone Derivatives as Potent PPARα/δ Dual Agonists for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2022; 65:2571-2592. [PMID: 35060744 DOI: 10.1021/acs.jmedchem.1c02002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for nonalcoholic steatohepatitis (NASH). However, PPARα/δ dual agonist GFT-505 exhibited poor anti-NASH effects in a phase III clinical trial, probably due to its weak PPARα/δ agonistic activity and poor metabolic stability. Other reported PPARα/δ dual agonists either exhibited limited potency or had unbalanced PPARα/δ agonistic activity. Herein, we report a series of novel triazolone derivatives as PPARα/δ dual agonists. Among them, compound H11 exhibited potent and well-balanced PPARα/δ agonistic activity (PPARα EC50 = 7.0 nM; PPARδ EC50 = 8.4 nM) and a high selectivity over PPARγ (PPARγ EC50 = 1316.1 nM) in PPAR transactivation assays. The crystal structure of PPARδ in complex with H11 revealed a unique PPARδ-agonist interaction. H11, which had excellent PK properties and a good safety profile, showed potent in vivo anti-NASH effects in preclinical models. Together, H11 holds a great promise for treating NASH or other inflammatory and fibrotic diseases.
Collapse
Affiliation(s)
- Zhiqi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiehao Xiang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangrui Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junlong Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanlin Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
231
|
Luo M, Yang H, Wu D, You X, Huang S, Song Y. Tent5a modulates muscle fiber formation in adolescent idiopathic scoliosis via maintenance of myogenin expression. Cell Prolif 2022; 55:e13183. [PMID: 35137485 PMCID: PMC8891553 DOI: 10.1111/cpr.13183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/04/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Paravertebral muscle asymmetry may be involved in the pathogenesis of adolescent idiopathic scoliosis (AIS), and the Tent5a protein was recently identified as a novel active noncanonical poly(A) polymerase. We, therefore, explored the function of the AIS susceptibility gene Tent5a in myoblasts. MATERIALS AND METHODS RNA-seq of AIS paravertebral muscle was performed, and the molecular differences in paravertebral muscle were investigated. Twenty-four AIS susceptibility genes were screened, and differential expression of Tent5a in paravertebral muscles was confirmed with qPCR and Western blot. After the knockdown of Tent5a, the functional effects of Tent5a on C2C12 cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 assay, wound-healing assay, and TUNEL assay, respectively. Myogenic differentiation markers were tested with immunofluorescence and qPCR in vitro, and muscle fiber formation was compared in vivo. RESULTS The AIS susceptibility gene Tent5a was differentially expressed in AIS paravertebral muscles. Tent5a knockdown inhibited the proliferation and migration of C2C12 cells and inhibited the maturation of type I muscle fibers in vitro and in vivo. Mechanistically, the expression of myogenin was decreased along with the suppression of Tent5a. CONCLUSIONS Tent5a plays an important role in the proliferation and migration of myoblasts, and it regulates muscle fiber maturation by maintaining the stability of myogenin. Tent5a may be involved in the pathogenesis of AIS by regulating the formation of muscle fiber type I.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huiliang Yang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
232
|
Zhou Z, Ren Q, Jiao S, Cai Z, Geng X, Deng L, Wang B, Hu L, Zhang L, Yang Y, Li Z. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. Eur J Med Chem 2022; 229:114061. [PMID: 34954593 DOI: 10.1016/j.ejmech.2021.114061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common hepatic disease, while no drug was approved until now. The previous study reported that the quadruple FFA1/PPAR-α/γ/δ agonist RLA8 provided better efficacy than obeticholic acid on NASH. In the present study, two design strategies were introduced to explore better quadruple FFA1/PPAR-α/γ/δ agonists with improved metabolic stability. These efforts ultimately resulted in the identification of ZLY18, a quadruple FFA1/PPAR-α/γ/δ agonist with twice higher metabolic half-life than RLA8 in the liver microsome. In the triton-1339W-induced hyperlipidemic model, ZLY18 reversed hyperlipidemia to an almost normal level, which exhibited far stronger lipid-lowering effects than that of RLA8. Moreover, ZLY18 significantly decreased steatosis, hepatocellular ballooning, inflammation and liver fibrosis in NASH model even better than RLA8. Further mechanism studies suggested that ZLY18 exerts stronger effects than RLA8 on the regulation of the gene related to lipid synthesis, oxidative stress, inflammation and fibrosis. In addition, ZLY18 is more effective than pirfenidone in the prevention of CCl4-induced liver fibrosis. Besides, ZLY18 has an acceptable safety profile in the acute toxicity study at a high dose of 500 mg/kg. Therefore, ZLY18 represents a novel and highly promising quadruple FFA1/PPAR-α/γ/δ agonist worth of further investigation and development.
Collapse
Affiliation(s)
- Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
233
|
Oyama T, Takiguchi K, Miyachi H. Crystal structures of the ligand-binding domain of human peroxisome proliferator-activated receptor δ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative. Acta Crystallogr F Struct Biol Commun 2022; 78:81-87. [PMID: 35102897 PMCID: PMC8805212 DOI: 10.1107/s2053230x22000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a member of the nuclear receptor family and regulates glucose and lipid homeostasis in a ligand-dependent manner. Numerous phenylpropanoic acid derivatives targeting three PPAR subtypes (PPARα, PPARγ and PPARδ) have been developed towards the treatment of serious diseases such as lipid-metabolism disorders. In spite of the increasing attraction of PPARδ as a pharmaceutical target, only a limited number of protein-ligand complex structures are available. Here, four crystal structures of the ligand-binding domain of PPARδ in complexes with phenylpropanoic acid derivatives and a pyridine carboxylic acid derivative are described, including an updated, higher resolution version of a previous studied structure and three novel structures. These structures showed that the ligands were bound in the ligand-binding pocket of the receptor in a similar manner but with minor variations. The results could provide variable structural information for the further design and development of ligands targeting PPARδ.
Collapse
Affiliation(s)
- Takuji Oyama
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| | - Kazuki Takiguchi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Japan
| |
Collapse
|
234
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
235
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
236
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
237
|
Tonelli CA, de Oliveira SQ, Silva Vieira AAD, Biavatti MW, Ritter C, Reginatto FH, Campos AMD, Dal-Pizzol F. Clinical efficacy of capsules containing standardized extract of Bauhinia forficata Link (pata-de-vaca) as adjuvant treatment in type 2 diabetes patients: A randomized, double blind clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114616. [PMID: 34506937 DOI: 10.1016/j.jep.2021.114616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bauhinia forficata Link, is a Brazilian native plant and popularly known as pata-de-vaca ("paw-of-cow"). The tea prepared with their leaves has been extensively used in the Brazilian traditional practices for the diabetes treatment. The aim of the present study was to investigate the effect of capsules containing granules of a standardized extract of B. forficata leaves as adjuvant treatment on the glycemic control of patients with type-2 diabetes melitus. MATERIALS AND METHODS A double-blind, randomized clinical trial using capsules containing granules prepared by wet granulation of a standardized extract from B. forficata leaves as adjuvant treatment, was conducted. 92 patients aged 18-75 years from an outpatient clinic with type-2 diabetes were randomly assigned by a simple randomization scheme, in a 1:1 ratio to receive capsules of B. forficata or placebo for four months. The capsules used contain 300 mg of standardized extract from B. forficata leaves, yielding 2% of total flavonoid content per capsule. Primary outcome was glycated hemoglobin levels and fasting plasma glucose at 4 months. Possible harms were also determined. RESULTS The findings showed that at 4 months, the mean fasting plasma glucose levels and glycated hemoglobin were both significantly lower in the B. forficata group than in the placebo group. CONCLUSION The present study suggests that the adjunctive use of capsules containing standardized extract of B. forficata can add to regular oral anti-diabetics in the metabolic and inflammatory control of type-2 diabetes patients.
Collapse
Affiliation(s)
- Carlos André Tonelli
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Simone Quintana de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Andriele Aparecida da Silva Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Flávio Henrique Reginatto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
238
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
239
|
Yang C, Xue L, Wu Y, Li S, Zhou S, Yang J, Jiang C, Ran J, Jiang Q. PPARβ down-regulation is involved in high glucose-induced endothelial injury via acceleration of nitrative stress. Microvasc Res 2022; 139:104272. [PMID: 34699845 DOI: 10.1016/j.mvr.2021.104272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor β (PPARβ) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARβ in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARβ and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARβ agonist. Both GSK0660 (PPARβ antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARβ in high glucose-impaired endothelial function in rat aorta. PPARβ-nitrative stress may hold potential in treating vascular complications from DM.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Clinical Pharmacy, Jiangyou People's Hospital, Sichuan 621700, PR China
| | - Yang Wu
- Cardiovascular Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Guangdong 518107, PR China
| | - Siman Li
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shangjun Zhou
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengyan Jiang
- Department of Endocrinology, the First People's Hospital of Zunyi, Guizhou 563000, PR China
| | - Jianhua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
240
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
241
|
Synthesis and biological studies of "Polycerasoidol" and "trans-δ-Tocotrienolic acid" derivatives as PPARα and/or PPARγ agonists. Bioorg Med Chem 2022; 53:116532. [PMID: 34863066 DOI: 10.1016/j.bmc.2021.116532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
2-Prenylated benzopyrans represent a class of natural and synthetic compounds showing a wide range of significant activities. Polycerasoidol is a natural prenylated benzopyran isolated from the stem bark of Polyalthia cerasoides (Annonaceae) that exhibits dual PPARα/γ agonism and an anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium. Herein, we report the synthesis of three new series of prenylated benzopyrans containing one (series 1), two (series 2, "polycerasoidol" analogs) and three (series 3, "trans-δ-tocotrienolic acid" analogs) isoprenoid units in the hydrocarbon side chain at the 2-position of the chroman-6-ol (6-hydroxy-dihydrobenzopyran) scaffold. Isoprenoid moieties were introduced through a Grignard reaction sequence, followed by Johnson-Claisen rearrangement and subsequent Wittig olefination. hPPAR transactivation activity and the structure activity relationships (SAR) of eleven novel synthesized 2-prenylated benzopyrans were explored. PPAR transactivation activity demonstrated that the seven-carbon side chain analogs (series 1) displayed selectivity for hPPARα, while the nine-carbon side chain analogs (polycerasoidol analogs, series 2) did so for hPPARγ. The side chain elongation to 11 or 13 carbons (series 3) resulted in weak dual PPARα/γ activation. Therefore, 2-prenylated benzopyrans of seven- and nine-carbon side chain (polycerasoidol analogs) are good lead compounds for developing useful candidates to prevent cardiovascular diseases associated with metabolic disorders.
Collapse
|
242
|
Zhang X, Mao M, Zuo Z. Palmitate Induces Mitochondrial Energy Metabolism Disorder and Cellular Damage via the PPAR Signaling Pathway in Diabetic Cardiomyopathy. Diabetes Metab Syndr Obes 2022; 15:2287-2299. [PMID: 35936050 PMCID: PMC9355343 DOI: 10.2147/dmso.s360931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To establish an in vitro lipotoxicity model with mouse cardiomyocytes (MCMs) and investigate the molecular mechanism of the peroxisome proliferator-activated receptors (PPAR) signaling on mitochondrial energy metabolism disorder and cellular injury in diabetic cardiomyopathy (DCM). METHODS Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the differentially expressed genes (DEGs) of DCM. CCK-8 method was used to detect the proliferation inhibition effect of palmitate (PA) on MCMs. Oil red O staining and mRNA levels of CD36 were used to verify intracellular lipid accumulation. DCFH-DA method was used to determine the content of intracellular reactive oxygen species (ROS), and ATP levels were detected by the ATP Detection Kit. Transmission electron microscope (TEM) was used to observe the mitochondrial structure. Western blot was used to detect the expression levels of PPARα, PPARγ, P-mTOR, mTOR, PGC-1α, UCP2, and BNP. In addition, the expression of PPARγ was also detected by cellular immunofluorescence staining. BNP levels were detected by qRT-PCR and the ELISA Kit. RESULTS KEGG pathway analysis combined with GO analysis has shown that PPAR signaling played a significant regulatory role in mitochondrial biogenesis and fatty acid metabolism in DCM. Then, MCMs stimulated with PA for 24 h were selected as an in vitro lipotoxicity model. PA decreased cell viability, cell membrane shrinkage, and lipid accumulation. Meanwhile, PA-induced increase in cellular ROS led to ATP generation reduction and mitochondrial damage. Furthermore, the expression levels of p-mTOR- PPARα/γ were decreased, and the expressions of PGC-1α and UCP2 were increased. The levels of BNP were elevated, demonstrating PA impaired cardiomyocytes. CONCLUSION Mitochondrial energy metabolism obstacle and cell injury appeared in cardiac lipotoxicity of DCM, associated with lipid accumulation and increased ROS, indicating a crosstalk with the PPAR pathway mediated mechanism.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Min Mao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Zhong Zuo, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
243
|
Xia J, Yu P, Zeng Z, Ma M, Yan X, Zhao J, Gong D, Zhang G, Wang J. Effects of Medium Chain Triglycerides on Lipid Metabolism in High-fat Diet Induced Obese Rats. Food Funct 2022; 13:8998-9009. [DOI: 10.1039/d2fo01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to compare effects of three different medium chain triglycerides (MCT) on lipid metabolism in obese rats. High fat diet was fed to the Sprague–Dawley rats to induce...
Collapse
|
244
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
245
|
Ma L, Dai X, Wu C, Li M, Sheng H, Mao W. Tanyu Tongzhi Formula Delays Atherosclerotic Plaque Progression by Promoting Alternative Macrophage Activation via PPARγ and AKT/ERK Signal Pathway in ApoE Knock-Out Mice. Front Pharmacol 2021; 12:734589. [PMID: 34966274 PMCID: PMC8711052 DOI: 10.3389/fphar.2021.734589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that the Tanyu Tongzhi Formula (TTF) significantly alleviated the clinical symptoms of patients with coronary heart disease and lowered serum lipid and inflammatory factor levels in patients with coronary heart disease and atherosclerosis model rats. However, the mechanism underlying TTF remains unknown. In this study, we examined the effect of TTF on atherosclerotic plaques in ApoE-/- mice and underlying mechanisms involved in macrophage polarization. Sixty male ApoE-/- mice were randomly divided into four groups. Mice in the control group were fed a regular diet, whereas experimental mice were fed a high-fat diet and received either saline (HFD group) or TTF at concentrations of 0.60 (TTF-L group) or 2.25 g/ml (TTF-H group) by daily oral gavage for 16 weeks. In the TTF-L and TTF-H groups, the levels of serum cholesterol, triglyceride, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were decreased, lipid content was significantly decreased, and percentage area of collagen/lipid increased in atherosclerotic plaque compared to in the HFD group. Moreover, we found TTF promoted the expression of alternative macrophage markers (Fizz1, Arg1, and Mrc) and suppressed the expression of M1 macrophage markers (TNF-α, IL-1β, and IL-6) by regulating peroxisome proliferator-activated receptor γ (PPARγ) expression and AKT/extracellular signal-regulated kinase (ERK) activation. We further investigated whether alternative macrophage was reduced when PPARγ was inhibited or the AKT/ERK signaling pathway was activated. TTF delayed atherosclerotic plaque progression by promoting alternative macrophage activation through increasing PPARγ expression and inhibiting AKT/ERK phosphorylation, providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.,The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoce Dai
- Department of Cardiology, First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenxia Wu
- Department of Cardiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingshuang Li
- Department of Cardiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Mao
- Department of Cardiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
246
|
Hassan RM, Ali IH, Abdel-Maksoud MS, Abdallah HMI, El Kerdawy AM, Sciandra F, Ghannam IAY. Design and synthesis of novel quinazolinone-based fibrates as PPARα agonists with antihyperlipidemic activity. Arch Pharm (Weinheim) 2021; 355:e2100399. [PMID: 34958132 DOI: 10.1002/ardp.202100399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Aiming to discover new antihyperlipidemic agents, a new set of quinazolinone-fibrate hybrids 9a-r bearing the essential features for peroxisome proliferator-activated receptor-α (PPARα) agonistic activity was synthesized and the structures were confirmed by different spectral data. All the target compounds were screened for their PPARα agonistic activity. Compounds 9o and 9q exhibited potent activity, with EC50 values better than that of fenofibrate by 8.7- and 27-fold, respectively. Molecular docking investigations were performed for all the newly synthesized compounds in the active site of the PPARα receptor to study their interactions and energies in the receptor. Moreover, the antihyperlipidemic and antioxidant activities of compounds 9o and 9q were determined using Triton WR-1339-induced hyperlipidemic rats. Compound 9q exhibited effective hypolipidemic activity in a dose-dependent manner, where it significantly reduced the serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol and increased the level of high-density lipoprotein cholesterol. Furthermore, it possesses a powerful antioxidant profile where it significantly elevated the levels of reduced glutathione as well as the total antioxidant capacity and significantly decreased the malondialdehyde level. The histopathological studies revealed that compound 9q improved the aortic architecture and hepatic steatosis. These findings support that compound 9q could be a promising lead compound for the development of new antihyperlipidemic agents.
Collapse
Affiliation(s)
- Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Organic and Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Cairo, Egypt
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR) Sede di Roma, Roma, Italy
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
247
|
Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. Target Deconvolution of Fenofibrate in Nonalcoholic Fatty Liver Disease Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3654660. [PMID: 34988225 PMCID: PMC8720586 DOI: 10.1155/2021/3654660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD. METHODS We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value < 0.01 was considered the cut-off criterion. We also estimated the specificity of targets with NAFLD by investigating them in disease-gene associations (STRING) and EnrichR (DisGeNET). Finally, we verified our findings in the scientific literature. RESULTS We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate. CONCLUSION Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
248
|
Toobian D, Ghosh P, Katkar GD. Parsing the Role of PPARs in Macrophage Processes. Front Immunol 2021; 12:783780. [PMID: 35003101 PMCID: PMC8727354 DOI: 10.3389/fimmu.2021.783780] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cells are richly equipped with nuclear receptors, which act as ligand-regulated transcription factors. Peroxisome proliferator activated receptors (PPARs), members of the nuclear receptor family, have been extensively studied for their roles in development, differentiation, and homeostatic processes. In the recent past, there has been substantial interest in understanding and defining the functions of PPARs and their agonists in regulating innate and adaptive immune responses as well as their pharmacologic potential in combating acute and chronic inflammatory disease. In this review, we focus on emerging evidence of the potential roles of the PPAR subtypes in macrophage biology. We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell function, microbial infection, and inflammatory diseases.
Collapse
Affiliation(s)
- Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
- Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Affairs Medical Center, La Jolla, CA, United States
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
249
|
KRAS Affects Adipogenic Differentiation by Regulating Autophagy and MAPK Activation in 3T3-L1 and C2C12 Cells. Int J Mol Sci 2021; 22:ijms222413630. [PMID: 34948427 PMCID: PMC8707842 DOI: 10.3390/ijms222413630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-β), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.
Collapse
|
250
|
Wang H, Kan WJ, Feng Y, Feng L, Yang Y, Chen P, Xu JJ, Si TM, Zhang L, Wang G, Du J. Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of major depressive disorder. World J Psychiatry 2021; 11:1191-1205. [PMID: 35070770 PMCID: PMC8717028 DOI: 10.5498/wjp.v11.i12.1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is highly prevalent and is a significant cause of mortality and morbidity worldwide. Currently, conventional pharmacological treatments for MDD produce temporary remission in < 50% of patients; therefore, there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms. Accumulated evidence has shown that immune inflammation, particularly inflammasome activity, plays an important role in the pathophysiology of MDD. In this review, we summarize the evidence on nuclear receptors (NRs), such as glucocorticoid receptor, mineralocorticoid receptor, estrogen receptor, aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor, in modulating the inflammasome activity and depression-associated behaviors. This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD, and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.
Collapse
Affiliation(s)
- Han Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Wei-Jing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing-Jie Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Tian-Mei Si
- Department of Clinical Psychopharmacology, Peking University Institute of Mental Health, Beijing 100191, Beijing Province, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, Yunnan Province, China
| |
Collapse
|