201
|
Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403:37-47. [DOI: 10.1016/j.canlet.2017.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
|
202
|
von Morgen P, Burdova K, Flower TG, O'Reilly NJ, Boulton SJ, Smerdon SJ, Macurek L, Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 2017; 36:4943-4950. [PMID: 28436950 PMCID: PMC5531254 DOI: 10.1038/onc.2017.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Collapse
Affiliation(s)
- P von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - K Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - T G Flower
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - N J O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London, UK
| | - S J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - S J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - L Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Z Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Centre, Charterhouse Square, London, UK
| |
Collapse
|
203
|
Sergio LPDS, de Paoli F, Mencalha AL, da Fonseca ADS. Chronic Obstructive Pulmonary Disease: From Injury to Genomic Stability. COPD 2017; 14:439-450. [DOI: 10.1080/15412555.2017.1332025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Teresópolis, Rio de Janeiro, Brazil
| |
Collapse
|
204
|
Qiao Q, Sun C, Han C, Han N, Zhang M, Li G. Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci 2017; 108:1421-1431. [PMID: 28418119 PMCID: PMC5497722 DOI: 10.1111/cas.13260] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis and development of malignant tumors, as well as in the regulation of radiochemoresistance and chemoresistance in many malignancies. ERS signaling pathway protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor‐2 (eIF2α) may induce aberrant activation of nuclear factor‐κB (NF‐κB). Our previous study showed that NF‐κB conferred radioresistance in lymphoma cells. However, whether PERK‐eIF2α regulates radioresistance in oropharyngeal carcinoma through NF‐κB activation is unknown. Herein, we showed that PERK overexpression correlated with a poor prognosis for patients with oropharyngeal carcinoma (P < 0.01). Meanwhile, the percentage of the high expression level of PERK in oropharyngeal carcinoma patients resistant to radiation was higher than in patients sensitive to radiation (77.7 and 33.3%, respectively; P < 0.05). Silencing PERK and eIF2α increased the radiosensitivity in oropharyngeal carcinoma cells and increased radiation‐induced apoptosis and G2/M phase arrest. PERK‐eIF2α silencing also inhibited radiation‐induced NF‐κB phosphorylation and increased the DNA double strand break‐related proteins ATM phosphorylation. NF‐κB activator TNF‐α and the ATM inhibitor Ku55933 offset the regulatory effect of eIF2α on the expression of radiation‐induced cell apoptosis‐related proteins and the G2/M phase arrest‐related proteins. These data indicate that PERK regulates radioresistance in oropharyngeal carcinoma through NF‐kB activation‐mediated phosphorylation of eIF2α, enhancing X‐ray‐induced activation of DNA DSB repair, cell apoptosis inhibition and G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaonan Sun
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuyang Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
205
|
Deshpande RA, Lee JH, Paull TT. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res 2017; 45:5255-5268. [PMID: 28369545 PMCID: PMC5435944 DOI: 10.1093/nar/gkx173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
206
|
Lee NS, Kim S, Jung YW, Kim H. Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification. Mutat Res 2017; 809:88-98. [PMID: 28552167 DOI: 10.1016/j.mrfmmm.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
Abstract
To prevent genomic instability disorders, cells have developed a DNA damage response. The response involves various proteins that sense damaged DNA, transduce damage signals, and effect DNA repair. In addition, ubiquitin modifications modulate the signaling pathway depending on cellular context. Among various types of DNA damage, double-stranded breaks are highly toxic to genomic integrity. Homologous recombination (HR) repair is an essential mechanism that fixes DNA damage because of its high level of accuracy. Although factors in the repair pathway are well established, pinpointing the exact mechanisms of repair and devising therapeutic applications requires more studies. Moreover, essential functions of ubiquitin modification in the DNA damage signaling pathway have emerged. In this review, to explore the eukaryotic DNA damage response, we will mention the functions of main factors in the HR repair pathway and ubiquitin modification.
Collapse
Affiliation(s)
- Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soomi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
207
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
208
|
Withaferin-A kills cancer cells with and without telomerase: chemical, computational and experimental evidences. Cell Death Dis 2017; 8:e2755. [PMID: 28425984 PMCID: PMC5477593 DOI: 10.1038/cddis.2017.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
Abstract
Maintenance of telomere length is the most consistent attribute of cancer cells. Tightly connected to their capacity to overcome replicative mortality, it is achieved either by activation of telomerase or an Alternative mechanism of Lengthening of Telomeres (ALT). Disruption of either of these mechanisms has been shown to induce DNA damage signalling leading to senescence or apoptosis. Telomerase inhibitors are considered as potential anticancer drugs but are ineffective for ALT cancers (~15% of all cancers). Withaferin-A (Wi-A), a major constituent of the medicinal plant, Withania somnifera (Ashwagandha), has been shown to exert anti-tumour activity. However, its effect on either telomerase or ALT mechanisms has not been investigated. Here, by using isogenic cancer cells with/without telomerase, we found that Wi-A caused stronger cytotoxicity to ALT cells. It was associated with inhibition of ALT-associated promyelocytic leukemia nuclear bodies, an established marker of ALT. Comparative analyses of telomerase positive and ALT cells revealed that Wi-A caused stronger telomere dysfunction and upregulation of DNA damage response in ALT cells. Molecular computational and experimental analyses revealed that Wi-A led to Myc-Mad mediated transcriptional suppression of NBS-1, an MRN complex protein that is an essential component of the ALT mechanism. The results suggest that Wi-A could be a new candidate drug for ALT cancers.
Collapse
|
209
|
Soniat MM, Myler LR, Schaub JM, Kim Y, Gallardo IF, Finkelstein IJ. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination. Methods Enzymol 2017; 592:259-281. [PMID: 28668123 PMCID: PMC5564670 DOI: 10.1016/bs.mie.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair.
Collapse
Affiliation(s)
- Michael M Soniat
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Logan R Myler
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Jeffrey M Schaub
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Yoori Kim
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Ignacio F Gallardo
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Ilya J Finkelstein
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
210
|
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 2017; 591:1083-1100. [PMID: 28079255 DOI: 10.1002/1873-3468.12556] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.
Collapse
Affiliation(s)
| | - Vincenzo Sannino
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Anna de Antoni
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Hervé Técher
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Baldi
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
211
|
|
212
|
Mariggiò G, Koch S, Zhang G, Weidner-Glunde M, Rückert J, Kati S, Santag S, Schulz TF. Kaposi Sarcoma Herpesvirus (KSHV) Latency-Associated Nuclear Antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. PLoS Pathog 2017; 13:e1006335. [PMID: 28430817 PMCID: PMC5415203 DOI: 10.1371/journal.ppat.1006335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/03/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi Sarcoma Herpesvirus (KSHV), a γ2-herpesvirus and class 1 carcinogen, is responsible for at least three human malignancies: Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease (MCD). Its major nuclear latency protein, LANA, is indispensable for the maintenance and replication of latent viral DNA in infected cells. Although LANA is mainly a nuclear protein, cytoplasmic isoforms of LANA exist and can act as antagonists of the cytoplasmic DNA sensor, cGAS. Here, we show that cytosolic LANA also recruits members of the MRN (Mre11-Rad50-NBS1) repair complex in the cytosol and thereby inhibits their recently reported role in the sensing of cytoplasmic DNA and activation of the NF-κB pathway. Inhibition of NF-κB activation by cytoplasmic LANA is accompanied by increased lytic replication in KSHV-infected cells, suggesting that MRN-dependent NF-κB activation contributes to KSHV latency. Cytoplasmic LANA may therefore support the activation of KSHV lytic replication in part by counteracting the activation of NF-κB in response to cytoplasmic DNA. This would complement the recently described role of cytoplasmic LANA in blocking an interferon response triggered by cGAS and thereby promoting lytic reactivation. Our findings highlight a second point at which cytoplasmic LANA interferes with the innate immune response, as well as the importance of the recently discovered role of cytoplasmic MRN complex members as innate sensors of cytoplasmic DNA for the control of KSHV replication.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cytoplasm/metabolism
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- DNA Replication
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/physiology
- Humans
- Immunity, Innate
- MRE11 Homologue Protein
- Models, Biological
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Protein Isoforms
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency
- Virus Replication
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Guigen Zhang
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Magdalena Weidner-Glunde
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Semra Kati
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Susann Santag
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| |
Collapse
|
213
|
Ghelli Luserna di Rora’ A, Iacobucci I, Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol 2017; 10:77. [PMID: 28356161 PMCID: PMC5371185 DOI: 10.1186/s13045-017-0443-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 01/25/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancers has recently reached an exciting stage with several cell cycle checkpoint inhibitors that are now being tested in several clinical trials in cancer patients. Although the great amount of pre-clinical and clinical data are from the solid tumor experience, only few studies have been done on leukemias using specific cell cycle checkpoint inhibitors. This review aims to summarize the most recent data found on the biological mechanisms of the response to DNA damages highlighting the role of the different elements of the DDR pathway in normal and cancer cells and focusing on the main genetic alteration or aberrant gene expression that has been found on acute and chronic leukemias. This review, for the first time, outlines the most important pre-clinical and clinical data available on the efficacy of cell cycle checkpoint inhibitors in single agent and in combination with different agents normally used for the treatment of acute and chronic leukemias.
Collapse
Affiliation(s)
| | - I. Iacobucci
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
- Present: Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - G. Martinelli
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
| |
Collapse
|
214
|
Jyonouchi S, Jongco AM, Puck J, Sullivan KE. Immunodeficiencies Associated with Abnormal Newborn Screening for T Cell and B Cell Lymphopenia. J Clin Immunol 2017; 37:363-374. [PMID: 28353166 DOI: 10.1007/s10875-017-0388-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
Newborn screening for SCID has revealed the association of low T cells with a number of unexpected syndromes associated with low T cells, some of which were not appreciated to have this feature. This review will discuss diagnostic approaches and the features of some of the syndromes likely to be encountered following newborn screening for immune deficiencies.
Collapse
Affiliation(s)
- Soma Jyonouchi
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Artemio M Jongco
- Division of Allergy and Immunology, Cohen Children's Medical Center of New York, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Jennifer Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
215
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
216
|
Nonhomologous End-Joining with Minimal Sequence Loss Is Promoted by the Mre11-Rad50-Nbs1-Ctp1 Complex in Schizosaccharomyces pombe. Genetics 2017; 206:481-496. [PMID: 28292918 DOI: 10.1534/genetics.117.200972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
While the Mre11-Rad50-Nbs1 (MRN) complex has known roles in repair processes like homologous recombination and microhomology-mediated end-joining, its role in nonhomologous end-joining (NHEJ) is unclear as Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mammals have different requirements for repairing cut DNA ends. Most double-strand breaks (DSBs) require nucleolytic processing prior to DNA ligation. Therefore, we studied repair using the Hermes transposon, whose excision leaves a DSB capped by hairpin ends similar to structures generated by palindromes and trinucleotide repeats. We generated single Hermes insertions using a novel S. pombe transient transfection system, and used Hermes excision to show a requirement for MRN in the NHEJ of nonligatable ends. NHEJ repair was indicated by the >1000-fold decrease in excision in cells lacking Ku or DNA ligase 4. Most repaired excision sites had <5 bp of sequence loss or mutation, characteristic for NHEJ and similar excision events in metazoans, and in contrast to the more extensive loss seen in S. cerevisiaeS. pombe NHEJ was reduced >1000-fold in cells lacking each MRN subunit, and loss of MRN-associated Ctp1 caused a 30-fold reduction. An Mre11 dimer is thought to hold DNA ends together for repair, and Mre11 dimerization domain mutations reduced repair 300-fold. In contrast, a mre11 mutant defective in endonucleolytic activity, the same mutant lacking Ctp1, or the triple mutant also lacking the putative hairpin nuclease Pso2 showed wild-type levels of repair. Thus, MRN may act to recruit the hairpin opening activity that allows subsequent repair.
Collapse
|
217
|
Association of Human Papillomavirus 16 E2 with Rad50-Interacting Protein 1 Enhances Viral DNA Replication. J Virol 2017; 91:JVI.02305-16. [PMID: 28031358 PMCID: PMC5309968 DOI: 10.1128/jvi.02305-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Rad50-interacting protein 1 (Rint1) associates with the DNA damage response protein Rad50 during the transition from the S phase to the G2/M phase and functions in radiation-induced G2 checkpoint control. It has also been demonstrated that Rint1 is essential in vesicle trafficking from the Golgi apparatus to the endoplasmic reticulum (ER) through an interaction with Zeste-White 10 (ZW10). We have isolated a novel interaction between Rint1 and the human papillomavirus 16 (HPV16) transcription and replication factor E2. E2 binds to Rint1 within its ZW10 interaction domain, and we show that in the absence of E2, Rint1 is localized to the ER and associates with ZW10. E2 expression results in a disruption of the Rint1-ZW10 interaction and an accumulation of nuclear Rint1, coincident with a significant reduction in vesicle movement from the ER to the Golgi apparatus. Interestingly, nuclear Rint1 and members of the Mre11/Rad50/Nbs1 (MRN) complex were found in distinct E2 nuclear foci, which peaked during mid-S phase, indicating that the recruitment of Rint1 to E2 foci within the nucleus may also result in the recruitment of this DNA damage-sensing protein complex. We show that exogenous Rint1 expression enhances E2-dependent virus replication. Conversely, the overexpression of a truncated Rint1 protein that retains the E2 binding domain but not the Rad50 binding domain acts as a dominant negative inhibitor of E2-dependent HPV replication. Put together, these experiments demonstrate that the interaction between Rint1 and E2 has an important function in HPV replication. IMPORTANCE HPV infections are an important driver of many epithelial cancers, including those within the anogenital and oropharyngeal tracts. The HPV life cycle is tightly regulated and intimately linked to the differentiation of the epithelial cells that it infects. HPV replication factories formed in the nucleus are locations where viral DNA is copied to support virus persistence and amplification of infection. The recruitment of specific cellular protein complexes to these factories aids efficient and controlled viral replication. We have identified a novel HPV-host interaction that functions in the cellular response to DNA damage and cell cycle control. We show that the HPV E2 protein targets Rad50-interacting protein 1 (Rint1) to facilitate virus genome replication. These findings add to our understanding of how HPV replicates and the host cell pathways that are targeted by HPV to support virus replication. Understanding these pathways will allow further research into novel inhibitors of HPV genome replication.
Collapse
|
218
|
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868:29-39. [PMID: 28143714 DOI: 10.1016/j.bbcan.2017.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O6-chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Herwig M Strik
- Department of Neurology, University Medical Center, Baldinger Strasse, 35033 Marburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
219
|
Khan C, Muliyil S, Ayyub C, Rao BJ. DNA damage signalling in D. melanogaster requires non-apoptotic function of initiator caspase Dronc. J Cell Sci 2017; 130:2984-2995. [DOI: 10.1242/jcs.200782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/24/2017] [Indexed: 01/31/2023] Open
Abstract
ϒH2Av response constitutes an important signalling event in DNA damage sensing ensuring effective repair by recruiting DNA repair machinery. In contrast, the occurrence of ϒH2Av response has also been reported in dying cells where it is shown to require activation of CAD (caspase activated DNase). Moreover, caspases are known to be required downstream of DNA damage for cell death execution. We show, for the first time, that initiator caspase Dronc, independent of executioner caspases, acts as an upstream regulator of DNA Damage Response (DDR) by facilitating ϒH2Av signalling perhaps involving non-apoptotic function. Such ϒH2Av response is mediated by ATM rather than ATR, suggesting that Dronc function is required upstream of ATM. In contrast, ϒH2Av appearance during cell death requires effector caspase and is associated with fragmented nuclei. Our study uncovers a novel function of Dronc in response to DNA damage aimed at promoting DDR via ϒH2Av signalling in intact nuclei. We propose that Dronc plays a dual role that can either initiate DDR or apoptosis depending upon the level and the required threshold of its activation in damaged cells.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Sonia Muliyil
- Current affiliation: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - B. J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
220
|
Landuzzi F, Palla PL, Cleri F. Stability of radiation-damaged DNA after multiple strand breaks. Phys Chem Chem Phys 2017; 19:14641-14651. [DOI: 10.1039/c7cp02266b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation induced double-strand breaks in DNA are more stable against thermal and mechanical stress than usually thought.
Collapse
Affiliation(s)
- Fabio Landuzzi
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| | - Pier Luca Palla
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| | - Fabrizio Cleri
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| |
Collapse
|
221
|
Meijers RWJ, Dzierzanowska-Fangrat K, Zborowska M, Solarska I, Tielemans D, van Turnhout BAC, Driessen G, van der Burg M, van Dongen JJM, Chrzanowska KH, Langerak AW. Circulating T Cells of Patients with Nijmegen Breakage Syndrome Show Signs of Senescence. J Clin Immunol 2016; 37:133-142. [PMID: 28000062 PMCID: PMC5325864 DOI: 10.1007/s10875-016-0363-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022]
Abstract
Purpose The Nijmegen breakage syndrome (NBS) is an inherited genetic disorder characterized by a typical facial appearance, microcephaly, growth retardation, immunodeficiency, and a strong predisposition to malignancies, especially of lymphoid origin. NBS patients have a mutation in the NBN gene which involves the repair of DNA double-strand breaks (DSBs). Here we studied the peripheral T cell compartment of NBS patients with a focus on immunological senescence. Methods The absolute numbers and frequencies of the different T cell subsets were determined in NBS patients from young age till adulthood and compared to age-matched healthy individuals (HI). In addition, we determined the expression of senescent T cell markers and the signal joint T cell receptor excision circles (sjTRECs) content. Results Our results demonstrate that NBS patients have reduced T cell numbers. NBS patients showed lower numbers of αβ+ T cells, but normal γδ+ T cell numbers compared to HI. Concerning the αβ+ T cells, both CD4+ as well as CD8+ T cells were excessively reduced in numbers compared to aged-matched HI. In addition, NBS patients showed higher frequencies of the more differentiated T cells expressing the senescent cell marker CD57 and did not express co-stimulatory molecule CD28. These effects were already present in the youngest age group. Furthermore, NBS patients showed lower sjTREC content in their T cells possibly indicative of a lower thymic output. Conclusions We conclude that circulating T cells from NBS patients show signs of a senescent phenotype which is already present from young age on and which might explain their T cell immune deficiency. Electronic supplementary material The online version of this article (doi:10.1007/s10875-016-0363-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud W J Meijers
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | | | - Magdalena Zborowska
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Iwona Solarska
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dennis Tielemans
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Bob A C van Turnhout
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Gertjan Driessen
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anton W Langerak
- Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
222
|
The Slavic NBN Founder Mutation: A Role for Reproductive Fitness? PLoS One 2016; 11:e0167984. [PMID: 27936167 PMCID: PMC5148078 DOI: 10.1371/journal.pone.0167984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the ‘Slavic people’. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
Collapse
|
223
|
Mimmler M, Peter S, Kraus A, Stroh S, Nikolova T, Seiwert N, Hasselwander S, Neitzel C, Haub J, Monien BH, Nicken P, Steinberg P, Shay JW, Kaina B, Fahrer J. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res 2016; 44:10259-10276. [PMID: 27599846 PMCID: PMC5137439 DOI: 10.1093/nar/gkw791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 08/27/2016] [Indexed: 11/13/2022] Open
Abstract
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.
Collapse
Affiliation(s)
| | - Simon Peter
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Alexander Kraus
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Nina Seiwert
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Carina Neitzel
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jessica Haub
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Bernhard H Monien
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Petra Nicken
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
224
|
Robinson NJ, Schiemann WP. Means to the ends: The role of telomeres and telomere processing machinery in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:320-329. [PMID: 27768860 PMCID: PMC5138103 DOI: 10.1016/j.bbcan.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 12/29/2022]
Abstract
Despite significant clinical advancements, cancer remains a leading cause of mortality throughout the world due largely to the process of metastasis and the dissemination of cancer cells from their primary tumor of origin to distant secondary sites. The clinical burden imposed by metastasis is further compounded by a paucity of information regarding the factors that mediate metastatic progression. Linear chromosomes are capped by structures known as telomeres, which dictate cellular lifespan in humans by shortening progressively during successive cell divisions. Although telomere shortening occurs in nearly all somatic cells, telomeres may be elongated via two seemingly disjoint pathways: (i) telomerase-mediated extension, and (ii) homologous recombination-based alternative lengthening of telomeres (ALT). Both telomerase and ALT are activated in various human cancers, with more recent evidence implicating both pathways as potential mediators of metastasis. Here we review the known roles of telomere homeostasis in metastasis and posit a mechanism whereby metastatic activity is determined by a dynamic fluctuation between ALT and telomerase, as opposed to the mere activation of a generic telomere elongation program. Additionally, the pleiotropic nature of the telomere processing machinery makes it an attractive therapeutic target for metastasis, and as such, we also explore the therapeutic implications of our proposed mechanism.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
225
|
Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB, Zhang H, Goronzy JJ, Weyand CM. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity 2016; 45:903-916. [PMID: 27742546 DOI: 10.1016/j.immuni.2016.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
Immune aging manifests with a combination of failing adaptive immunity and insufficiently restrained inflammation. In patients with rheumatoid arthritis (RA), T cell aging occurs prematurely, but the mechanisms involved and their contribution to tissue-destructive inflammation remain unclear. We found that RA CD4+ T cells showed signs of aging during their primary immune responses and differentiated into tissue-invasive, proinflammatory effector cells. RA T cells had low expression of the double-strand-break repair nuclease MRE11A, leading to telomeric damage, juxtacentromeric heterochromatin unraveling, and senescence marker upregulation. Inhibition of MRE11A activity in healthy T cells induced the aging phenotype, whereas MRE11A overexpression in RA T cells reversed it. In human-synovium chimeric mice, MRE11Alow T cells were tissue-invasive and pro-arthritogenic, and MRE11A reconstitution mitigated synovitis. Our findings link premature T cell aging and tissue-invasiveness to telomere deprotection and heterochromatin unpacking, identifying MRE11A as a therapeutic target to combat immune aging and suppress dysregulated tissue inflammation.
Collapse
Affiliation(s)
- Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philipp Hohensinner
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jihang Ju
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hui Zhang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
226
|
Castaneda CH, Scuderi MJ, Edwards TG, Harris GD, Dupureur CM, Koeller KJ, Fisher C, Bashkin JK. Improved Antiviral Activity of a Polyamide Against High-Risk Human Papillomavirus Via N-Terminal Guanidinium Substitution. MEDCHEMCOMM 2016; 7:2076-2082. [PMID: 27840672 DOI: 10.1039/c6md00371k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the synthesis of two novel pyrrole-imidazole polyamides with N-terminal guanidinium or tetramethylguanidinium groups and evaluate their antiviral activity against three cancer-causing human papillomavirus strains. Introduction of guanidinium improves antiviral activity when compared to an unsubstituted analog, especially in IC90 values. These substitutions change DNA-binding preferences, while binding affinity remains unchanged.
Collapse
Affiliation(s)
- C H Castaneda
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - M J Scuderi
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - T G Edwards
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - G D Harris
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - C M Dupureur
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - K J Koeller
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - C Fisher
- NanoVir, LLC, Kalamazoo, MI 49008 (USA)
| | - J K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA; NanoVir, LLC, Kalamazoo, MI 49008 (USA)
| |
Collapse
|
227
|
Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer 2016; 23:T1-T17. [PMID: 27530658 DOI: 10.1530/erc-16-0297] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Justine Sitz
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Damien Grapton
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada Department of OncologyMcGill University, Montreal, Canada
| |
Collapse
|
228
|
Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 2016; 7:12808. [PMID: 27649274 PMCID: PMC5034306 DOI: 10.1038/ncomms12808] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms. Tardigrades are resistant to extreme environmental conditions including dehydration, radiation and the vacuum of space. Here the authors present a high-quality genome which displays minimal horizontal gene transfer, and identify the unique tardigrade protein Dsup which suppresses DNA damage.
Collapse
|
229
|
Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Sensing of dangerous DNA. Mech Ageing Dev 2016; 165:33-46. [PMID: 27614000 DOI: 10.1016/j.mad.2016.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells.
Collapse
Affiliation(s)
- Stephan Gasser
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore.
| | - Wendy Y L Zhang
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Nikki Yi Jie Tan
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Shubhita Tripathi
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Manuel A Suter
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Zhi Huan Chew
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Muznah Khatoo
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Joanne Ngeow
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; Divsion of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Florence S G Cheung
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.
| |
Collapse
|
230
|
|
231
|
Suman S, Kumar S, N'Gouemo P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol 2016; 54:45-50. [PMID: 27565756 DOI: 10.1016/j.alcohol.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Binge drinking is known to cause damage in critical areas of the brain, including the hippocampus, which is important for relational memory and is reported to be sensitive to alcohol toxicity. However, the roles of DNA double-strand break (DSB) and its repair pathways, homologous recombination (HR), and non-homologous end joining (NHEJ) in alcohol-induced hippocampal injury remain to be elucidated. The purpose of this first study was to assess alcohol-induced DNA DSB and the mechanism by which alcohol affects DSB repair pathways in rat hippocampus. Male Sprague-Dawley rats (8-10 weeks old) were put on a 4-day binge ethanol treatment regimen. Control animals were maintained under similar conditions but were given the vehicle without ethanol. All animals were humanely euthanized 24 h after the last dose of ethanol administration and the hippocampi were dissected for immunoblot and immunohistochemistry analysis. Ethanol exposure caused increased 4-hydroxynonenal (4-HNE) staining as well as elevated γH2AX and 53BP1 foci in hippocampal cells. Immunoblot analysis showed decreased Mre11, Rad51, Rad50, and Ku86 as well as increased Bax and p21 in samples from ethanol-treated rats. Additionally, we also observed increased activated caspase3 staining in hippocampal cells 24 h after ethanol withdrawal. Taken together, our data demonstrated that ethanol concurrently induced DNA DSB, downregulated DSB repair pathway proteins, and increased apoptotic factors in hippocampal cells. We believe these findings will provide the impetus for further research on DNA DSB and its repair pathways in relation to alcohol toxicity in brain.
Collapse
|
232
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
233
|
DNA Damage and Pulmonary Hypertension. Int J Mol Sci 2016; 17:ijms17060990. [PMID: 27338373 PMCID: PMC4926518 DOI: 10.3390/ijms17060990] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis.
Collapse
|
234
|
Laffitte MCN, Leprohon P, Hainse M, Légaré D, Masson JY, Ouellette M. Chromosomal Translocations in the Parasite Leishmania by a MRE11/RAD50-Independent Microhomology-Mediated End Joining Mechanism. PLoS Genet 2016; 12:e1006117. [PMID: 27314941 PMCID: PMC4912120 DOI: 10.1371/journal.pgen.1006117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/20/2016] [Indexed: 01/15/2023] Open
Abstract
The parasite Leishmania often relies on gene rearrangements to survive stressful environments. However, safeguarding a minimum level of genome integrity is important for cell survival. We hypothesized that maintenance of genomic integrity in Leishmania would imply a leading role of the MRE11 and RAD50 proteins considering their role in DNA repair, chromosomal organization and protection of chromosomes ends in other organisms. Attempts to generate RAD50 null mutants in a wild-type background failed and we provide evidence that this gene is essential. Remarkably, inactivation of RAD50 was possible in a MRE11 null mutant that we had previously generated, providing good evidence that RAD50 may be dispensable in the absence of MRE11. Inactivation of the MRE11 and RAD50 genes led to a decreased frequency of homologous recombination and analysis of the null mutants by whole genome sequencing revealed several chromosomal translocations. Sequencing of the junction between translocated chromosomes highlighted microhomology sequences at the level of breakpoint regions. Sequencing data also showed a decreased coverage at subtelomeric locations in many chromosomes in the MRE11-/-RAD50-/- parasites. This study demonstrates an MRE11-independent microhomology-mediated end-joining mechanism and a prominent role for MRE11 and RAD50 in the maintenance of genomic integrity. Moreover, we suggest the possible involvement of RAD50 in subtelomeric regions stability. The parasite Leishmania relies on gene rearrangements to survive stressful conditions. However, maintaining a minimum level of genomic integrity is crucial for cell survival. Studies in other organisms have provided evidence that the DNA repair proteins MRE11 and RAD50 are involved in chromosomes organization, protection of chromosomes ends and therefore in the maintenance of genomic integrity. In this manuscript, we present the conditional inactivation of the Leishmania infantum RAD50 gene that was only possible in MRE11 deficient cells and suggest the genetic background is crucial for RAD50 inactivation. We demonstrate the occurrence of chromosomal translocations in the MRE11 and RAD50 deficient cells and described a MRE11-independent microhomology-mediated end-joining mechanism at the level of translocation breakpoints. We also suggest a possible involvement of RAD50 in subtelomeric regions stability. Our results highlight that both MRE11 and RAD50 are important for the maintenance of genomic integrity in Leishmania.
Collapse
Affiliation(s)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
| | - Maripier Hainse
- Genome Stability Laboratory, CRCHU de Québec, Pavillon HDQ Oncology axis, Québec City, Québec, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CRCHU de Québec, Pavillon HDQ Oncology axis, Québec City, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Centre de recherche sur le Cancer, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, CRCHU de Québec, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
235
|
Abstract
Because the genome stores all genetic information required for growth and development, it is of pivotal importance to maintain DNA integrity, especially during cell division, when the genome is prone to replication errors and damage. Although over the last two decades it has become evident that the basic cell cycle toolbox of plants shares several similarities with those of fungi and mammals, plants appear to have evolved a set of distinct checkpoint regulators in response to different types of DNA stress. This might be a consequence of plants' sessile lifestyle, which exposes them to a set of unique DNA damage-inducing conditions. In this review, we highlight the types of DNA stress that plants typically experience and describe the plant-specific molecular mechanisms that control cell division in response to these stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | |
Collapse
|
236
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
237
|
Schiewer MJ, Knudsen KE. Linking DNA Damage and Hormone Signaling Pathways in Cancer. Trends Endocrinol Metab 2016; 27:216-225. [PMID: 26944914 PMCID: PMC4808434 DOI: 10.1016/j.tem.2016.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
DNA damage response and repair (DDR) is a tightly controlled process that serves as a barrier to tumorigenesis. Consequently, DDR is frequently altered in human malignancy, and can be exploited for therapeutic gain either through molecularly targeted therapies or as a consequence of therapeutic agents that induce genotoxic stress. In select tumor types, steroid hormones and cognate receptors serve as major drivers of tumor development/progression, and as such are frequently targets of therapeutic intervention. Recent evidence suggests that the existence of crosstalk mechanisms linking the DDR machinery and hormone signaling pathways cooperate to influence both cancer progression and therapeutic response. These underlying mechanisms and their implications for cancer management will be discussed.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA.
| |
Collapse
|
238
|
Wang JY, Chen SY, Sun CN, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene 2016; 35:1657-1670. [PMID: 26096928 DOI: 10.1038/onc.2015.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
DNA repair is critical for the maintenance of genome stability. Upon genotoxic stress, dysregulated DNA repair may induce apoptosis. Translin-associated factor X (TRAX), which was initially identified as a binding partner of Translin, has been implicated in genome stability. However, the exact role of TRAX in DNA repair remains largely unknown. Here, we showed that TRAX participates in the ATM/H2AX-mediated DNA repair machinery by interacting with ATM and stabilizing the MRN complex at double-strand breaks. The exogenous expression of wild-type (WT) TRAX, but not a TRAX variant lacking the nuclear localization signal (NLS), rescued the vulnerability of TRAX-null mouse embryo fibroblasts (MEFs). This finding confirms the importance of the nuclear localization of TRAX in the repair of DNA damage. Compared with WT MEFs, TRAX-null MEFs exhibited impaired DNA repair (for example, reduced phosphorylation of ATM and H2AX) after treatment with ultra violet-C or γ-ray irradiation and a higher incidence of p53-mediated apoptosis. Our findings demonstrate that TRAX is required for MRN complex-ATM-H2AX signaling, which optimizes DNA repair by interacting with the activated ATM and protects cells from genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- J-Y Wang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - S-Y Chen
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-N Sun
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - T Chien
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Y Chern
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
239
|
Abstract
In this issue of Blood, Pereira-Lopes et al demonstrate that a defect in a DNA damage response (DDR) component alters homeostasis of macrophages and their inflammatory responses.
Collapse
|
240
|
Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Semin Cell Dev Biol 2016; 54:106-16. [PMID: 27013114 DOI: 10.1016/j.semcdb.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs.
Collapse
|
241
|
Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, Ye J, Wu X, Zhuang S, Li D, Zhang G. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer 2016; 16:190. [PMID: 26951044 PMCID: PMC4782334 DOI: 10.1186/s12885-016-2190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. METHODS A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. RESULTS Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. CONCLUSION Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Jiancong Huang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Kai Wang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otorhinolaryngology-Head & Neck Surgery, The First People's Hospital of Foshan, Cancheng District, NO.81 Lingnan Bei Road, Foshan, 528000, China.
| | - Jingjia Li
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Ruicheng Yan
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Zengcheng District People's Hospital of Guangzhou (Boji-Affiliated Hospital of Sun Yat-sen University), Zengcheng District, NO.1 Guangming Dong Road, Guangzhou, 511300, China.
| | - Ling Zhu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, Nanhai Maternity and Child Healthcare Hospital, Nanhai District, NO.6 Guiping Xi Road, Foshan, 528000, China.
| | - Jin Ye
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Xifu Wu
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| | - Shimin Zhuang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
- Department of Otolaryngology-Head & Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, NO.26 Yuancun Erheng Road, Guangzhou, 510655, China.
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Gehua Zhang
- Department of Otolaryngology-Head & Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, NO.600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
242
|
Kish A, Gaillard JC, Armengaud J, Elie C. Post-translational methylations of the archaeal Mre11:Rad50 complex throughout the DNA damage response. Mol Microbiol 2016; 100:362-78. [PMID: 26724682 DOI: 10.1111/mmi.13322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
The Mre11:Rad50 complex is central to DNA double strand break repair in the Archaea and Eukarya, and acts through mechanical and nuclease activities regulated by conformational changes induced by ATP binding and hydrolysis. Despite the widespread use of Mre11 and Rad50 from hyperthermophilic archaea for structural studies, little is known in the regulation of these proteins in the Archaea. Using purification and mass spectrometry approaches allowing nearly full sequence coverage of both proteins from the species Sulfolobus acidocaldarius, we show for the first time post-translational methylation of the archaeal Mre11:Rad50 complex. Under basal growth conditions, extensive lysine methylations were identified in Mre11 and Rad50 dynamic domains, as well as methylation of a few aspartates and glutamates, including a key Mre11 aspartate involved in nuclease activity. Upon γ-irradiation induced DNA damage, additional methylated residues were identified in Rad50, notably methylation of Walker B aspartate and glutamate residues involved in ATP hydrolysis. These findings strongly suggest a key role for post-translational methylation in the regulation of the archaeal Mre11:Rad50 complex and in the DNA damage response.
Collapse
Affiliation(s)
- Adrienne Kish
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Charles Gaillard
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic", BP 17171, F-30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic", BP 17171, F-30200, Bagnols-sur-Cèze, France
| | - Christiane Elie
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
243
|
Affiliation(s)
- Anna Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| | - Kelly Gray
- Cardiovascular Safety, AstraZeneca, Cambridge CB4 0FZ, United Kingdom;
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| |
Collapse
|
244
|
VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:760-9. [PMID: 26869104 DOI: 10.1016/j.bbamcr.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
NBS1 is an early component in DNA-Damage Response (DDR) that participates in the initiation of the responses aiming to repair double-strand breaks caused by different mechanisms. Early steps in DDR have to react to local alterations in chromatin that are induced by DNA damage. NBS1 participates in the early detection of DNA damage and functions as a platform for the recruitment and assembly of components that are sequentially required for the repair process. In this work we have studied whether the VRK1 chromatin kinase can affect the activation of NBS1 in response to DNA damage induced by ionizing radiation. VRK1 is forming a basal preassembled complex with NBS1 in non-damaged cells. Knockdown of VRK1 resulted in the loss of NBS1 foci induced by ionizing radiation, an effect that was also detected in cell-cycle arrested cells and in ATM (-/-) cells. The phosphorylation of NBS1 in Ser343 by VRK1 is induced by either doxorubicin or IR in ATM (-/-) cells. Phosphorylated NBS1 is also complexed with VRK1. NBS1 phosphorylation by VRK1 cooperates with ATM. This phosphorylation of NBS1 by VRK1 contributes to the stability of NBS1 in ATM (-/-) cells, and the consequence of its loss can be prevented by treatment with the MG132 proteasome inhibitor of RNF8. We conclude that VRK1 regulation of NBS1 contributes to the stability of the repair complex and permits the sequential steps in DDR.
Collapse
|
245
|
Chen YJ, Chuang YC, Chuang CN, Cheng YH, Chang CR, Leng CH, Wang TF. S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex. Nucleic Acids Res 2016; 44:2199-213. [PMID: 26743002 PMCID: PMC4797280 DOI: 10.1093/nar/gkv1523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 12/19/2015] [Indexed: 01/04/2023] Open
Abstract
Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses-checkpoint phosphorylation and global SUMOylation-to boost a cell's ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11(SIM1) and Mre11(SIM2), which reside on the outermost surface of Mre11. Mre11(SIM1) is indispensable for MRX assembly. Mre11(SIM2) non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11(SIM2) acts independently of checkpoint phosphorylation. During meiosis, the mre11(SIM2) mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Hsin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chuang-Rung Chang
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Hsiang Leng
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
246
|
Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. FRONTIERS IN PLANT SCIENCE 2016; 7:851. [PMID: 27446102 PMCID: PMC4924339 DOI: 10.3389/fpls.2016.00851] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Petra Procházková Schrumpfová,
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Brno, Czech Republic
| |
Collapse
|
247
|
Overcash JM, Aryan A, Myles KM, Adelman ZN. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 2015; 23:31-42. [PMID: 25596822 DOI: 10.1007/s10577-014-9450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.
Collapse
Affiliation(s)
- Justin M Overcash
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, 305 Fralin Life Science Institute, 360 West Campus Dr., Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
248
|
Genetic variations in the homologous recombination repair pathway genes modify risk of glioma. J Neurooncol 2015; 126:11-17. [PMID: 26514363 DOI: 10.1007/s11060-015-1892-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/08/2015] [Indexed: 01/08/2023]
Abstract
Accumulative epidemiological evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in homologous recombination (HR) DNA repair pathway play an important role in glioma susceptibility. However, the effects of such SNPs on glioma risk remain unclear. We used a used a candidate pathway-based approach to elucidate the relationship between glioma risk and 12 putative functional SNPs in genes involved in the HR pathway. Genotyping was conducted on 771 histologically-confirmed glioma patients and 752 cancer-free controls from the Chinese Han population. Odds ratios (OR) were calculated both for each SNP individually and for grouped analyses, examining the effects of the numbers of adverse alleles on glioma risk, and evaluated their potential gene-gene interactions using the multifactor dimensionality reduction (MDR). In the single-locus analysis, two variants, the NBS1 rs1805794 (OR 1.42, 95% CI 1.15-1.76, P = 0.001), and RAD54L rs1048771 (OR 1.61, 95% CI 1.17-2.22, P = 0.002) were significantly associated with glioma risk. When we examined the joint effects of the risk-conferring alleles of these three SNPs, we found a significant trend indicating that the risk increases as the number of adverse alleles increase (P = 0.005). Moreover, the MDR analysis suggested a significant three-locus interaction model involving NBS1 rs1805794, MRE11 rs10831234, and ATM rs227062. These results suggested that these variants of the genes involved in the HR pathway may contribute to glioma susceptibility.
Collapse
|
249
|
Nicolay NH, Perez RL, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget 2015; 6:19366-80. [PMID: 26203772 PMCID: PMC4637291 DOI: 10.18632/oncotarget.4358] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) comprise a heterogeneous population of multipotent stromal cells and can be isolated from various tissues and organs. Due to their regenerative potential, they have been subject to intense research efforts, and they may provide an efficient means for treating radiation-induced tissue damage. MSCs are relatively resistant to ionizing radiation and retain their stem cell characteristics even after high radiation doses. The underlying mechanisms for the observed MSC radioresistance have been extensively studied and may involve efficient DNA damage recognition, double strand break repair and evasion of apoptosis. Here, we present a concise review of the published scientific data on the radiobiological features of MSCs. The involvement of different DNA damage recognition and repair pathways in the creation of a radioresistant MSC phenotype is outlined, and the roles of apoptosis, senescence and autophagy regarding the reported radioresistance are summarized. Finally, potential influences of the radioresistant MSCs for the clinic are discussed with respect to the repair and radioprotection of irradiated tissues.
Collapse
Affiliation(s)
- Nils H. Nicolay
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Ramon Lopez Perez
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter E. Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
250
|
Iribarren PA, Berazategui MA, Bayona JC, Almeida IC, Cazzulo JJ, Alvarez VE. Different proteomic strategies to identify genuine Small Ubiquitin-like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms. Cell Microbiol 2015; 17:1413-22. [PMID: 26096196 DOI: 10.1111/cmi.12467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
Abstract
SUMOylation is an important post-translational modification conserved in eukaryotic organisms. In Trypanosoma brucei, SUMO (Small Ubiquitin-like MOdifier) is essential in procyclic and bloodstream forms. Furthermore, SUMO has been linked to the antigenic variation process, as a highly SUMOylated focus was recently identified within chromatin-associated proteins of the active variant surface glycoprotein expression site. We aimed to establish a reliable strategy to identify SUMO conjugates in T. brucei. We expressed various tagged variants of SUMO from the endogenous locus. His-HA-TbSUMO was useful to validate the tag functionality but SUMO conjugates were not enriched enough over contaminants after affinity purification. A Lys-deficient SUMO version, created to reduce contaminants by Lys-C digestion, was able to overcome this issue but did not allow mapping many SUMOylation sites. This cell line was in turn useful to demonstrate that polySUMO chains are not essential for parasite viability. Finally, a His-HA-TbSUMO(T106K) version allowed the purification of SUMO conjugates and, after digestion with Lys-C, the enrichment for diGly-Lys peptides using specific antibodies. This site-specific proteomic strategy led us to identify 45 SUMOylated proteins and 53 acceptor sites unambiguously. SUMOylated proteins belong mainly to nuclear processes, such as DNA replication and repair, transcription, rRNA biogenesis and chromatin remodelling, among others.
Collapse
Affiliation(s)
- P A Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - M A Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - J C Bayona
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - I C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - J J Cazzulo
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| | - V E Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
| |
Collapse
|